Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue...

122
. Matemáticas IV 1 2 3 4 5 6 7 1 2 3 4 5 6

Transcript of Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue...

Page 1: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

.

Matemáticas IV

1 2 3 4 5 6 7

1

2

3

4

5

6

Page 2: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

2

Esta publicación se terminó de imprimir durante el mes de diciembre de 2007. Diseñada en Dirección Académica del Colegio de Bachilleres de Estado de Sonora Blvd. Agustín de Vildósola; Sector Sur. Hermosillo, Sonora, México La edición consta de 9,433 ejemplares.

COLEGIO DE BACHILLERES DEL ESTADO DE SONORA

Director General Lic. Bulmaro Pacheco Moreno Director Académico Profr. Adrián Esquer Duarte Director Administrativo C.P. Gilberto Contreras Vázquez Director de Planeación Dr. Jorge Ángel Gastélum Islas Director Financiero Lic. Oscar Rascón Acuña. Matemáticas IV Módulo de Aprendizaje. Copyright ©, 2007 por Colegio de Bachilleres del Estado de Sonora todos los derechos reservados. Primera edición 2008. Impreso en México. DIRECCIÓN ACADÉMICA Departamento de Desarrollo Curricular Blvd. Agustín de Vildósola, Sector Sur Hermosillo, Sonora. México. C.P. 83280 Registro ISBN, en trámite.

COMISIÓN ELABORADORA:

Elaboración: Ramón Ezequiel Acosta Rey. Corrector de Estilo: María Esperanza Brau Santacruz Revisión de Contenido: María del Rosario Martínez García Supervisión Académica: Margarita Fonseca Urtusuastegui

Edición: Bernardino Huerta Valdez Coordinación Técnica: Cuauhtémoc Martínez Siraitare Coordinación General: Profr. Adrián Esquer Duarte.

Page 3: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

3

COMPONENTE:

FORMACIÓN BÁSICA

CAMPO DE CONOCIMIENTO:

MATEMÁTICAS

Esta asignatura se imparte en el cuarto semestre, tiene como antecedente

Matemáticas III, la asignatura consecuente es Cálculo Diferencial e Integral I

y se relaciona con Cálculo Diferencial e Integral I, Cálculo Diferencial e

Integral II y Probabilidad y Estadística.

HORAS SEMANALES: 5

CRÉDITOS: 10

Nombre: ______________________________________________________

Plantel: _________________________________________________________

Grupo: __________________ Turno: _______________

Domicilio: _____________________________________________________

____________________________________ Teléfono:_________________

Ubicación Curricular

Page 4: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

4

Funciones de grado 0 a 4

Funciones trascendentes

FUNCIONES

Clasificación y operaciones

Funciones algebraicas

Funciones polinomiales

Funciones racionales

RESOLUCIÓN DE PROBLEMAS

Bases 10 y eFunción

exponencial

Función logarítmica

Sus características y propiedades conllevan

Un análisis particularizado conduce al estudio de

Limitadas a

Estudiando

No trigonométrica

Y su inversa

Se concluye con

Utilizando Utilizando

En especial

Page 5: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

5

Recomendaciones para el alumno.........................................................................7 Presentación ...........................................................................................................8

UNIDAD 1. RELACIONES Y FUNCIONES.....................................................9 1.1. Relaciones y funciones. ...................................................................................11 1.2. Clasificación y transformación de funciones...................................................17 1.2.1. Tipos de funciones ....................................................................................17 1.2.2. Funciones inversas ...................................................................................21 1.2.3. Funciones especiales................................................................................24 1.2.4. Transformaciones de gráficas de funciones ............................................27 Sección de tareas ...................................................................................................31 Autoevaluación ........................................................................................................43 Ejercicio de reforzamiento.......................................................................................45 UNIDAD 2. FUNCIONES POLINOMIALES. ...................................................47 2.1. La función polinomial .......................................................................................49 2.1.1. Concepto de función polinomial ..............................................................50 2.1.2. La función constante como caso particular de la función polinomial ............................................................................51 2.1.3. La función lineal como caso particular de la función polinomial .....................................................................................52 2.1.4. La función cuadrática como caso particular de la función polinomial .................................................................................54 2.1.5. Funciones polinomiales de grado 3 y 4....................................................61 Sección de tareas ...................................................................................................69 Autoevaluación ........................................................................................................75 Ejercicio de reforzamiento.......................................................................................77 UNIDAD 3. FUNCIONES RACIONALES. .......................................................81 3.1. La función racional ....................................................................................83 3.1.1. Concepto de función racional...................................................................83 3.1.2. Gráficas de funciones racionales .............................................................83 3.1.3. Variación inversa .......................................................................................89 Sección de tareas ...................................................................................................91 Autoevaluación ........................................................................................................95 Ejercicio de reforzamiento..................................................................................... ..97

Índice

Page 6: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

6

UNIDAD 4. FUNCIÓN EXPONENCIAL Y LOGARÍTMICA…………………….. 99 4.1. Función exponencial................................................................................101 4.1.1. Concepto de función exponencial ....................................................101 4.1.2. Variación exponencial .......................................................................102 4.1.3. El número e ......................................................................................104 4.2. Función logarítmica .................................................................................105 4.2.1. Concepto de función logarítmica......................................................105 4.2.2. Logaritmos comunes y naturales......................................................106 4.3. Ecuaciones exponenciales y logarítmicas ..............................................108 Sección de tareas ............................................................................................... 111 Autoevaluación .................................................................................................... 115 Ejercicio de reforzamiento................................................................................... 117 Claves de Respuestas......................................................................................... 119 Glosario ............................................................................................................... 120 Bibliografía General ............................................................................................ 122

Page 7: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

7

El presente Módulo de Aprendizaje constituye un importante apoyo para ti, en él se manejan los contenidos mínimos de la asignatura Matemáticas IV. No debes perder de vista que el Modelo Académico del Colegio de Bachilleres del Estado de Sonora propone un aprendizaje activo, mediante la investigación, el análisis y la discusión, así como el aprovechamiento de materiales de lectura complementarios; de ahí la importancia de atender las siguientes recomendaciones: • Maneja el Módulo de Aprendizaje como texto orientador de los contenidos

temáticos a revisar en clase. • Utiliza el Módulo de Aprendizaje como lectura previa a cada sesión de clase. • Al término de cada unidad, resuelve la autoevaluación, consulta la escala de

medición del aprendizaje y realiza las actividades que en ésta se indican. • Realiza los ejercicios de reforzamiento del aprendizaje para estimular y/o

reafirmar los conocimientos sobre los temas ahí tratados. • Utiliza la bibliografía recomendada para apoyar los temas desarrollados en

cada unidad. • Para comprender algunos términos o conceptos nuevos, consulta el glosario

que aparece al final del módulo.

• Para el Colegio de Bachilleres es importante tu opinión sobre los módulos de aprendizaje. Si quieres hacer llegar tus comentarios, utiliza el portal del colegio: www.cobachsonora.edu.mx.

Recomendaciones para el alumno

Page 8: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

8

El presente módulo de aprendizaje corresponde a la asignatura de Matemáticas IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente, esperando con ello un aporte con claridad de los contenidos que se abordan. Los contenidos están organizados en cuatro unidades que comprenden los temas de: relaciones y funciones, funciones polinomiales, funciones racionales y funciones exponencial y logarítmica. En todas las unidades el estudiante desarrollará habilidades de comunicación al transitar por distintas formas de representación de las funciones. Es de suma importancia conocer todo lo relativo a las funciones dado que en nuestras actividades cotidianas nos encontramos ante situaciones que guardan cierta relación de correspondencia entre ellas, y aunque sean o no numéricas, nos conducen al concepto de función, con la cual es posible modelar esa dependencia para planteamientos que nos lleven a solucionar un problema.

Presentación

Page 9: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

UUnniiddaadd 11

Resolverá problemas sobre relaciones y funciones, teóricos o prácticos, mediante el manejo de la relación funcional entre dos variables, la realización de operaciones entre funciones, el uso de funciones inversas, funciones especiales, y las transformaciones de gráficas, en un ambiente escolar que favorezca la reflexión y razonamiento abstracto, lógico, analógico y el desarrollo de actitudes de responsabilidad, cooperación, iniciativa y colaboración hacia el entorno en el cual se desenvuelve.

• Relaciones y funciones. • Clasificación y transformación de

funciones.

La modelación de la relación de dependencia entre dos magnitudes es sin duda a través de la función. A la función se le encuentra por todas partes, pues los procesos no se encuentran en estado aislado sino interrelacionados. El concepto de función ocupa el punto central de todo el pensamiento matemático moderno.

( )xfy=

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

Page 10: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

10

Según la estructura regla de correspondencia.

Valor Absoluto

Idéntica

Continuas y discontinuas

Biyectiva

Inversas

Compuestas

Especiales

Constante

Escalonada

TRASCENDENTES

Según la relación entre el dominio y rango

ALGEBRAICAS

Según gráfica

Crecientes y decrecientes

Sobreyectiva

Uno a uno

Page 11: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

11

RREELLAACCIIOONNEESS YY FFUUNNCCIIOONNEESS..

Existen situaciones en las que se puede observar que dos magnitudes guardan una correspondencia tal que, el valor de una de ellas dependa de la otra, tal como se puede apreciar en los siguientes casos:

1. Si un objeto se mueve con una velocidad constante de 3 metros por segundo, desde una posición que dista 2 metros del punto de partida, las posiciones sucesivas pueden ser expresadas por la siguiente representación numérica:

Los valores de la posición dependen de los valores del tiempo. 2. La superficie que encierra una circunferencia dependerá de la medida del radio

( 2rA π= ). 3. El costo del recibo de luz dependerá de los kilowatts/hora consumidos en un

mes. La dependencia que se observa entre dos magnitudes, puede ser expresada como ya se ha mostrado, por medio de una tabla de valores, o de una ecuación. Otra forma de expresar la relación de dependencia entre dos magnitudes es por medio de un conjunto de pares ordenados. En el curso de Matemáticas 3, se definieron los lugares geométricos como un conjunto de puntos o pares ordenados que cumplen una cierta propiedad geométrica que se expresa mediante una regla

en forma de ecuación, por ejemplo: una parábola cuya ecuación es xy 42 = , puede ser expresada mediante un conjunto de pares ordenados o mediante una gráfica: Pares ordenados: {(0,0), (1,2), (1,-2), (2, 2.82),(2,-2.82),(3,3.4),(3.-3.4)} Gráfica:

-1 0 1 2 3 4 5 6

-1 1 3 5 7 9 11 13

Tiempo 0 1 2 3 4

Posición 2 2+3( )=5 2+3( )=8 2+3( )=11 2+3( )=14

-4 -3 -2 -1 1 2 3 4 5

5

-4

-3

-2

-1

1

2

3

Page 12: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

12

Así, {(0,0), (1,2), (1,-2), (2, 2.82),(2,-2.82),(3,3.4),(3.-3.4)}, representan una relación. Dentro de las relaciones hay una clase especial llamada función.

Ejemplo: {(0,0),(1,2),(2,8),(3,4)} representa una función, dado que el primer elemento se corresponde sólo con un valor, mientras que en la relación dada anteriormente, podemos observar que el primer elemento del par se repite, correspondiéndose con dos diferentes segundos elementos. Con base en el concepto dado de función, podemos identificar cuándo una gráfica la representa, si al trazar una recta vertical, ésta sólo la intercepta en un punto. En caso contrario corresponderá a una relación.

-3 -2 -1 1 2 3 4

-2

-1

1

2

3

4

-5 -4 -3 -2 -1 1 2 3 4 5 6

-1

1

2

3

4

5

6

Podemos definir a una

.

Toda función es una relación, pero no toda relación es una función.

La gráfica corresponde a una relación, pues la recta vertical la intercepta en más de un punto.

La gráfica es de una dado que la recta vertical solo la intercepta en un punto

Page 13: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

13

Una función puede ser representada a través de una ecuación, una tabla de valores, un conjunto de pares ordenados o mediante una gráfica.

Sea la función 523 +−= xxy , la relación de dependencia entre los valores de las variables puede ser expresada mediante la siguiente tabla:

523 +−= xxy 35)1()1( 23 =+−−− 55)0()0( 23 =+− 55)1()1( 23 =+−

La cual nos conduce a la forma del siguiente conjunto de pares ordenados: {(-1,3),(0,5),(1,5),(2,9)} los cuales a su vez si se llevan a un sistema cartesiano nos produce la gráfica de la función. La forma simbólica para expresar la existencia de una función es mediante la

igualdad )(xfy = , donde )(xf ; representa la regla que define a la función. En el siguiente ejemplo 52 += xy ; la regla que define a la función es: “cada valor de multiplicarlo por 2 y luego a este resultado sumarle 5”. Los diferentes resultados de la función que se obtienen con la regla de correspondencia que la define corresponden a las variaciones de” Una función puede ser expresada en o en . Por ejemplo, la función dada en el ejemplo anterior está dada en forma explícita. Si asociamos sus términos en un solo lado de la igualdad, entonces tendremos la forma implícita 052 =+− yx . En geometría analítica se manejó la ecuación de la recta en la forma: a) Explícita: pendiente-ordenada en el origen bmxy +=

b) Implícita: forma general 0=++ cByAx Ambos casos expresan una función “y” dada en términos de “x” [ )(xfy = ]

-5 -4 -3 -2 -1 1 2 31

1

2

3

4

5

6

7

8

9

y

x

Page 14: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

14

Se llama al conjunto de números reales que se le pueden asignar a la variable que expresa la regla de correspondencia de la función y que producen un resultado definido. La variable que participa en la regla de correspondencia de la función, se le conoce con el nombre de

En la función ( )4

3

−=x

xf , el dominio estará formado solamente por los valores de

“x” que produzcan un resultado definido, por lo que se excluirá el caso cuando x=4, pues no es posible la división entre cero. Entonces, en las funciones racionales se deben excluir los valores de “x”, para los que se anula el denominador.

En la función ( ) 29 xxg −= , el dominio estará formado por todos los valores de “x” que produzcan un resultado positivo en el radicando (9-x2); esto es que en este caso el dominio estará formado por todos los valores de “x”, que sean menores de 3 y mayores que -3. Observemos que para valores mayores que 3, el resultado en el radicando es negativo, y lo mismo sucede para valores menores que -3.

( ) ( )BC

BA xy −+−=

Ax+By+c

El se puede definir como el

Page 15: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

15

Si la regla de correspondencia que define a la función es un polinomio, entonces el dominio quedará formado por todos los números reales, pues su estructura no presenta restricciones.

Ejemplo: la función 152 23 ++−= xxxy , acepta en su dominio a todos los números reales. Para su graficación es recomendable considerar una muestra de números negativos y de positivos incluyendo al cero. Entonces el está formado por los valores que alcanza la función, o sea por el conjunto de todos los valores que toma la variable dependiente.

A manera de conclusión podemos afirmar que: Una función se puede comparar con un procedimiento en el que cada uno de los valores de entrada ( ), se somete a una regla para producir un valor de salida, ( ).

