MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

54
MESTRADO INTEGRADO EM MEDICINA Congenital uterine anomalies: the role of surgery Maria Carolina Fernandes Lamouroux Barroso M 2021

Transcript of MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

Page 1: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

MESTRADO INTEGRADO EM MEDICINA

Congenital uterine anomalies: the role

of surgery

Maria Carolina Fernandes Lamouroux Barroso

M 2021

Page 2: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

Congenital uterine anomalies: the role of surgery

Dissertação de candidatura ao grau de Mestre em Medicina, submetida ao Instituto de Ciências

Biomédicas Abel Salazar – Universidade do Porto

Maria Carolina Fernandes Lamouroux Barroso

Aluna do 6º ano profissionalizante de Mestrado Integrado em Medicina

Afiliação: Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto

Endereço: Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto

Endereço eletrónico: [email protected]; [email protected]

Orientador: Dra. Márcia Sofia Alves Caxide e Abreu Barreiro

Diretora do Centro de Procriação Medicamente Assistida e do Banco Público de Gâmetas do

Centro Materno-Infantil do Norte

Assistente convidada, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto.

Afiliação: Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto

Endereço: Largo da Maternidade de Júlio Dinis 45, 4050-651 Porto

Endereço eletrónico: [email protected]

Coorientador: Prof. Doutor Hélder Ferreira

Coordenador da Unidade de Cirurgia Minimamente Invasiva e Endometriose do Centro Materno-

Infantil do Norte

Professor associado convidado, Instituto de Ciências Biomédicas Abel Salazar – Universidade do

Porto.

Afiliação: Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto

Endereço: Rua Júlio Dinis 230, B-2, 9º Esq, Porto

Endereço eletrónico: [email protected]

Junho 2021

Page 3: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

Porto, junho de 2021

____________________________________

(Assinatura da estudante)

____________________________________

(Assinatura da orientadora)

____________________________________

(Assinatura do coorientador)

Page 4: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...
Page 5: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

i

ACKNOWLEDGEMENTS

À Dra. Márcia Barreiro, ao Dr. Luís Castro e ao Prof. Doutor Hélder Ferreira, por toda a

disponibilidade e empenho dedicado à realização deste trabalho.

Aos meus pais, irmão e avós, pela participação que desde sempre tiveram na minha

formação, e pelo carinho e apoio incondicional.

Page 6: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

ii

ABSTRACT When disturbances occur in normal uterine embryogenesis, different uterine congenital

malformations, defined as deviations from the normal anatomy of the uterus, can occur. While a

variety of etiological factors are related, among them: teratogenic agents, genetic, environmental,

and multifactorial factors, there is still no concrete documentation on its influence or form of

action.

Although there is no universally accepted classification for congenital uterine anomalies,

the ESHRE/ESGE classification is a recent and clear system, enabling physicians to organize any

anomaly. Based on this classification system, protocols for an efficient diagnostic and treatment

approach are developed for each type of malformation.

These anomalies are often related to adverse reproductive outcomes, representing great

relevance in clinical practice. They are usually only diagnosed when the woman reaches adulthood

coinciding with the occurrence of these events. Infertility, repeated abortions (in the first or

beginning of the second trimesters) and preterm births are common manifestations.

This systematic review was carried out using the PubMed and Google Scholar databases,

the research was based on the combination of the Medical Subject Headings (MeSH) terms defined.

Scientific articles, written in English since 2010 were included, as well as older relevant articles by

cross referencing. The Female Genital Tract Congenital Malformations: Classification, Diagnosis and

Management, a 2015 published book, and the ESHRE/ESGE guidelines were also complementary

research tools.

Since it is currently accepted that the need for correction of uterine malformations varies

from case to case, not being mandatory and depending on many variables such as: the clinical

presentation, the degree of anomaly, the woman's history especially in terms of obstetric

complications, her age, and her reproductive plans, the goal of this dissertation is to discuss in which

situations surgery (restorage of the uterine architecture) plays an important role. It is also reviewed

various surgical techniques and the post-surgery results for each class of anomaly, respectively,

although it is notorious that large randomized controlled trials with consistent results are lacking,

which may lead to contradictory bibliography.

Keywords: Uterine anomalies, malformations, congenital, classification, diagnosis, infertility,

abortion, hysteroscopy, laparoscopy, surgery, dysmorphic, septate, bicorporeal, hemi-uterus,

aplasia.

Page 7: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

iii

RESUMO Quando ocorrem distúrbios na embriogénese uterina, diferentes malformações congénitas

uterinas, definidas como desvios da anatomia normal do útero, surgem. Embora diversos fatores

etiológicos estejam relacionados, nomeadamente: agentes teratogénicos, fatores genéticos,

ambientais e multifatoriais, ainda não há documentação concreta sobre sua influência ou

mecanismo de ação.

Embora não haja uma classificação universalmente aceite para as anomalias uterinas

congénitas, a classificação ESHRE/ESGE é um sistema recente e claro, permitindo aos médicos

organizar qualquer anomalia. Com base nesse sistema de classificação, são desenvolvidos

protocolos para uma abordagem diagnóstica e de tratamento eficiente para cada tipo de

malformação.

Muitas vezes, essas anomalias estão relacionadas a desfechos reprodutivos adversos,

apresentando grande relevância na prática clínica. Geralmente, são diagnosticados apenas quando

a mulher atinge a idade adulta coincidindo com a ocorrência desses eventos. Infertilidade, abortos

repetidos (no primeiro ou início do segundo trimestre) e partos prematuros são manifestações

comuns.

Esta revisão sistemática foi realizada através das bases de dados PubMed e Google Scholar.

A pesquisa foi baseada na combinação dos termos do Medical Subject Headings (MeSH) definidos.

Artigos científicos, escritos em inglês desde 2010, foram incluídos, bem como artigos relevantes

mais antigos por referências cruzadas. The Female Genital Tract Congenital Malformations:

Classification, Diagnosis and Management, livro publicado em 2015, e as diretrizes ESHRE / ESGE

também foram ferramentas complementares de pesquisa.

Visto que atualmente é aceite que a necessidade de correção das malformações uterinas

varia conforme a doente, não sendo obrigatória e dependendo de muitas variáveis como: a

apresentação clínica, o grau de anomalia, a sua história médica passada principalmente em termos

de complicações obstétricas, a sua idade, e os seus planos reprodutivos, o objetivo desta

dissertação é discutir em quais situações a cirurgia de restauração da arquitetura uterina

desempenha um papel importante. Também são revisadas várias técnicas cirúrgicas e os resultados

pós-cirúrgicos para cada classe de anomalia, respetivamente, embora seja notório a falta de

grandes ensaios clínicos randomizados com resultados consistentes, o que pode levar a bibliografia

contraditória.

Page 8: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

iv

Palavras-chave: Anomalias uterinas, malformações, congénitas, classificação, diagnóstico,

infertilidade, abortamento, histeroscopia, laparoscopia, cirurgia, dismórfico, septado, bicorpóreo,

hemi-útero, aplasia.

Page 9: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

v

ABBREVIATIONS

2D Two dimensional 3D Three dimensional AFS American Fertility Society AMH Anti-Müllerian hormone ASRM American Society of Reproductive Medicine CUA Congenital uterine anomaly DES Diethylstilbestrol ESGE European Society for Gynaecological Endoscopy ESHRE European Society of Human Reproduction and Embryology GnRH Gonadotropin-releasing hormone HSG Hysterosalpingography IUA Intrauterine adhesions IUGR Intrauterine growth restriction IVF In-vitro fertilization MA Müllerian aplasia MRI Magnetic resonance imaging MRKH Mayer-Rokitansky-Kuster-Hauser syndrome RCT Randomized controlled trial TRUST The Randomised Uterine Septum Transsection Trial TVS Transvaginal scanning US Ultrasonography

Page 10: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

vi

LIST OF FIGURES Figure 1: Embryology of the female genito-urinary tract (frontal view). ......................................... 27

Figure 2: ESHRE/ESGE classification of uterine anomalie ................................................................ 28

Figure 3: Scheme for the classification of female genital tract anomalies according to the new

ESHRE/ESGE classification system. ................................................................................................... 29

Figure 4: Diagram of the incisions in dysmorphic uterus surgery. ................................................... 30

Figure 5: Surgical Technique of the Jones Procedure ...................................................................... 32

Figure 6: Surgical Technique of the Tompkins Procedure ................................................................ 34

Figure 7: Surgical Technique of the Strassman Metroplasty............................................................ 35

LIST OF TABLES Table I: Estimates of prevalence of different genital tract malformations using the new

ESGE/ESHRE classification ............................................................................................................... 36

Table II: Variants of bicorporeal uterus and their surgical treatment ............................................. 36

Page 11: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

vii

INDEX

Acknowledgements ............................................................................................................................. i

Abstract ...............................................................................................................................................ii

Resumo ............................................................................................................................................... iii

Abbreviations ...................................................................................................................................... v

List of Figures ..................................................................................................................................... vi

List of Tables ....................................................................................................................................... vi

Introduction ....................................................................................................................................... 1

Material and Methods ....................................................................................................................... 2

Embryology ........................................................................................................................................ 3

Etiology ............................................................................................................................................... 5

Classification....................................................................................................................................... 7

Prevalence ........................................................................................................................................ 11

Clinical Presentation ......................................................................................................................... 13

Diagnosis .......................................................................................................................................... 16

Surgical Management ...................................................................................................................... 18

Class U1 (ESHRE/ESGE classification): Dysmorphic Uterus .......................................................... 18

Class U2 (ESHRE/ESGE classification): Septate Uterus ................................................................. 20

Class U3 (ESHRE/ESGE Classification): Bicorporeal Uterus .......................................................... 23

Classes U4a and U5a (ESHRE/ESGE classification): Rudimentary Horns with Cavity ................... 24

Conclusion ........................................................................................................................................ 26

Appendix 1 ....................................................................................................................................... 27

Appendix 2 ....................................................................................................................................... 36

References ........................................................................................................................................ 37

Page 12: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...
Page 13: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

1

INTRODUCTION Disturbances of development, canalization, fusion or reabsorption of paired Müller

channels and urogenital sinus may lead to many congenital anomalies of the uterus, cervix, vagina,

and fallopian tubes. The prevalence of these malformations in unselected population is

approximately 5%, while women with reproductive issues are more commonly affected with

prevalence of 8% in infertile women and 13% in women with past miscarriages.1 Congenital uterine

anomalies (CUA) may cause no symptoms or can implicate severe health consequences and

diminish reproductive functions. It is described that morphologically identical defects have similar

embryologic origin and may be related with similar clinical expression. 2 Several attempts have been

made to label and organize these disorders of the Müller channels and establish definitions of

specific types of malformations according to morphologic resemblance, embryologic origin, and

suitable management. 3

During the past decade, classification systems and definitions of malformations have been

established, altered, or clarified, although implications of these adjustments for patient

management are not universally accepted and defined. 4 In this review, the recent European Society

of Human Reproduction and Embryology (ESHRE)/European Society for Gynaecological Endoscopy

(ESGE) classification 5 is used as reference since it characterizes the uterine anomalies in a clear and

objective way.

