Máster en Cristalografía y cristalización Sevilla,...

28
Máster en Cristalografía y cristalización Sevilla, 2012 The Rietveld method... Fundamentals of the Rietveld method Máster en Cristalografía y cristalización Sevilla, 12 de Diciembre de 2012 Vicente Esteve Cano Dpto. de Química Inorgánica y Orgánica Universitat Jaume I de Castellón 1 Máster en Cristalografía y cristalización Sevilla, 2012 The Rietveld method... 1.- Rietveld method: principles 2.- Rietveld method: overall parameters 3.- Rietveld method: atomic parameters h h h Laboratory X-ray (synchrotron and neutrons) 2

Transcript of Máster en Cristalografía y cristalización Sevilla,...

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Fundamentals of the Rietveld method

Máster en Cristalografía y cristalizaciónSevilla, 12 de Diciembre de 2012

Vicente Esteve Cano

Dpto. de Química Inorgánica y Orgánica

Universitat Jaume I de Castellón

1

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

1.- Rietveld method: principles

2.- Rietveld method: overall parameters

3.- Rietveld method: atomic parameters

hhhh Laboratory X-ray (synchrotron and neutrons)

2

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...3

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

1.- Rietveld method: principles

2.- Rietveld method: overall parameter

3.- Rietveld method: atomic parameters

4

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Experimental pattern

data: y(2ΘΘΘΘ) matrix

5

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...Hugo Rietveld’s great idea : Ihkl vs yi (2ΘΘΘΘ)

Experimental pattern: crossesCalculated pattern: continuous lineBottom: difference curve

6

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Rietveld method: refinement by least-square using

the function: Sy=ΣΣΣΣ i (yoi -y

ci)2

yoi are the experimental intensities

yci are the calculated intensities: (a) using approximated

structure factors (Fhkl ); or (b) estimating the structure factors

without prior knowledge (Le Bail`s method).7

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Meaning:

b(2θθθθi) background

Sα α α α scale factor of the pattern

mk multiplicity of k-reflection

Fk structure factor of k-reflection

h(2θθθθi-2θθθθk) function to distribute the intensities over 2ΘΘΘΘ range

Lp(2θθθθi) Lorentz-polarization correction

Pk other corrections: prefer orientation, absorption, extinction,

yic = b(2θθθθi) + Sα α α α ΣΣΣΣ k mk|Fk |

2 h(2θθθθi-2θθθθk) Lp(2θθθθi) Pk

yic = b(2θθθθi) + ΣΣΣΣnSn ΣΣΣΣ k mk|Fk |

2 h(2θθθθi-2θθθθk) Lp(2θθθθi) Pk8

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Essentially ΙΙΙΙhkl ∝∝∝∝ F2hkl

Summation extended over all atoms within the unit cellPositionsThermal/atomic displacement parameters (ADP)Occupation factors

(a) The diffraction intensities depend upon the structure.When we know a related structure, a set of (approximate)structure factors can be calculated

Fhkl = fºn e−Bsen2θ /λ2

e

(2π i (hxn + kyn +lzn)[ ]

n

9

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Structure factors are extracted by an iterative approach:Fhkl are treated as variables (to be optimized) instead tobe calculated from an approximate structure.

Peak overlapping is a much severe problem in thisapproach

[ ] [ ]∑ ++−=n

)nl nyk n(h2(2/2sennhkl e e nfº F zxBoc iπλθ

(b) No prior knowledge of the diffraction intensities

10

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Le Bail’s method(“Whole profile matching” o “pattern matching”)

It does not use structural information

Ik(0) is (initially) a crude estimation

Ik= 0 (warning) is a fix point in the second equation

Recommendable for:

• To obtain a set of structure factors for ab-initio structure determination (also)

• Lack of precise information about the shape of the profile

• Large sample contribution to the profile

• Very crude initial structural model11

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Observation numbers

uuuu In the Rietveld method, the observations are the

set of measured intensities: yoi (2Θ)

uuuu However, useful information is only the set of

diffraction intensities : Ihkl , and it is needed at least 4-5 “good values” for each refined atomic

parameter (about 10 in SCD): not easy.

