Materiales Compuestos Esfuerzos.pdf

27
Materiales compuestos Materiales compuestos En muchos casos la tecnología actual exige que se utilicen materiales con elevados requerimientos Por ejemplo un material con propiedades mecánicas y térmicas elevadas y cuyas densidades sean las menores alcanzables. Por ejemplo un material con elevada dureza y además elevada tenacidad. Para estas situaciones los materiales estudiados hasta ahora no son suficientes y se debe recurrir a los denominados materiales compuestos Se definen los materiales compuestos como los formados por dos o más componentes no miscibles que, manteniendo su identidad bien diferenciada incluso a nivel microscópico, dan lugar a un material macroscópicamente homogéneo. Es condición necesaria que esta asociación de diferentes componentes confiera al conjunto unas propiedades superiores a las de los componentes por separado (efecto sinérgico). Se emplea la denominación de matriz para designar al elemento más abundante, y refuerzo para designar al elemento que está en menor proporción. El objetivo que se persigue con este tipo de materiales es la mejora, fundamentalmente, de las propiedades mecánicas del compuesto (resistencia mecánica, flexibilidad, dureza, etc.) en relación con las de sus componentes, matriz y refuerzo, combinando su morfología y su distribución.

Transcript of Materiales Compuestos Esfuerzos.pdf

Page 1: Materiales Compuestos Esfuerzos.pdf

Materiales compuestosMateriales compuestos

En muchos casos la tecnología actual exige que se utilicen materiales con elevados requerimientos Por ejemplo un material con propiedades mecánicas y térmicas elevadas y cuyas densidades sean las menores alcanzables.

Por ejemplo un material con elevada dureza y además elevada tenacidad.

Para estas situaciones los materiales estudiados hasta ahora no son suficientes y se debe recurrir a los denominados materiales compuestos

Se definen los materiales compuestos como los formados por dos o más componentes no miscibles que, manteniendo su identidad bien diferenciada incluso a nivel microscópico, dan lugar a un material macroscópicamente homogéneo. Es condición necesaria que esta asociación de diferentes componentes confiera al conjunto unas propiedades superiores a las de los componentes por separado (efecto sinérgico).

Se emplea la denominación de matriz para designar al elemento más abundante, y refuerzopara designar al elemento que está en menor proporción. El objetivo que se persigue con este tipo de materiales es la mejora, fundamentalmente, de las propiedades mecánicas del compuesto (resistencia mecánica, flexibilidad, dureza, etc.) en relación con las de sus componentes, matriz y refuerzo, combinando su morfología y su distribución.

Page 2: Materiales Compuestos Esfuerzos.pdf

Ejemplos de la naturaleza:

Granito: (cuarzo, feldespato y mica)

Madera: (fibras de celulosa y matriz de lignina)

Ejemplos de materiales compuestos tradicionales sintéticos

El primer material compuesto artificial del que se tiene noticia es el adobe, obtenido uniendo paja y arcilla, que mezclaban los egipcios casi cuatro mil años antes de Cristo con el fin de evitar el agrietamiento de los bloques que empleaban en sus construcciones.

También es un material compuesto artificial el hormigón (grava, arena y cemento) y el hormigón armado (hormigón con refuerzos estructurales metálicos).

Las tres caracterLas tres caracteríísticas especsticas especííficas que definen a los materiales compuestos son:ficas que definen a los materiales compuestos son:

1) Estar formados por dos (o más) materiales distintos, separables mecánicamente. 2) Poder fabricarse por medio de la mezcla de aquellos, de manera que la dispersión de uno en otro se pueda efectuar de manera controlada.3) Dar lugar a una combinación de propiedades que sea superior a las de sus componentes por separado.

Page 3: Materiales Compuestos Esfuerzos.pdf

Propiedades de un material

compuesto son función de

Propiedades de la matriz

Propiedades del refuerzo

Cantidad de refuerzo introducida

Distribución espacial del refuerzo, (homogeniedad, orientación, etc)

Grado de adhesión matriz-refuerzo

Page 4: Materiales Compuestos Esfuerzos.pdf

Tipos de matrices:

Los tipos de matrices son poliméricas, metálicas y cerámica. La selección de una u otra depende de los requerimientos de la aplicación, muchas veces la temperatura máxima de uso es el primer parámetro de selección.