Current non-invasive or minimally invasive diagnostic methods have become generally

accessible and are now used for classification and surgical planning. These tools have replaced

classic diagnostic tools such as hysterosalpingography, two-dimensional (2D) ultrasound, diagnostic

hysteroscopy alone and hysteroscopy with laparoscopy. 4,6,7

Classically, corrective surgery of CUAs was performed in patients with specific clinical

presentation: infertility, history of poor obstetrical outcomes, and recurrent miscarriages. It is now

known the clinical implication of each type of anomaly and impact of surgery on fertility and

obstetrical results are not the same for all defects. There have been many advances in the

management of these patients including presurgical qualification, intraoperative imaging tools,

surgical approaches, and postoperative care. 8

Page 14: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

2

MATERIAL AND METHODS An online search was performed at Pubmed and Google Scholar, using the following

Medical Subject Headings (MeSH) terms: uterine anomalies, congenital, Mullerian, abnormalities,

malformations, etiology, classification, clinical presentation, diagnosis, surgery, hysteroscopy,

laparoscopy, infertility, abortion, arcuate uterus, dysmorphic uterus, septate uterus, bicorporeal

uterus, hemi-uterus, aplastic uterus, and the UpToDate database using congenital uterine

anomalies as keywords.

The selection took place between September and April 2021 and the following inclusion

criteria were used: scientific articles, published since 2010, in English. After reading and critically

analysing the abstracts and conclusions, the bibliographic review articles, systematic reviews,

prospective studies, case reports, meta-analysis and clinical trials whose content was found to be

relevant to the topics covered in this review were considered.

At a later stage, cross references of relevant articles published prior to 2010 were also

included, when information on the subject was limited in the recent bibliography.

The Female Genital Tract Congenital Malformations: Classification, Diagnosis and

Management, a 2015 published book, and the ESHRE/ESGE guidelines were also complementary

research tools.

Page 15: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

3

EMBRYOLOGY Up to the sixth week of embryogenesis, the urogenital system remains indifferent in both

sexes. Two pairs of genital systems are present: the mesonephric (Wolffian duct) and

paramesonephric (Müllerian duct). Further differentiation of the gonads is dependent on the

presence or absence of the SRY gene on the Y chromosome, which stimulates differentiation of the

testes in male individuals. In female individuals, the lack of anti-Müllerian hormone (AMH) allows

differentiation of the paramesonephric ducts into the female internal organs, and estrogen drives

the differentiation of female external genitalia (labia majora, labia minora and clitoris). The

testosterone insufficiency prevents the differentiation of the mesonephric ducts in female

individuals. 9,10

At week 6, the mesonephric ducts will develop from the mesoderm and span from the

mesonephros (where the future gonad will be located) to the cloaca (which will originate the

anorectal canal and the urogenital sinus). Until the eighth week, the paramesonephric ducts

appear, through the longitudinal invagination of the celomic epithelium on the antero-external face

of the mesonephros, parallel and externally to the mesonephric channels. During this week of

embryogenesis, the Müller channels begin to move towards the midline, while the consequent

degeneration of the male Wolff channels occurs. 10

The Müller channels eventually merge in the cranio-caudal direction, during week 10,

forming the uterus-vaginal canal. However, its proximal portion remains separate as it will develop

into the fallopian tubes, forming the fimbriae which derives from the tip of this structure, remaining

open and acquiring a funnel shape.

The fused caudal end gives origin to the left and right parts of what will ultimately become

the uterus. This structure contains mesoderm that will form the endometrium and myometrium. It

also remains divided by the inter-Müllerian septum, which is reabsorved during 11th week of

gestation.11 If this midline septum is not completely reabsorbed by the twelfth week, it will persist

and produce a septate uterus.

A continuous differentiation of structures occurs up until week 40, namely differentiation

of the uterine wall, cervix, and loss of the "V" shape of the uterus.

From the fusion of the sinus-vaginal bulbs along with the caudal end of the two Mullerian

ducts, the vaginal plaque is formed which, after bidirectional growth and central degeneration,

allows cavitation, which is completed by the 20th week, constituting the lower third of the vagina.

Thus, when disturbances in any of the steps in normal uterine embryogenesis occur,

different uterine abnormalities will result. Therefore, 4 major developmental defects are

considered:10

Page 16: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

4

• Failure of one or both Müllerian ducts to form results in hemi-uterus without

rudimentary cavity or aplastic uterus, respectively. Aplastic uterus is the most

severe Müllerian defect. Cervical and vaginal aplasia frequently co-exist, and this is

known as Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome or Müllerian aplasia

(MA).

• Abnormal canalization of the Müllerian ducts results in hemi-uterus with

rudimentary cavity.

• Fusion of both Müllerian ducts leads to formation of a uterus and upper vagina.

o Horizontal fusion or unification (lower segments of paired müllerian duct

fuse to form uterus, cervix and upper vagina)–defects, depending on the

degree, lead to partial fusion or unification defect (bicorporeal uterus) or

complete fusion or unification defect.

o Vertical fusion (between the descending müllerian duct and ascending

urogenital sinus to form vaginal canal)–defects cause an imperforate

hymen or a transverse vaginal septum.

• Septal reabsorption involves the reabsorption of the horizontally fused Müllerian

ducts leading to development of the uterine cavity. A failure of this mechanism

results in a septate uterus. 12

All these malformations can be segmental, partial, or complete, related to the vagina, the

cervix, the uterine fundus, the fallopian tubes, or can be associated. Therefore, congenital uterine

anomalies may have characteristic features of various defects.11

Since the development of the genital and urinary systems are strongly associated, as both

depend on the correct maturation of the mesonephric system, it should be noted that in case of

interference of one of these systems, the other may also be affected. Therefore, it is imperative

that, after the diagnosis of one of the two types of abnormalities, uterine or renal, the existence of

the other is investigated. 13 This is widely documented in the literature, with studies indicating a

coexistence of congenital uterine and renal abnormalities in about 30–50%. Heinonen et al.14

concluded that the unilateral renal agenesis was the most frequent renal tract malformation in

women with Müllerian channel anomalies and renal malformations were more common in the main

groups of uterine anomalies, especially in patients with concomitant cervical and vaginal

obstructive anomaly. 14

If any factor causes disturbance at some point in the development of Müllerian channels,

the malformations will correspond to the week in which there was exposure to this etiological

factor. An exception is the exposure to Diethylstilbestrol (DES) in utero.

Page 17: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

5

ETIOLOGY The occurrence of the malformations previously described are related to disturbances in

normal embryogenesis however, the exact etiology remains unknown. There are several theories

about possible causes and their form of action, namely teratogenic agents, genetic, chromosomal,

environmental, and multifactorial factors, that together can create a favourable environment for

the anomaly. 11,15

The karyotype is generally normal. However, some familiar cases are linked to a recessive

autosomal gene and others to a dominant autosomal one. Currently, only a small number of genes

(HNF1B, WNT4, WNT7A, HOXA13) have assembled a strong evidence of causality, mainly in

syndromic presentations. The sequencing of candidate genes in series of individuals with isolated

uterine abnormalities has been able to suggest an association for several genes, but confirmation

of a strong causative effect is still missing for most of them. 16

According to Hammoud et al. 17 nearly 10% of patients with Müllerian anomalies seem to

be accountable to a familiar association. They conclude that Müllerian anomalies have a strong

familiar aggregation and follow a polygenic and multifactorial inheritance.17

Nevertheless, the familiar association is hard to research. Uterine ultrasounds have not

usually been performed in extended family members with asymptomatic anomalies. Although in

many families recurrences tend to repeat the same type of uterine malformation, recurrences with

variable types of uterine maldevelopment have also been reported in several families suggesting

that similar genetic background could still induce different types of uterine malformation with

variable penetrance and expressivity. 16

It is implied that several cases of fetal genital tract defects are associated with a history of

exposure, intra and extrauterine, to certain environmental factors. Apart from the DES syndrome,

other teratogenic drugs, malnutrition, metabolic alterations, viral infections, and placental

anomalies have been implied. Numerous reports of discordant phenotypes in monozygotic twins

(e.g., MRKH syndrome vs. normal uterus) argue against strong heritability and suggest that post-

zygotic somatic mutations or non-genetic mechanisms including epigenetic or microenvironmental

factors regulate the occurrence of congenital uterine malformations. 18,19

The uterus exposed to DES in utero undergoes several changes in its development, having

a characteristic aspect: uterus with "T" shaped cavity, usually hypoplastic, with widening of its lower

segment, presence of median constricting bands and irregular endometrial edges.20 DES has been

used by women for several years, since it was thought that it could reduce the risk of spontaneous

abortions. However, it was discontinued in 1971, after perceived increased risk of developing clear

cell adenocarcinoma of the lower genital tract (cervix and vagina) in women exposed in utero.21

Page 18: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

6

Nevertheless, this dysmorphic T-shaped uterus can also be found in DES non-exposed

patients, which is consistent with the idea that CUA are influenced by multifactorial, polygenic and

familiar mechanisms that together can create a favourable environment for the anomaly, but in

most patients there is no evident cause or association.

Page 19: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

7

CLASSIFICATION Classifications are fundamental in medicine since they allow a systematization of medical

knowledge and facilitate communication between physicians. Until today, there is no universally

acknowledged classification system for CUAs, which is critical due to their prevalence and clinical

relevance.22 The existing about an efficient classification emerge diagnostic and treatment

difficulties.

An ideal classification system includes a clear description of each class and subclass,

allowing objective identification of each anatomical variation. It should also enable the inclusion of

new classes, if new anomalies are detected. Finally, the correlation between the various classes and

subclasses with the respective clinical presentations, treatment options and prognosis is crucial.

Thus, it would allow the determination of obstetric and fertility impacts inherent to each anomaly

and the therapeutic strategies that would improve them. 22

The first classifications for CUAs were carried out according to the descriptions of

Cruveilher, Foerster and von Rokitansky in the mid-19th century. However, the first description to

be widely recognised was published by Buttram and Gibbons in 1979, which was later revised and

modified by the American Fertility Society (AFS), now known as the American Society of

Reproductive Medicine (ASRM). This has been the most used classification over the past three

decades. In 1988 the AFS published their classification scheme 23 for mechanical problems

associated with poor reproductive outcomes. The Müllerian anomalies were classified as follows:

(I) agenesis and hypoplasias;

(II) unicornuate uterus;

(III) didelphic uterus;

(IV) bicornuate uterus;

(V) septate uterus;

(VI) arcuate uterus;

(VII) anomalies related to DES syndrome.

The goal of this classification was to provide an easy and reliable system to allow physicians

to group cases, and for future patients to be counselled accurately and effectively. Nevertheless,

this classification has several disadvantages, including the lack of strict morphometric criteria and

the subjective description of the anomalies since there are no standardized diagnostic criteria.

There was also no apparent definition of normal uterus. For these reasons, additional

morphometric criteria were endorsed by ASRM in 2016 , which reported Class VI (arcuate uterus)

as a normal variant, not clinically relevant. This leaves a grey zone between normal/arcuate and

septate where some women will not meet the criteria for either diagnoses.

Page 20: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

8

Another limitation is that the AFS classification only refers to Müllerian anomalies and is

mainly focused on the uterus. Therefore, an embryologic-clinic classification was suggested by

Acién et al. 3 which considers all female genitourinary malformations and their embryologic origin.