Ejemplo: f(x)= x2 + x -1

Entrada SalidaRegla de correspondencia

X=3 f( 3 )= 11 y=11

x2 + x – 1= (3)2 + 3 - 1

Page 16: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

16

EJERCICIO 1 1. Determina cuál de las siguientes relaciones representa a una función y explica el por qué.

a) {(1,-2), (1,2), (2,5), (2,-3)} b) {(2,1), (-1,0), (0,1), (1,2), (2,2)}

2. Anota bajo cada gráfica si se trata de una función o de una relación.

-5 -4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

4 -3 -2 -1 1 2 3 4 5 6 7 8

-3

-2

-1

1

2

3

4

5

6

_________________ _________________ __________________ 3. Halla el dominio de cada una de las siguientes funciones:

a) ( )2−

=x

xxf

b) ( ) xxf =

c) ( ) 3 xxf =

d) ( ) 42 −= xxg

e) ( ) 24 xxf −=

f) 582 =+ yxy

g) 45)( 2 −+= xxxf

4. Grafica cada una de las funciones anteriores y escribe su codominio.

5. La función ( )nnnfS +== 2

21)( modela la recaudación de una rifa

conocida como “rascadito”, en la que se paga en pesos la cantidad entera que aparezca desde 1 hasta n. ¿Cuánto se recaudaría si la rifa fuera de?

a) 25 números. b) 50 números. c) 100 números.

Page 17: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

17

CCLLAASSIIFFIICCAACCIIÓÓNN YY TTRRAANNSSFFOORRMMAACCIIÓÓNN DDEE FFUUNNCCIIOONNEESS..

Las funciones se pueden clasificar de diferentes maneras. Primeramente, según el tipo de operaciones que se tienen que realizar para obtener sus valores, se clasifican en: Algebraicas y Trascendentes:

se refieren a aquellas cuya regla de correspondencia puede ser expresada por medio de un polinomio, una expresión racional (cociente de dos polinomios) o una expresión irracional (forma radical).

se refieren a las funciones cuya regla de correspondencia no es algebraica como las funciones trigonométricas (vistas en el curso de matemáticas 2), las funciones exponenciales y las logarítmicas. Esta clasificación se puede resumir en el siguiente cuadro:

Según su gráfica, las funciones pueden clasificarse en continuas y discontinuas. Gráficamente se prueba que una es si se puede trazar sin levantar el lápiz del papel, pues en caso contrario corresponderá a la de una función discontinua.

Si consideramos la función ( ) xxf = , al hacer su gráfica, podemos observar que se puede hacer de un solo trazo, por lo que se trata de una función continua.

ALGEBRAICAS

TRASCENDENTES

TRIGONOMÉTRICAS

IRRACIONALES

RACIONALES

POLINOMINALES

EXPONENCIALES

LOGARÍTMICAS

FUNCIONES

-3 -2 -1 1 2 3 4 5 6 7 8 9

1

2

3

4

5

f( )

Page 18: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

18

En cambio, en la gráfica de la función x

y1

= , se observa que es la de una función

discontinua.

Las funciones pueden generar gráficas que son crecientes o decrecientes.

Las siguientes gráficas corresponden a

De manera similar las siguientes gráficas corresponden a :

-2 -1 1 2 3 4

-1

1

2

3

-1 1 2 3 4 5

-1

1

2

3

-5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

-1 1 2 3

-1

1

-1 1 2

-1

1

2

-2 -1 1 2

1

2

a b

f(a)

f(b)

a a b b

f(a)

f(b)

f(b)

f(a)

Una será si al evaluarla en dos valores “a” y “b” de su dominio, tal que se cumple que

Una será si al evaluarla en dos valores “a” y “b” de su dominio, tal que se cumple que .

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Page 19: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

19

En los diferentes tipos de funciones, cuando se considera la forma como está asociado el dominio con su rango, se pueden clasificar en: 1. Funciones uno a uno o inyectivas. 2. Sobreyectivas o suprayectivas. 3. Biyectivas o biunívocas. La condición dada anteriormente nos asegura que si se produjera que f(a)=f (b), sería porque a=b. La función lineal f(x) = 2x - 3, es un ejemplo de una función uno a uno, porque para dos valores diferentes de su dominio, se tienen exactamente dos valores diferentes de su rango o contradominio. Por ejemplo: Si x = 1, se tiene que f (1) = -1; y si x = 3, se tiene que f (3) = 3

EJERCICIO 2

Una es si cada valor del dominio está asociado con exactamente un valor del rango.

1) Investiga el significado de trascendente y explica cómo se relaciona este significado con relación a las funciones algebraicas. 2) Presenta una gráfica que represente a una función continua y otra a una discontinua. 3) Determina para qué valor de x la siguiente función es discontinua.

4

16)(

2

−−

=x

xxf

a) Simplifica el cociente dado en la regla de correspondencia anterior y escribe el resultado.

b) Grafica por separado la función dada en 3) y la obtenida en a) y comprueba que sólo son diferentes en el punto de discontinuidad.

4) Escribe una representación tabular de una función que cumpla con las condiciones

para ser creciente y muéstralo gráficamente. 5) Haz un bosquejo de la gráfica (trazo) de una función que cumpla con las siguientes condiciones: a) Discontinua en x=3 y decreciente. b) Continua, creciente para valores de x entre -2 y 1 y decreciente para valores de x entre

0 y 1.

Page 20: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

20

Cuando se conoce la gráfica de una función, una manera de saber como están asociados los valores de su dominio con los del rango, es aplicando la

, para ver en cuántos puntos ésta corta a la gráfica. Si corta a la gráfica en cuando mucho un punto, entonces la función será o . Si corta a la gráfica en más de un punto, entonces la función será o

. En estas funciones un valor del rango se asocia con cuando menos un valor del dominio. Cuando una función cumple con las condiciones dadas tanto para las inyectivas como para las suprayectivas, recibe el nombre de . Un ejemplo de estas funciones lo encontramos en las lineales, cuya gráfica es una recta.

La frase “ ” implica

“ ”.

Mientras que la frase

” implica

Esta gráfica • Es inyectiva, porque cada valor del dominio está asociado con un valor del rango. • Es sobreyectiva, porque cada valor del rango está asociado a un valor del dominio

Por lo que también es: • Biyectiva.

-2 -1 1 2 3 4

-2

-1

1

2

3

Cada valor del dominio está asociado a exactamente un valor del rango

-5 -4 -3 -2 -1 1 2 3 4 5

-2

-1

1

2

3

4

5

6

El mismo valor del rango se asocia son al menos un valor del dominio.

x

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

x

y

Hay funciones que son , pero no toda

función es

Page 21: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

21

Una función uno a uno, nos asegura la formación de una segunda función al invertir los pares ordenados. Ejemplo: Si consideramos la función f: {(0,1), (1,2), (2,5), (3,10), (4,17)}, la cual es uno a uno, podemos definir ahora la función f . A esta segunda función que resulta del intercambio de su dominio y rango, se le conoce con el nombre de .

La función y su inversa, gráficamente muestran una simetría con respecto a la recta y=x. Así, si expresamos la función 53 += xy como un conjunto de parejas

ordenadas, obtenemos =f {(-2,-1), (-1,2), (0,5), (1,8), (2,11)}.

En forma individual contesta los siguientes ejercicios, compara los resultados con tus compañeros de al lado y después, muéstralos a tu profesor para su evaluación.

1. ¿Es biyectiva la función 3xy = ? Justifica tus respuestas apoyándote en la gráfica correspondiente. 2. Clasifica cada una de las siguientes funciones como inyectivas, sobreyectivas o

biyectivas según sea el caso:

a) 2+= xy .

b) 29 xy −= .

c) x

xf1

)( = .

d) 12 3 += xy . 3. Consideremos la cantidad de alumnos y el número de escritorios disponibles en

un salón de clases, describe brevemente bajo qué circunstancias, se produce: a) Una correspondencia inyectiva o uno a uno. b) Una función sobreyectiva. c) Una función biyectiva. 4. Entre los libros de una biblioteca y la correspondiente clave que se le asigna, ¿se

produce una relación sobreyectiva? Explica tu respuesta.

EJERCICIO 3

En la notación 1−f ,

empleada para indicar la inversa de una función, el valor -1 no se debe confundir con un exponente, pues no se trata de una potencia sino de una representación simbólica.

Page 22: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

22

Las parejas ordenadas que definen a la correspondiente función inversa son:

=−1f {(-1,-2), (2,-1), (5,0), (8,1), (11,2)}. Vistas gráficamente las dos, nos quedan de la siguiente forma: . Como puedes observar, hallar la inversa de una función definida como un conjunto de pares ordenados es fácil, pero cuando está dada en la forma explícita, y=f(x), ¿cómo se obtiene la regla de correspondencia de su inversa? El procedimiento mostrado anteriormente de invertir el dominio y el rango, cuando la función está definida como un conjunto de pares ordenados, sugiere: 1) Cambiar el nombre de las variables, quedando entonces expresada la función

en la forma x=f (y). 2) Pero como no estamos acostumbrados a considerar a la variable “ como

independiente, entonces para que siga teniendo el papel de dependiente, la de la forma obtenida como x=f (y).

Ejemplo: para hallar la inversa de la función 53 += xy 1) Cambiamos el nombre de las variables: 53 += yx . . . . ... x=f (y)

2) Despejamos la variable y; 3

5−=x

y . . . . . . . . . . . . . . . y= f -1(x)

Lo que hemos observado hasta aquí es que el dominio de la función dada se convierte en el rango de la función inversa, y el rango de la función dada es el dominio de la función inversa. Toda función biunívoca (uno a uno) tiene una inversa.

y

x

53)( +== xxfy

3

5)(1 −=− x

xf

xy =

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

Page 23: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

23

En forma individual; contesta y/o resuelve lo siguiente, argumentando la teoría en la que se soporten tus respuestas. Presenta los resultados a tu profesor. 1. Para cada una de las siguientes representaciones de una función, determina

si tienen o no una inversa. Razona tu respuesta. a)

x -1 0 1 2 3 4y 0 1 2 3 4 5

b) f(x) = 2x+5 c)

3 -2 -1 1 2 3

-2

-1

1

2

2. ¿Cuál de las tres funciones dadas en el ejercicio 1, es sobreyectiva? Argumenta tu respuesta. 3. Una función sobreyectiva no tiene inversa. ¿Cómo podemos lograr que una

función sobreyectiva tenga inversa? 4. Traza la gráfica de las funciones siguientes y la de su correspondiente función

inversa, empleando el mismo sistema de coordenadas.

a) x2 + y = 1

b) f(x)= 4x + 2

c) y = 5 5. Dibuja la inversa de la siguiente función: A partir de su dominio y rango.

EJERCICIO 4

Page 24: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

24

Dentro del grupo de las funciones algebraicas existen cuatro tipos que pueden clasificarse como especiales, que son: la función constante, la idéntica, la de valor absoluto y la escalonada.

Una es sobreyectiva, ya que el mismo valor del rango o codominio queda asociado con todos los valores del dominio. Ejemplos de funciones constantes: y=3, f(x)=5, y=-2, etc. Las gráficas de las funciones constantes son horizontales y por tanto, paralelas al eje “x”. En forma general, su ecuación queda expresada de la forma y = k, Se llama o a la función biyectiva, cuya ecuación es El nombre de idéntica lo recibe porque su dominio es idéntico al rango o codominio, por lo que su gráfica corresponde a una recta que pasa por el origen de coordenadas, formando un ángulo de 45º con respecto al eje x.

y

X 45º-2 -1 1 2

-2

-1

1

2

6

4

2

-2

y

-5 5 x

f x( ) = 3

Page 25: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

25

La tiene por ecuación xy = , y tiene la propiedad de que

todos los elementos del codominio o rango siempre son positivos, ( 0≥y ), esto es que, los valores negativos del dominio cambian a valores positivos en el rango, como se observa en su gráfica: Obtenida de la forma tabular

Su representación gráfica es de la forma siguiente:

La gráfica presenta una discontinuidad de saltos. Cada escalón es la gráfica de una función constante, es decir, que se trata de “funciones constantes por trozos”. En otras palabras,

. Observemos que en la gráfica, para x=300, el valor de la función que se lee en la gráfica es 1000; dado que 300 es un valor del dominio de la función constante (escalón); f (300)= 1000.

-4 -3 -2 -1 0 1 2 3 4 4 3 2 1 0 1 2 3 4

La función escalonada se define por partes, donde cada parte corresponde a una función constante.

x

6

4

2

y

-5 5

x

f x( ) = x

Page 26: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

26

Existe otro tipo de función escalonada llamada “ ”, cuya gráfica está formada por una serie de segmentos unitarios (longitud uno), faltándole a cada uno su extremo derecho, como se muestra en la siguiente gráfica.

Por ejemplo: [3.2] = 3 porque 3 es el máximo entero menor o igual a 3.2, [0.64] = 0 porque 0 es el máximo entero menor o igual a 0.64

Las funciones compuestas se pueden crear cuando en la variable independiente de una de las funciones, se sustituye la regla de correspondencia de la otra función. Así, por ejemplo con la función f, definida por f(x)= 2x+3 y la función “g”, por g(x)=

12 −x , se pueden crear diferentes funciones compuestas, dependiendo de la función que sea tomada como la nueva variable independiente. 1. Si la función “g” se sustituye en la regla de correspondencia de la función “f”.

y= f [g(x)]= 2 3 2. Si la función “f” se sustituye en la regla de correspondencia de la función “g”.

y= g [f(x)] 2 1

3. Si la función “f” se sustituye en su misma regla de correspondencia.

y= f [f(x)] = 2 3

4 Si la función “g” se sustituye en su misma regla de correspondencia.

y= g [g(x)] = ( ) 2 -1 La función compuesta creada con una función y su inversa siempre da como resultado la de identidad.

La función =y 5)( 2 += xxf , tiene como inversa 5)(1 −=− xxf

( ) 55)]([21 +−=− xxff

55+−= x xy = ………. Función identidad

o

o

.

Page 27: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

27

Desde geometría plana se conoce la propiedad de las figuras de poder desplazarse manteniendo su forma y tamaño, misma situación que ocurre con las gráficas de las funciones, cuando se mueven en el plano cartesiano. Las transformaciones de la gráfica de una función ocurren cuando ésta se desplaza en el plano o se refleja con relación a una recta. El desplazamiento o reflexión produce un cambio en la regla de correspondencia de la función, transformándola a otra que contiene valores constantes que se identifican con el nombre de parámetros. Ejemplos de funciones que contienen parámetros en su regla de correspondencia:

Parámetros

754 2 ++= xxy y = mx+ b

En binas, realiza los ejercicios indicados, compara los resultados con los de tus compañeros y muéstralos a tu profesor. 1. Traza la gráfica en cada caso e identifica el tipo de función. a) (x) = 5

b)

<−≥

=0

0

xsix

xsixy

c)

>≤≤

=33

30)(

xsi

xsixxg

2. Con la función 5)(

31 += xxf y su correspondiente inversa, obtén la función

compuesta y comprueba que el resultado es igual a la función identidad

{ }xxff =− )]([ 1 3. ¿La gráfica obtenida en 1.b), se corresponde con la de valor absoluto? Escribe tu conclusión.