Temperatura de uso (ºC)

0

200

400

600

800

1000

1200

1400

1600

1800

Matriz polimérica

Matriz metálica

Matriz cerámica

Resinas de poliester

Resinas epoxy

Polyimidas

Magnesio

Aluminio

Titanio

Aceros

NiquelVidrio

Carbono

Carburos

Nitruros

Silicuros

Oxidos

Page 5: Materiales Compuestos Esfuerzos.pdf

Materiales compuestos con matriz polimérica

Matriz termoestable (2/3 del mercado):

Resinas epoxy, poliester, fenólicas, polimidas:

Se combinan (refuerzo) normalmente con fibras de vidrio o carbono

Recientemente se han empezado a introducir nanorefuerzos (nanotubos, nanoarcillas, nanofibras de carbono)

Ampliamente usados en aeronáutica, fabricación de barcos, trenes, palas eólicas, etc.

Matriz Termoplástica (1/3 del mercado)

Polipropileno, poliamidas, polietienos, etc.

Implantación más reciente (años 80)

Se combinan (refuerzo) normalmente con fibras de vidrio o carbono y con partículas como talco, carbonato cálcico, mica, etc.

Recientemente se han empezado a introducir nanorefuerzos (nanotubos, nanoarcillas, nanofibras de carbono)

Ampliamente usados en automoción, construcción, aeronáutica…..

Page 6: Materiales Compuestos Esfuerzos.pdf

Materiales compuestos con matriz metálicaVentajas de las matrices metálicas:

Mayor ductilidad y mejores propiedades mecánicasUna mayor resistencia a condiciones medioambientales extremas, Mejor conductividad térmica y eléctrica.En general son compuestos reciclables.

Ventajas de las matrices poliméricas:La densidad de un polímero es relativamente baja, y por tanto sus propiedades específicas (por unidad de masa)

son mayores. Esto hace disminuir el peso de las estructuras

La unión matriz – fibra es más favorable en los polímeros. En el caso de los metales, debido a su mayor reactividad, pueden formarse en la interfase compuestos intermetálicos frágiles. Ello implica una mala transferencia de las tensiones entre la matriz y el refuerzo

Los procesos de fabricación de la matriz, del refuerzo y finalmente del compuesto son más simples. Sobre todo esta circunstancia se manifiesta cuando se elaboran piezas de compleja configuración geométrica..

EjemplosMezclas de aluminio y partículas de SiC, y el titanio reforzado con fibras continuas de SiC, ambos de gran interés en la industria aeronáutica y en la construcción de diversos componentes de los compresores de primera etapa en turbinas.Otro material destacable es el formando por cobalto y gránulos de SiC o de diamante artificial, composite muy

empleado en la fabricación de elementos de corte para materiales ornamentales (granito, mármol, pizarras).Materiales para corte de metales son materiales compuestos de matriz metálica con refuerzos cerámicos

Page 7: Materiales Compuestos Esfuerzos.pdf

Materiales compuestos con matriz cerámica

Las interesantes propiedades de las cerámicas (resistencia a altas temperaturas, rigidez mecánica, buena estabilidad química) hacen que estos materiales sean muy apreciados en aplicaciones industriales con requerimientos extremos En este caso, el papel de refuerzo es mejorar la tenacidad de la matriz cerámica, así como implementar su resistencia a altas temperaturas y a los choques térmicos.

EjemplosEntre los ejemplos de este grupo de materiales citar las matrices de Al2O3, SiC, Si3N4, MgO, etc., con refuerzos en su mayoría también cerámicos como SiC, ZrO2, Si3N4, etc., o metálicos como Al, Ni o Cu. También se incluyen en este grupo los compuestos carbono/carbono.

La incorporación del refuerzo no es trivial ya que en la fabricación del material compuesto siempre hay que tener en cuenta las altas temperaturas necesarias para la fase de sinterización de las cerámicas, que pueden llegar a degradarle. Otro problema a considerar es la unión matriz–refuerzo; el diferente coeficiente de dilatación lineal de matrices y refuerzos, así como los ciclos térmicos inherentes a la fabricación de las cerámicas, que pueden tener como consecuencia algunas deficiencias en la adhesión entre ambos componentes.