Another group described the vagina, cervix, uterus, adnexa, and associated malformations

(VCUAM) system influenced by the TNM oncology system.24 These two systems, although very

understandable, are complex and not user friendly, for physicians.

The ESHRE/ESGE developed in 2013 (figure 2) a “uterus-cervix-vagina” classification

system5. Anatomy is the foundation for the systematic categorization of anomalies so deviations of

uterine anatomy deriving from the same embryological origin are the basis for the design of the

main classes. The sub-classes are based on the different degrees of uterine deformity, while cervical

and vaginal anomalies are classified in independent supplementary sub-classes. Anomalies are

sorted in the classes and sub-classes of the system according to increasing severity of the

anatomical deviation. 5

All cases with normal uterus are classified in Class U0. A normal uterus is defined as any

uterus having either straight or curved interostial line but with an internal indentation at the fundal

midline not exceeding 50% of the uterine wall thickness. The arcuate uterus is now considered a

normal variant, since it is the mildest form of uterine septum 5,25, resulting from anomalies at the

end of resorption of the inter-Müllerian septum7,26. Patients are asymptomatic, have no

compromise of fertility, and similar pregnancy outcomes as those in the general obstetric

population. In imaging it appears as a minimal myometrial prominence at the fundus, there is

deviation less than 1 cm fundal indentation and an angle of indentation greater than 90º.6

Dysmorphic uterus (Class U1) refers to all cases with normal uterine outer configuration

but with an abnormal shape of the uterine cavity excluding septa. It is subdivided into three

categories:

T-shaped uterus (Class U1a) represents a narrow uterine cavity due to thickened

lateral walls with a ratio of 2/3 uterine corpus to 1/3 cervix.

Uterus infantilis (Class U1b) characterized also by a narrow uterine cavity without

lateral wall thickening and an inverse ratio of 1/3 uterine body and 2/3 cervix.

Others (Class U1c) include minor deformities of the uterine cavity including those

with an inner indentation at the fundal midline level of <50% of the uterine wall

thickness. This clearly differentiates them from patients with septate uterus.

The Septate uterus (Class U2) includes all cases with normal fusion of the Müller channels

and abnormal absorption of the midline septum.27 The uterus presents with normal outline and an

internal indentation at the fundal midline exceeding 50% of the uterine wall thickness.28 The

septum is usually vascularized fibromuscular and it could divide partly or completely the uterine

Page 21: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

9

cavity including in some cases cervix and/or vagina. The thickness and composition of the septum,

the relative amounts of fibrous and muscular tissue, and the degree of vascularization from the

adjacent uterine wall may also vary.27 No classification system standardizes all these variations. The

anomalies are divided in two sub-class according to the degree of the uterine corpus deformity:

Partial septate uterus (Class U2a) which has a septum dividing partly the uterine

cavity above the level of the internal cervical ostium.

Complete septate uterus (Class U2b) is characterized by the presence of a septum

fully dividing the uterine cavity up to the level of the internal cervical ostium.

Patients with complete septate uterus (ClassU2b) could have or not cervical (e.g.

bicervical septate uterus) and/or vaginal defects.

The Bicorporeal uterus (Class U3) occurs due to incomplete or partial fusion of both Müller

channels.29 As bicorporeal is defined the uterus with an abnormal fundal outline, it is characterized

by the presence of an external indentation at the fundal midline exceeding 50% of the uterine wall

thickness. It also correlates with an inner indentation at the midline level that divides the cavity as

the septate uterus. The degree of uterine corpus deformity divides this anomaly into three sub-

classes:

Partial bicorporeal uterus (Class U3a) when an external fundal indentation partly

divides the uterine corpus above the cervix.

Complete bicorporeal uterus (Class U3b) characterized by an external fundal

indentation completely dividing the uterine corpus. These patients could have

coexistent cervical defects, for instance double cervix (formerly didelphys uterus)

and/or vaginal anomalies as an obstructive or non-obstructive septum. In some

cases, duplication of other structures such as bladder, vagina or anus are

present.(29)

Bicorporeal septate uterus (Class U3c) characterized by the presence of an

absorption defect combined with the main fusion defect. In patients with this

anomaly, the width of the midline fundal indentation exceeds by 150% the uterine

wall thickness.

The Hemi-uterus (Class U4) is defined as a unilateral uterine development, while the

contralateral part could be either incompletely formed or absent. The need to classify it in a

different class than that of aplastic uterus (formation defect) is due to the existence of a fully

developed functional uterine hemi-cavity. It is further divided into two sub-classes depending on

the presence or not of a functional rudimentary cavity, since it changes the clinical presentation

and treatment:

Page 22: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

10

Hemi-uterus with a rudimentary cavity (Class U4a) which can be a communicating

or noncommunicating functional contralateral horn.

Hemi-uterus without rudimentary cavity (Class U4b) characterized either by the

presence of non-functional contralateral uterine horn or by aplasia of the

contralateral part.

The Aplastic uterus (Class U5) means the absence of any fully or unilaterally developed

uterine cavity due to defects during the initial development of the Müller channels. Some co-

existent anomalies, as vaginal aplasia or MRKH Syndrome could be present. This class is further

divided into two sub-classes depending on the presence or not of a functional cavity in an existent

rudimentary horn:

Class U5a or aplastic uterus with rudimentary (functional) cavity characterized by

the presence of bi- or unilateral functional horn.

Class U5b or aplastic uterus without rudimentary (functional) cavity characterized

either by the presence of uterine remnants or by full uterine aplasia.

Class U6 is kept for unclassified cases. Current imaging technology grants objective

evaluations of uterine anatomy for the differential diagnosis among the six groups. However,

infrequent anomalies, subtle changes or combined anomalies could not be allocated correctly to

one of the group. The system is designed to include cases resulting from formation, fusion or

absorption defects of normal embryological development. Duplication defects or ectopic Müllerian

tissue anomalies, if existing, could not be described. These anomalies could be put in this class.

This classification also has autonomous categories to classify vaginal and cervical defects

that could be associated with the uterine defects. Figure 3 demonstrates the classification and

description of the different types of vaginal and cervical anomalies.

Page 23: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

11

PREVALENCE Malformations of the female genital tract are common but not always identified. CUA are

the most frequent ones, being significant in the population with adverse reproductive history.

The prevalence of female genital tract malformations in different populations of women

has been exceedingly difficult to estimate in the past few decades owing to the lack of indispensable

factors (a clear definition and selection of the populations examined; the use of a clear and

consistent classification of the malformations; the use of accurate investigations to make the

correct diagnosis of the malformations) explaining the notable difference of these values between

them. 30–32

In an initial review by Grimbizis et al. 33 the prevalence of uterine anomalies was found to

be around 4% in the general population, 4% in patients with infertility, and 12% in patients with

recurrent abortions. This study has various limitations such as the retrospective design of the

studies included, and diagnostic methods used in different studies included were not the same and

of low accuracy.

Recent systematic reviews 1,30 estimate the prevalence to be 5.5–6.7% for the general

population, 7.3–8.0% for the infertile population and 13.3–16.7% for the recurrent miscarriage and

poor reproductive outcome population and 24.5 % in those with miscarriage and infertility. Overall,

the prevalence of major congenital anomalies appears to be at least three times higher in women

with poor reproductive outcome compared with the general population. 30

The commonest malformations appeared to be the Class U2 septate/subseptate uteri,

followed by the class U3 bicorporeal uteri. Class U1 dysmorphic uteri, Class U4 hemi-uteri and Class

U5 aplastic uteri all had a prevalence of less than 1%. 1,30 However, Class U2 uteri may be

overrepresented since some arcuate uteri which will fall in the Class U2 septate/subseptate

category may in fact be normal uterine variants according to the new ESGE/ESHRE classification. 5

Usually, the diagnosis is done after imaging tests in response to signs or symptoms

presented by the patient. However, these can exist without clinical manifestations, with benign

evolution and reproductive success, remaining asymptomatic. Thus, no clinical detection is ever

made, or it is done unintentionally, so it is estimated that the prevalence of these anomalies is

slightly higher than what has been reported. 34

On the other hand, in addition to hysterosalpingography (HSG), the increasing and everyday

use of high-accuracy imaging techniques such as 3D ultrasound (3D US), magnetic resonance

imaging (MRI) and the application of minimally invasive surgical procedures (hysteroscopy and

laparoscopy) resulted in a more accurate diagnosis and in an observed increase in their prevalence.

30

Page 24: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

12

With increased accessibility through imaging techniques, and therefore higher detection

rates, an emerging question is: “What is clinically significant and requires intervention versus what

may be ignored as a subtle and normal variant?” 15 This question acknowledges the issue of when

intervention improves outcomes.

Page 25: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

13

CLINICAL PRESENTATION Congenital uterine anomalies are frequently related to adverse reproductive outcomes

with the leading clinical presentations being infertility, conflicting obstetric events (repetitive

abortions especially during the first or beginning of the second trimester, preterm delivery, fetal

malpresentation and intrauterine growth restriction [IUGR]), menstrual disorders and dyspareunia.

2,15,34 These women are also reported to have increased rates of pre-eclampsia and stillbirth. 35

Currently, it is established, the close association between the specific type of malformation and the

respective clinical presentation, including reproductive results. 34

The factors that negatively influence fertility, include changes in morphology, volume,

thickness, organization and function of the endometrium and myometrium, which may be

associated with cervical incompetence or changes in uterine vascularization, according to each

specific anomaly. Usually, the myometrium of congenitally abnormal uteri are thinner than normal

and mural thickness diminishes as pregnancy advances, causing inconsistencies over different

aspects of the uterus. 34

As cases of infertility are generally associated with other etiological factors, these must be

excluded before proceeding to the treatment of uterine malformations. 15

While most cases are diagnosed during adulthood, certain groups of malformations are

associated with primary amenorrhea without impuberism, making it possible to for the detection

to be made at a younger age. The MRKH syndrome being an example. 15

Chan et al. 36 reviewed 3805 women with CUAs and reported that abortion rates resulting

from all causes range between 21–50%, with a decrease in birth rates of about half in comparison

to the general population. This author describes that those with septate and partial septate uteri,

seem to have the worst reproductive performance, with a smaller conception rate (OR 0.86; 95%

CI 0.77–0.96) and increased probability of first-trimester miscarriage (OR 2.89; 95% CI 2.02–4.14),

preterm birth (OR 2.14; 95% CI 1.48–3.11), and fetal malpresentation at delivery (OR 6.24; 95% CI

4.05–9.62). Compared with those with a partial septate uterus, women with a septate uterus have

poorer outcomes throughout their pregnancies. 35

Various hypothesis have been suggested, such as vascular abnormalities, since the septum

is composed of fibroelastic tissue with inadequate vascularization and consequent imbalance in its

relationship between the myometrium and the endometrium. This imbalance may cause

disturbances in the implantation of the embryo and in the response of the septal endometrial

mucosa to estrogen, with little proliferation and estrogenic maturation. Here an additional

mechanism is identified, the inadequate growth of deciduous. Uncoordinated uterine contractions