EJERCICIO 5

Page 28: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

28

I. Si la función f(x) se cambia por f(x) + c, el parámetro produce una traslación

vertical de la gráfica de f(x). A la nueva función que se forma le llamaremos g(x)= f(x)+c

. Al comparar las gráficas de las funciones, se deducen los siguientes efectos del parámetro “c cuando éste se suma a f(x). 1. Si la gráfica de f(x) se traslada hacia arriba c unidades. 2. Si la gráfica de f(x) se traslada hacia abajo c unidades. II. Si f(x) se cambia por f(x+c), la gráfica de f(x) se desplazará horizontalmente a

la izquierda o a la derecha, dando origen a la formación de la nueva función transformada: , como se visualiza el siguiente ejemplo:

6

4

2

-2

-4

-6

-5 5

g(x)=f(x) - 3

f(x)=x2

8

6

4

2

-2

-4

-5 5

f(x)=x2

g(x)=f(x) + 3

Gráficas de f(x)= x2 y de g(x)= x2 +

Gráficas de f(x)= x2 y de g(x)= x2

8

6

4

2

-2

5 5

g(x)=f(x-2)f(x)=x2

8

6

4

2

-2

-5

g(x)=f(x+2)

f(x)=x2

Page 29: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

29

Si comparamos la gráfica punteada con la gráfica de trazo continuo, podemos visualizar los efectos del parámetro sobre la nueva posición en el plano de la gráfica de f(x), cuando se transforma en la función g(x)= f(x+c): a) Si ; la gráfica de la función f(x) se desplaza hacia la izquierda c unidades.

b) Si ; la gráfica de la función f(x) se desplaza hacia la derecha c unidades.

y La ecuación de una función f(x) puede ser transformada cuando introducimos en ella el signo “menos”. Hay dos formas de introducir el signo menos en la regla de correspondencia de una función:

En este caso, , (efecto equivalente a que el eje “y” fuese un espejo).

En este caso

6

4

2

-2

-5 5

f(-x)= -x f(x)= x

6

4

2

-2

-4

-6

-5 5

g(x)=-f(x)

f(x)=1

4x2

Page 30: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

30

c) , se produce cuando en el mismo sistema de coordenadas la graficamos junto con su inversa.

Ejemplo, si graficamos la función f(x) = 2

21 x , en el dominio 0≥x , la gráfica de su

inversa será la imagen reflejada con respecto a la recta de 45º

EJERCICIO 6

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

xxf 2)(1 =−

En forma individual realiza los ejercicios que se presentan a continuación, si surge alguna duda consulta tus apuntes y a tu profesor. Compara los resultados con los de tus compañeros.

1. Tomando como base la gráfica de ( ) 2xxf = , grafica cada una de las siguientes funciones:

a) 2)( 2 += xxg

b) ( )23−= xy

c) 3)( 2 +−= xxh

2. Traza la reflexión de la gráfica de la función 3xy = con respecto a la recta de 45º (función identidad y=x). 3. ¿Cuál es la ecuación que corresponde a la gráfica reflejada en el ejercicio 2?

Page 31: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

31

En forma individual, realiza cada una de los siguientes ejercicios y entrega los resultados a tu profesor.

1. Clasifica el siguiente conjunto de parejas ordenadas ( ) ( ) ( ) ( ) ( ) ( )}{ 3,15,2,5,1,1,0,3,1,1,2,5 −−−−−

como una función o una relación y argumenta tu respuesta.

2. Analiza el dominio y la gráfica de las siguientes funciones y escribe sobre la raya si son continuas o

discontinuas:

a) y= {(1,3), (2,5), (3,7), (3.5, 8)} _________________________________.

b) f(x) = 3 x2 +1 _____________________________________.

c) g(x) = 3

92

−−

x

x ___________________________.

3. Escribe el dominio restringido para que la relación ( ) ( ) ( ) ( ) }{ )3,17(),2,7(,1,1,0,1,1,1,2,7 −−− , aporte el

conjunto de pares ordenados que correspondan a una función.

4. Elabora un mapa conceptual que contenga las vistas en esta primera

unidad del curso.

5. Según el trazo que corresponde a una función creciente, describe las condiciones que se cumplen para

dos valores de su dominio con respecto al rango.

• De igual forma para una función decreciente.

6. Una función tiene la siguiente regla de correspondencia: “cada valor de x se aumenta en dos, luego el

resultado se eleva al cuadrado y finalmente se restan cinco unidades”.

Escribe la función, como:

a. Una tabla de valores.

b. Un conjunto de pares ordenados.

c. Una gráfica.

d. Una ecuación.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 32: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

32

Page 33: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

33

Encuentra la respuesta correcta que corresponde a cada uno de los siguientes ejercicios.

1. Aplica el criterio de la recta horizontal y determine cuál de las gráficas corresponde a una función uno a uno.

2. Expresa la inversa de 42)( 35 −+= xxxf , como un conjunto de pares ordenados, y construye su gráfica.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

x

Y dc

ba)

Page 34: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

34

3. Escribe la ecuación que corresponde a la inversa de cada una de las siguientes funciones.

Grafícalas en el mismo sistema coordenado.

1) 3)(2

1 += xxf

2) 1;1 −≥+= xxy

3) ( ) 3 xxf =

4) 2

32

++

=x

xy

5) x

xf−

=2

4)(

4. La función 32 += xy no es uno a uno ¿Bajo que restricción de su dominio se transforma en una

función uno a uno?

a) Muestra tu respuesta gráficamente.

b) Grafica la función inversa correspondiente.

5. Para cada gráfica traza la que corresponde a )(xfy = .

-4 -3 -2 -1 1 2 3 4

-2

-1

1

2

-4 -3 -2 -1 1 2 3

-2

-1

1

2

-4 -3 -2 -1 1 2 3 4

-2

-1

1

2

-4 -3 -2 -1 1 2 3

-2

-1

1

2

( )xf )(xf

Page 35: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

35

Evalúa las funciones y entrega a tu profesor los resultados encontrados

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

1. Con la lista de cotejo que se presenta a la derecha, evalúa las funciones cuyas gráficas se muestran, escribiendo al pie de ellas dentro de cada cuadro la letra que corresponda a la característica que presentan.

-5 -4 -3 -2 -1 1 2 3 4 5 6

2

-1

1

2

3

4

5

_

Uno a uno

Sobreyectiva

Biyectiva

Continua

Creciente

Decreciente

Creciente y decreciente

Page 36: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

36

a) Según los resultados obtenidos, las dos funciones que tienen inversa son:

_____________ y ____________. ¿Por qué? _______________________________

_____________________________________________________________________

_____________________________________________________________________.

2. Con base en la gráfica que se muestra, obtén la gráfica reflejada a la función idéntica y = x.

Gráfica de y = x

8

6

4

2

-2

-4

-6

-5 5 10

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 37: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

37

Realiza la actividad que se indica y además resuelve los ejercicios que se plantean. 1. En equipos de tres alumnos, investiga en los departamentos de mensajería los costos de envío de un

paquete según su peso, y en forma individual:

a) Concentra los datos obtenidos empleando la forma tabular.

b) Escribe el dominio y el rango de la función investigada.

c) Grafica los datos investigados.

d) ¿A qué tipo de función corresponde la gráfica obtenida?

________________________________.

2. Grafica la función definida de la siguiente manera:

−−=

854

531

0,12

)(

quemenorperoqueigualomayoresxsi

quemenorperoqueigualomayoresxsi

quemenorperoqueigualomayoresxsi

xf

a) Describe su dominio y rango.

Dominio: __________________; Rango: _______________.

3. En cada caso grafica la función que se indica:

a) y = [x + 1]

b) y = [x] + 1

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 38: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

38

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 39: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

39

En forma individual resuelve cada una de las cuestiones que se plantean.

1. Si el área de una circunferencia es A(r)=π r2 y si r (d)=d/2, determina la función compuesta:

A = [f (d)].

2. En una tienda se observa la siguiente promoción: “En la compra de un juego de maletas obtenga un

20% de descuento” y además “un descuento adicional de 35 pesos. Si consideramos las funciones

c(x)= 0.8x y p(x)= x-35.

a) Calcula c [p(x)] y p [c(x)].

b) ¿Cuál de los resultados obtenidos determina el pago del juego de maletas? ________.

c) ¿Cuánto se pagará por un juego de maletas con precio de lista de 650 pesos? _______.

3. Encuentra la función compuesta que se indica en cada caso, si f(x) = x2 – 3; g(x) = 2x+1

a) f [g(x)]= ______________________________.

b) f ナ f = _______________________________.

c) g ナ f = _______________________________.

d) g [g(x)]= ______________________________.

4. Escribe una función irracional y comprueba que la función compuesta que se obtiene con su inversa,

corresponde a la función identidad o idéntica.

Función Irracional: ________________________.

Función Inversa: __________________________.

Función Compuesta: _______________________.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 40: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

40

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 41: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

41

Realiza las actividades que se te indican.

1. Elabora un resumen sobre las modificaciones que se producen en la gráfica de una función cuando se

introducen parámetros en su ecuación.

2. Ilustra con un ejemplo cada caso contenido en el resumen elaborado.

3. Las gráficas que se muestran son transformaciones de la función y = x2. Determina el valor del

parámetro y escribe la ecuación de la nueva función:

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Parámetro: ________________. Ecuación de la función g(x) = _______________.

Parámetro: ________________. Ecuación de la función h(x) = _______________.

Parámetro: ________________. Ecuación de la función F(x) = _______________.

Parámetro: ________________. Ecuación de la función H(x) = _______________.

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

Page 42: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

42

4. A partir del conocimiento de las gráficas de las funciones básicas, realiza un bosquejo de las

transformaciones geométricas que corresponden a cada una de las siguientes funciones:

1) y=(x+1)3 – 1

2) f(x)= 4 – x2

3) 12)( +−−= xxf

4) g(x) = - 3+x

1) 3)

2) 4)

_

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 43: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

43

Lee cuidadosamente y responde los siguientes cuestionamientos, rellenando el círculo de la opción que consideres correcta. 1. Es el par ordenado que se requiere eliminar de la relación }{ )2,1(),11,4(),9,3(),7,2(),5,1( − , para que

nos quede la representación de una función.

(2,7) (3,9) (4,11) (1,-2)

2. Es la ecuación que corresponde a una función discontinua.

2xy =

32 −= xy

2

2

−=x

y

3xy = 3. Cuando una función es el valor de entrada en otra función, la obtenida se llama:

Inversa. Compuesta. Mixta.

Simple. 4. Las gráficas de una función y su inversa son simétricas con respecto a:

El eje x. El eje y. Y = x. Ambos ejes.

5. Si el costo de un teléfono celular que tiene el 10% de descuento está dado por la función

( ) xxxC 10.0−= , mientras que el IVA relativo al impuesto está dado por ( ) xxI 15.0= ; entonces la

expresión que corresponde a ( )[ ]xCI es:

0.15(0.9x) 1.35x 0.15(1-0.9x) 0.10(0.9x)

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 44: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

44

6. Si en y = f(x) se cambia x por (x-3) entonces la nueva función obtenida g(x)= f(x-3) nos indica que la gráfica de la función y=f(x):

Se desplaza 3 unidades hacia arriba. Se desplaza 3 unidades hacia la izquierda. Se desplaza 3 unidades hacia abajo. Se desplaza 3 unidades hacia la derecha.

7. La gráfica de 12 +−= xy , corresponde a una transformación geométrica de la gráfica de 2)( xxf = , cuando ésta, se refleja con respecto al eje::

y sube una unidad. y sube una unidad. y baja una unidad. y baja una unidad.

8. Las ofertas de pago por la adquisición de un producto en una subasta, van cambiando en forma

creciente conforme transcurre el tiempo. Este proceso se describe con la gráfica de la función:

Identidad. Constante. Valor absoluto. Escalonada.

9. La función ( ) ( )xfxh −= es la reflexión de la función ( )xf respecto:

Al eje x. Al eje y. A ambos ejes. A la recta a 45º.

10. La aceleración que se produce en un cuerpo en caída libre, con respecto al tiempo, queda expresado

por una función:

Identidad. Constante. Valor absoluto. Escalonada.

Ü Si todas tus respuestas fueron correctas: por lo que te invitamos a continuar con esa dedicación.

Ü Si tienes de 8 a 9 aciertos, tu aprendizaje es , pero es

necesario que nuevamente repases los temas.

Ü Si contestaste correctamente 7 ó menos reactivos, tu aprendizaje es , por lo que te recomendamos solicitar asesoría a tu

profesor.

Page 45: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

45

Resuelve los siguientes ejercicios y pon a prueba tus aprendizajes y destrezas.

1. En la siguiente tabla formada con los valores de entrada y valores de salida, existe una regla de

correspondencia que los relaciona.

Entrada 1 2 3 4 5 6

Salida 6 10 14 18 22 26

a) Completa los valores que faltan. b) ¿Cuál es la vigésima salida de la tabla? c) Expresa como un conjunto de parejas ordenadas los valores dados en la tabla. d) Representa gráficamente las parejas ordenadas en un sistema coordenado. e) Divide cada valor de salida entre el correspondiente valor de entrada y anota los residuos de la división. f) De acuerdo con los resultados obtenidos en el inciso anterior, se puede visualizar la regla de

correspondencia de la función dada en la forma tabular. Anota la regla. g) Escribe la ecuación que representa a la función de los valores de la tabla. h) Encuentra la función inversa correspondiente.

2. Tomando como referencia la gráfica de la función xy = , obtén la gráfica de la función

( ) 1)2( +−−−= xfxg . 3. Con la función f(x)= 2x+5 y la función g(x)= Sen(x), obtén: a) H(x)=f[g(x)] b) C(x)=g[f(x)] c) h(x)=fof

Nombre _________________________________________________________

Núm. de lista ____________ Grupo ________________ Turno __________

Núm. de Expediente ___________________ Fecha ____________________

Page 46: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

46

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 47: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

UUnniiddaadd 22

Resolverá problemas de funciones polinomiales, teóricos o prácticos, utilizando sus propiedades algebraicas y geométricas, en un ambiente escolar que favorezca la reflexión sobre el análisis y razonamiento práctico, así como el desarrollo de actitudes de responsabilidad, cooperación, iniciativa y colaboración hacia el entorno en que se desenvuelve.

• La función polinomial.

Es a través de las funciones como se pueden modelarsituaciones de muy variada naturaleza.

1 2 3 4 5 6 7

1

2

3

4

5

6

t

C

Page 48: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

48

RESOLUCIÓN DE PROBLEMAS.

FUNCIONES POLINOMIALES

FUNCIÓN CONSTANTE

FUNCIÓN LINEAL

FUNCIÓN CUADRÁTICA

FUNCIONES POLINOMIALES DE GRADO 3 Y 4

RAÍCES REALES Y COMPLEJAS

MODELAJE DE PROBLEMAS

Gráfica y característica

Page 49: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

49

LLAA FFUUNNCCIIÓÓNN PPOOLLIINNOOMMIIAALL

Las funciones expresadas en la forma de ecuación, se utilizan como medio para modelar situaciones en las que se observa la relación entre magnitudes. Si te fijas en los siguientes casos, en cada uno de ellos se encuentra inmersa la función que lo modela. 1. Cuando las siembras de trigo de la región del Mayo sufren la invasión de la plaga

conocida como “chahuiztle”, ésta las afecta a un ritmo constante de 1.32 hectáreas por día.

Si en una siembra de 50 hectáreas se ha detectado chahuiztle, expresa la función que indique el número de hectáreas que son invadidas en x días.

Si representamos con el número de hectáreas invadidas, entonces, el valor

constante de 1.32 corresponde a la comparación x

y , dando la ecuación

32.1=x

y; de donde la función correspondiente es: xy 32.1= ó

xxf 32.1)( = 2 La relación entre el número de lados y diagonales de un polígono se muestra en

la siguiente tabla:

¿Cómo puedes describir esta relación por medio de una función? Solución.