Page 8: Materiales Compuestos Esfuerzos.pdf

c

material B

a

b

material A

Diferentes tipos de materiales compuestos según la forma del refuerzo: a) con partículas esféricas, b) con fibras, y c) laminar(dos

materiales distintos A y B )

RefuerzosRefuerzos

Se clasifican según su geometría:

Page 9: Materiales Compuestos Esfuerzos.pdf

nn2211i

ii XV...XVXVXV +++==∑X

rrmm dVdV d +=

Estimación teórica de las propiedades de un material compuesto reforzado con fibras y/o partículas

Regla de las mezclas

Algunas propiedades pueden estimarse a partir de las propiedades de cada material en el compuesto (Xi) y de la fracción en volumen de cada uno de ellos (Vi)

Por ejemplo la densidad de un material compuesto de dos componentes (matriz y refuerzo) se determina usando la formula

Page 10: Materiales Compuestos Esfuerzos.pdf

matriz

fibras

P

P

I0

Propiedades mecánicas de un material compuesto reforzados con fibras

Si la carga se aplica en la dirección de la fibra

rm PP P +=

rrmm AA A σ+σ=σA, Am y Ar (A=Am+Ar) se refieren a las áreas parciales del material compuesto, la matriz y el refuerzo respectivamente, y σ, σm σs a los correspondientes esfuerzos.

rrmm VV V σ+σ=σSuponiendo que fibras y refuerzos tienen la misma longitud

σm = Em εmσr = Er εr

r

rr

m

mm V V ε

σ+

εσ

=εσ

Teniendo en cuenta que las deformaciones son iguales (buena adherencia refuerzo matriz)

rrmm VEV E E +=SE CUMPLE LA REGLA

DE LAS MEZCLAS

Page 11: Materiales Compuestos Esfuerzos.pdf

Propiedades mecánicas de un material compuesto reforzados con fibras

Si la carga se aplica en la dirección perpendicular a la fibra

σm = Em εmσr = Er εr

SE CUMPLE UNA REGLA DE LAS FASES INVERSA

P P

rm σ=σ=σ

rrmm V V ε+ε=ε

r

r

m

m

EV

EV

r

r

m

mEV

EV

E1

+=

Esfuerzos iguales en ambos componentes

Deformaciones suma de las deformaciones en cada componente, usando la ley de Hooke

Page 12: Materiales Compuestos Esfuerzos.pdf

Principios del refuerzo con fibrasPrincipios del refuerzo con fibras

matriz

fibras

P

P

I0

rrmm VEV E E +=

P P

r

r

m

mEV

EV

E1

+=

Page 13: Materiales Compuestos Esfuerzos.pdf

01020304050607080

0 0,2 0,4 0,6 0,8 1

Fraccion en volumen de refuerzo

Mód

ulo

de Y

oung

(GPa

)

Modulo de Young vs fracción en volumen de fibra para el sistema HDPE+fibra de vídrio

rrmm VEV E E +=

r

r

m

mEV

EV

E1

+=

Page 14: Materiales Compuestos Esfuerzos.pdf

01020304050607080

0 0,2 0,4 0,6 0,8 1

Fraccion en volumen de refuerzo

Mód

ulo

de Y

oung

(GPa

)

Estimación de las propiedades de un material compuesto general

rrmm VEV E E +=

r

r

m

mEV

EV

E1

+=

Se usan la regla de las fases directa e inversa para estimar los límites superior e inferior de las propiedades, el estar más cerca de una u otra línea depende de:

Orientación del refuerzo

Adhesión matriz-refuerzo (agentes de acoplamiento o compatibilizantes)

Page 15: Materiales Compuestos Esfuerzos.pdf

Efecto de la orientación del refuerzo en la resistencia a la tracción de compuestos de epoxy-fibra de vidrio

Page 16: Materiales Compuestos Esfuerzos.pdf

En la fabricación de compuestos reforzados con fibras se pueden lograr propiedades anisotrópicas o prácticamente isotrópicas dependiendo de la

orientación de las sucesivas capas de fibras

Page 17: Materiales Compuestos Esfuerzos.pdf

Una de las principales causas de fallo de los materiales compuestos es una mala adhesión refuerzo carga (figura) Es necesario usar procedimientos

(tratamientos de las fibras o de la matriz) que aseguren una buena adhesión.

