Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN...

49
ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA E.I.R.L GEOAIRE INFORME FINAL EVALUACIÓN DE BENEFICIOS DE UNA NORMA , DE EMISION PARA FUNDICIONES DE COBRE Elaborado por: ASESORIAS EN INGENIERIA AMBIENTAL PEDRO A. SANHUEZA H. E.I.R.L. (GEOAIRE) Para: MINISTERIO DEL MEDIO AMBIENTE División Políticas V Regulación Ambiental Febrero2012 (informe final corregido) ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A. SANHUEZA H. E.I.R.L Av. Eliodoro Yáñez 1984 Of 405- Providencia Tel: (09) 8836590 - (56-2) 2093838 http://www.geoaire.cl - [email protected] - SANTIAGO - CHILE

Transcript of Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN...

Page 1: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

INFORME FINAL

EVALUACIOacuteN DE BENEFICIOS DE UNA NORMADE EMISION PARA FUNDICIONES DE COBRE

Elaborado porASESORIAS EN INGENIERIA AMBIENTAL

PEDRO A SANHUEZA H EIRL(GEOAIRE)

Para

MINISTERIO DEL MEDIO AMBIENTEDivisioacuten Poliacuteticas V Regulacioacuten Ambiental

Febrero 2012 (informe final corregido)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838 httpwwwgeoairecl - geoairegmailcom - SANTIAGO - CHILE

U594ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

ESTUDIO DESARROLLADOR POR

Dr Ing Pedro Sanhueza HDr Ing Luis RizziIng Moacutenica Torreblanca VIng Evelyn Salazar MIng Mariacutea Joseacute Rodriacuteguez AMsc Alberto Gil L

CONTRAPARTE TEacuteCNICA

Carmen Gloria Contreras FPriscilla Ulloa MFrancisco Donoso GJenny TapiaSiomara GoacutemezCinthia ArellanoAdolfo LoacutepezPedro Santic

Jefe de ProyectoEvaluacioacuten Social de ProyectosModelacioacuten Calidad del AireInventario de EmisionesCalidad del AireEconomiacutea ambiental

Coordinacioacuten Teacutecnica MMACoordinacioacuten Teacutecnica MMAEconomiacutea Ambiental MMASEREMI del Medio Ambiente AntofagastaSEREMI del Medio Ambiente ValparaiacutesoSEREMI del Medio Ambiente LB OHigginsCOCHILCOCOCHILCO

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

2

0595ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

TABLA DE CONTENIDOS

1

GLOSARIO

RESUMEN EJECUTIVO

INTRODUCCIOacuteN

8

9

23

11 OBJETIVO GENERAL 2312 OBJETIVOS ESPECIacuteFICOS 23

2 ANAacuteLISIS DE LA FUENTE bullbullbullbullbullbull 24

21211212213214

3

31311312323213223333133234341342

4

4141141242421422

EMISIONES DE LAS FUNDICIONES DE COBRE EN CHILE 28Emisiones de S02 28Emisiones de As 29Emisiones de MP 29Emisiones de Hg 30

CONTAMINANTES ATMOSFEacuteRICOS Y SUS EFECTOS bullbull 36

MATERIAL PARTICULADO (MP) 37Efectos del MP en Salud 37Efectos del MP sobre el Medioambiente 38DIOacuteXIDO DE AZUFRE (S02) 39Efectos del S02 en Salud 39Efectos del S02 sobre el Medioambiente 40MERCURIO (Hg) 41Efectos del Hg en Salud 41Efectos del Hg sobre el Medioambiente 41ARSEacuteNICO (As) 43Efectos del As en Salud 43Efectos del As sobre el Medioambiente 44

DESCRIPCIOacuteN DE AacuteREA DE ESTUDIO bullbullbullbull 45

DEFINICIOacuteN DEL AacuteREA DE INFLUENCIA 45Anaacutelisis de Estudios Realizados 45Aacuterea de Estudio 46CARACTERIZACIOacuteN DEL MEDIO RECEPTOR 48Indicadores de Diagnoacutestico 57Situacioacuten Ambiental Sin Norma de Emisioacuten 58

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

3

GEOAIRE

5

515115125135145155252152252352452553531532533534

6

6161161261362636465666767168681682

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

ESTIMACIOacuteN DE BEN EFICIOS bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 59