En la tabla se observa que los valores de se incrementan de uno en uno. Buscamos un patrón característico para los valores de las diferencias en , hasta obtener un resultado constante.

x 3 4 5 6 7 y 0 2 5 9 14

Page 50: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

50

Como las primeras diferencias entre los valores de “y” no resultaron iguales, se concluye en primer término que la función no es lineal. Los valores iguales se obtienen hasta las segundas diferencias, entonces se trata de una función cuadrática. Para obtenerla sustituimos en la función tipo

cbxaxy ++= 2 , los valores de tres parejas y luego resolvemos el sistema de ecuaciones que resulta:

0)3()3()3( 2 =++= cbaf

2)4()4()4( 2 =++= cbaf

5)5()5()5( 2 =++= cbaf Simplificando:

El modelo buscado es y=

21 x2 -

23 x

En los casos anteriores, los resultados que se han obtenido corresponden a casos particulares de una función polinomial.

.

La representación general de la función polinomial nos dice que, según la existencia del término de la potencia con mayor exponente, se determina el

que forma parte de su regla de correspondencia, así de:

( ) 01

1

1 axaxaxaxf n

n

n

n ++⋅⋅⋅++= −− se generan:

a) La función constante (grado cero); 0)( axf = , cuando n=0

b) La función lineal (grado 1); ( ) 01 axaxf += , cuando n=1

c) La función cuadrática ( grado 2); ( ) 01

2

2 axaxaxf ++= , cuando n=2

Una función polinomial es una función de la forma

( ) 01

1

1 axaxaxaxf n

n

n

n ++⋅⋅⋅++= −− , donde todos los exponentes de x son

números enteros no negativos y 0,11 .,..,, aaaa nn − son números reales.

bmxy +=

cbxaxy ++= 2

9a + 3b +c = 0 16a + 4b + c = 2 25a + 5b + c = 5

Resolviendo el sistema de ecuaciones, obtenemos: a=

21

B= 23−

C= 0

Page 51: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

51

Y de una manera similar para las funciones polinomiales de grado 3 o grado 4 cuando n=3 ó n=4. Ejemplos de funciones polinomiales de grado mayor que dos:

752)( 234 ++−= xxxxf ; a la que llamaremos función polinomial de grado cuatro.

3542)( 23 −−+= xxxxf ; que llamaremos función polinomial de grado tres.

Como puedes observar, generalmente las funciones polinomiales se escriben en forma decreciente en cuanto a las potencias de “x”. Esto implica que cuando falta alguna potencia, es porque el coeficiente respectivo es cero, como se muestra en el siguiente caso:

13)( 3 ++= xxxf donde el coeficiente del término de segundo grado es cero,

esto es, que equivaldría a escribir 130)( 23 +++= xxxxf .

. En una función polinomial se le llama al del término que contiene la potencia con el mayor exponente. Ejemplo, en la función

754)( 23 +−= xxxf , por corresponder al término de tercer grado, que es el de mayor exponente.

El dominio de las funciones polinomiales es el conjunto de los números reales. Cuando sustituimos un valor de x en la regla de correspondencia, obtenemos un número real, pero el rango de las funciones polinomiales no siempre será el todo el conjunto de los reales, como sucede con las funciones cuadráticas.

Como ya observamos anteriormente cuando el mayor grado de la función polinomial es igual a cero, nos encontramos ante el caso particular conocido como

.

.

En la función constante, para cualquier elección que se haga del valor de “x”, (dominio) se obtendrá siempre el mismo valor de “y” ó f(x), (rango) lo que nos asegura una gráfica horizontal paralela al eje “x”.

Page 52: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

52

Ejemplo: si se tiene la función 4)( =xf , su gráfica será una recta paralela al eje x, que dista de él 4 unidades.

Cuando el polinomio de mayor exponente de una función polinomial

( ) 01

1

1 axaxaxaxf n

n

n

n ++⋅⋅⋅++= −− , es igual a la unidad (n=1), entonces se

forma la función lineal: 01)( axaxf += donde 1a , es el coeficiente principal.

.

La forma estándar de la función lineal empleada en el curso de Geometría Analítica es de la forma bmxy += . El parámetro “m” corresponde a el cual está asociado con la inclinación de la recta con respecto al eje x. La pendiente de la recta simboliza la o razón de variación de los valores de la función con respecto a los de x, que se calcula como un cociente de

incrementos: 12

12

xx

yy

x

y

−−

=∆∆

Ejemplo: en la siguiente tabla se muestran valores que guardan una variación directa. ¿Cuál es la razón de cambio? Evidentemente que el valor de la razón de cambio corresponde a m=2, dado que los cocientes que se obtienen entre los incrementos de dos valores de y, con los incrementos de los correspondientes valores de x es siempre igual a 2.

La función lineal tiene como dominio el conjunto de los números reales y como rango también a los números reales.

.

.

X 1 3 5 9 Y 1 5 9 17

4

X y -2 4 -1 4 0 4 1 4 2 4

Page 53: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

53

La gráfica de una función lineal corresponde a una línea recta. En su gráfica se distinguen dos cantidades fijas, conocidas como la pendiente y la ordenada en el origen que son los correspondientes parámetros “m” y “b” respectivamente.

La pendiente de la recta, identificada con el parámetro “m”, y definida como el cociente de las variaciones de “y” entre las variaciones de “x”, es la representación de una variación directa, recuerda que:

.

Las funciones lineales modelan situaciones donde se presentan variaciones directamente proporcionales entre dos cantidades, como lo podemos observar en los siguientes ejemplos: 1) Si el precio de la gasolina es de $5.45, más 15% de impuesto, esto implica que

el costo por litro de gasolina es 5.45 +0.15 (5.45) = 6.27 representa la razón de cambio unitaria o pendiente “m”, esto es:

)(cos)(

)(coslitroportom

litrosdeNúmero

gasolinadeto

x

y= ; es decir, xy 27.6=

2) En el campo de la Física, la aceleración “a” que se produce cuando una fuerza

“f” se aplica a un cuerpo, es directamente proporcional a su masa “m”.

La función que modela este hecho corresponde a la variación directa: f/a=m; o bien f=m a, que se conoce como la segunda ley de Newton.

Los dos casos anteriores corresponden a la forma y=m x, esto es cuando el valor del parámetro “b” de la forma estándar de la ecuación de la función lineal, es igual a cero.

6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4

5

b

y∆

x∆

x

ym

∆∆

=

Page 54: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

54

3) Entre dos escalas de temperatura, una lectura de 0º C se corresponde con una lectura de 32º F, y una lectura de 100º C se corresponde con una lectura de 212º F, la razón de cambio entre las escalas de temperatura Fahrenheit y

Centígrada es m= 8.10100

32212=

−−

=∆∆C

F

Para obtener la función que modele la razón de cambio para cualquier lectura en las escalas de temperatura correspondientes, escribimos:

8.10

32=

−−C

F , y al despejar F, se obtiene la función que modela la equivalencia entre

las escalas de temperatura CyF , que tiene la estructura de la forma estándar de la función lineal y = m x + b, y que corresponde a 328.1 += CF

Las funciones polinomiales de grado dos, o cuadráticas, al igual que las funciones lineales son útiles para modelar algunas situaciones problémicas. Ejemplo 1. Un canalón para captar agua de lluvia, (como el que se muestra en la figura), es fabricado con hojas de aluminio de 30 cm. de ancho, doblando los lados 90° hacia arriba. Escribe el área de la sección transversal como una función de la longitud de los lados que se doblan.

EJERCICIO 1 En forma individual, resuelve, y luego compara tus resultados con el de tus compañeros.

1. Considera la función 13122)( 2 +−= xxxf .

a) El grado de la función polinomial es: ______. b) El coeficiente principal es: _______. c) La función corresponde a una cónica llamada:

_________________________. 2. Expresa la función dada anteriormente en su forma estándar.

_______________________.

3. En el mismo sistema de coordenadas, indica los efectos de los parámetros obtenidos en 2, sobre la función 2)( xxf = .

4. Elabora un mapa conceptual sobre la función polinomial y las

condiciones bajo las cuales se obtienen los casos particulares.

30

90°

Page 55: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

55

Solución: como se puede observar, el área de la sección transversal corresponde a un rectángulo, cuyas dimensiones son (30-2x) de largo y “x” de ancho. Como el área de un rectángulo es igual al producto de las medidas del largo por el ancho, tenemos que A= (30 – 2x) x, que corresponde a la función cuadrática:

xxxfA 302)( 2 +−== Ejemplo 2. La pista de atletismo del plantel encierra una superficie que tiene la forma de un rectángulo, con un semicírculo en cada extremo, como se aprecia en la figura. Si el perímetro interior de la pista es de 1500m, expresa el área en función de sus dimensiones. Para hallar la función, primero tomemos en cuenta el dato del perímetro interior, el cual se compone de los dos lados horizontales del rectángulo y de los dos semicírculos de diámetro “x”, lo que nos proporciona la función implícita

( )xy π221500 += , de donde podemos despejar cualquiera de las variables. Por

ejemplo, si despejamos “y” nos queda la función explícita xy π−= 750 , ahora ya podemos obtener la función del área buscada:

Las gráficas de las funciones cuadráticas tienen la forma de una parábola, como las que se obtienen al graficar las funciones que modelan los dos problemas dados en los ejemplos anteriores.

( ) ( )( )xxxxfA ππ −+== 7502

2

1

xxxfA 302)( 2 +−==

44 344 213 2 1 Área de los dos semicírculos

Área del rectángulo interior

Page 56: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

56

La forma estándar de una función cuadrática se produce cuando la función se

expresa en la forma khxaxf +−= 2)()( , donde h y k son los valores de las coordenadas del vértice de la parábola. Para obtener la forma estándar ( ) de la función cuadrática, a partir de la forma

polinomial cbxaxxf ++= 2)( , se completa el trinomio cuadrado perfecto. Ejemplo, si queremos determinar las coordenadas del vértice de la parábola

263 2 −+= xxy , bastará con obtener su forma estándar, de la siguiente manera:

)1(32)12(3

2)2(3

2

2

−−++=

−+=

xxy

xxy

5)1(3 2 −+= xy , de donde (-1,-5) son las coordenadas del vértice. Como a=3 es positivo, entonces la parábola se abre hacia arriba y las coordenadas del vértice corresponden a un punto mínimo.

43421

ossemicirculdoslosdeÁrea

( ) ( )( )xxxxfA ππ −+== 7502

2

1

44 344 21

eriorintrectángulodelÁrea

Y

X-5 -4 -3 -2 -1 1 2 3

-5

-4

-3

-2

-1

1

2

3

2x

Page 57: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

57

En una función cuadrática el está formado por el conjunto de los números reales. Esto significa que la función queda definida para todo valor de x. En cambio el de una función cuadrática corresponde al conjunto de valores mayores o iguales que la ordenada del vértice, si la parábola se abre hacia arriba. O bien al conjunto de valores menores o iguales que la ordenada de su vértice, si la parábola se abre hacia abajo. Si tomamos como ejemplo, la gráfica anterior, encontraremos que el rango corresponde al conjunto de valores de “y” mayores o iguales que -5, dado que la parábola se abre hacia arriba. (Rango: y≥ -5).

La de una función cuadrática se obtiene más fácilmente, si consideramos los efectos que los producen sobre la gráfica de y= x2, para dar origen a la nueva función transformada, como ya se ha mostrado en la unidad anterior. Así, cuando conocemos la ecuación de una función cuadrática en la forma polinomial, entonces es prudente escribirla en su forma estándar, para considerar los efectos de los parámetros correspondientes.

Ejemplo: para graficar la función 252)( 2 ++= xxxf , la escribiremos en su

forma estándar, 892

45 )(2)( −+= xxf

Efecto del parámetro a=2

8

6

4

2

5

g x( ) = 2⋅x2f x( ) = x2

8

6

4

2

-2

-5

g x( ) = 2⋅x2

h x( ) = 2⋅ x+5

4( )2

-9

8

Efectos de los parámetros h=45− y k=

8

9−

Page 58: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

58

La forma estándar de la función cuadrática es muy útil en la solución de problemas de máximos y mínimos, que se modelan con una función polinomial de segundo grado, como se muestra en los siguientes ejemplos: 1. “El gerente de un teatro se dio cuenta que, cuando el precio de entrada era de

60 pesos, se registraba una concurrencia de 200 personas, mientras que por cada cinco pesos de disminución en el precio de entrada el público aumentaba en 25 personas. ¿Cuál es el precio de admisión que hace máxima la recaudación en taquilla? ”

Solución: La función que modela el problema es G(x)= (60 - 5x) (200 + 25x). Al realizar la multiplicación se obtiene G(x)= -125x2 +500x + 12000.

La forma estándar de la función: G(x) = -125(x-2)2 + 12500, nos proporciona información sobre las coordenadas del vértice que son (2,12500). Como a=-125 la parábola abre hacia abajo, por lo que el vértice corresponde a un punto máximo. El valor máximo de la función que corresponde a la recaudación máxima es (ordenada “k” del vértice de la forma estándar de la función de segundo grado). El para el que se obtiene una es

.

Realiza los siguientes ejercicios de manera individual y los resultados compáralos con los de tus compañeros. Finalmente preséntalos a tu profesor. 1. Escribe en la forma estándar la función cuadrática, y grafica

considerando los parámetros respectivos.

1032 2 −− xx

2. Reduce a la forma estándar la función cbxaxy ++= 2

a) La abscisa del vértice de la parábola corresponde a la expresión: ___________________.

3. Simplifica la regla de correspondencia de la siguiente función polinomial.

31( ) ( )( )xxxxfA ππ −+== 7502

2

1

31

EJERCICIO 2

Page 59: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

59

El siguiente planteamiento también corresponde a un problema de máximos y mínimos, que se modelan por medio de una función cuadrática cuya gráfica, como ya hemos visto, corresponde a una parábola cuyo vértice tiene por coordenadas los parámetros (h, k):

2. “Un canalón para captar agua de lluvia, como el que se muestra en la figura,

es fabricado con hojas de aluminio de 30 cm. de ancho, doblando los lados

90° hacia arriba. ¿Para qué valor de x el área de la sección transversal es máxima?”.

Solución: Como la sección transversal corresponde a un rectángulo, su área queda

expresada con la función ))(230( xxA −= , luego 2230 xxA −= . Para responder a la pregunta del problema, es suficiente con transformar a su forma estándar la función obtenida como modelo del problema. Para pasar a la forma estándar, reescribimos la función anterior en la forma:

xxA 302 2 +−= .

Como el valor del parámetro “a” de la forma estándar es negativo, la parábola se abre hacia abajo.

X

G

Valor máximo

Al pasar a la forma estándar una función cuadrática, obtenemos y en consecuencia, su valor máximo o

mínimo según que ésta se abra hacia abajo o hacia arriba.

( )[ ] ( )( ) ( ) KKKKK

2

2152

215

2

2152

2152

2

22

2152

)15(2

+−−=

++−−=

−−=

xA

xxA

xxA

Forma estándar

30

90°

Page 60: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

60

Se concluye que la sección transversal alcanza su máxima área cuando el valor de su altura es x=

2

15 .

Para las dimensiones encontradas fluirá el mayor volumen de agua de lluvia. .

Las funciones polinomiales de segundo grado, describen las variaciones del problema que modelan. Ejemplo: si la función 1072 −+−= xxy representa el modelo de un problema a) ¿Para qué valores de x la función es igual a cero? b) ¿En qué intervalos la función es creciente? c) ¿En qué intervalos la función es decreciente? d) ¿Para qué valor de x la función alcanza su valor máximo? Las respuestas a las preguntas formuladas se pueden encontrar de manera sencilla si construimos la gráfica de la función dada. Para hacer un bosquejo rápido de la gráfica de la función, obtenemos la forma estándar de la ecuación y se hace la interpretación de sus parámetros.

