Material de estudio y t inductores y bobinas. octubre 2012.

8
Las bobinas Son componentes pasivos de dos terminales que generan un flujo magnético cuando se hacen circular por ellas una corriente eléctrica. Se fabrican arrollando un hilo conductor sobre un núcleo de material ferromagnético o al aire. Su unidad de medida es el Henrio (H) en el Sistema Internacional pero se suelen emplear los submúltiplos mH y microH. Sus símbolos normalizados son los siguientes: 1. Bobina 2. Inductancia 3. Bobina con tomas fijas 4. Bobina con núcleo ferromagnético 5. Bobina con núcleo de ferroxcube 6. Bobina blindada 7. Bobina electroimán 8. Bobina ajustable 9. Bobina variable Existen bobinas de diversos tipos según su núcleo y según tipo de arrollamiento. Su aplicación principal es como filtro en un circuito electrónico, denominándose comúnmente, choques. Características: 1. Permeabilidad magnética (m).- Es una característica que tiene gran influencia sobre el núcleo de las bobinas respecto del valor de la inductancia de las mismas. Los materiales ferromagnéticos son muy sensibles a los campos magnéticos y producen unos valores altos de inductancia, sin embargo otros materiales presentan menos sensibilidad a los campos magnéticos. El factor que determina la mayor o menor sensibilidad a esos campos magnéticos se llama permeabilidad magnética.Cuando este factor es grande el valor de la inductancia también lo es. 2. Factor de calidad (Q).- Relaciona la inductancia con el valor óhmico del hilo de la bobina. La bobina será buena si la inductancia es mayor que el valor óhmico debido al hilo de la misma. TIPOS DE BOBINAS 1. FIJAS

Transcript of Material de estudio y t inductores y bobinas. octubre 2012.

Page 1: Material de estudio y t inductores y bobinas. octubre 2012.

Las bobinas

Son componentes pasivos de dos terminales que generan un flujo magnético cuando se hacen circular por ellas una corriente eléctrica. Se fabrican arrollando un hilo conductor sobre un núcleo de material ferromagnético o al aire. Su unidad de medida es el Henrio (H) en el Sistema Internacional pero se suelen emplear los submúltiplos mH y microH.Sus símbolos normalizados son los siguientes:

1. Bobina 2. Inductancia 3. Bobina con tomas

fijas

4. Bobina con núcleo ferromagnético

5. Bobina con núcleo de ferroxcube

6. Bobina blindada

7. Bobina electroimán 8. Bobina ajustable 9. Bobina variable

Existen bobinas de diversos tipos según su núcleo y según tipo de arrollamiento.Su aplicación principal es como filtro en un circuito electrónico, denominándose comúnmente, choques.

Características:

1. Permeabilidad magnética (m).- Es una característica que tiene gran influencia sobre el núcleo de las bobinas respecto del valor de la inductancia de las mismas. Los materiales ferromagnéticos son muy sensibles a los campos magnéticos y producen unos valores altos de inductancia, sin embargo otros materiales presentan menos sensibilidad a los campos magnéticos.El factor que determina la mayor o menor sensibilidad a esos campos magnéticos se llama permeabilidad magnética.Cuando este factor es grande el valor de la inductancia también lo es.

2. Factor de calidad (Q).- Relaciona la inductancia con el valor óhmico del hilo de la bobina. La bobina será buena si la inductancia es mayor que el valor óhmico debido al hilo de la misma.

TIPOS DE BOBINAS

1. FIJAS

Con núcleo de aire

El conductor se arrolla sobre un soporte hueco y posteriormente se retira este quedando con un aspecto parecido al de un muelle. Se utiliza en frecuencias elevadas. Una variante de la bobina anterior se denomina solenoide y difiere en el aislamiento de las espiras y la presencia de un soporte que no necesariamente tiene que ser cilíndrico. Se utiliza cuando se precisan muchas espiras. Estas bobinas pueden tener tomas intermedias, en este caso se pueden considerar como 2 o más bobinas arrolladas sobre un mismo soporte y conectadas en serie. Igualmente se utilizan para frecuencias elevadas.

Page 2: Material de estudio y t inductores y bobinas. octubre 2012.

Con núcleo sólido

Poseen valores de inductancia más altos que los anteriores debido a su nivel elevado de permeabilidad magnética. El núcleo suele ser de un material ferromagnético. Los más usados son la ferrita y el ferroxcube. Cuando se manejan potencias considerables y las frecuencias que se desean eliminar son bajas se utilizan núcleos parecidos a los de los transformadores (en fuentes de alimentación sobre todo). Así nos encontraremos con las configuraciones propias de estos últimos. Las secciones de los núcleos pueden tener forma de EI, M, UI y L.

Bobina de ferrita

Bobina de ferrita de nido de abeja

Bobinas de ferrita para SMD

Bobinas con núcleo toroidal

Las bobinas de nido de abeja se utilizan en los circuitos sintonizadores de aparatos de radio en las gamas de onda media y larga. Gracias a la forma del bobinado se consiguen altos valores inductivos en un volumen mínimo.Las bobinas de núcleo toroidal se caracterizan por que el flujo generado no se dispersa hacia el exterior ya que por su forma se crea un flujo magnético cerrado, dotándolas de un gran rendimiento y precisión. Las bobinas de ferrita arrolladas sobre núcleo de ferrita, normalmente cilíndricos, con aplicaciones en radio es muy interesante desde el punto de vista práctico ya que, permite emplear el conjunto como antena colocándola directamente en el receptor.

Las bobinas grabadas sobre el cobre, en un circuito impreso tienen la ventaja de su mínimo coste pero son difícilmente ajustables mediante núcleo.