Page 26: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

14

or reduced uterine capacity are other factors that may contribute to the suboptimal reproductive

performance. 36

The bicorporeal uterus and hemi-uterus do not appear to reduce fertility but are associated

with increased risks of adverse outcomes during pregnancy. These patients have an increased risk

of first trimester miscarriage (OR 3.4; 95% CI 1.18–9.76 and OR 2.15; 95% CI 1.03–4.47 respectively),

preterm birth (OR 2.55; 95% CI 1.57–4.17 and OR 3.47; 95% CI 1.94–6.22 respectively) and fetal

malpresentation (OR 5.38; 95% CI 3.15–9.19 and OR 2.74; 95% CI 1.3–5.77 respectively). 36

Vascularization may be deficient in some uterine malformations, due to its absence or the

presence of abnormal uterine or ovarian vessels. This mechanism may explain possible IUGR or

spontaneous abortions. There are also less endothelial growth factors, which are essential for the

growth of the vascular network needed for embryo/fetus nutrition and development. In the hemi-

uterus, the severe lack of volume and distorted morphology, which, throughout a pregnancy, will

progressively cause a decrease in wall thickness the presence of a single uterine artery causes

important lack in vascularization. While in the bicorporeal uterus, there is a poor vascularization of

the medial endometrium, which is shared between the two semi-cavities. 34

The dysmorphic uterus is characterized by abnormal morphology (T-shaped or a infantilis

uterus). Fernandez et al. 37 presented a retrospective study on 97 women with a T-shaped uterus;

while 63 had a history of DES exposure, the remaining 35% had either a congenital malformation

attributable to other causes or an acquired T-shaped malformation. On a total of 78 pregnancies

before hysteroscopic metroplasty the miscarriage prevalence is 78.2 %, ectopic pregnancy 17.9 %,

preterm delivery 3.8 % with all neonatal deaths and no live birth.37

Cervical insufficiency seems to be an important cause of poor reproductive results in cases

of Müllerian anomalies, not due to the existence of malformations in the neck itself, but, according

to several researchers, due to the imbalance between the amount of muscle fibres and connective

tissue, which exists in less quantity. 38,39 In addition to this different composition, the forces exerted

by the uterine content during pregnancy are also distinct, being asymmetrical and being increased

in the presence of uterine malformations, which causes premature relaxation of the hypermuscular

neck. Thus, a way to improve reproductive results in cases of uterine congenital anomalies may

involve prophylactic cervical cerclage, as has been successfully tested. 4011[NO_PRINTED_FORM]

15CUAs may also entail severe health conditions or have serious consequences that

endanger the woman's life. 34 Regarding the obstructive anomalies, the uterus has a functioning

endometrium with no communication (Classes U4 and U5) or is associated with aplasia or dysplasia

of the cervix and/or vagina (Co-existing classes C1, C3, C4, V2, V3 and V4). These patients are

asymptomatic until they reach puberty, then their main presenting symptom is amenorrhea (with

normal secondary sexual characteristics) and cyclical abdominal pain (due to the retention of

Page 27: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

15

menstruation and eventually leading to hematometra and hematocolpus) which may be followed

by constant pain. These women are at increased risk for: endometriosis due to retromenstruation;

abnormal uterine bleeding or discharge; infections secondary to vaginal micro perforations;

possible inability to establish a sexual life; reproductive difficulties (even under medically assisted

procreation treatments).30

Considering pregnant patients, fertilization can occur in a functional non-communicating

(rudimentary) uterine horn (Class U4a) by transmigration of sperm, however the exact incidence

remains unknown. The eventual15 rupture and haemorrhage of this cavity corresponds

almost15always to an emergency. 15

It 34is important to understand the negative psychological impact that these types of

anomalies may have. The psychologic support of these adolescents will reduce the anxiety and

depression they experience, will help them to adapt better to their congenital abnormality and help

to prepare better for the appropriate surgical management.

Finally, an idea to keep in mind is the possibility that the obstetric results presented are

biased, and correspond to ‘worst-case scenarios’, due to the selection of symptomatic cases. It is

estimated that there is an important number of undiagnosed cases, as they are asymptomatic and

have reproductive success.

Page 28: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

16

DIAGNOSIS The diagnostic work-up for female genital tract anomalies continues to represent a great

challenge for the gynaecologist due to the presence of various techniques available for the

diagnosis that differ in their invasiveness, availability, needs for training and, more importantly,

diagnostic accuracy. It seems that, despite advances in ultrasound and new pelvic imaging

techniques, late diagnosis of female genital tract anomalies remains frequent.

Correct evaluation of the internal and external outlines of the uterus is essential for correct

diagnosis and classification of CUAs. Formerly, the gold standard has been a combination of

laparoscopy and hysteroscopy, since it also offers the advantage of concurrent treatment, as in the

case of a uterine septum resection. However, imaging techniques that are non-invasive, easily

accessible, and well-accepted from the patients such as ultrasonography (US),

hysterosalpingography (HSG), sonohysterography and magnetic resonance imaging (MRI) are the

choice to screen, diagnose and classify CUAs. 7 While conventional two-dimensional (2D)

transvaginal US and HSG are suitable for screening for uterine anomalies, three-dimensional (3D)

transvaginal US and MRI can accurately classify them. 41–43Clique ou toque aqui para introduzir

texto.

Conventional 2D transvaginal US is minimally invasive, available, and can give reliable,

reproducible, and measurable information on uterine anatomy, leading to the exact diagnosis as

well as the differential diagnosis between the different categories. However, it has a lower

diagnostic accuracy in comparison with the other sonographic techniques. 6 Scanning in the second

half of the menstrual cycle (the secretory phase) provides more accurate visualization of the

endometrium and is therefore appropriate for assessment. Visualization of two endometrial

cavities on a transverse plane indicates anomaly.

3D transvaginal US, by its unique feature of providing the coronal plane of the uterus,

facilitates simultaneous visualization of both external (serosal surface) and internal (uterine cavity)

outlines of the uterine fundus, being important for the correct classification of the partial

bicorporeal, septate and partial septate uteri. 44 Complete bicorporeal, also demonstrates two

endometrial cavities in the transverse plane of conventional 2D US, but 3D US, along with a clinical

manifestation of two cervices or two vaginas on speculum examinations, can confirm the diagnosis.

In cases of hemi-uterus, a normal long axis of the uterus is demonstrated on one side only of the

pelvis. The parallel side is characterized by the lack of, or a rudimentary, uterine shadow. A banana-

shaped uterine cavity and single interstitial portion of fallopian tube in the coronal plane is seen

using 3D ultrasound. Saline infusion sonography has been suggested as a method for diagnosing

Page 29: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

17

rudimentary horns, as saline can evidently be seen in the hemi-uterus, with absence of flow into

the rudimentary horn, if it is non-communicating. 41

Currently, 3D transvaginal US is considered the gold standard for the assessment of CUAs

as it is less invasive and can classify the varying types of uterine anomalies correctly. Criteria for the

classification of uterine anomalies based on 3D ultrasound have been described in the Thessaloniki

ESHRE/ESGE consensus on diagnosis of female genital anomalies. 41

MRI of the pelvis is sensitive and specific for diagnosis of uterine malformations, as it

outlines the endometrium and has the capacity to detect uterine horns. It also defines any

abnormal gonadal location or renal anatomy.45 It is a less invasive modality than combined

laparoscopy and hysteroscopy. While MRI is not routinely recommended in all women with a

suspected CUA, it is useful for those women with unconfirmed diagnosis on 3D ultrasound, those

with suspected complex anomalies, and for those who decline or are uncomfortable by internal

examinations. 41

A urinary tract ultrasound scan, MRI or intravenous pyelogram is recommended in all

women diagnosed with a uterine anomaly, choosing the most appropriate method accordingly. 14

Page 30: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

18

SURGICAL MANAGEMENT

The purpose of CUA management relies on treating anatomical deformities associated with

obstructive anomalies for symptomatic relief (therefore improving quality of life) and to avoid long-

term health and reproductive adverse consequences. Relatively to non-obstructive anomalies, the

goal is to improve reproductive outcomes in infertile women or women who have history of

recurrent miscarriages. The fundamental intention is increasing live births at term, with an

associated reduction in long term neonatal morbidity and mortality, therefore surgical application

is dependent on its efficacy to reverse the reproductive consequences. 46,47

The need for treatment to correct uterine malformations varies from case to case,

depending on the clinical presentation, the degree of change in the anatomy of the uterus, the

woman's past medical history, especially in terms of obstetric complications, her age, and her

reproductive plans. Intervention is not mandatory. The role of surgical treatment in incidentally

diagnosed non-obstructive uterine anomalies to improve reproductive outcomes remains

debatable. 15

CLASS U1 (ESHRE/ESGE CLASSIFICATION): DYSMORPHIC UTERUS There are no standardized criteria for reconstructive surgery of a T-shaped uterus (Class

U1a), since many of these patients are asymptomatic and are able to carry a pregnancy to term 48,

however some authors 37,49 are proposing hysteroscopic metroplasty as potential treatment,

especially regarding repeated miscarriage, preterm deliveries, long-term infertility, implantation

failures, or an upcoming IVF treatment (although prospective randomized controlled trials are

lacking to give a firm recommendation). 47 This procedure can be performed in ambulatory setting,

with the patient in conscient sedation.

For patients with a dysmorphic uterus U1b (infantilis uterus), there is currently no

indication for reconstructive surgery, according to Grimbizis et. al. 50

The aim of the metroplasty is the restorage of the normal triangular anatomy of the uterine

cavity through incisions in the lateral walls of the dysmorphic uterus and, if necessary, in the fundus,

as seen in Figure 4. 47 Hysteroscopic scissors, monopolar or bipolar resectoscope, mini-

hysteroscopes with 5 Fr needles, or micro-scissors could be used for the enlargement of the

endometrial cavity by successive incisions along an initial incision line from each tubal ostium to

the isthmus uteri. Fundal incision should be made if there is a coexisting fundal indentation

(especially if thickness greater than 11mm). A vaginoscopic approach is suggested to reduce the

risk of unnecessary trauma or uterine perforations.

Page 31: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

19

The complication rate during and after this hysteroscopic procedure is low. They include

intraoperative (uterine perforation and haemorrhage) and postoperative complications

(intrauterine adhesions [IUA], cervical insufficiency and abnormal placentation in a future

pregnancy). In the literature there is only one case of uterine perforation and one case of

haemorrhage after T-uterus surgery reported 37, while the postoperative complications are more

common. Fernandez et al. using different surgical approaches reports an incidence of 5% of

adhesions 37. To prevent IUA, a collagen gel barrier is advised to be inserted into the endometrial

cavity. Use of estrogen as perioperative adjuvant therapy has been suggested for preventing

recurrent IUA, based on its critical role in stimulating and enhancing endometrial growth via

angiogenesis. However, according to the literature, 50 in case of normal endocrinological profile

with regular menstrual cycles no adjuvant estrogen therapy is recommended. Although antibiotic

is still used widely after hysteroscopic surgery recent randomised trials do not find evidence of

benefit and recommend not to implement it, since it does not reduce the risk of infection. 51,52 The

result of this surgery is usually assessed after two menstrual bleedings by hysteroscopy.

Regarding abnormal placentation after surgical correction, three cases of placental

retention described by Di Spiezio et al. 53 The depth of the myometrial incisions and altered

vascularization in these patients could play a role in the pathophysiology. Cervical insufficiency is

not as much established in the literature. Although Fernandez et al. 37 reported ten cases of cerclage

after surgery in 97 women, five of them had previous history of cervical incompetence.