La función es creciente para valores de x menores que 27 .

La función es decreciente para valores de x mayores que 27 .

La función alcanza el valor máximo 49

cuando x= 27 …… (Eje de la parábola).

A partir del modelo cuadrático se obtiene la representación gráfica del problema planteado y su correspondiente solución.

Se identifican como a las funciones polinomiales de segundo grado que resultan del planteamiento de un problema.

PROBLEMA MODELO GRÁFICA

SOLUCIÓN DEL PROBLEMA

492

27

449

4492

2

)(

10)7(

10)7(

+−−=

+−+−−=

−−−=

xy

xxy

xxy

2 -1 1 2 3 4 5 6 7

5

-4

-3

-2

-1

1

2

3

Los valores de x, donde la gráfica cruza al eje x, se obtienen igualando a cero la función y resolviendo la ecuación de segundo grado que resulta.

02 =++ cbxax

a

acbbx

2

42 −±−=

Page 61: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

61

Las funciones polinomiales de grado mayor que dos, también modelan situaciones problémicas, de manera similar como ocurre con las de primero y segundo grado. Ejemplo: un rebaño de 100 venados se introduce en una isla pequeña donde se reproducen sin la acción extrínseca de un depredador. La población aumenta con rapidez y el crecimiento poblacional a los t años, está dada por

10021)( 24 ++−== tttFN ; donde 0>t ; a) ¿Para qué valores de t se tiene que 0>N ? En las condiciones dadas sucede que la población aumenta con rapidez, hasta que destruye su ambiente y se destruye a sí misma”. b) ¿Se extinguirá la población animal? La solución de este problema se facilitará con la ayuda de su gráfica: a) De acuerdo con la gráfica, para valores de t entre cero y 5 años, la población de

venados es mayor que cero. b) La población de venados se extingue a los 5 años, según la gráfica.(N=0)

EJERCICIO 3 Realiza las actividades que se te indican, y participa presentando al resto de tus compañeros tu propuesta de solución. • La potencia que genera el alternador de un automóvil queda determinada

por la función 220.014 iiP −= . a) ¿Para qué valor de la intensidad de corriente “i”, el alternador genera la

potencia “P” máxima? b) ¿Cuál es el valor máximo de “P”? c) Traza la gráfica de la función cuadrática que modela el problema.

Page 62: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

62

Para el bosquejo de una gráfica es importante distinguir que el cero de una función, equivale a determinar el correspondiente valor de “x”, por donde la gráfica cruza a ese eje. Por ejemplo, la gráfica de la función xxxf −= 3)( , cruza al eje x cuando

0)( =xf ; lo cual ocurre para valores de 10,1 −=== xóxx , como se observa en la siguiente gráfica. En los intervalos donde la función es positiva, su gráfica está por arriba del eje x, y en los intervalos donde es negativa, su gráfica está por debajo del eje x. Observemos que el signo de la función antes de cruzar al eje x, cambia después de cruzarlo. En el ejemplo anterior, los ceros de la función se obtuvieron al resolver la ecuación

que resulta cuando 0)( =xf , es decir, cuando 03 =− xx .

Factorizando la ecuación: 0)1( 2 =−xx

0)1)(1( =−+ xxx

Igualando a cero cada factor 0=x , 01=+x y 01=−x , resultando que las raíces son: x = 0, x = -1 y x = 1, como se aprecia en la gráfica.

Los ceros reales de una función son todos los valores de x, tanto racionales como irracionales, para los cuales la función se hace cero. Al igualar a cero la función, se genera una ecuación. A los resultados que se obtienen al resolver la ecuación, se les conoce con el nombre de de la ecuación. Abriremos una ventana hacia el algebra, para poder tener elementos que nos permitan estudiar el comportamiento gráfico de una función. Empezaremos con el estudio de la división sintética.

-2 -1 1 2

-2

-1

1

2

)(xf

.

.

)(xf )( rx −

Page 63: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

63

Ejemplo para dividir 6)( 2 −−= xxxf entre ),3x( − se escribe el siguiente arreglo: El cociente de esta división es x + 2, entonces la función dada se puede expresar en términos de sus factores como ( )( )23)( +−= xxxf . Se tomará como cero el coeficiente de alguna potencia faltante en el orden decreciente. Ejemplo 8)( 3 −= xxP equivale a considerar 800)( 23 −++= xxxxP .

Si el polinomio 8)( 3 −= xxp , se quiere dividir entre el binomio x+2, entonces la división sintética se realiza empleando el arreglo de coeficientes de las potencias en forma decreciente, el divisor x + 2 se considera como x – (-2) y nos queda:

En esta división el cociente corresponde al polinomio 422 +− xx y el residuo corresponde a (último resultado la derecha de las suma en columna). El producto del divisor por el cociente obtenido más el residuo, produce como resultado )16()42)(2()( 2 −++−+= xxxxP , de donde encontramos que

=−= 8)( 3xxP )16()42)(2( 2 −++−+ xxx . En este caso decimos que x+2 no es

factor de 8)( 3 −= xxp , porque su residuo es diferente de cero.

Ejemplo: el binomio x-3 es un factor del polinomio 352)( 2 −−= xxxP , porque al dividirlo se produce un residuo cero, lo que se puede comprobar evaluando el polinomio para x=3 o bien, haciendo la división como se muestra a continuación:

En este arreglo, se baja el primer coeficiente, luego se

multiplica por 3, y el resultado obtenido se anota en la

segunda columna y se suma con el valor anterior. A esta

suma se le multiplica por tres y se anota en la siguiente

columna. Se repite el proceso hasta agotar las columnas.

Se toma de (x-3) que es la cantidad que se está restando 3 1 -1 -6 Coeficientes de f(x)

3 6

1 2 0

Sumas en columna

43421Cociente

321siduoRe

-2 1 0 0 -8 -2 4 -8 1 -2 4

.

( )031518

31592

3)3(5)3(2)3( 2

=−−=−−=−−=P

Page 64: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

64

Los factores del polinomio son • . Son los números racionales que resultan de la comparación por división de los factores, del término independiente con los factores del coeficiente principal,

nadefactor

adefactor 0 para los cuales la función polinomial se hace cero.

Ejemplo: para hallar los ceros racionales de la función

424)( 234 +−−+= xxxxxf , donde el término constante 40 =a y el

coeficiente principal 14 =a , formaremos todos los posibles cocientes que se forman con sus factores los cuales tendrán la forma de

1

1,2,4

1

4

±±±±

=deFactor

deFactor , los cocientes conducen a estos casos:

1,2,4 ±±±

Si hacemos la prueba para cada uno de ellos por medio de la división sintética, encontraremos que de los seis posibles casos anteriores, sólo x = 1 y x = -2 son ceros racionales del polinomio que define a la función dada, lo cual se muestra mediante la división sintética: De acuerdo con los resultados se tiene que x-1 y x+2 son factores de )(xf . Para obtener todos los factores hacemos divisiones sucesivas con los factores encontrados:

El cociente que se obtiene es 422 23 −−+ xxx , el cual lo volvemos a dividir entre el otro factor x + 2:

1 1 -4 -2 4

1

1

2

2

-2

-2 -4

-4

1

1 2 -2 -4 -2 0 4 1 0 -2 0

-2

1 1 -4 -2 4

1

1

2

2

-2

-2 -4

-4

1 1 -4 -2 4 -2 2 4 -4 1 -1 -2 2

-2

Page 65: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

65

El cociente que se obtiene es 22 −x , Concluimos entonces que la forma factorizada de la función

424)( 234 +−−+= xxxxxf es )2)(2)(1()( 2 −+−= xxxxf , y que los ceros racionales son x =1 y x = -2.

El factor )2( 2 −x da origen a dos ceros irracionales, los cuales se producen

cuando se le iguala a cero, obteniéndose los valores 2 y 2− . La gráfica de la función es la siguiente:

8

6

4

2

-2

- 2

21-2

x

)(xf

EJERCICIO 4En equipo de dos (binas), resuelve los siguientes ejercicios.Presenta los resultados obtenidos a tu profesor y presenta al resto del grupo de manera clara tu propuesta de solución.

1. Encuentra los ceros racionales de la función 810)( 23 −−−= xxxxf , mediante el empleo de la división sintética.

a) Escribe la función en su forma factorizada.

2. Determina cuáles de los valores que se indican son ceros de la función: xxxxG 6)( 23 −+= … {X1= 0, x2= 5, x3 = 2}

a) Encuentra todos los ceros de la función dada en el ejercicio anterior. b) Escribe la función G(x) en su forma factorizada.

3. Encuentra los ceros irracionales de la función 43)( 24 −+= xxxF y construye la gráfica correspondiente.

Page 66: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

66

Las funciones polinomiales pueden tener ceros no-reales, como sucede con la

función 4)( 2 += xxf , cuyos ceros resultan de las raíces de la ecuación

042 =+x , correspondiendo a los números imaginarios 4−±=x . Entonces

los números x = 4− y x = 4−− son ceros de la función dada. •

Recordemos que los ceros de una función resultan al resolver la ecuación correspondiente. Así, una ecuación de grado 1 tiene justamente una solución, una cuadrática dos, una cúbica 3, una cuártica 4, etc. • . Con relación al número de ceros de una función polinomial podemos considerar que: si r es un cero de una función polinomial )(xf , entonces x – r es un factor

de )(xf concluyendo entonces que:

. Esto sucede cuando se producen factores lineales repetidos que se expresan

como una potencia. Por ejemplo, si 2)3( −x resultara ser factor de una ecuación polinomial, entonces 3 será una raíz de multiplicidad 2.

Si la ecuación polinomial es factorizable, entonces se resuelve con la propiedad del producto cero, que consiste en igualar a cero cada uno de los factores obtenidos y resolver la ecuación formada. Cuando se tienen ecuaciones que permiten una factorización inmediata, se evita la prueba del cero racional.

Una función polinomial de grado tiene exactamente ceros.

Page 67: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

67

1. Encuentra todos los ceros (reales e imaginarios) de la función

2626)( 23 −−−−= xxxxF . a) Los ceros racionales encontrados: ___________________.

b) Los ceros no-racionales encontrados: _________________.

2. Expresa en factores lineales la regla de correspondencia de la función

1447)( 24 −+= xxxf .

• Indica la multiplicidad de los factores encontrados. • Construye la gráfica de la función.

3. Factoriza directamente por agrupación de términos, la regla de

correspondencia de la función 1025)( 23 −+−= xxxxf .

• Encuentra y clasifica los ceros de la función dada.

EJERCICIO 5

Page 68: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

68

Page 69: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

69

En los siguientes planteamientos, encuentra la función polinomial que describe cada una

de las situaciones que se presentan.

1. Un laboratorio cambia la presentación de la tableta de maleato de enalapril, que se administra a

los hipertensos, por la forma de cápsula

La forma de cápsula corresponde a un cilindro horizontal con dos semiesferas en los extremos, cuya longitud total es de

23 cm.

a) Si “r” denota el radio de la semiesfera, encuentra el polinomio que expresa el volumen de la cápsula en función de “r”.

b) ¿Para qué valor de “r”, los volúmenes de las dos presentaciones son iguales?

2. Durante un fuerte aguacero en la ciudad de Hermosillo, que dura 3 horas, el nivel del agua sube de tal forma que el flujo del agua en el drenaje se mantiene constante. Cada 10 minutos el agua asciende 6 cm.

a) Traza la gráfica que corresponde a la variación lineal descrita.

b) Encuentra la función que modela la variación del nivel del agua.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

1 23

31

Page 70: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

70

3. La carta de Snellen es utilizada por los oftalmólogos para medir la agudeza visual de las personas

situándolas a una distancia de 20 pies (6m.) del cartel.

Una agudeza de 40

20 en un ojo, indica que se puede leer la línea de letras más pequeñas a 20 pies de

distancia, en tanto un ojo normal puede leerla a 40 pies. El siguiente es un registro tabular obtenido experimentalmente, sobre la pérdida de agudeza visual de una persona con glaucoma diabético:

a) Escribe un modelo que describa esta situación.

b) Según el modelo ¿en cuánto tiempo la pérdida visual será total?

Número de meses

“t”

1

2

3

5

Agudeza Visual

“ a ” 25

20 30

20

40

20

50

20

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 71: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

71

Realiza cada uno de los ejercicios que se indican:

1. Escribe en la forma estándar cada una de las siguientes funciones:

4)( 2 −= xxf

96)( 2 +−= xxxf

xxxf 8)( 2 −=

a) Haz la gráfica de cada una de ellas. b) Compara tus resultados con las gráficas que se obtienen con el software de la página

2. Construye la gráfica de cada una de las siguientes funciones, iniciando con la gráfica de 2xy =

1) 12 −−= xy

2) 12

21 −+= xxy

3) xxxf 2)( 2 −−=

3. Un granjero dispone de 400 metros de cerco para bordear un terreno rectangular que colinda con un río. Si no es necesario cercar el lado que está a lo largo del río.

a) Cuál es la mayor área que puede cercar?

b) Haz la gráfica de la función que modela el problema planteado.

c) Escribe dos valores diferentes de las dimensiones, para los cuales el área encerrada es la misma.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 72: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

72

4. Determina los valores máximos o mínimos, según sea el caso, en cada una de las siguientes funciones:

2110)( 2 +−= xxxf

3648)( 2 +−−= xxxf

a) Obtén las coordenadas del vértice de cada parábola. b) Haz la representación gráfica en cada caso.

5. Con un alambre de 20 cm. se quiere formar un círculo y un cuadrado. Hallar el diámetro del círculo y el lado del cuadrado si la suma de sus áreas ha de ser mínima.

20 cm.

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 73: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

73

Resuelve cada uno de los siguientes planteamientos.

1. Hallar los ceros racionales e irracionales de la función: f (x) = (2 x - 3) (x 2 + 5 x).

2. Determina los puntos donde la gráfica de la función 742 ++−= xxy corta al eje x. 3. Los polinomios de Chebyshev se emplean en la teoría de aproximación de funciones. Si la función

188)( 24 +−= xxxf es la aproximada, encuentra las raíces del polinomio resultante al igualarla a cero.

4. Halla todas las soluciones de la ecuación 0623 23 =−−+ xxx . 5. Expresa en factores lineales la función de tercer grado g(x)= X3 + X2 + 16 X + 20 y verifica si hay

multiplicidad de raíces. 6. Si f(x) es una función de tercer grado cuya gráfica corta al eje x en -4, 2 y 3 y pasa por el punto

(-1,4), halla su regla de correspondencia.

7. La caja de un trailer empleado para transporte de mercancías para una cadena de Supermercados tiene una capacidad de 120 m3, si el ancho es x, el largo 3x+1 y la altura x+1 metros, ¿cuáles son sus dimensiones?

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

**Sugerencia: la solución del problema es equivalente a encontrar las raíces racionales de la ecuación.

Page 74: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

74

8. Halla los valores de los parámetros para que la función de segundo grado cbxaxy ++= 2 , intersecte al eje x en los puntos (0,0) y (5,0) y que además pase por el punto (1,4).

a) Comprueba el resultado obtenido haciendo la gráfica de la función.

9. Investiga y escribe un resumen sobre la historia de la solución de ecuaciones.

10. Investiga en qué consiste el “método de bisección”, para aproximar la solución de una ecuación polinomial y escribe cómo se aplica.