IDENTIFICACIOacuteN DE LOS BENEFICIOS 59Beneficios sobre la salud 60Beneficios sobre el medio ambiente 61Beneficios sobre los materiales 61Beneficios sobre la visibilidad 61Otros beneficios 62CUANTIFICACIOacuteN DE LOS BENEFICIOS 63Modelaeioacuten de Calidad del Aire 63Beneficios sobre la salud 65Beneficios en Agricultura 67Beneficios en Visibilidad 68Beneficios en Materiales 69VALORACIOacuteN DE LOS BENEFICIOS 70Efectos en salud 70Productividad Agriacutecola 71Mejora de la Visibilidad 72Mejora en materiales 72

EVALUACIOacuteN DE BENEFICIOS SEGUacuteN ESCENARIO REGULATORIO bullbullbullbull 73

POTENCIAL DE REDUCCIOacuteN DE EMISIONES 73Reduccioacuten de Emisiones de Dioacutexido de Azufre y Arseacutenico 73Emisiones de Material Particulado (MP) y Mercurio (Hg) 78Reduccioacuten Global de Emisiones 80REDUCCIOacuteN EN CONCENTRACION ES 81BENEFICIOS EN SALUD 84BENEFICIOS EN AGRICULTURA 88BENEFICIOS EN VISIBILIDAD 90BENEFICIOS EN MATERIALES 91EVALUACIOacuteN MONETARIA DE LOS BENEFICIOS 91Beneficios por tonelada reducida 93BENEFICIOS NO VALORADOS 94Reduccioacuten de las Concentraciones de S02 96Depositacioacuten de Material Particulado 98

6

7

8

CONCLUSIONES

REFERENCIAS

99

102

ANEXOS 107

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

4

U597ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE TABLAS

CAPIacuteTULO 2

Tabla n 1 Factores Emisivos por operacioacuten unitaria (2) 27

Tabla n 2 Factores Emisivos de Hg (3) 27

Tabla n 3 Emisiones de 502 por Fundicioacuten de Cobre Antildeo 2010 28

Tabla n 4 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010 29

Tabla n 5 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 6 Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 7 Escenarios Regulatorios en Teacuterminos de Captura Global 31

Tabla n 8 Liacutemites Maacuteximos de Emisioacuten en Chimeneas 32

Tabla n 9 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 yNdeg2 T1 34

Tabla n 10 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 T2 34

Tabla n 11 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario Ndeg2 T2 34

Tabla n 12 Emisiones de MP y Hg por Fundicioacuten de Cobre Escenario N01 yN02 T2 35

CAPIacuteTULO 3

Tabla nI 1 Estudios nacionales sobre efecto del MP en salud 38

Tabla In 2 Contaminante y su Efecto en 5alud 36

CAPIacuteTULO 5

Tabla V 1 Efectos en salud considerados en la estimacioacuten de beneficios 60

Tabla V 2 Betas de MP25 utilizados en la estimacioacuten de beneficios 66

Tabla V 3 Betas de 502 utilizados en la estimacioacuten de beneficios 66

Tabla V 4 Valoracioacuten de efectos en salud (UFcaso al antildeo 2009) 70

Tabla V 5 Precios de los cultivos (U5$ton) 71

Tabla V 6 Costos ($) de repintado y lavado de superficies (m2) bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 72

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmaiJcom -SANTIAGO-CHILE

5

0598ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

CAPIacuteTULO 6

Tabla VI 1 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 74Tabla VI 2 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 74Tabla VI 3 Emisiones y Porcentaje de Captura seguacuten Escenario 1 75Tabla VI 4 Emisiones y Porcentaje de Captura seguacuten Escenario 2 75Tabla VI 5 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 79Tabla VI 6 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 79Tabla VI 7 Emisiones Esperada (Tonantildeo) Seguacuten Escenario Regulatorio 80Tabla VI 8 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario regulatorio 80Tabla VI 9 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 1 84Tabla VI 10 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 2 84Tabla VI 11 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 1 85Tabla VI 12 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 2 85Tabla VI 13 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 14 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 15 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 16 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 17 Casos evitados de Caacutencer por As seguacuten Escenario Regulatorio 86Tabla VI 18 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulatorio 87Tabla VI 19 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulato rio 87Tabla VI 20 Valoracioacuten Beneficios por Morbilidad anual evitada seguacuten Escenarios 88Tabla VI 21 Produccioacuten por Cultivo 89Tabla VI 22 Beneficios en Agricultura seguacuten Escenario regulatorio 90Tabla VI 23 Beneficios por mejora en visibilidad 90Tabla VI 24 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 25 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 27 Concentracioacuten de 502 Evitada (~gm3N) por Escenario Regulatorio 96Tabla VI 28 Porcentaje de Reduccioacuten con respecto a la Norma (60 ~gm3N) 97Tabla VI 29 Depositacioacuten de MPEvitada (tonantildeo) por Escenario Regulatorio 98