Confounding factors are the use of cervical dilatation and the antecedent to DES-exposure that are

related to cervical insufficiency.

Fernandez et al. 37 noted ~50% of pregnancy rate after the hysteroscopic metroplasty with

a mean time until the first conception of 10.5 months. Miscarriage rate was 36.8% and 8 pregnant

women delivered before 30 weeks of gestation. Among those with secondary infertility, the first

trimester miscarriage rate decreased from 78.2% to 26.9% and the live birth rate increased to 73%

after the reconstructive surgery. Meier et al. 49 in a pool of 100 women without DES-exposure,

reported 57% of pregnancy rates, with the median time to the first pregnancy of 4 months.

Miscarriage rate was 16%, and no ectopic pregnancy was reported, while 36 deliveries were at

term. Di Spiezio et al. 53 out of 214 patients with a dysmorphic uterus, metroplasty was completed

in all cases, resulting in a significant increase of uterine cavity volume (100%) and optimization of

uterine morphology in 211 of 214 women (98.6%). After 60 months, the overall clinical pregnancy

rate was 72.9% and the live birth rate was 80.1%. Specifically, 74 of 156 women (47.4%) conceived

spontaneously (with a median time to pregnancy of 5.5 months), of whom 32.4% had previously

failed 1 or more attempts at in vitro fertilization/intracytoplasmic sperm injection.

Page 32: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

20

It seems that the surgery improves or normalizes the reproductive results, although this

evidence is mainly based on retrospective studies, none of which had a control group of untreated

women for comparison. Nowadays, patients with dysmorphic uterus and history of recurrent

pregnancy loss, preterm delivery or before entering an assisted reproductive programme could

benefit from a hysteroscopic correction. For an experienced surgeon, using a small diameter

hysteroscope and the micro scissors, excellent anatomical results are obtained in a simple

ambulatory procedure with low complication rate. 50

Neto et. al 54, however states that the benefits of surgical treatment for this anomaly seem

to be largely exaggerated and the current evidence available lack quality. They also emphasize that

until randomized controlled trials (RCTs) demonstrate the benefit of this surgery, expectant

management is the most appropriate choice in daily practice for women with a T-shaped uterus.

CLASS U2 (ESHRE/ESGE CLASSIFICATION): SEPTATE UTERUS The resection of the septum is a viable procedure which can be easily performed by

hysteroscopy, currently considered the gold-standard. 15 Compared with a transabdominal

approach (Jones or Tompkins metroplasty, demonstrated in figures 5 and 6, respectively), benefits

include lower perioperative morbidity, avoidance of potential pregnancy complications related to

transmyometrial incisions, and faster return to normal activity. The transcervical approach reduces

the risk of pelvic infection and formation of intra-abdominal adhesions, which may cause future

infertility or small bowel obstruction. Patients may attempt pregnancy sooner after a transcervical

approach than a transabdominal approach, and future vaginal delivery is not contraindicated. 55

Transcervical resection of a septum is easier when the endometrium is thin since a

thickened endometrium limits visualization. Therefore, typically the aim is to schedule the

procedure in the early follicular phase, also decreasing the risk of undiagnosed pregnancy.

Alternatively, a thinner endometrium can be accomplished by pre-treatment with a continuous

estrogen/progestin contraceptive, progestin-only pill or a gonadotropin-releasing hormone (GnRH)

agonist. Use of danazol is slightly preferable to use of a GnRH agonist because of lower cost and

side effects. Furthermore, the use of a GnRH agonist may decrease the size of the uterine cavities,

limiting the ability to perform the procedure. 47

When the preoperative imaging study clearly establishes the diagnosis and the septum is

small, a hysteroscopic metroplasty is performed. However, when the imaging study does not clearly

establish the diagnosis or the septum is large (extending from the fundus to the internal cervical

os), a simultaneous laparoscopy is needed to evaluate the external uterus and observe the serosa

during the procedure to help decrease the risk of perforation.

Page 33: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

21

Various techniques and instruments can be used for incision or resection, including scissors,

electrosurgical electrodes guided through the hysteroscope, resectoscopy, or fibre lasers. The

resectoscope is widely used and its energy source can be monopolar or bipolar. When bipolar

energy is used, the distention medium of the cavity is isotonic saline solution, and therefore, the

risk of complications due to intravasation are low. Non-ionic low viscosity fluid such as Dextran or

Glycin in case monopolar energy is used. 47

The goal of the procedure is reducing the septal surface area. A partial septum may require

only incision of the septum, while a large septum requires resection, starting from the distal part of

the septum. During surgery, the tubal ostia are the surgical landmarks for decent guidance. The

septum incision is made equidistant from the anterior and posterior uterine wall and the procedure

is completed when there is a good view of a restored triangular cavity, with free movement of the

hysteroscope between the two ostia and exposure of the muscle fibres of the fundus. Using a

graduated intrauterine palpator to objectively check the portion of septum resected, is an

alternative that verifies completion of resection.56 It is of extreme importance to leave a safety

thickness of 10 mm of the fundal wall, in order to avoid possible future uterine ruptures. 47

The small diameter hysteroscopes do not require general anaesthesia or even a local one.

Several authors favour this “vaginoscopic” technique due to the accessible entry of the uterus,

without cervical dilatation, use of saline solution as the distension medium and, according to their

studies, low risk of uterine perforation and thermal trauma. Since the visualization of the cavity is

not as broad as in the resectoscopic technique, two incisions, as landmarks, must be done at both

sides of the septum before starting the incision. The incision can be done by cold scissors or electric

devices.

Potassium-titan-phosphate (KTP-532), Fibeoptic Nd:YAG or argon lasers are other viable

techniques although their use has markedly decreased due to their cost and the simplification of

electrosurgery using vaporizing and bipolar electrodes. 57

A cervical septum (class U2C1) or a double cervix (class U2C2) might also be present.

Incision of a coexisting cervical septum can be performed, although potential cervical weakness

after surgery must be considered. There are authors that defend the unification of the cavity should

only be performed from the isthmus up to the fundus, while the repair of the cervical deformity

should be avoided since it is too traumatic for the cervix and associated with cervical insufficiency

in a subsequent pregnancy. In order to achieve this, a Foley balloon catheter is inserted into the

uterus transcervically, slightly inflated, and pulled down against the internal ostium to prevent

leakage of the distension media. Placing a flexible hysteroscope into the second cervix or instilling

blue dye can be helpful for identifying when the hysteroscope has entered the second cavity. The

Page 34: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

22

challenge in these cases is placing the first incision so it passes from one side of the septum to the

other and does not compromise the internal cervical ostium of either cervix.

A 2D or 3D ultrasound or a hysterosalpingogram can be performed two months

postoperatively to assess results. Ideally, over 90% of the septum should have been removed. If

there is a significant residual septum remaining, which happens occasionally, further resection of

the septum is necessary.

When the procedure is deemed adequate, a recent observational study 58, suggests that

patients can begin attempting to conceive two months postoperatively. However, there not enough

evidence to advocate a specific length of time before a woman should conceive after the procedure.

Clinical results of hysteroscopic metroplasties are generally good and seem to be

independent from the tools, the type of energy and the techniques used.

In the past two systematic reviews 33,59 reported significant decrease in miscarriage rates

(from 86.4 - 88% before to 16.4 - 14% after hysteroscopic incision) and an increase in term delivery

rates (from 3 - 3.4% before to 76.2 - 80% after).

A more recent review by Nouri et al. 60 analysed the accomplishment of pregnancy in

infertile women after septum incision: they reported ~60% pregnancy rate and ~45% live birth rate.

All studies indicating a positive effect of surgery although these are heterogeneous in population

and in definition of uterine septum.

Gergolet et al. 26 prospectively compared the reproductive outcome in patients with small

(group A) and large (group B) septa who underwent metroplasty. Miscarriage rates dropped from

94.9% to 82.1% in groups A and B, respectively, before treatment to 11.1% and 14.0% after

treatment. Delivery rates were 2.6% and 15.7%, respectively, before operation and 88.9% and

84.2% after surgery. It seems, therefore, that the length of the septum does not play a role in

reproductive outcome, either before or after hysteroscopic metroplasty. Similar results were

reported by Paradisi et al. 61 in women with small (<2.5 cm) and large partial uterine septum (>2.5

cm), and by Tomazevic et al. 62 who found that the clinical pot-surgery result of women with small

septa is not different from that of women with large septa.

A systematic review and meta-analysis of controlled studies 2 reported a decreased

probability of spontaneous miscarriages (both first and second trimester) in women treated with

hysteroscopic resection of septum compared with women who were not treated (RR 0.37, 95% CI

0.25–0.55). There was no difference in conception rates (RR 1.14, 95% CI 0.79–1.65) and preterm

delivery rates (RR 0.66, 95% CI 0.29–1.49) among the hysteroscopic resection and control groups.

RCTs are needed to confirm the beneficial effects of metroplasty reported by numerous

publications. 63 The Randomised Uterine Septum Transsection Trial (TRUST)64 to assess whether

hysteroscopic septum resection improves reproductive outcomes in women with a septate uterus

Page 35: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

23

and a history of (recurrent) miscarriage, subfertility or preterm birth is a multicentre study in the

Netherlands, Iran and USA. Recruitment has started since October 2009 and is ongoing, since the

authors are experiencing difficulty in recruiting women and clinicians to participate. 64 Women are

aware of all these of non-randomized publications which confirm the improvement of pregnancy

and live birth rates after metroplasty. Also, the lack of uniformity in the distinction between a

normal uterine cavity and a small septate uterus. The new ESHRE/ESGE classification 5 is a helpful

tool to reach a greater homogeneity of studies and interpretation of uterine imaging procedures

since the terminology “arcuate” uterus has been abandoned by this classification.

CLASS U3 (ESHRE/ESGE CLASSIFICATION): BICORPOREAL UTERUS The necessity of surgical repair for this anomaly is currently arguable, varying according to

each subclass, as shown in table 2. 47

Since patients with a partial bicorporeal uterus (Class U3a) do not have an increased risk of

adverse pregnancy outcomes, they do not benefit from surgical intervention.

Traditionally, Strassman metroplasty by laparotomy was the gold standard for surgical

correction of the complete bicorporeal uterus (Classes U3bC0 and U3bC2) 65. The technique, as

shown in Figure 7, involves a single transverse incision across the uterine fundus from one cornua

to the other so that both uterine cavities can be visualized. Then, eversion of each horn is made,

and a single layer of interrupted figure-of-eight sutures is placed to form a single uterine cavity

beginning from the posterior and continuing with the anterior wall. 65

However, whether surgical correction of bicorporeal uterus with Strassman metroplasty is

necessary is highly controversial given that fertility rates are not significantly reduced and

successful pregnancies without surgical correction intervention are common. 50 Thus, it should be

avoided as a prophylactic procedure.

Laparoscopic unification of bicorporeal uterus with normal (class U3bC0) or double cervix

(class U3bC2) has been reported 13, but it is technically challenging. Laparoscopic subtotal

hysterectomy in a woman with U3bC2 uterus due to abnormal uterine bleeding has been recently

described as well. 66 The surgical steps of the procedure were similar to those of laparoscopic

subtotal hysterectomy performed in morphologically normal uteri. 66

Counseling pregnant women with bicorporeal uterus, either surgically repaired or not,

about the necessity of a cesarean section is crucial since the risk of uterine rupture is increased. 34

Cervical cerclage might be considered because cervical incompetence is an issue in these patients,

however it is not clear at which week of pregnancy it should be performed.