uuuu If there are not enough ‘good observations’ in order

to refine all atomic parameters; there are two choices:

(a) To implement (hard / soft) constraints; and/or

(b) To enlarge the number of observations.12

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Observation vs. number of refined parameters

uuuu The number of refined parameters can be decreased

using restrictions (Biso) or rigid body (phenyl groups)

uuuu The number of ‘good’ observations can be

increased by adding a new data set (like NPD, expensive)

uuuu The number of observations can be increased by

adding a new data set (soft constraints) which are

geometrical/chemical observations with a weight in the

refinement that can be optimized

(based on chemical knowledge and data base values)

SR= Sy + cwSGwhere SG=ΣΣΣΣ i w(Go -Gc)2

e.g. Go ≡≡≡≡ P-O 1.52(2)Å or Si-O 1.63(3)Å13

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Disagreement factors in the Rietveld methodThere are several indicators of the agreement between

observed and calculated patterns.

The best is the (shape) of the difference curve (must be flat)

Must be as low as possible!

RWP = 100 ×××× √√√√ (ΣΣΣΣ i w|yoi -y

ci |2 / ΣΣΣΣ i w|y

oi |2)

RP = 100 ×××× ΣΣΣΣ i |yoi -y

ci | / ΣΣΣΣ i |y

oi |

RB (≡≡≡≡ RI) = 100 ×××× ΣΣΣΣ k |Iok -I

ck | / ΣΣΣΣ k |I

ok |

RF = 100 ×××× ΣΣΣΣ k |Fok -F

ck | / ΣΣΣΣ k |F

ok |

REXP = 100 ×××× √√√√ ((N-P+C) / ΣΣΣΣ i w|yoi |2)

χχχχ2 = RWP / REXP

14

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Minimization and correlation matrix

uuuu Standard analysis by least-squares with a non-linearresidue function. The equations are solved by invertingthe normal matrix.

uuuu The results are not found in just one step but using an iterative method which calculates the shifts of each parameter to be refined/optimized:

∑ ∂∂=∆ −

k

1jkk

x

Sy x M

uuuu A damping factor may be applied

uuuu The correlation matrix allows to see the parameter relationships15

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Precision, accuracy and standard deviations

uuuu The calculation of the standard deviation of the n-variable

CPN

SyM1nn

+−=

uuuu This calculation assumes that the ‘unique’ source of errorsis the data statistics (there are several other sources: improperfitting of the peak shape, non-random particle distribution, …)

uuuu To evaluate the accuracy of the result we must know the finalvalue of the refined parameter (in our case the ‘truth’ is the valueobtained in single crystal studies where is available).

To be in agreement the ‘Rietveld derived’ σσσσ’s must be ×××× ~3.16

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

1.- Rietveld method: principles

2.- Rietveld method: overall parameters

3.- Rietveld method: atomic parameters

yic = b(2θθθθi) + Sαααα ΣΣΣΣ k mk|Fk |

2 h(2θθθθi-2θθθθk) Lp(2θθθθi) Pk

17

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Overall parameters

They affect the whole pattern

- Scale factor (several phases ⇒⇒⇒⇒ several scale factors)

- Coefficients (or functions) to describe the background

- Unit cell parameters

- Goniometer-zero (and sample height/shift)

- Peak shape functions and parameters

- Polarization factor

- Preferred orientation correction

18

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Scale factor(s)

uuuu The optimization of the scale factor does not

usually show correlation unless the occupation factor of

a heavy cation site. Bi2-xFexO3

u For mixtures of crystalline phases, it can be obtained the

amounts of each crystalline phase and even the overall

amorphous phase (indirectly, by addition of a suitable

crystalline standard).

m(ZMV)

WK

mV

WKS e

2e µµρ α

α

αα

αα = =

∑=

= n

1i

ii (ZMV)S

(ZMV) S W

ααα

19

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Main requisite to carry out a quantitative phase analysis

with the Rietveld method (and XRPD data):

* Crystal structures must be well known (this is the

calibration). It is not needed for special analysis

methodologies.