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

6

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 2: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

U594ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

ESTUDIO DESARROLLADOR POR

Dr Ing Pedro Sanhueza HDr Ing Luis RizziIng Moacutenica Torreblanca VIng Evelyn Salazar MIng Mariacutea Joseacute Rodriacuteguez AMsc Alberto Gil L

CONTRAPARTE TEacuteCNICA

Carmen Gloria Contreras FPriscilla Ulloa MFrancisco Donoso GJenny TapiaSiomara GoacutemezCinthia ArellanoAdolfo LoacutepezPedro Santic

Jefe de ProyectoEvaluacioacuten Social de ProyectosModelacioacuten Calidad del AireInventario de EmisionesCalidad del AireEconomiacutea ambiental

Coordinacioacuten Teacutecnica MMACoordinacioacuten Teacutecnica MMAEconomiacutea Ambiental MMASEREMI del Medio Ambiente AntofagastaSEREMI del Medio Ambiente ValparaiacutesoSEREMI del Medio Ambiente LB OHigginsCOCHILCOCOCHILCO

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

2

0595ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

TABLA DE CONTENIDOS

1

GLOSARIO

RESUMEN EJECUTIVO

INTRODUCCIOacuteN

8

9

23

11 OBJETIVO GENERAL 2312 OBJETIVOS ESPECIacuteFICOS 23

2 ANAacuteLISIS DE LA FUENTE bullbullbullbullbullbull 24

21211212213214

3

31311312323213223333133234341342

4

4141141242421422

EMISIONES DE LAS FUNDICIONES DE COBRE EN CHILE 28Emisiones de S02 28Emisiones de As 29Emisiones de MP 29Emisiones de Hg 30

CONTAMINANTES ATMOSFEacuteRICOS Y SUS EFECTOS bullbull 36

MATERIAL PARTICULADO (MP) 37Efectos del MP en Salud 37Efectos del MP sobre el Medioambiente 38DIOacuteXIDO DE AZUFRE (S02) 39Efectos del S02 en Salud 39Efectos del S02 sobre el Medioambiente 40MERCURIO (Hg) 41Efectos del Hg en Salud 41Efectos del Hg sobre el Medioambiente 41ARSEacuteNICO (As) 43Efectos del As en Salud 43Efectos del As sobre el Medioambiente 44

DESCRIPCIOacuteN DE AacuteREA DE ESTUDIO bullbullbullbull 45

DEFINICIOacuteN DEL AacuteREA DE INFLUENCIA 45Anaacutelisis de Estudios Realizados 45Aacuterea de Estudio 46CARACTERIZACIOacuteN DEL MEDIO RECEPTOR 48Indicadores de Diagnoacutestico 57Situacioacuten Ambiental Sin Norma de Emisioacuten 58

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

3

GEOAIRE

5

515115125135145155252152252352452553531532533534

6

6161161261362636465666767168681682

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

ESTIMACIOacuteN DE BEN EFICIOS bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 59

IDENTIFICACIOacuteN DE LOS BENEFICIOS 59Beneficios sobre la salud 60Beneficios sobre el medio ambiente 61Beneficios sobre los materiales 61Beneficios sobre la visibilidad 61Otros beneficios 62CUANTIFICACIOacuteN DE LOS BENEFICIOS 63Modelaeioacuten de Calidad del Aire 63Beneficios sobre la salud 65Beneficios en Agricultura 67Beneficios en Visibilidad 68Beneficios en Materiales 69VALORACIOacuteN DE LOS BENEFICIOS 70Efectos en salud 70Productividad Agriacutecola 71Mejora de la Visibilidad 72Mejora en materiales 72

EVALUACIOacuteN DE BENEFICIOS SEGUacuteN ESCENARIO REGULATORIO bullbullbullbull 73