Page 18: Materiales Compuestos Esfuerzos.pdf

Comparativa de propiedades relativas de típicos materiales compuestos y metales y polímeros. Las propiedades específicas de la mayor parte de los

materiales compuestos son superiores a las de metales y polímeros

Page 19: Materiales Compuestos Esfuerzos.pdf

Algunos ejemplos de aplicaciones de materiales compuestos

Page 20: Materiales Compuestos Esfuerzos.pdf

Valoración porcentual del uso de los materiales compuestos por sectoresindustriales

Page 21: Materiales Compuestos Esfuerzos.pdf

Materiales compuestos laminaresMateriales compuestos laminares

En este tipo de materiales generalmente se busca combinar capas de variada rigidez y densidad para lograr materiales de muy elevada rigidez a flexión y bajo peso

Page 22: Materiales Compuestos Esfuerzos.pdf

El ejemplo más habitual son los denominados paneles sándwich con núcleo en forma de nido de abeja. En este material dos láminas delgadas y rígidas se unen usando un core de muy baja densidad

y excelente resistencia a la compresión. Esta combinación da lugar a materiales muy ligeros y con excelentes propiedades mecánicas a flexión.

Page 23: Materiales Compuestos Esfuerzos.pdf

Materiales celulares: Materiales celulares: Los materiales celulares o espumas son estructuras de dos fases,constituidas por un gas que se ha dispersado en el interior de una fase sólida continua. El hecho de que estos materiales estén constituidos a partir de dos fases hace que se les pueda considerar como un tipo más de material compuesto donde el “refuerzo” es la fase gaseosa

Celda abiertaCeldas interconectadas

Fase sólida continua

Fase gaseosa continua

Material de celda cerradaGas en el interior de celdas

cerradas

Fase sólida continua

Fase gaseosa dicontinua

Page 24: Materiales Compuestos Esfuerzos.pdf

Ejemplos extraídos de la naturaleza.

Materiales de elevada resistencia y bajo peso

Hueso

Madera

En la naturaleza las celdas o microceldas se suelen acompañar de dos características adicionales

- Presencia de una pared sólida (skin)

- Estructura celular y del material orientada de forma adecuada para las cargas que debe soportar el material

Estos materiales han sido usados por el hombre durante toda su historia puesto que existen en la naturaleza muchos materiales naturales que son celulares como por ejemplo el hueso, la madera, el corcho, etc

Page 25: Materiales Compuestos Esfuerzos.pdf

a b

c

10 m m

a) Panal de abeja, b) espuma de poliuretano, c) espuma de polietileno

Materiales celulares sintéticos de uso habitual son: espumas de poliuretano, espumas de PVC, de polietileno, de epoxy……. espumas de aluminio, de acero, de cobre, paneles honeycomb de aluminio, de plástico, etc.

Hoy en día existen tecnologías para fabricar casi cualquier material en su variante celular

Page 26: Materiales Compuestos Esfuerzos.pdf

Densidad (kg/m3)

100

101

102

103

104

105

106

Sólidos

EspumasEspumas poliméricas

especiales

Espumas metálicas y cerámicas

Metales

Conductividad Térmica (W/mK)

10-3

10-2

10-1

100

101

102

103

Espumas

CerámicasPolímeros

Polímeros

Metales

CerámicasEspumas metálicas y

cerámicas

Espumas poliméricas

Módulo de Young (MPa)

10-3

10-2

10-1

100

101

102

103

104

105

106

Espumas poliméricas típicas

Espumas

Sólidos

Elastómeros

MetalesCerámicas

PolímerosEspumas metálicas y

cerámicasCauchosEspumas poliméricas

típicas Espumas elastoméricasEspumas poliméricas

especiales

Resistencia a la compresión (MPa)

10-3

10-2

10-1

100

101

102

103

104

105

106

Espumas

Sólidos

Sólidos MetalesCerámicas

PolímerosEspumas metálicas y

cerámicasEspumas poliméricas

Propiedades generales de los materiales sólidos y de los materiales celulares fabricados a partir de estos.

Amplían el rango de propiedades de los sólidos continuos

Page 27: Materiales Compuestos Esfuerzos.pdf

Principales AplicacionesPrincipales Aplicaciones

La enorme extensión de las propiedades crea aplicaciones para los materiales celulares que no pueden cubrirse con el uso de sólidos continuos

AISLAMIENTO TÉRMICOEdificios (paredes y suelos), sistemas de transporte.

EMPAQUETADO Y PROTECCIÓN DE IMPACTOSEmbalajes, cascos, rodilleras, etc.

CONSUMOPlantillas, panales anti-vibraciones, juegos, etc.

ELEMENTOS FLOTANTESArtículos de natación, embarcaciones, balizas, etc.

OTRASAbsorción y aislamiento acústico, aislantes eléctricos, superficies anti-deslizamiento, aplicaciones médicas

ALIGERAMIENTOS DE PIEZAS Y ESTRUCTURASPaneles sándwich, piezas aligeradas, etc.