The composition of a rock may be determined;

(there is no need of internal standard nor calibration curve)

Phase analysis

20

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Al2O3

CaF2

ZnO

Three phases sample: ~ 33 wt% ZnO, 33 wt% CaF2 & 33 wt% Al2O321

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Overall parameters

They affect the whole pattern

- Scale factor (several phases ⇒⇒⇒⇒ several scale factors)

- Coefficients (and functions) to describe the background

- Unit cell parameters

- Goniometer-zero (and sample height/shift)

- Peak shape functions and parameters

- Polarization factor

- Preferred orientation correction22

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

To correctly describe the background is key to attain

a good Rietveld fit.

Furthermore, it must be properly fitted to be

strongly correlated to other interesting/important

parameters such as Biso, occupation factors, ...

There are different equations and algorithms that allow

a good ‘automatic’ fitting. There is also the possibility of

a hand fitting. (Or a combination of both approaches).

All these procedures have advantages and disadvantages.

23

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Overall parameters

They affect the whole pattern

- Scale factor (several phases ⇒⇒⇒⇒ several scale factors)

- Coefficients (and functions) to describe the background

- Unit cell parameters

- Goniometer-zero (and sample height/shift)

- Peak shape functions and parameters

- Polarization factor

- Preferred orientation correction

24

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

uUnit cell parameters. Their optimization is not

problematic if there is not pseudo-symmetry (then,

damping factor has to be increased).

They may be correlated with the peak shape parameters.

A suitable ‘small’ step size (e.g. 0.02 °/2θ for CuKα1) is

needed for a good refinement of these parameters.

uuuu The centering of the goniometer (zero-shift) is

correlated with the parameters that describe the axial

divergence S/L and H/L. Furthermore, the zero-shift

may include the sample height error (not perfect

alignment) as the correlation is very high.

Metric and symmetry 25

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Sample height error

26

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Overall parameters

They affect the whole pattern

- Scale factor (several phases ⇒⇒⇒⇒ several scale factors)

- Coefficients (and functions) to describe the background

- Unit cell parameters

- Goniometer-zero (and sample height/shift)

- Peak shape functions and parameters

- Polarization factor

- Preferred orientation correction

27

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Shape of an isolated peak

Lorentzian:

Gaussian:

Pseudo-Voigt:

πβο2

2wFWHM; 22

2

==+

Φ = )(Φxw

wx

Φ(x) = Φo [ηL + (1-η)G]

πββπο

Ln22wFWHM ;)( 22 ==Φ=Φ − xex 2

28

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Peak shape: (isotropic) variation with 2θθθθ

hhhh Gaussian component variation (with 2θ )

wG2 = U tan2θ + V tanθ + W + P/cos2θ

wL = X tanθ + Y/cosθ

hhhh Lorentzian component variation (with 2θ )

29

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Peak shape: Lorentzian variation with 2θθθθ

XY

30

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Peak shape: 2θ θ θ θ dependence: axial divergence

Mainly for low-angle peaks, 2θ θ θ θ < 30 °°°°It can be modelled with the S/L and H/L parameters

These parameters may be strongly correlated with zero-shift

Good starting values: S/L=H/L=0.02 (but depends on the Soller slits)

31

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Peak shape: anisotropic variation (hkl dependent)

Broad peak Sharp peak

Difference curve

Ellipsoidal correction:

in this case along [001]

32

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Peak shape of Al2O3: variations for two diffractometers

CuKα1,2-D5000_overall FWHM (yellow); Loren. (pink); Gaussian (light-blue)

CuKα1-X’Pert_overall FWHM (blue); Loren. (green); Gaussian (red)

FWHM=0.10-0.20º (overall)

FWHM=0.04-0.12º (overall)

33

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

XRPD pattern of the

same alumina:

CuKα1 (top)

and

CuKα1,2 (bottom)

110-120º range (2θ)

34

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

CuKαααα1CuKαααα1,2

Synchrotron X-R

La8.65Sr1.35Si6O26.325

Three patterns:

35

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

4

-0.5

0.

0

0.5

1.

0

2-Theta, deg

Coun

ts

5.0 10.0 15.0 20.0 25.0 30.0

X10E

4

0.0

2.

0

4.0

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

4

-0.5

0.

0

0.5

1.