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 75: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

75

Lee cuidadosamente y responde los siguientes cuestionamientos, rellenando el círculo de la opción que consideres correcta. 1. La función polinomial de menor grado es:

La lineal. La cúbica. La constante. La cuadrática.

2. Si el cociente formado entre dos cantidades es constante, entonces están en variación:

Combinada. Directa. Inversa. Indirecta.

3. Los puntos donde la gráfica de - cruza al eje x son:

(3,0) y (1,0). (-3,0) y (1,0). (4,0) y (-1,0). (-4,0) y (1,0).

4. La gráfica de 2)1(3 2 −+= xy es congruente con la de 23xy = , pero está desplazada:

Una unidad hacia la derecha y dos unidades hacia abajo. Una unidad hacia la izquierda y dos unidades hacia abajo. Una unidad hacia la derecha y dos unidades hacia arriba. Una unidad hacia la izquierda y dos unidades hacia arriba.

5. La gráfica de la función 108)( 2 +−= xxxf corresponde a una parábola que tiene como valor mínimo:

-6, cuando x = 4 6, cuando x = -4 26, cuando x = 4 10, cuando x = 8

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 76: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

76

6. Los valores numéricos de las raíces de la ecuación 02 =++ cbxx , si en su forma factorizada el polinomio se escribe como 0))(( =−− cxbx , son:

b=1 y c=2.

b=-1 y c=2. b=1 y c=-2. b=-1 y c=-2.

7. El rango de la función cuadrática 1205 2 −+−= xxy , está formado por el conjunto de valores de y tales que sean:

Menores o iguales que 19. Mayores que 19. Menores que -5. Mayores que -5.

8. Los ceros racionales de la función 6953)( 234 +−+−= xxxxxf son:

x=2 y x=1. x=-2 y x= 2. X= 2 y x=-1. X= -2 y x=-1.

9. Para que la función kxxxxf +−+= 23 2)( , tenga un cero en x = -1, se debe cumplir que:

K = -2. K = 2. K = 1. K = -1.

10. Es un cero irracional de la función 1052)( 23 +−−= xxxxf .

3 .

5− .

3− .

2 . Ü Si todas tus respuestas fueron correctas: por lo que te

invitamos a continuar con esa dedicación.

Ü Si tienes de 8 a 9 aciertos, tu aprendizaje es , pero es necesario que nuevamente repases los temas.

Ü Si contestaste correctamente 7 ó menos reactivos, tu aprendizaje es

, por lo que te recomendamos solicitar asesoría a tu profesor.

Page 77: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

77

1. Determina si los valores de cada una de las tablas corresponden a un modelo lineal (funciones

polinomiales de grado uno), o a un modelo cuadrático (funciones polinomiales de grado dos). a) b) 2. Escribe 2 ejemplos de funciones polinomiales de grado 3 y con coeficiente principal 5. 3. Escribe un ejemplo de función polinomial de grado cero, cuya gráfica diste 3 unidades del eje x. 4. Encuentra la función de segundo grado que modela al Teorema de Pitágoras, en función de uno de los

catetos de un triángulo rectángulo del que se sabe que: “La suma de las longitudes de sus catetos es de 30 cm.”

5. Encuentra la función polinomial de tercer grado que modela la siguiente situación, siguiendo las etapas

que se te indican:

“Se pretende empacar pizzas en caja con tapadera, las cuales se fabricarán usando láminas de cartón rectangulares de 40 cm. de largo por 24 cm. de ancho, cortando en ellas cuadrados iguales y doblándolos como se muestra en la figura”:

a) Expresa las dimensiones de la caja en función de x.

Largo: ____________, Ancho: ___________, Altura: _____________.

b) Escribe el volumen de la caja como una función de x.

V(x) = ____________________.

X 1 2 3 4 y 2 5 10 17

X 1 2 3 4 y 3 5 7 9

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

20 20

24

Page 78: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

78

6. Con la función obtenida de V(x), en el ejercicio anterior, completa la siguiente tabla:

a) Representa los datos obtenidos en la tabla, en un sistema de coordenadas y dibuja la gráfica. b) Da los datos aportados tanto por la tabla como por la gráfica, contesta lo siguiente:

• ¿Cuál es el volumen máximo de la caja? ________________.

• ¿Para qué valor de x la caja alcanza el volumen máximo? _____________.

• ¿Cuáles son las dimensiones de la caja de volumen máximo? ______________________.

X 0 1 2 3 4 5 6 V(x)

X

V

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 79: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

79

Resuelve cada uno de los siguientes planteamientos, apoyándote en la teoría correspondiente vista en clase y presenta los resultados a tu profesor.

1. Escribe la función cuadrática 300802)( 2 ++−= xxxf en su forma estándar. a) Anota las coordenadas del vértice de la parábola que corresponde a su gráfica. b) Interpretando los parámetros obtenidos, grafica la función cuadrática dada. c) Anota el dominio y el rango de la función. 2. Con ayuda de la división sintética, expresa en forma de factores el siguiente polinomio:

152112 23 =++ xxx 3. Encuentra los ceros racionales de la función polinomial, indicando su multiplicidad en caso dado.

203617)( 24 −+−= xxxxF 4. Encuentra todos los ceros de la siguiente función polinomial de grado tres.

8)( 3 += xxf

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 80: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

80

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 81: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

UUnniiddaadd 33

Resolverá problemas sobre funciones racionales, teóricos o prácticos, mediante el análisis del dominio, el rango y la determinación de posibles asíntotas verticales, horizontales y oblicuas, en un ambiente escolar que favorezca la reflexión de análisis y razonamiento práctico, así como el desarrollo de actitudes de responsabilidad, cooperación, iniciativa y colaboración hacia el entorno en que se desenvuelve.

• La función racional.

Existen situaciones que se definen mediante la comparación por división de dos magnitudes variables

Page 82: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

82

VARIACIÓN INVERSA

FUNCIONES RACIONALES

ASINTOTA

HORIZONTALESVE R T I C A L E S

OBL I C U AS

CASO PARTICULAR

Determinación de sus

RESOLUCIÓN DE PROBLEMAS

Se realiza su estudio mediante

Page 83: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

83

LLAA FFUUNNCCIIÓÓNN RRAACCIIOONNAALL..

“Una función racional es el cociente de dos polinomios, cuando éste no puede simplificarse porque los polinomios no poseen factores comunes, y el denominador no es el polinomio cero”.

Una función racional se escribe en la forma )(

)()(

xq

xpxf = , donde p(x) y q(x) son

dos funciones polinomiales.

La función 1

1)(

2

−−

=x

xxf , no es racional pues 1−x es factor común de los dos

polinomios, por lo que se puede simplificar a 1+x .

En cambio, las funciones 1

1)(

2 +=x

xf ; xx

xx

7

15

23

+++

son racionales, pues los

polinomios que las definen no tienen factores comunes, por lo que no pueden simplificarse, asegurando con ello que la variable figure en el denominador.

Una función racional queda definida si su denominador no es el polinomio cero, lo que nos indica que el excluye los valores de la variable para los cuales el denominador se hace cero. Los ceros del polinomio del denominador definen los intervalos que definen al dominio, es decir, los valores para los cuales queda definida la función racional.

Ejemplo: el dominio de 2

2)(

−=x

xxf es el conjunto de todos los números

reales, excepto 2=x , entonces los intervalos que se definen son: “el conjunto

de valores menores que 2, ,(−∞ 2)” y “el conjunto de valores mayores que 2,

(2, ∞+ )”. El rango es un subconjunto, (intervalo de números reales), que corresponden a los valores de salida de la función, el cual se visualiza en la gráfica de la función.

Para la gráfica de una función racional resulta, útil saber que los valores que se excluyen al definir su dominio, representan rectas verticales a las que se aproxima la gráfica de la función sin tocarlas nunca.

Las funciones racionales son el resultado de relacionar mediante un cociente a dos magnitudes variables. Con ellas se pueden describir algunas aplicaciones en el campo de las ciencias, en los negocios así como en la economía. Por ejemplo, a través de las funciones racionales se pueden describir el costo promedio de la producción de una tonelada de trigo, la disminución paulatina de la ocupación hotelera después de que ésta

alcanza su máximo, etc.

Page 84: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

84

El comportamiento local de la gráfica de una función, se puede mostrar con la ayuda de una tabla de valores cercanos, en el entorno de los valores excluidos del dominio de la función, por ejemplo, si queremos conocer el comportamiento

local de la gráfica de la función 2

2)(

−=x

xxf , construimos la siguiente tabla

para valores alrededor de x = 2: Para conocer el comportamiento en infinito de la gráfica se tabulan algunos

valores grandes de x , tanto a la izquierda como a la derecha del origen de

coordenadas:

Los resultados de las tablas proporcionan información que es de utilidad para trazar la gráfica de la función:

1) La gráfica baja para valores a la izquierda de x = 2 y sube para valores a la

derecha de x = 2. 2) La gráfica se aproxima a y = 2, para valores de x alejados del origen.

Del estudio del comportamiento local y en el infinito de la gráfica de una función racional, se obtienen sus asíntotas.

x 1.5 1.9 2.5 2.1y -6 -3.8 10 42

7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11

8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

X -100 -200 100 200 y 1.96 1.98 2.04 2.02

Page 85: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

85

son rectas de la forma ky = , que se obtienen evaluando

la función para grandes valores de x , y así poder visualizar a qué valor constante

se aproxima la variable “y”, para determinar las ecuaciones de las rectas que corresponden a las asíntotas horizontales.

: son rectas de la forma kx = , que se generan con los valores que se excluyen del dominio de la función. Ejemplo 1. Para obtener las asíntotas de la siguiente función racional

( )( )21

12)(

−++

=xx

xxf , primero construimos una tabla como la que se muestra,

evaluando la función para valores grandes de x :

En ella se visualiza que los valores de “y” se aproximan cada vez más al cero, tanto por la izquierda como por la derecha, de donde se concluye que la función tiene

cuya ecuación es y = 0. Enseguida se toman los valores que se excluyen del dominio, por ser ceros del polinomio del denominador, los cuales corresponden a las ecuaciones de las asíntotas verticales. En este caso son: x = -1 y x = 2. Las asíntotas obtenidas se muestran en la gráfica de la función dada.

X -500 -1000 500 1000 y -0.00039 -0.0019 0.004 0.002

Asíntota horizontal: y = 0 (Eje x)

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-5

-4

-3

-2

-1

1

2

3

4

5

Asíntota Vertical: x =-1

Asíntota Vertical: x = 2

Page 86: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

86

Ejemplo 2. El costo para producir x toneladas de trigo en el valle del Mayo se puede representar con la función C(x)= 21000+1600x, la cual considera un gasto fijo inicial por operación de maquinaria y equipo por $21,000.00, más gastos de insumos y mano de obra de $1,600.00 por producir cada tonelada de trigo. a) Expresa como función de x, el costo promedio para producir una tonelada de

trigo. b) Halla el costo promedio por tonelada, cuando se alcanza una producción de

100 toneladas. Para la solución del problema: a) El costo promedio se obtiene dividiendo el costo total entre la cantidad de toneladas producidas. Si Cp representa al costo promedio,

entonces x

xC p

160021000 += ó 1600

21000+=

xC p

, si se divide cada término

del numerador entre el denominador x. b) El costo promedio por tonelada para producir 100 toneladas es:

C100 = 100

)100(160021000 += 1,810.

La gráfica del costo promedio es la siguiente: La gráfica tiene una asíntota horizontal cuya ecuación es y = 1600 y una asíntota vertical cuya ecuación es x = 0 (el eje “y”).

12

10

8

6

4

2

20 40 60 80 100 12012010080604020

12,000

10,000

8000

6000

4000

2000

Page 87: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

87

Para determinar estas asíntotas, se reescribe la función como la expresión que representa al algoritmo de la división, una vez que ésta se realiza, y luego verificando el comportamiento de la función para valores de x continuamente crecientes.

Por ejemplo, para determinar la asíntota oblicua de la función x

xxy

12 +−= ,

primero hacemos la división para expresar su algoritmo, quedando en la forma

xxy

11+−= , luego verificamos qué sucede cuando los valores de x crecen

continuamente.

EJERCICIO 1

Determina las asíntotas horizontales y verticales de cada función y compruébalo gráficamente.

1, 12

42 +

=x

y

2. 16

2)(

2

+−

=x

xxf

3. 16

122

2

−−

=x

xy

Page 88: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

88

Encontramos que para un crecimiento continuo de los valores de x, los valores de

y se aproximan a 1−x , pues x

1 tiende a cero. Entonces 1−= xy

, como se aprecia en la gráfica siguiente:

-4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

1−= xy

I. Realiza las actividades que se piden y presenta los resultados a tu

profesor:

1. Indica cuál de las dos funciones racionales presenta una asíntota oblicua:

a) 2

2 4

x

xy

−=

b) 1

12 2

++

=x

xy

2. Obtén la ecuación de la asíntota y haz la representación gráfica que

la visualice. II. Obtén la asíntota oblicua usando división sintética.

7

7213)(

2

−+−

=x

xxxf

EJERCICIO 2

Page 89: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

89

Cuando dos cantidades varían de tal forma que al aumentar una de ellas, el valor de la otra disminuye o al disminuir una de ellas, la otra aumenta, entonces presentan lo que se conoce como variación inversa. Un ejemplo de esta variación se puede observar en la determinación del índice de masa corporal (IMC) entre un grupo de personas que tienen el mismo peso pero diferentes estaturas, el cual queda determinado por la igualdad siguiente:

2)(estatura

peso

2)(

50

estatura

Cuando una función racional tiene un numerador igual a una constante, se produce la igualdad que modela a una variación inversa. Ejemplo, en la función

racional x

y5

= , cuando los valores de x aumentan los de y disminuyen y,

recíprocamente, para valores pequeños de x se obtienen resultados grandes para y. Encontramos que los resultados guardan una variación inversa. Existen diferentes situaciones en las que podemos encontrar variaciones inversas

entre dos magnitudes que tienen como modelo a la función racional x

ky = , como

las siguientes: 1. Para una misma obra: el número de obreros y el tiempo que tardan en realizarla. 2. Para la misma distancia: la velocidad de desplazamiento y el tiempo empleado. 3. Para una cantidad constante de una sustancia soluble específica: el volumen

empleado y la concentración. 4. Para una fuerza constante: la masa y la aceleración que se produce. 5. Para el mismo voltaje: la intensidad de la corriente y la resistencia del conductor,

etc. Si te fijas en todos los casos se requiere de la existencia de una cantidad

prefijada o constante (k), lo cual nos lleva a definir la variación inversa en esos términos.

X 5 2 1 0.1Y 1 2.5 5 50

X 2 5 10 20 y 2.5 1 0.5 0.25

Para valores crecientes de x: Para valores decrecientes de x:

Page 90: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

90

Un ejemplo de variación inversa lo encontramos en la relación que guardan el volumen y la concentración de una solución, para una cantidad fija de soluto, lo que se puede expresar como (Volumen). (Concentración)= constante; que en forma simbólica queda V.C = k, o para dos valores de las magnitudes participantes

2211 CVCV = . En las compras a crédito se observa que mientras mayor sea el plazo otorgado, menor será el abono por periodo parcial fijado, por lo que guardan una relación inversa la magnitud del abono y el número de periodos de pago. Otro ejemplo de una situación en las que se presenta una variación inversa es el siguiente: Si en un automóvil se recorre cierta distancia en media hora a 70 Km /h: a) ¿Qué velocidad se necesita para recorrer la misma distancia en 3/4 de hora? b) Escribe la función explícita que representa la variación inversa. Solución: a) De acuerdo con la definición dada para una variación inversa, con los datos que

se proporcionan, se define el valor de la constante “k”, siendo éste (1/2)(70)=35. Entonces, la velocidad que se necesita, se calcula con la siguiente igualdad: v(3/4)=35; de donde v=(140/3)Km./h ≅ 46.7 Km. /h

b) La función que modela la variación inversa del problema planteado es:

t

V35

= . y su gráfica es:

. Así, se dice que varia inversamente de

x, si existe un número real “k” tal que xy=k o de manera explícita x

ky = .