Page 36: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

24

Depending on the anatomical status of cervix and/or vagina, bicorporeal uterus could be

presented in some uncommon variants. Surgical treatment is necessary and laparoscopic

management feasible in these rare subclasses which present with obstructing symptoms.

Patients with bicorporeal uterus, double cervix, and longitudinal obstructing vaginal

septum (Class U3bC2V2) should be treated surgically by cutting or resecting the vaginal septum.

This is necessary to alleviate vaginal and hemi-uterine obstruction by restoring continuity. 67

In cases of bicorporeal uterus with unilateral cervical aplasia (class U3bC3), removal of the

obstructed hemi-uterus is indicated, since it might act as a rudimentary horn and has therefore

similar clinical manifestation.13 Restoration of utero-vagina continuity of the obstructed hemi-

uterus is an alternative technique either by laparoscopically assisted cervicoplasty in cases of

cervical atresia or by isthmo-vagina anastomosis. In these types of malformation, the risk of

complications such as ectopic pregnancy should be addressed to the patients before surgical

management. 67

Finally, patients with a bicorporeal septate uterus (class U3c) represent a challenging

management. A 2011 study 68 reported that hysteroscopic metroplasty (by incising the septate part

of the indentation) improved reproductive outcome in 80% of the patients and dysmenorrhea also

remarkably improved. 68

Larger number of patients and well-designed studies are essential to draw accurate

conclusions. RCTs comparing the pregnancy outcomes between cases treated and not treated by

metroplasty among patients with poor obstetric history are needed because it is not yet established

whether surgery alone could improve live birth rate.

CLASSES U4A AND U5A (ESHRE/ESGE CLASSIFICATION): RUDIMENTARY HORNS WITH CAVITY

While a hemi-uterus does not warrant surgical intervention, functioning rudimentary

uterine horns, frequently attached, have strong surgical indications. They can be excised by

laparotomy, but currently, laparoscopic removal is the usual gold-standard, along with excision of

the ipsilateral fallopian tube. This technique has been reported for over a decade already. 69

Preoperative treatment with a GnRH-analogue or danazol has been suggested aiming to

reduce the size of hematometra before surgery.

The surgeon must avoid damage of the remaining unicorporeal uterus, especially in

patients with large attachment between the unicorporeal body and the rudimentary horn. Scissors,

electrosurgery ultracision energy, and endoscopic staplers have been reported as tools to remove

the rudimentary horn, while the simultaneous use of hysteroscopy to separate the two horns is also

described. 70

Page 37: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

25

Regarding class U5a, prophylactic excision of the rudimentary horn is still controversial. It

is certain that laparoscopic excision is the preferred management if the patient is symptomatic with

cyclic pelvic pain and/or hematocavity in whom other underlying causes of pain have been

excluded.71

In cases of MRKH patients with rudimentary functional uterine horns an different surgical

approach can be offered: the uterovaginal anastomosis with restoration of menstrual function,

which has been documented in the past.72 It involves neovagina creation, metroplasty (incision of

the uterine bulbs, surgical consolidation of the uterine horns and creation of a large uterine cavity)

and utero-neovaginal anastomosis can lead not only in the function of the horn but in successful

reproductive outcome as well.

A two-step surgery, combining a laparoscopic Davidov’s vaginoplasty with abdominal

isthmo-neovagina anastomosis, has been reported recently.73 The anatomic restoration of the

genital tract in these women appears to have good outcomes and leads to functional

menstruation and restitution of the sexual life.73,74

Page 38: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

26

CONCLUSION The new ESHRE/ESGE Classification, which has been recently published, seems to be a new,

clear, and systematic categorization of CUA.

Based on the best currently available evidence, it seems that surgical treatment is indicated

in women presenting with symptoms related to specific uterine anomalies and it also improves or

normalizes the reproductive results, although this evidence is mainly based on retrospective

studies, being a relevant limitation. Many issues are still controversial among scientists, and

prospective studies should be performed for a more reliable evaluation of outcomes of the

proposed surgical techniques.

Nowadays, patients with a dysmorphic (class U1 in ESHRE/ESGE Classification), septate

(class U2 in ESHRE/ESGE Classification), or bicorporeal septate (class U3 in ESHRE/ESGE

Classification) uterus presenting with infertility, poor reproductive outcomes, or before entering an

assisted reproductive programme could benefit from a hysteroscopic correction. Excellent

anatomical results are obtained in a simple ambulatory procedure with low complication rate.

Surgical removal of the rudimentary horns with cavity (ESHRE/ESGE class U4a/U5a) appears

to be the established method of treatment of rudimentary horns for symptoms relief and avoidance

of complications. Another surgical treatment alternative in highly selected cases is restoration of

continuity. The therapeutic objectives should always be pain relief and preservation of sexual and

reproductive function, if possible.

Page 39: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

27

APPENDIX 1

FIGURE 1: EMBRYOLOGY OF THE FEMALE GENITO-URINARY TRACT (FRONTAL VIEW). THE FORMATION OF THE UTERINE

PRIMORDIUM AND THE OPENING OF THE MESONEPHRIC DUCTS INTO THE UROGENITAL SINUS ARE SHOWN. MÜLLERIAN TUBERCLE

CAN BE SEEN BETWEEN BOTH WOLFFIAN DUCTS AND THE URETERAL BUDS SPROUTING FROM THE OPENING OF THE WOLFFIAN DUCT

INTO THE UROGENITAL SINUS. MD, MÜLLERIAN DUCTS; WD, WOLFFIAN DUCTS; K, KIDNEY; MT, MÜLLERIAN TUBERCLE; US,

UROGENITAL SINUS.75

Page 40: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

28

FIGURE 2: ESHRE/ESGE CLASSIFICATION OF UTERINE ANOMALIES5

Page 41: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

29

FIGURE 3: SCHEME FOR THE CLASSIFICATION OF FEMALE GENITAL TRACT ANOMALIES ACCORDING TO THE NEW

ESHRE/ESGE CLASSIFICATION SYSTEM.5

Page 42: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

30

FIGURE 4: DIAGRAM OF THE INCISIONS IN DYSMORPHIC UTERUS SURGERY.50 (A) LATERAL INCISION IN SUBTYPE U1A; (B)

LATERAL AND FUNDAL INCISIONS IN SUBTYPE U1C

A B

Page 43: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

31

Page 44: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

32

FIGURE 5: SURGICAL TECHNIQUE OF THE JONES PROCEDURE ADAPTED FROM UPTODATE: (A) IN THE JONES

PROCEDURE, THE COMMON CAVITY IS INITIALLY REACHED THROUGH A WEDGE RESECTION OF THE SEPTUM. (B) THE SEPTUM IS

TOTALLY REMOVED AS THE TWO CAVITIES ARE UNROOFED. (C) UTERINE CLOSURE IS BEGUN IN THE LOWER PORTION OF THE CAVITY. THE ANTERIOR AND THEN THE POSTERIOR WALLS ARE CLOSED, INCLUDING THE ENDOMETRIUM AND A SMALL PORTION OF THE

MYOMETRIUM. THE SUTURE MAY BE CONTINUOUS OR INTERRUPTED. (D) BEGINNING INFERIORLY, A ROW OF INTERRUPTED

SUTURES IS THEN PLACED IN THE REMAINING THICKNESS OF THE UTERINE WALL. (E) USING THE LIGHTEST POSSIBLE SUTURE, THE

THIRD LAYER APPROXIMATES THE SUPERFICIAL MYOMETRIUM AND SEROSA. THE ROUGH EDGES SHOULD BE IMBRICATED AS MUCH

AS POSSIBLE TO PREVENT ADHESIONS ALONG THE SUTURE LINE.

E

Page 45: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

33

Page 46: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

34

FIGURE 6: SURGICAL TECHNIQUE OF THE TOMPKINS PROCEDURE ADAPTED FROM UPTODATE: (A) IN THE TOMPKINS

PROCEDURE, THE SEPTUM IS INCISED, BUT NOT REMOVED. AN INITIAL INCISION IS MADE DOWN THE MIDDLE OF THE SEPTUM UNTIL

THE COMMON CAVITY IS REACHED. (B) THE SEPTAL TISSUE IS INCISED BILATERALLY TO UNROOF THE TWO CAVITIES. (C) REPAIR

THEN PROCEEDS AS IN THE JONES TECHNIQUE, WITH THE ANTERIOR AND THE POSTERIOR ASPECTS BEING APPROXIMATED WITH

CONTINUOUS OR INTERRUPTED SUTURES. (D) THE DEEP MYOMETRIUM IS REPAIRED. (E) AFTER WHICH THE SUPERFICIAL

MYOMETRIUM AND SEROSA ARE CLOSED WITH AN IMBRICATING SUTURE.

Page 47: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

35

FIGURE 7: SURGICAL TECHNIQUE OF THE STRASSMAN METROPLASTY50 (A) BICORPOREAL UTERUS (B) INCISION FROM ONE

CORNUA TO THE OTHER (C) POSTERIOR UTERINE WALL CLOSURE (D) ANTERIOR UTERINE WALL CLOSURE (E) SEROSAL CLOSURE

Page 48: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

36

APPENDIX 2 TABLE I: ESTIMATES OF PREVALENCE OF DIFFERENT GENITAL TRACT MALFORMATIONS USING THE NEW

ESGE/ESHRE CLASSIFICATION 1,30

TABLE II: VARIANTS OF BICORPOREAL UTERUS AND THEIR SURGICAL TREATMENT50

Page 49: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

37

REFERENCES

1. Chan YY, Jayaprakasan K, Zamora J, Thornton JG, Raine-Fenning N, Coomarasamy A. The prevalence of congenital uterine anomalies in unselected and high-risk populations: A systematic review. Human Reproduction Update [Internet] 2011 [cited 2021 Jan 18];17(6):761–771. Available from: /pmc/articles/PMC3191936/?report=abstract

2. Venetis CA, Papadopoulos SP, Campo R, Gordts S, Tarlatzis BC, Grimbizis GF. Clinical implications of congenital uterine anomalies: A meta-analysis of comparative studies [Internet]. Reproductive BioMedicine Online. 2014 [cited 2021 Jan 18];29(6):665–683. Available from: http://dx.doi.org/10.1016/j.rbmo.2014.09.0061472-6483/

3. Acién P, Acién MI. The history of female genital tract malformation classifications and proposal of an updated system†. Human Reproduction Update [Internet] 2011 [cited 2021 Jan 30];17(5):693–705. Available from: http://academic.oup.com/humupd/article/17/5/693/759275/The-history-of-female-genital-tract-malformation

4. Ludwin A, Ludwin I. Comparison of the ESHRE-ESGE and ASRM classifications of Mü llerian duct anomalies in everyday practice. Human Reproduction [Internet] 2015 [cited 2021 Jan 30];30(3):569–580. Available from: https://pubmed.ncbi.nlm.nih.gov/25534461/

5. Grimbizis GF, Gordts S, Spiezio Sardo A di, et al. The ESHRE/ESGE consensus on the classification of female genital tract congenital anomalies. Human Reproduction 2013;28(8):2032–2044.