0

2-Theta, deg

Coun

ts

5.0 10.0 15.0 20.0 25.0 30.0

X10E

4

0.0

2.

0

4.0

2-Theta, deg

Coun

ts

29.0 30.0 31.0 32.0 33.0 34.0 35.0

X10E

4

-0.5

0.

0

0.5

1.

0

2-Theta, deg

Coun

ts

13.0 14.0 15.0 16.0

X10E

4

0.0

1.

0

2.0

3.

0

4.0

5.

0

CuKαααα1

1.5406Å

MoKαααα1,2

0.7093Å0.7136Å

36

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Overall parameters

They affect the whole pattern

- Scale factor (several phases ⇒⇒⇒⇒ several scale factors)

- Coefficients (and functions) to describe the background

- Unit cell parameters

- Goniometer-zero (and sample height/shift)

- Peak shape functions and parameters

- Polarization factor

- Preferred orientation correction37

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Polarization

uuuu The Lorentz-polarization correction is implemented in all common

programs. Its value (in the equation given below) depends upon de

monochromator used.

θθθ

cossin 2

)2cos P(1 P Lp

2

2hh −+=

uPh may be optimized with a standard with known - Biso.

u Ph=0.80 (IPOLA=1)38

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Overall parameters

They affect the whole pattern

- Scale factor (several phases ⇒⇒⇒⇒ several scale factors)

- Coefficients (and functions) to describe the background

- Unit cell parameters

- Goniometer-zero (and sample height/shift)

- Peak shape functions and parameters

- Polarization factor

- Preferred orientation correction39

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Preferred orientation correction

uThere are several functions/corrections but the

March-Dollase methodology is the most used.

3/2-oj

2j

22o

n

1j

hp, ))/RA (sin A cos (R O +=∑=

where Aj is the angle between the prefer orientation vector

(for instance [001]) and the given reflection

Ro is a optimisable parameter:

<1.0 for plaques >1.0 for needles

uuuu More than one axis can be defined for each phase40

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Preferred orientation for layered - Pb(HO3PC6H5)2

Loss of information

41

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Lambda 1.5406 A, L-S cycle 462 Obsd. and Diff. Profiles

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

4

0.0

1.

0

2.0

3.

0

4.0

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

3

0.0

1.

0

2.0

Lambda 1.5406 A, L-S cycle 462 Obsd. and Diff. Profiles

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

4

0.0

1.

0

2.0

3.

0

4.0

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

3

0.0

1.

0

2.0

2-Theta, deg

Coun

ts

10.0 15.0 20.0 25.0 30.0 35.0

X10E

4

0.0

0.

5

1.0

1.

5

2.0

2-Theta, deg

Coun

ts

10.0 15.0 20.0 25.0 30.0 35.0

X10E

3

0.0

1.

0

2.0

CuK αααα1Reflection

CuK αααα1,2Transmission

CS

H2

CS

H2

Lambda 1.5406 A, L-S cycle 462 Obsd. and Diff. Profiles

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

4

0.0

1.

0

2.0

3.

0

4.0

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

3

0.0

1.

0

2.0

Lambda 1.5406 A, L-S cycle 462 Obsd. and Diff. Profiles

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

4

0.0

1.

0

2.0

3.

0

4.0

2-Theta, deg

Coun

ts

10.0 20.0 30.0 40.0 50.0 60.0 70.0

X10E

3

0.0

1.

0

2.0

2-Theta, deg

Coun

ts

10.0 15.0 20.0 25.0 30.0 35.0

X10E

4

0.0

0.

5

1.0

1.

5

2.0

2-Theta, deg

Coun

ts

10.0 15.0 20.0 25.0 30.0 35.0

X10E

3

0.0

1.