Page 91: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

91

Realiza cada uno de los ejercicios. 1. Escribe la definición de función racional.

______________________________________________________________________________________________

______________________________________________________________________________________________

2. ¿A qué se le llama asíntota?

______________________________________________________________________________________________

______________________________________________________________________________________________

3. Escribe la ecuación de una recta horizontal y la de una vertical.

_______________________________, _________________________.

4. La gráfica de 1

12

2

−+

=x

xy es la que se muestra:

a) Escribe su dominio y su rango. _________________________, _____________________. b) Escribe las ecuaciones de las asíntotas verticales.______________________. c) Anota la ecuación de su asíntota horizontal. _______________________. 5. Elabora un cuadro sinóptico, con ejemplos, acerca de la manera de investigar y obtener las asíntotas

horizontales y verticales, de las funciones racionales.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

Page 92: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

92

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 93: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

93

Resuelve los siguientes ejercicios. 1. Encuentra las ecuaciones de las asíntotas oblicuas de las siguientes funciones racionales.

a) x

xy

2614 +=

b) 1

2)(

2

23

−−+

=x

xxxxf

2. Escribe la ecuación de una función racional que tenga como asíntota oblicua a la recta 2+−= xy

y que además pase por el punto (1,3). 3. Encuentra las asíntotas de la función racional dada y construye su gráfica.

a) 12

32

2

+=x

xy

b) 1

)(2

+=x

xxf

c) 1

13)(

2

−+−

=x

xxxg

4. Encuentra el valor de la constante que corresponde a las variaciones inversas que se indican y escribe

la función racional que la modela: a) El tiempo necesario para ejecutar un trabajo, es inversamente proporcional al número de obreros. b) Se tiene que 12 hombres terminan una construcción de una vivienda en 10 días. c) El volumen de una solución varía inversamente con su concentración. Un mililitro de una solución tiene

una concentración de 40 mg. por litro de nitrato de plata.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 94: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

94

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 95: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

95

Lee cuidadosamente y responde los siguientes cuestionamientos, rellenando el círculo de la opción que consideres correcta. . Una función racional queda definida sí:

Su denominador no es el polinomio cero. Su denominador es el coeficiente cero. Su numerador es el polinomio cero. Su numerador y denominador son polinomios cero.

. Los valores que se excluyen del denominador de una función racional, representan gráficamente rectas:

Horizontales. Verticales. Oblicuas. Horizontales y verticales.

. La función que tiene como asíntota oblicua a la recta f(x) = -2x+1 es:

x

x 12 +−.

2

22

x

xx +.

x

xx

2

22 −+.

x

xx 22 2 ++−

. Si en una función racional, el grado del numerador es menor que el grado del denominador, nos

asegura que la función tiene una asíntota cuya ecuación es:

x = 0 y = 0 x = 1 y = 1

. Cuando el grado de los polinomios del numerador y del denominador de una función racional son

iguales, la función tiene una asíntota:

Horizontal. Vertical. Oblicua. Combinada.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 96: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

96

. Si en una función racional, el grado del numerador es una unidad mayor que el grado del denominador, nos asegura que la función tiene una asíntota:

Horizontal. Vertical. Oblicua. Combinada.

. Es la función racional que tiene como asíntota vertical la recta x=2.

y = 25−x

y = 2

52−xx

y = 25+x

y = 125−x

. Si en dos magnitudes variables sucede que para un aumento en el valor de una de ellas se produce una

disminución en el valor de la otra, se dice que su variación es:

Directa. Única. Conjunta. Inversa.

. “ ” varía inversamente con “x”; si para x=3 se tiene que y=5, entonces el valor de la constante es:

5/3. 3/5. 15. 5.

. Se tiene alimento para 20 gallinas durante 15 días. Si se agregan 4 gallinas más y se mantiene fija la

ración de alimento diario que se tenía planeada desde un principio. ¿Cuántos días se les puede alimentar?

10 días. 10.5 días. 12 días. 12.5 días.

Ü Si todas tus respuestas fueron correctas: por lo que te invitamos a continuar con esa dedicación.

Ü Si tienes de 8 a 9 aciertos, tu aprendizaje es , pero es

necesario que nuevamente repases los temas.

Ü Si contestaste correctamente 7 ó menos reactivos, tu aprendizaje es , por lo que te recomendamos solicitar asesoría a tu

profesor.

Page 97: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

97

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Realiza las siguientes actividades. 1. Encuentra las ecuaciones de las asíntotas de las siguientes funciones racionales y analiza los resultados

para que puedas completar correctamente la tabla que al final se indica.

a) 4

12 −

=x

y

b) 54

32

2

−=x

xy

c) 2

2

−=x

xy

Para una función racional 0

1

1

0

1

1

)(

)()(

bxbxb

axaxa

xq

xpxf

m

m

m

m

n

n

n

n

++++++

== −−

−−

L

L, donde p y q no tienen factores

comunes. Si mn < , entonces la ecuación de una asíntota horizontal es: __________________.

Si mn = , entonces m

n

b

ay = , es la ecuación de: ___________________________.

Si mn > , entonces no hay asíntotas: _______________________. 2. Escribe el procedimiento para hallar las ecuaciones de las asíntotas de la función

1

22

23

−−−−

=x

xxxy , cuya gráfica se muestra:

Page 98: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

98

3. Emplea el resultado de la tabla anterior cuando mn = para comprobar que la asíntota horizontal de la

función 2

2

53

2

x

xy

−= es

5

2−=y .

4. Con la información obtenida en la tabla del ejercicio 1 y con tus conocimientos acerca de las asíntotas

de una función, construye en cada caso, una función racional que cumpla con el dato que se proporciona:

a) Que tenga asíntotas verticales en x = 2 y en x = -3.

b) Que tenga una asíntota horizontal en y = 3.

c) Que tenga una asíntota oblicua de ecuación y= 3x-1.

5. Las feromonas y dopaminas son sustancias químicas que libera el organismo en los individuos cuando

empiezan a enamorarse, produciendo una doble sensación de aletargamiento y de hiperactividad en las

parejas de enamorados. Si suponemos que la función racional 1

)(2 +

=x

xxf , representa el

porcentaje de estas sustancias en una persona durante una etapa de su enamoramiento, donde x representa el número de meses:

a) Haz una tabla de valores x-y, desde x=0 hasta x=8 para luego trazar la gráfica. b) Según la tabla construida, la cantidad global de estas substancias presentes a los cinco meses es:

_____________. c) ¿En cuánto tiempo, según este modelo se alcanza la máxima producción y cuál es ésta? d) ¿Qué tipo de asíntotas tiene la función?

6. Las resistencias en paralelo de un circuito eléctrico, tienen la propiedad de mantener constante el

voltaje. Expresa la función racional que modela el paso de la corriente (Intensidad “I”) en un circuito de voltaje V= 110.

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 99: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

UUnniiddaadd 44

Resolverá problemas con funciones exponenciales y logarítmicas, teóricas o prácticas, utilizando su relación como funciones inversas y sus propiedades algebraicas, en un ambiente escolar que favorezca la reflexión sobre la utilidad de estos conocimientos y el desarrollo de actitudes de responsabilidad, cooperación, iniciativa y colaboración hacia el entorno en que se desenvuelve.

• Función exponencial. • Función Logarítmica. • Ecuaciones exponenciales y

logarítmicas.

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Page 100: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

100

FUNCIÓN EXPONENCIAL FUNCIÓN LOGARÍTMICA y su inversa

En especial

Base 10 y e

RESOLUCIÓN DE PROBLEMAS

Page 101: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

101

FFUUNNCCIIÓÓNN EEXXPPOONNEENNCCIIAALL..

Una función exponencial es una función trascendente cuya ecuación es de la forma xby = , donde x acepta cualquier valor real y b es un número positivo distinto de 1.

La ecuación y = A.b es la forma de representación más general de una función exponencial, donde A representa su valor inicial, cuando x = 0. Una función exponencial presenta las siguientes características: 1) Su gráfica puede ser creciente o decreciente. 2) Las gráficas de las funciones exponenciales son continuas y cortan al eje “y” en

(0,1). 3) Tienen como asíntota al eje x.

El de las funciones exponenciales está formado por el conjunto de los números reales, mientras que el , por todos los valores de “y” mayores que cero, es decir que, la gráfica se presenta siempre por encima del eje x, ya que éste es su asíntota horizontal.

.

La gráfica de la función exponencial puede ser creciente, si la base corresponde a un número mayor que 1, o bien puede ser decreciente, si la base es un número menor que 1, (fracción), como se puede ver en las siguientes gráficas:

5 -4 -3 -2 -1 1 2 3

2

-1

1

2

3

4

5

La gráfica es creciente porque

3 -2 -1 1 2 3 4 5

-1

1

2

3

4

x)(3

1

La gráfica es decreciente porque

.

Page 102: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

102

Los siguientes ejemplos se refieren a situaciones que se pueden modelar con una función exponencial: 1. En un cultivo de bacterias se tiene una población inicial de 450 y se observa

que cada hora se duplica la población existente.

El modelo que la describe corresponde a la función P= (450).2t, el cual cumple con la condición inicial de 450 bacterias para t=0, y que 20=1.

2. Si invirtieras $1,500.00 en una cuenta bancaria que proporciona el 43% de

interés anual a un plazo de 5 años. ¿Cuál es el monto que recibirías al concluir el plazo del depósito?

La ecuación que modela los datos del problema es 5)43.1(1500=M .

De donde =M $ 8,969.56.

. Cuando en una función exponencial, los valores de su exponente se incrementan en una unidad, entonces el nuevo valor de la función equivale a multiplicar al anterior por el factor b; [ Abx+1 = Abx(b)].

. Se identifica un modelo como exponencial cuando a intervalos iguales se produce una variación en un factor constante “b”, esto nos lleva a la siguiente afirmación: entre dos valores consecutivos de la función, la razón que se forma es constante e igual a “b”.

. El criterio del cociente de dos valores consecutivos, es útil para obtener la expresión que modela a una función exponencial cuando conocemos un conjunto de datos, generalmente en una tabla de valores, como se puede ilustrar con el siguiente ejemplo: En un salón de clases, un alumno se enferma de gripe y contagia a cuatro de sus compañeros en una semana. A la siguiente semana hay 16 contagiados en 5 salones. A las tres semanas el virus lo tienen 64 personas de la escuela. En cuatro semanas ¿cuántas personas estarán enfermas de gripe? Solución: para obtener el modelo del problema, representemos los valores en su forma tabular: Como en la tabla el cociente entre dos resultados consecutivos de “y”, siempre es igual a 4, entonces el modelo del problema corresponde a la función . Para t = 4 se obtiene que y = 44 = 256 personas contagiadas por el virus.

t 0 1 2 3 y 1 4 16 64

Page 103: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

103

Una tasa se identifica como un porcentaje de aumento o disminución de un valor inicial y se puede expresar como un porcentaje. El término “tasa” es comúnmente utilizado en matemáticas financieras, en el cálculo del interés compuesto, por ejemplo.

En la función exponencial xbAy .= ; “ ” es el factor de crecimiento. La tasa o razón de crecimiento “r” se expresa con . Ejemplo: Si y = 600(1.10)x expresa el valor en x años de un objeto cuyo valor inicial fue de 600 pesos, entonces expresa el , el cual se puede visualizar en la siguiente secuencia de valores obtenidos para y : Para x=0 se tiene que y = 600, Para x=1 se tiene que y = 600(1.10) Para x=2 se tiene que y = [600(1.10)(1.10)] = 600(1.10)2 . etc. En cambio, la se refiere al

, así tenemos que para una variación de x=1 a x=2, la tasa de crecimiento se expresa como:

r = 1)10.1()10.1(600

]110.1)[10.1(600)10.1(600

)10.1(600)10.1(600 2

−=−

=−

Si 1.10 = b, entonces se puede escribir en forma general que r=b-1, de donde

, es decir, que el factor de crecimiento es igual a la tasa de crecimiento aumentada en una unidad.

En forma individual contesta los siguientes ejercicios y compara los resultados obtenidos con el de tus compañeros: 1. Escribe una función exponencial que satisfaga las siguientes condiciones:

a) El valor inicial es igual a 32. b) El factor de crecimiento es igual a 4.

2. Si la tasa de crecimiento de una función exponencial es igual a 0.15, entonces

el factor de crecimiento es igual a: ____________. 3. Si se invierten $25,000 en una cuenta bancaria al 20% de interés anual

durante 3 años, ¿cuál es el monto que se genera en ese periodo?

EJERCICIO 1

Page 104: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

104

. e .

El número e es un número irracional al igual que el número π . Se obtuvo como el resultado del límite de una sucesión y su valor aproximado es e= 2.718281828…, el cual se puede obtener con una calculadora científica. El número e se emplea como base de los logaritmos naturales. Es importante, porque participa en muchas situaciones que modelan planteamientos de tipo exponencial. Ejemplos: 1) En ocasiones los Sicólogos utilizan la función ( ) ( )kteAtL −−= 1 , como

modelo para medir la cantidad L aprendida en el tiempo t. El número A representa la cantidad por aprender y k mide el nivel de aprendizaje.

2) Un modelo para el número N de personas en una comunidad escolar que

han escuchado cierto rumor es: )1( 15.0 dePN −−= donde P es la población total de la comunidad y d, el número de días transcurridos desde el inicio del rumor.

Cuando una función exponencial tiene como base al número e , se le conoce como la función exponencial natural y se representa con la ecuación:

En finanzas, cuando una cierta cantidad de dinero (monto), se capitaliza continuamente, se emplea la función exponencial natural para determinar el monto total (S), al cabo de un cierto tiempo (t): Ejemplo: “Si son invertidos $100 a una tasa anual del 5% capitalizado continuamente, ¿Cuál es el monto al final de 5 años?” El resultado lo encontramos si sustituimos en la fórmula de capitalización continua los datos del problema, quedando:

40.128$100100 25.0)5(05.0 ≈== eeS .

e

xae

<>

0

0

asiedecrecient

asicreciente

treCS =

Page 105: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

105

FFUUNNCCIIÓÓNN LLOOGGAARRÍÍTTMMIICCAA.. En la proposición 823 = , el término exponente se usa para indicar la relación entre el 2 y el 3. Sin embargo, el 3 también está relacionado con el 8 y para indicar esta relación se usa el término . Esto nos lleva a concluir que el 3 es el exponente de 2 y además es el logaritmo de 8.