6. Ludwin A, Pityński K, Ludwin I, Banas T, Knafel A. Two- and Three-Dimensional Ultrasonography and Sonohysterography versus Hysteroscopy With Laparoscopy in the Differential Diagnosis of Septate, Bicornuate, and Arcuate Uteri. Journal of Minimally Invasive Gynecology [Internet] 2013 [cited 2021 Jan 31];20(1):90–99. Available from: https://pubmed.ncbi.nlm.nih.gov/23312248/

7. Ludwin A, Ludwin I, Banas T, Knafel A, Miedzyblocki M, Basta A. Diagnostic accuracy of sonohysterography, hysterosalpingography and diagnostic hysteroscopy in diagnosis of arcuate, septate and bicornuate uterus. Journal of Obstetrics and Gynaecology Research [Internet] 2011 [cited 2021 Jan 31];37(3):178–186. Available from: https://pubmed.ncbi.nlm.nih.gov/21314802/

8. Ludwin A, Pfeifer SM. Reproductive surgery for müllerian anomalies: a review of progress in the last decade. Fertility and Sterility 2019;112(3):408–416.

9. Lecture - Genital Development - Embryology [Internet]. [cited 2021 Jan 13];Available from: https://embryology.med.unsw.edu.au/embryology/index.php/Lecture_-_Genital_Development

10. Acien P, Acien M. Malformations of the Female Genital Tract and Embryological Bases. Current Women’s Health Reviews 2013;3(4):248–288.

11. Hassan M-AM, Lavery SA, Trew GH. Congenital uterine anomalies and their impact on fertility. Women’s Health [Internet] 2010 [cited 2021 Jan 13];6(3):443–461. Available from: www.futuremedicine.com

12. Akhtar MA, Saravelos SH, Li TC, Jayaprakasan K. Reproductive Implications and Management of Congenital Uterine Anomalies: Scientific Impact Paper No. 62 November 2019. BJOG: An International Journal of Obstetrics and Gynaecology 2020;127(5):e1–e13.

13. Nawfal AK, Blacker CM, Strickler RC, Eisenstein D. Laparoscopic Management of Pregnancy in a Patient with Uterus Didelphys, Obstructed Hemivagina, and Ipsilateral Renal Agenesis. Journal of Minimally Invasive Gynecology [Internet] 2011 [cited 2021 Mar 23];18(3):381–385. Available from: https://pubmed.ncbi.nlm.nih.gov/21545963/

14. K. Heinonen P. Renal tract malformations associated with Müllerian duct anomalies. Clinical Obstetrics, Gynecology and Reproductive Medicine 2018;4(1).

Page 50: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

38

15. Letterie GS. Management of congenital uterine abnormalities. In: Reproductive BioMedicine Online. 2011. p. 40–52.

16. Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. American Journal of Medical Genetics Part A [Internet] 2016 [cited 2021 Jan 19];170(8):2141–2172. Available from: http://doi.wiley.com/10.1002/ajmg.a.37775

17. Hammoud AO, Gibson M, Peterson CM, Kerber RA, Mineau GP, Hatasaka H. Quantification of the familial contribution to müllerian anomalies. Obstetrics and Gynecology [Internet] 2008 [cited 2021 Jan 19];111(2):378–384. Available from: https://pubmed.ncbi.nlm.nih.gov/18238976/

18. Milsom SR, Ogilvie CM, Jefferies C, Cree L. Discordant Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome in identical twins-a case report and implications for reproduction in MRKH women. Gynecological Endocrinology [Internet] 2015 [cited 2021 Jan 19];31(9):684–687. Available from: https://www.tandfonline.com/doi/abs/10.3109/09513590.2015.1032928

19. Rall K, Eisenbeis S, Barresi G, et al. Mayer-Rokitansky-Küster-Hauser syndrome discordance in monozygotic twins: Matrix metalloproteinase 14, low-density lipoprotein receptor-related protein 10, extracellular matrix, and neoangiogenesis genes identified as candidate genes in a tissue-specific mosaicism. Fertility and Sterility [Internet] 2015 [cited 2021 Jan 19];103(2):494-502.e3. Available from: http://dx.doi.org/10.1016/j.fertnstert.2014.10.053

20. Herbst AL, Hubby MM, Azizi F, Makii MM. Reproductive and gynecologic surgical experience in diethylstilbestrol-exposed daughters. American Journal of Obstetrics and Gynecology [Internet] 1981 [cited 2021 Mar 19];141(8):1019–1028. Available from: https://pubmed.ncbi.nlm.nih.gov/7315913/

21. Rosenfeld DL, Bronson RA. Reproductive problems in the DES-exposed female. Obstetrics and Gynecology 1980;55(4):453–456.

22. Grimbizis GF, Campo R. Congenital malformations of the female genital tract: the need for a new classification system. Fertility and Sterility [Internet] 2010 [cited 2021 Jan 22];94(2):401–407. Available from: https://pubmed.ncbi.nlm.nih.gov/20356581/

23. Buttram VC, Gomel V, Siegler A, DeCherney A, Gibbons W, March C. The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, Mullerian anomalies and intrauterine adhesions. Fertility and Sterility [Internet] 1988 [cited 2021 Jan 19];49(6):944–955. Available from: https://pubmed.ncbi.nlm.nih.gov/3371491/

24. Oppelt P, Renner SP, Brucker S, et al. The VCUAM (Vagina Cervix Uterus Adnex-associated Malformation) classification: A new classification for genital malformations. Fertility and Sterility [Internet] 2005 [cited 2021 Jan 31];84(5):1493–1497. Available from: http://www.fertstert.org/article/S001502820502786X/fulltext

25. Knez J, Saridogan E, Bosch T van den, Mavrelos D, Ambler G, Jurkovic D. ESHRE/ESGE female genital tract anomalies classification system-the potential impact of discarding arcuate uterus on clinical practice. Human Reproduction [Internet] 2018 [cited 2021 Jan 31];33(4):600–606. Available from: https://pubmed.ncbi.nlm.nih.gov/29514262/

26. Gergolet M, Campo R, Verdenik I, Šuster NK, Gordts S, Gianaroli L. No clinical relevance of the height of fundal indentation in subseptate or arcuate uterus: A prospective study. Reproductive BioMedicine Online [Internet] 2012 [cited 2021 Mar 15];24(5):576–582. Available from: https://pubmed.ncbi.nlm.nih.gov/22417666/

27. Grimbizis G. The pathophysiology of septate uterus. BJOG: An International Journal of Obstetrics & Gynaecology [Internet] 2019 [cited 2021 Jan 19];126(10):1200–1200. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.15832

28. Rikken J, Leeuwis‐Fedorovich N, Letteboer S, et al. The pathophysiology of the septate uterus: a systematic review. BJOG: An International Journal of Obstetrics & Gynaecology [Internet] 2019 [cited 2021 Jan 19];126(10):1192–1199. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.15798

Page 51: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

39

29. Theodoridis TD, Zepiridis L, Grimbizis GF. Bicorporeal uterus: Treatment options [Internet]. In: Female Genital Tract Congenital Malformations: Classification, Diagnosis and Management. Springer-Verlag London Ltd; 2015 [cited 2021 Apr 3]. p. 279–289.Available from: https://link.springer.com/chapter/10.1007/978-1-4471-5146-3_27

30. Saravelos SH, Cocksedge KA, Li TC. Prevalence and diagnosis of congenital uterine anomalies in women with reproductive failure: A critical appraisal [Internet]. Human Reproduction Update. 2008 [cited 2021 Jan 18];14(5):415–429. Available from: https://pubmed.ncbi.nlm.nih.gov/18539641/

31. Nahum G. Uterine anomalies. How common are they, and what is their distribution among subtypes? J Reprod Med 1998;

32. Acién P. Incidence of Mullerian defects in fertile and infertile women [Internet]. Human Reproduction. 1997 [cited 2021 Mar 19];12(7):1372–1376. Available from: https://pubmed.ncbi.nlm.nih.gov/9262259/

33. Grimbizis GF, Camus M, Tarlatzis BC, Bontis JN, Devroey P. Clinical implications of uterine malformations and hysteroscopic treatment results [Internet]. Human Reproduction Update. 2001 [cited 2021 Jan 18];7(2):161–174. Available from: https://pubmed.ncbi.nlm.nih.gov/11284660/

34. Reichman DE, Laufer MR. Congenital uterine anomalies affecting reproduction. Best Practice and Research: Clinical Obstetrics and Gynaecology. 2010;24(2):193–208.

35. Fox NS, Roman AS, Stern EM, Gerber RS, Saltzman DH, Rebarber A. Type of congenital uterine anomaly and adverse pregnancy outcomes. Journal of Maternal-Fetal and Neonatal Medicine [Internet] 2014 [cited 2021 Mar 19];27(9):949–953. Available from: https://pubmed.ncbi.nlm.nih.gov/24050215/

36. Chan YY, Jayaprakasan K, Tan A, Thornton JG, Coomarasamy A, Raine-Fenning NJ. Reproductive outcomes in women with congenital uterine anomalies: A systematic review [Internet]. Ultrasound in Obstetrics and Gynecology. 2011 [cited 2021 Mar 19];38(4):371–382. Available from: https://pubmed.ncbi.nlm.nih.gov/21830244/

37. Fernandez H, Garbin O, Castaigne V, Gervaise A, Levaillant JM. Surgical approach to and reproductive outcome after surgical correction of a T-shaped uterus. Human Reproduction [Internet] 2011 [cited 2021 Apr 3];26(7):1730–1734. Available from: https://pubmed.ncbi.nlm.nih.gov/21398337/

38. Mastrolia SA, Baumfeld Y, Hershkovitz R, Yohay D, Trojano G, Weintraub AY. Independent association between uterine malformations and cervical insufficiency: a retrospective population-based cohort study. Archives of Gynecology and Obstetrics [Internet] 2018 [cited 2021 Mar 19];297(4):919–926. Available from: https://pubmed.ncbi.nlm.nih.gov/29392437/

39. Chifan M, Tîrnovanu M, Grigore M, Zanoschi C. Cervical incompetence associated with congenital uterine malformations. Revista medico-chirurgicalǎ̌ a Societǎ̌ţii de Medici ş̧i Naturaliş̧ti din Iaş̧i 2012;116(4):1063–1068.