0

2.0

CuK αααα1Reflection

CuK αααα1,2Transmission

CS

H2

CS

H2

RQPA results:

c-Ca4Al6O12SO4, 23.6(2) wt%

o-Ca4Al6O12SO4, 15.9(2) wt%

Ca5(SiO4)2SO4, 16.7(3) wt%

gypsum, 13.5(1) wt%

β-belite, 9.9(1) wt%

anhydrite-II, 8.3(1) wt%

alite-M3, 6.1(1) wt%

CaTiO3, 4.7(1) wt%

(Mg,Ca)CO3, 1.2(1) wt%

March-Dollase PO correctionfor gypsum [010]:

PO-coeff.=0.499(8) reflection

PO-coeff.=1.37(2) transmission

42

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

1.- Introduction to powder diffraction

2.- Rietveld method: principles

3.- Rietveld method: overall parameter

4.- Atomic parameters

[ ] [ ]∑ ++−=n

)nl nyk n(h2(2/2sennhkl e e nfº F zxBoc iπλθ

Occupation

factors ADP’s Positional parameters43

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Ion conductor series (four compositions): Na1+x(Zr2-xInx)(PO4)3

44

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Positional parameters

+ soft constraints

+ rigid body

+ increase the number of useful data (e.g. NPD)

Correlations of the positional atomic parameters (xyz)

- Between atoms in complex structures

- Atoms with a large number of electrons dominate

the scattering of the sample. So the errors in the positions

of the light atoms are much higher.

45

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Simulation of the effect of the ADPs for standard sample Al2O3:Left: normal-Uiso Right: Large - Uiso

0.003 Å2 0.03 Å2

Thermal parametersADP’s

Correlations

+ Polarization (properly inserted)+ Good background description+ Disorder (positional/compositional)+ Presence of heavy atoms+ Complex structures

46

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Occupation factors

Correlations

+ Scale factors (and heavy atoms)+ ADP’s+ Disorder+ Background+ Between them (if more than one)

Warning! Take care of the input format

It is always very useful to have the chemical analysis. However,we have to distinguish between the overall elemental chemical composition and that from the crystalline phases.

Final thought: Not all that can be refined makes sense!

Just refine what's needed and if there is information for that!47

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Thanks so much for your attention!

48

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...49

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

This presentation is entirely based on the presentation

prepared by

Aknowlegments and References

50

Miguel Ángel García Aranda

Departamento de Química

Inorgánica

Universidad de Málaga

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Ca3-xMgxSiO5, main cement phase, x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10.

The figure shows the evolution in the peak positions, consequence of the evolution of

the unit cell parameters. Important for reactivity (water hydration / hardening).

# 2 Determination of the unit cell parameters.

28 30 32 34 36 38 40

2θθθθ

I (u.

a)0Mg

02Mg

04Mg

06Mg

08Mg

1Mg

51

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

Sources of peak broadening

Instrumental BroadeningInstrumental Broadening

A antiphase domainB interstitial atomG, K grain boundaryL vacancyS substitutional impurity/dopingS’ interstitial impurityP, Z stacking faults┴ dislocations

Microstructural featuresMicrostructural features

2 θ (º)2 θ (º)Finite Crystallite Size

FWHM α cos -1 θ (if isotropic)size < 0.2 µm

Lattice Strain (microstrain)

FWHM α tan θ (if isotropic)fluctuations in cell parameters

Extended Defects

Anisotropic broadeningAntiphase Boundaries, Stacking Faults

# 5 Determination of the microstructure of the phas e

52

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

# 5 Determination of the microstructure of the phas e: student’s patterns

53

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...

XRPD Applications

# 1 Identification of crystalline compounds (using the PDF database). (Based on Ihkl and dhkl)

# 2 Determination of the unit cell parameters. (Based on dhkl)

# 3 Determination of the crystal structure (atomic parameters). (Based on Ihkl and dhkl)

# 4 Quantitative phase analysis (sample purity). (Based on Ihkl)

# 5 Determination of the microstructure of the phas e. (Based on the shape-‘FWHM’ of the Ihkl)(average microparticle size and shape, microstrains, residual stress, etc.)

# 6 XRPD can be coupled to thermal variation (therm odiffractometry):Uses for: phase transitions, chemical reactions, melting/crystallization, thermal expansion, …

# 7 XRPD can be coupled to pressure variation:Uses for: phase transitions, equation of state determination, …

# 8,9, … XRPD coupled to chemical gradient , magnetic fields, …; and combinations54

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...55

Máster en Cristalografía y cristalización Sevilla, 2012

The Rietveld method...56