2. VARIABLES

También se fabrican bobinas ajustables. Normalmente la variación de inductancia se produce por desplazamiento del núcleo.Las bobinas blindadas pueden ser variables o fijas, consisten encerrar la bobina dentro de una cubierta

Page 3: Material de estudio y t inductores y bobinas. octubre 2012.

metálica cilíndrica o cuadrada, cuya misión es limitar el flujo electromagnético creado por la propia bobina y que puede afectar negativamente a los componentes cercanos a la misma.

Información Adicional.

Definición:

A diferencia del condensador / capacitor, que almacena energía en forma de campo eléctrico, la bobina por su forma (espiras de alambre arrollados) almacena energía en forma de campo magnético.

Todo cable por el que circula una corriente tiene a su alrededor un campo magnético, siendo el sentido de flujo del campo magnético, el que establece la ley de la mano derecha (ver figura 1).

Al estar la bobina hecha de espiras de cable, el campo magnético circula por el centro de la bobina y cierra su camino por su parte exterior.

Una característica interesante de las bobinas es que se oponen a los cambios bruscos de la corriente que circula por ellas.

Esto significa que a la hora de modificar la corriente que circula por ellas (ejemplo: ser conectada y desconectada a una fuente de alimentación de corriente continua), esta intentará mantener su condición anterior.

Este caso se da en forma continua, cuando una bobina esta conectada a una fuente de corriente alterna y causa un desfase entre la tensión que se le aplica y la corriente que circula por ella.

En otras palabras:

La bobina o inductor es un elemento que reacciona contra los cambios en la corriente a través de él, generando una tensión que se opone a la tensión aplicada y es proporcional al cambio de la corriente.

Inductancia, unidades

La inductancia mide el valor de oposición de la bobina al paso de la corriente y se miden en Henrios (H), pudiendo encontrarse valores de MiliHenrios (mH). El valor depende de:

- El número de espiras que tenga la bobina (a más vueltas mayor inductancia, o sea mayor valor en Henrios).- El diámetro de las espiras (a mayor diámetro, mayor inductancia, o sea mayor valor en Henrios).- La longitud del cable de que está hecha la bobina.- El tipo de material de que esta hecho el núcleo, si es que lo tiene.

Aplicaciones de una bobina

- En los sistemas de iluminación con lámparas fluorescentes existe un elemento adicional que acompaña al tubo y que comúnmente se llama balastro- En las fuentes de alimentación también se usan bobinas para filtrar componentes de corriente alterna y solo obtener corriente continua en la salida.

Page 4: Material de estudio y t inductores y bobinas. octubre 2012.

Cuando una corriente alterna o corriente continua viaja por un conductor (cable), genera a su alrededor un efecto no visible llamado campo electromagnético.

Este campo forma unos círculos alrededor del cable como se muestra en la figura. Hay círculos cerca y lejos del cable en forma simultánea.

El campo magnético es más intenso cuanto más cerca está del cable y esta intensidad disminuye conforme se aleja de él, hasta que su efecto es nulo. Se puede encontrar el sentido que tiene el flujo magnético si se conoce la dirección que tiene la corriente en el cable y con la ayuda de La Segunda ley de la mano derecha. (ver gráfico).

Figura 1. Regla de la mano derecha para el campo magnético.

Page 5: Material de estudio y t inductores y bobinas. octubre 2012.

Energía almacenada:

La bobina almacena energía eléctrica en forma de campo magnético cuando aumenta la intensidad de corriente, devolviéndola cuando ésta disminuye. Matemáticamente se puede demostrar que la energía, , almacenada por una bobina con inductancia , que es recorrida por una corriente de intensidad , viene dada por:

Factores que Determinan la Inductancia:

Las características físicas, o forma geométrica, tanto del núcleo como de los devanados alrededor del núcleo, afectan a la inductancia producida. Los inductores con núcleo magnético tienen inductancia mucho mayores que los que tienen núcleos aislantes o de aire. Esto se debe a que todas las líneas de flujo producidas por un inductor, atraviesan el núcleo y, al hacerlo, lo magnetizan si está hecho de material magnético. Entonces las líneas de flujo del campo magnético del núcleo, se suman y refuerzan a las líneas de fuerza originadas por el devanado y, por lo tanto, se produce una mayor Fcem. Para determinado número de espiras en el devanado inductor, un núcleo con una mayor área transversal producirá más líneas de flujo. Además, cuanto más largo sea el núcleo para un número de vueltas dado, menos líneas de flujo producirá. La inductancia, por lo tanto, es directamente proporcional al área transversal del núcleo e inversamente proporcional a su longitud

El número y espaciamiento de las espiras individuales de alambre en un inductor, también afectan considerablemente a la inductancia. Cuantas más espiras se tengan, mayor será la inductancia. Y cuanto más próximas estén las espiras entre sí, también será mayor la inductancia. La relación entre la inductancia y todos los factores físicos que la afectan, se expresa según la siguiente ecuación:

Donde N es el número de espiras; *u es la permeabilidad del núcleo, la cual es grande para los materiales magnéticos y baja para otros materiales; A es el área del núcleo y L la longitud.

Page 6: Material de estudio y t inductores y bobinas. octubre 2012.

Tabla contentiva de algunas constantes dieléctricas de materiales dieléctricos.

Dieléctrico K

Vacío

Aire

Teflón

Poliestireno

Mylar

Papel, parafina

Mica

Oxido de aluminio

Oxido tantálico

Cerámica (k baja)

Cerámica (k alta)

1

1.0006

2

2.5

3

4

5

7

25

10

100 - 10,000