La función logarítmica es la inversa de la exponencial, esto es, que se puede pasar de una notación a otra. Ejemplo, si se tiene la expresión exponencial 23 = 8, podemos escribir la correspondiente expresión inversa. Para ello únicamente cambiamos la palabra exponente por logaritmo quedando en la forma 3 = Log 2 8, (3 es el logaritmo de 8 en base 2).

xy blog= b

EJERCICIO 2

Organiza equipos de 2 compañeros y contesta el siguiente ejercicio:

1. Con ayuda de la calculadora encuentra los resultados de la expresión n

n

+

11 , para los valores de los exponentes que se indican:

n 10 100 1000 10,000

n

n

+

11

2. Verifica que los resultados que se obtuvieron se aproximen cada vez más al valor de e .

*** El valor de e , se determina con la calculadora científica.

Page 106: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

106

La función exponencial = tiene como función inversa a Para pasar de la notación exponencial a la logarítmica y viceversa es fundamental identificar quien es el exponente, ya que su nombre cambiará al de logaritmo cuando se le despeja.

Considerando que la función exponencial y la logarítmica son inversas entre sí, la gráfica de una función de este tipo es la reflexión con respecto a la recta y = x de la gráfica de la función exponencial.

Por ejemplo, si queremos graficar la función )(2 xLogy = podemos emplear

su inversa, la función exponencial yy 2= .

El dominio de una función logarítmica es el conjunto de los números reales positivos. El rango de la función logarítmica es el conjunto de los números reales.

Los logaritmos que se emplean con mayor frecuencia son: Los logaritmos en base 10 también llamados comunes o de Briggs. La notación empleada para estos logaritmos es “ ”, con la cual se sobreentiende que son en base 10, y los logaritmos de base e , también llamados Naturales o Neperianos. La notación empleada para estos “Ln”, tomado de las primeras letras de las palabras latinas logatithmus naturalis.

.

-4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

xy 2=

xLogy 2=

Page 107: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

107

Con la ayuda de una calculadora podemos obtener los valores de salida para la función logarítmica que se obtienen a partir de los valores asignados a la variable “x”. Por ejemplo, para graficar xy 10log= , se tienen los resultados

que se muestran en la tabla x

21

43 1 2 3 4 5

y -0.3010 -0.124938736 0 0.3010 0.4771 0.6020 0.6989

En una expresión exponencial, cuando se quiere despejar su exponente, las reglas conocidas del algebra no funcionan, pues se trata de una expresión clasificada como trascendente, se requiere para el despeje del exponente de la expresión, la definición de logaritmo, esto es, cambiamos el nombre de exponente por el de logaritmo para indicar que éste ya no estará colocado en la parte superior derecha de la base de la potencia. Ejemplo: si se quiere despejar

el exponente de la expresión exponencial 34373 = , se escribe el resultado

siguiente: .343log3 7=

Las propiedades de los logaritmos se derivan de las propiedades de los exponentes de potencias de la misma base, teniendo entonces que:

BLogALogABLog bbb +=

BLogALogB

ALog bbb −=

MxLogMLog b

x

b =

e

Page 108: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

108

Para calcular el valor de logaritmos en una base distinta de 10, debemos de emplear la siguiente fórmula: Ejemplo: si queremos calcular el log5216 con la calculadora, entonces es útil la fórmula mostrada, quedando el resultado:

34.3698970004.0

334453751.2

5log

216log216log5 ≈==

Para resolver este tipo de ecuaciones que contienen expresiones logarítmicas y exponenciales, se aplican las propiedades de exponentes y logaritmos, así como su relación como operaciones inversas. Ejemplo: para resolver la siguiente ecuación exponencial 5x +1 = 106, se procede de la siguiente manera: 1) Se despeja a la potencia… 5x = 106-1 = 105 2) Se interpreta el exponente como logaritmo… X = log5 105

3) Usando la calculadora… x = 89.25log

105log=

Para resolver la ecuación logarítmica ln x + 4 = 3, se procede de manera similar: 1) Se despeja el logaritmo… ln x = 3 – 4 = -1 2) Se interpreta el logaritmo como exponente… x = e -1

3) Usando la calculadora… x = 0.3678

b

NNb

log

loglog =

EECCUUAACCIIOONNEESS EEXXPPOONNEENNCCIIAALLEESS YY LLOOGGAARRÍÍTTMMIICCAASS..

Page 109: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

109

EJERCICIO 3 En forma individual contesta los siguientes ejercicios y muestra los resultados a tu profesor:

1. Explica que relación guardan el exponente y el logaritmo. 2. Si la siguiente tabla de valores corresponden al dominio y rango de una

función exponencial, escribe la tabla que corresponde a una función logarítmica.

X 0 1 2 3y 1 2 4 8

a) Haz las representaciones gráficas correspondientes a los valores de

cada tabla, en el mismo sistema de coordenadas y comprueba que son simétricas con relación a la recta. y = x

3. Resuelve cada una de las siguientes ecuaciones:

a) 6)( 2

=−xxLne

b) 6412

1=+x

Page 110: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

110

Page 111: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

111

-3 -2 -1 1 2

-1

1

2

3

1 2 3 4 5 6

1

1

2

3

-1 1 2 3 4 5 6

-1

1

2

3

Contesta los siguientes ejercicios y entrégalos a tu profesor en la fecha que te indique. 1. La presión atmosférica “p” disminuye al aumentar la altura. Esta presión medida en milímetros de

mercurio se relaciona con la altura en kilómetros mediante la fórmula: hep 145.0760 −=

¿Cuál es la presión a una altura de 10 Km?

2. En el enunciado de un problema se lee: “cada hora la población se duplica”, significa que la población actual es igual a ______________anterior, multiplicada por ___.

3. Las gráficas que se muestran corresponden al intervalo creciente de las funciones que se indican:

a) ¿Cuál de las tres funciones muestra un aumento en un factor constante, para iguales incrementos de la variable independiente?

b) Según la gráfica, el valor del factor constante es igual a: ____________.

c) Escribe un resumen sobre el comportamiento de las gráficas de las funciones mostradas.

Función lineal Función cuadrática Función exponencial

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 112: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

112

4. Del siguiente planteamiento, escribe el modelo exponencial e identifica el valor de la tasa y el valor del factor de decrecimiento:

“La vitamina C contenida en los cítricos se oxida rápidamente, si un cuarto de litro de jugo de naranja contiene aproximadamente 200 mg. de esta vitamina y ésta se oxida a razón de 12.5 mg. cada minuto. ¿Cuántos mg. de vitamina tendrá el jugo si lo consumes después de x minutos?”

5. El PH de una solución química está dado aproximadamente por la fórmula: [ ]+−= HPH 10log

donde [ ]+H , es la concentración de iones hidrógeno en moles por litro. Los valores de PH varían de 0 (ácido) a 14 (alcalino).

Determina la concentración de iones hidrógeno en una solución con un PH de 4.2

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 113: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

113

Resuelve los siguientes problemas y preséntalos a tu profesor en el tiempo acordado. 1. Si la función que modela el número de miligramos de cierto medicamento en el flujo sanguíneo de:

teN 4.05 −=

La aplicación del medicamento se hace vía intramuscular. Si se considera que cuando el número de miligramos en la sangre llegue a 2, se debe administrar nuevamente, ¿cuánto tiempo transcurre entre la aplicación de las inyecciones?

2. El PH de una solución química está dado aproximadamente por la fórmula: [ ]+−= HPH 10log

donde [ ]+H , es la concentración de iones hidrógeno en moles por litro. Los valores de PH varían de 0 (ácido) a 14 (alcalino).

Determina el PH de una solución de 0.0000001 moles de iones hidrógeno.

3. En un cultivo de bacterias, la función que modela su crecimiento es B = 15,000te 4.0, ¿en cuánto

tiempo la población se duplicará?

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 114: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

114

4. Completa la siguiente tabla, escribiendo en su forma exponencial las expresiones dadas en la primera columna.

xNb =log

225log5 =

3

29log27 =

236

1log6 −=

01log =b

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 115: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

115

Lee con cuidado cada una de las preguntas que se presentan y encierra en un círculo la letra que contenga a la respuesta correcta. 1. “A intervalos iguales se produce una variación en un factor constante”, es un enunciado que se refiere a:

Directa. Inversa. Exponencial. Logarítmica.

2. El término tasa es comúnmente utilizado en matemáticas financieras y se refiere a un incremento:

Con respecto a un valor inicial. Con relación al total. Con relación al valor anterior. En el exponente.

3. En un proceso exponencial, es equivalente a la tasa de crecimiento aumentada en una unidad.

Factor de capital. Factor de desarrollo. Factor de crecimiento. Factor de ingreso.

4. Cuando una función exponencial tiene como base al número e , recibe el nombre de:

Exponencial natural. Natural. Exponencial inversa. Exponencial común.

5. En la expresión 9 = 32, se identifica al número 2 como el exponente de la base 3. El mismo número 2 con

relación al resultado 9 se le identifica como el:

Logaritmo. Número trascendente. Exponente. Antilogaritmo.

6. El valor que se obtiene de 60log 4 es:

2.78 2.86 2.95 2.98

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 116: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

116

7. El valor de x que hace que la expresión 4)512(loglog 33 =++ xx sea verdadera es:

23

-27

347

10 8. El resultado que corresponde blog 1, es igual a:

La unidad. Cero. b. 1/b

9. La ecuación xx log2)127log( =− , es equivalente a la expresión:

7x – 12 = 2x 7x – 12 = 102x 7x – 12 = 2(10x) 7x – 12 = x2.

10. Al despejar “y” de la ecuación Log (x. y)- Log(x+1) = 3, el resultado que se obtiene es:

y = 1

103

+xx

y = x

x

3

1+

y =x

x )1(1000 +

y = 1

3

++x

x

Ü Si todas tus respuestas fueron correctas: por lo que te invitamos a continuar con esa dedicación.

Ü Si tienes de 8 a 9 aciertos, tu aprendizaje es , pero es

necesario que nuevamente repases los temas.

Ü Si contestaste correctamente 7 ó menos reactivos, tu aprendizaje es , por lo que te recomendamos solicitar asesoría a tu

profesor.

Page 117: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

117

Realiza las siguientes actividades: 1. Elabora un resumen, ilustrado con ejemplos, sobre las características de la función exponencial y el

significado de los términos: valor inicial, tasa y factor de crecimiento. 2. En la ciudad de México se puso en marcha la aplicación a los automovilistas del

alcoholímetro, con el fin de evitar accidentes por efectos de las bebidas embriagantes.

Si el riesgo “R” (dado como porcentaje) de tener un accidente automovilístico se

modela con la función xkeR 6= ; donde x mide la concentración de alcohol en la sangre y k es una constante.

a) Si suponemos que una concentración de alcohol en la sangre de 0.04, produce un riesgo del 10%

(R=10) de sufrir un accidente, determina la constante de la ecuación.

b) Si la ley de tránsito establece que las personas con riesgo de sufrir un accidente del 20% o mayor no deben manejar. ¿Con cuál concentración de alcohol en la sangre debe un conductor ser multado y arrestado?

3. Resuelve para x cada una de las siguientes ecuaciones, aplicando para ello las propiedades de los

exponentes y de los logaritmos.

a) 1728)4(62 =xx

b) 2)6(log)6(log 88 =++− xx

c) xe x 2)1ln( =−.

4. Convierte cada expresión a la forma logarítmica:

1) 25628 = 2) 125

15 3 =−

3) 33

11

=

4) 27814

3

= 5) 1470 = 6) 749

1 2

1

=

5. Completa los siguientes enunciados: a) El logaritmo del producto de dos números es igual a ____________________. b) El logaritmo del cociente de dos números es igual a ____________________. c) El logaritmo de la potencia de un número es igual a_____________________.

Nombre______________________________________________________

No. de lista ________________ Grupo ___________________________

Turno_________________________________ Fecha _______________

Page 118: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

118

Revisión: _____________________________________________________ Observaciones:________________________________________________

______________________________________________________________

______________________________________________________________

______________________________________________________________

Page 119: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

119

1. D 2. C 3. B 4. C 5. A 6. D 7. B 8. D 9. B 10. B

1. C 2. B 3. A 4. B 5. A 6. C 7. A 8. A 9. B 10. B

1. A 2. B 3. D 4. B 5. A 6. C 7. A 8. D 9. C 10. D

1. C 2. A 3. C 4. A 5. A 6. C 7. A 8. B 9. D 10. C

Claves de Respuestas

Page 120: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

120

Son rectas a las cuales se aproxima la gráfica, sin llegar a alcanzarlas por más grandes que sean los valores de x ó de y, según el caso, de ahí su significado “no encontrable”.

Son todos los valores de x tanto racionales como irracionales para los cuales la función se hace cero.

Es el conjunto de valores que se obtienen cuando los elementos del dominio son sustituidos en la regla de correspondencia de la función.

Es el término que contiene la potencia con el mayor exponente de una función polinomial.

Es una técnica abreviada para dividir cualquier función )(xf

entre un binomio de la forma )( rx − .

Conjunto de valores que se le pueden asignar a la variable independiente y para los cuales queda definida la función

Es una relación en la que al primer componente del par ordenado, solamente le corresponde uno y solamente un valor como segundo componente del par

Función que al evaluarla en dos valores “a” y “b” de su dominio, tales que se cumple que

Función que al evaluarla en dos valores “a” y “b” de su dominio tales que se cumple que .

Función que además de ser sobreyectiva también es inyectiva

Función en la que un mismo valor de su rango, se corresponde con al menos un valor de su dominio.

Es una función cuya regla de correspondencia no es algebraica, pueden ser trigonométricas, exponenciales y logarítmicas.

Se refieren a aquellas, cuya regla de correspondencia puede ser expresada por medio de un polinomio, una expresión racional (cociente de dos polinomios) o una expresión irracional (forma radical).

Funciones que se forman cuando en la variable independiente de una de las funciones se sustituye la regla de correspondencia de la otra función.

Es una función trascendente cuya ecuación es de la forma xby = , donde x acepta cualquier valor real y b es un número

positivo distinto de 1.

Función exponencial que tiene como base al número e .

Glosario

Page 121: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

121

Función donde cada valor de su dominio está asociado con exactamente un valor de su rango.

Es una función de la forma

( ) 01

1

1 axaxaxaxf n

n

n

n ++⋅⋅⋅++= −− , donde todos los

exponentes de x son números enteros no negativos y

0,11 .,..,, aaaa nn − son números reales.

Es el cociente de dos polinomios, cuando éste no puede simplificarse porque los polinomios no poseen factores comunes, y el denominador no es el polinomio cero.

Es la razón de variación de los valores de y con respecto a los de x, que se calcula como un cociente de incrementos:

m= 12

12

xx

yy

x

y

−−

=∆∆ .

Porcentaje de aumento o disminución de un valor inicial.

Cuando el cociente formado entre dos cantidades es siempre constante

Cuando dos cantidades varían de tal forma que al aumentar una de ellas el valor de la otra disminuye o al disminuir una de ellas la otra aumenta.

Page 122: Matemáticas IV · PDF fileque aparece al final del módulo. ... IV, fue desarrollado con un lenguaje sencillo, pensando en que es un material para uso de los alumnos especialmente,

122

( Allen R. Ángel. Algebra intermedia. Prentice Hall, cuarta edición.

( Max Sobel. Algebra. Cuarta edición. Prentice Hall.

( Max Sobel. Precálculo. Quinta edición. Prentice Hall.

( Michael Sullivan. Precálculo, cuarta edición. Pearson Educación.

( Ortiz Campos, Francisco J. Matemáticas IV. Bachillerato General Publicaciones Cultural, México 2005.

( Ruiz Basto, Joaquín. Precálculo: funciones y aplicaciones. Matemáticas IV. Bachillerato General. Publicaciones Cultural, México 2005.

Bibliografía General