40. Yassaee F, Mostafaee L. The role of cervical cerclage in pregnancy outcome in women with uterine anomaly. Journal of Reproduction and Infertility [Internet] 2011 [cited 2021 Mar 19];12(4):277–279. Available from: /pmc/articles/PMC3719309/

41. Grimbizis GF, Spiezio Sardo A di, Saravelos SH, et al. The Thessaloniki ESHRE/ESGE consensus on diagnosis of female genital anomalies. Gynecological Surgery [Internet] 2016 [cited 2021 Feb 4];13(1):1–16. Available from: /pmc/articles/PMC4753246/?report=abstract

42. Jayaprakasan K, Chan YY, Sur S, Deb S, Clewes JS, Raine-Fenning NJ. Prevalence of uterine anomalies and their impact on early pregnancy in women conceiving after assisted reproduction treatment. Ultrasound in Obstetrics and Gynecology [Internet] 2011 [cited 2021 Mar 19];37(6):727–732. Available from: https://pubmed.ncbi.nlm.nih.gov/21337662/

Page 52: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

40

43. Marcal L, Nothaft MA, Coelho F, Volpato R, Iyer R. Mullerian duct anomalies: MR imaging [Internet]. Abdominal Imaging. 2011 [cited 2021 Mar 19];36(6):756–764. Available from: https://pubmed.ncbi.nlm.nih.gov/21207225/

44. Salim R, Woelfer B, Backos M, Regan L, Jurkovic D. Reproducibility of three-dimensional ultrasound diagnosis of congenital uterine anomalies. Ultrasound in Obstetrics and Gynecology [Internet] 2003 [cited 2021 Mar 19];21(6):578–582. Available from: https://pubmed.ncbi.nlm.nih.gov/12808675/

45. Maciel C, Bharwani N, Kubik-Huch RA, et al. MRI of female genital tract congenital anomalies: European Society of Urogenital Radiology (ESUR) guidelines. European Radiology [Internet] 2020 [cited 2021 Apr 2];30(8):4272–4283. Available from: https://pubmed.ncbi.nlm.nih.gov/32221681/

46. Akhtar M, Saravelos S, Li T, Jayaprakasan K. Reproductive Implications and Management of Congenital Uterine Anomalies. BJOG: An International Journal of Obstetrics & Gynaecology [Internet] 2020 [cited 2021 Feb 5];127(5):e1–e13. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.15968

47. Theodoridis TD, Pappas PD, Grimbizis GF. Surgical management of congenital uterine anomalies (including indications and surgical techniques). Best Practice and Research: Clinical Obstetrics and Gynaecology. 2019;59:66–76.

48. Epelboin S. Utérus DES. Polémiques sur l’hystéroplastie d’agrandissement. Arguments contre. Gynecologie Obstetrique et Fertilite 2007;35(9):832–841.

49. Meier: Reproductive outcomes after hysteroscopic... - Google Académico [Internet]. [cited 2021 Apr 3];Available from: https://scholar.google.com/scholar_lookup?journal=Gynecol+Surg&title=Reproductive+outcomes+after+hysteroscopic+management+of+dysmorphic+uterus:+Report+of+100+cases&author=R+Meier&author=R+Campo&author=C+De+Bruin&author=G+Mestdagh&author=N+Dhont&volume=11&publication_year=2014&pages=154&

50. Grimbizis GF, Campo R, Tarlatzis BC, Gordts S. Female genital tract congenital malformations: Classification, diagnosis and management. Springer-Verlag London Ltd; 2015.

51. Deffieux X, Gauthier T, Menager N, Legendre G, Agostini A, Pierre F. Hysteroscopy: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians. European Journal of Obstetrics and Gynecology and Reproductive Biology [Internet] 2014 [cited 2021 Mar 6];178:114–122. Available from: https://pubmed.ncbi.nlm.nih.gov/24835861/

52. Nappi L, Sardo ADS, Spinelli M, et al. A multicenter, double-blind, randomized, placebo-controlled study to assess whether antibiotic administration should be recommended during office operative hysteroscopy. Reproductive Sciences [Internet] 2013 [cited 2021 Mar 6];20(7):755–761. Available from: https://pubmed.ncbi.nlm.nih.gov/23232966/

53. Spiezio Sardo A di, Campo R, Zizolfi B, et al. Long-Term Reproductive Outcomes after Hysteroscopic Treatment of Dysmorphic Uteri in Women with Reproductive Failure: An European Multicenter Study. Journal of Minimally Invasive Gynecology [Internet] 2020 [cited 2021 Mar 6];27(3):755–762. Available from: https://pubmed.ncbi.nlm.nih.gov/31146029/

54. Neto MAC, Ludwin A, Petraglia F, Martins WP. Definition, prevalence, clinical relevance and treatment of T-shaped uterus: systematic review. Ultrasound Obstet Gynecol [Internet] 2021;57:366–377. Available from: https://www.bristol.ac.uk/

55. Perino A, Forlani F, Casto A lo, et al. Septate uterus: Nosographic overview and endoscopic treatment [Internet]. Gynecological Surgery. 2014 [cited 2021 Apr 15];11(2):129–138. Available from: https://gynecolsurg.springeropen.com/articles/10.1007/s10397-014-0837-5

56. Spiezio Sardo A di, Zizolfi B, Bettocchi S, et al. Accuracy of Hysteroscopic Metroplasty With the Combination of Presurgical 3-Dimensional Ultrasonography and a Novel Graduated

Page 53: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

41

Intrauterine Palpator: A Randomized Controlled Trial. Journal of Minimally Invasive Gynecology [Internet] 2016 [cited 2021 Apr 22];23(4):557–566. Available from: https://pubmed.ncbi.nlm.nih.gov/26829218/

57. Valle RF, Ekpo GE. Hysteroscopic Metroplasty for the Septate Uterus: Review and Meta-Analysis. Journal of Minimally Invasive Gynecology [Internet] 2013 [cited 2021 Apr 15];20(1):22–42. Available from: http://dx.doi.org/10.1016/j.jmig.2012.09.010

58. Yang JH, Chen MJ, Chen C der, Chen SU, Ho HN, Yang YS. Optimal waiting period for subsequent fertility treatment after various hysteroscopic surgeries. Fertility and Sterility [Internet] 2013 [cited 2021 Apr 22];99(7). Available from: https://tmu.pure.elsevier.com/zh/publications/optimal-waiting-period-for-subsequent-fertility-treatment-after-v

59. Homer HA, Li TC, Cooke ID. The septate uterus: A review of management and reproductive outcome [Internet]. Fertility and Sterility. 2000 [cited 2021 Apr 15];73(1):1–14. Available from: https://pubmed.ncbi.nlm.nih.gov/10632403/

60. Nouri K, Ott J, Huber JC, Fischer E-M, Stögbauer L, Tempfer CB. Open Access REVIEW BioMed Central Reproductive outcome after hysteroscopic septoplasty in patients with septate uterus-a retrospective cohort study and systematic review of the literature [Internet]. 2010. Available from: http://www.rbej.com/content/8/

61. Paradisi R, Barzanti R, Natali F, et al. Hysteroscopic metroplasty: Reproductive outcome in relation to septum size. Archives of Gynecology and Obstetrics [Internet] 2014 [cited 2021 Apr 15];289(3):671–676. Available from: https://pubmed.ncbi.nlm.nih.gov/24026089/

62. Tomaževič T, Ban-Frangež H, Virant-Klun I, Verdenik I, Požlep B, Vrtačnik-Bokal E. Septate, subseptate and arcuate uterus decrease pregnancy and live birth rates in IVF/ICSI. Reproductive BioMedicine Online [Internet] 2010 [cited 2021 Apr 15];21(5):700–705. Available from: https://pubmed.ncbi.nlm.nih.gov/20864409/

63. Rikken JFW, Kowalik CR, Emanuel MH, et al. Septum resection for women of reproductive age with a septate uterus [Internet]. Cochrane Database of Systematic Reviews. 2017 [cited 2021 Apr 22];2017(1). Available from: https://pubmed.ncbi.nlm.nih.gov/28093720/

64. Rikken JFW, Kowalik CR, Emanuel MH, et al. The randomised uterine septum transsection trial (TRUST): Design and protocol. BMC Women’s Health [Internet] 2018 [cited 2021 Apr 22];18(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30290803/

65. Strassmann EO. Fertility and unification of double uterus. Fertility and sterility [Internet] 1966 [cited 2021 Apr 22];17(2):165–176. Available from: https://pubmed.ncbi.nlm.nih.gov/5907041/

66. Erian J, Lee C, Watkinson S, Ali AA, Chaudhari L, Hill N. Laparoscopic subtotal hysterectomy in a case of uterine didelphys. Archives of Gynecology and Obstetrics [Internet] 2012 [cited 2021 Apr 22];285(1):139–141. Available from: https://pubmed.ncbi.nlm.nih.gov/21479807/

67. Fedele L, Motta F, Frontino G, Restelli E, Bianchi S. Double uterus with obstructed hemivagina and ipsilateral renal agenesis: Pelvic anatomic variants in 87 cases. Human Reproduction [Internet] 2013 [cited 2021 Apr 23];28(6):1580–1583. Available from: https://pubmed.ncbi.nlm.nih.gov/23532323/

68. Saman AM el, Shahin AY, Nasr A, et al. HHybrid septate uterus, coexistence of bicornuate and septate varieties: A genuine report. Journal of Obstetrics and Gynaecology Research [Internet] 2012 [cited 2021 Apr 23];38(11):1308–1314. Available from: https://pubmed.ncbi.nlm.nih.gov/22612567/

69. Fedele L, Bianchi S, Zanconato G, Berlanda N, Bergamini V. Laparoscopic removal of the cavitated noncommunicating rudimentary uterine horn: Surgical aspects in 10 cases. Fertility and Sterility [Internet] 2005 [cited 2021 Apr 23];83(2):432–436. Available from: https://pubmed.ncbi.nlm.nih.gov/15705386/

70. Hsiao SM, Chen WC, Lin HH, Tu JS. Robot-assisted laparoscopic removal of an unseparated non-communicating rudimentary uterine horn [Internet]. European Journal of Obstetrics

Page 54: MESTRADO INTEGRADO EM MEDICINA Congenital uterine ...

42

and Gynecology and Reproductive Biology. 2013 [cited 2021 Apr 23];168(2):237–238. Available from: https://pubmed.ncbi.nlm.nih.gov/23528824/

71. Rall K, Barresi G, Wallwiener D, Brucker SY, Staebler A. Uterine rudiments in patients with Mayer-Rokitansky-Küster-Hauser syndrome consist of typical uterine tissue types with predominantly basalis-like endometrium. Fertility and Sterility [Internet] 2013 [cited 2021 Jan 2];99(5):1392–1399. Available from: https://pubmed.ncbi.nlm.nih.gov/23321321/

72. Singh J, Devi YL. Pregnancy following surgical correction of nonfused mullerian bulbs and absent vagina. Obstetrics and Gynecology [Internet] 1983 [cited 2021 Jan 2];61(2):267–269. Available from: https://europepmc.org/article/med/6823370

73. Fontoura Oliveira A, Ferreira H. Neovagina creation in congenital vaginal agenesis: New mini-laparoscopic approach applying intraoperative indocyanine green fluorescence. Surgical Innovation [Internet] 2021 [cited 2021 May 2];28(1):24–32. Available from: https://pubmed.ncbi.nlm.nih.gov/33124521/

74. Grimbizis GF, Mikos T, Papanikolaou A, Theodoridis T, Tarlatzis BC. Successful isthmo-neovagina anastomosis after davydov’s colpopoiesis in Mayer-Rokitansky-Küster-Hauser syndrome patients with a functional rudimentary uterine horn. Journal of Minimally Invasive Gynecology [Internet] 2015 [cited 2021 Apr 8];22(1):142–150. Available from: http://www.jmig.org/article/S1553465014012886/fulltext

75. Acién P, Acién M. Congenital uterine abnormalities [Internet]. In: Encyclopedia of Reproduction. Elsevier; 2018 [cited 2021 Jan 19]. p. 113–120.Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128012383645294