POTENCIAL DE REDUCCIOacuteN DE EMISIONES 73Reduccioacuten de Emisiones de Dioacutexido de Azufre y Arseacutenico 73Emisiones de Material Particulado (MP) y Mercurio (Hg) 78Reduccioacuten Global de Emisiones 80REDUCCIOacuteN EN CONCENTRACION ES 81BENEFICIOS EN SALUD 84BENEFICIOS EN AGRICULTURA 88BENEFICIOS EN VISIBILIDAD 90BENEFICIOS EN MATERIALES 91EVALUACIOacuteN MONETARIA DE LOS BENEFICIOS 91Beneficios por tonelada reducida 93BENEFICIOS NO VALORADOS 94Reduccioacuten de las Concentraciones de S02 96Depositacioacuten de Material Particulado 98

6

7

8

CONCLUSIONES

REFERENCIAS

99

102

ANEXOS 107

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

4

U597ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE TABLAS

CAPIacuteTULO 2

Tabla n 1 Factores Emisivos por operacioacuten unitaria (2) 27

Tabla n 2 Factores Emisivos de Hg (3) 27

Tabla n 3 Emisiones de 502 por Fundicioacuten de Cobre Antildeo 2010 28

Tabla n 4 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010 29

Tabla n 5 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 6 Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 7 Escenarios Regulatorios en Teacuterminos de Captura Global 31

Tabla n 8 Liacutemites Maacuteximos de Emisioacuten en Chimeneas 32

Tabla n 9 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 yNdeg2 T1 34

Tabla n 10 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 T2 34

Tabla n 11 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario Ndeg2 T2 34

Tabla n 12 Emisiones de MP y Hg por Fundicioacuten de Cobre Escenario N01 yN02 T2 35

CAPIacuteTULO 3

Tabla nI 1 Estudios nacionales sobre efecto del MP en salud 38

Tabla In 2 Contaminante y su Efecto en 5alud 36

CAPIacuteTULO 5

Tabla V 1 Efectos en salud considerados en la estimacioacuten de beneficios 60

Tabla V 2 Betas de MP25 utilizados en la estimacioacuten de beneficios 66

Tabla V 3 Betas de 502 utilizados en la estimacioacuten de beneficios 66

Tabla V 4 Valoracioacuten de efectos en salud (UFcaso al antildeo 2009) 70

Tabla V 5 Precios de los cultivos (U5$ton) 71

Tabla V 6 Costos ($) de repintado y lavado de superficies (m2) bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 72

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmaiJcom -SANTIAGO-CHILE

5

0598ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

CAPIacuteTULO 6

Tabla VI 1 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 74Tabla VI 2 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 74Tabla VI 3 Emisiones y Porcentaje de Captura seguacuten Escenario 1 75Tabla VI 4 Emisiones y Porcentaje de Captura seguacuten Escenario 2 75Tabla VI 5 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 79Tabla VI 6 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 79Tabla VI 7 Emisiones Esperada (Tonantildeo) Seguacuten Escenario Regulatorio 80Tabla VI 8 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario regulatorio 80Tabla VI 9 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 1 84Tabla VI 10 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 2 84Tabla VI 11 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 1 85Tabla VI 12 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 2 85Tabla VI 13 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 14 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 15 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 16 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 17 Casos evitados de Caacutencer por As seguacuten Escenario Regulatorio 86Tabla VI 18 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulatorio 87Tabla VI 19 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulato rio 87Tabla VI 20 Valoracioacuten Beneficios por Morbilidad anual evitada seguacuten Escenarios 88Tabla VI 21 Produccioacuten por Cultivo 89Tabla VI 22 Beneficios en Agricultura seguacuten Escenario regulatorio 90Tabla VI 23 Beneficios por mejora en visibilidad 90Tabla VI 24 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 25 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 27 Concentracioacuten de 502 Evitada (~gm3N) por Escenario Regulatorio 96Tabla VI 28 Porcentaje de Reduccioacuten con respecto a la Norma (60 ~gm3N) 97Tabla VI 29 Depositacioacuten de MPEvitada (tonantildeo) por Escenario Regulatorio 98

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

6

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 3: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

0595ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

TABLA DE CONTENIDOS

1

GLOSARIO

RESUMEN EJECUTIVO

INTRODUCCIOacuteN

8

9

23

11 OBJETIVO GENERAL 2312 OBJETIVOS ESPECIacuteFICOS 23

2 ANAacuteLISIS DE LA FUENTE bullbullbullbullbullbull 24

21211212213214

3

31311312323213223333133234341342

4

4141141242421422

EMISIONES DE LAS FUNDICIONES DE COBRE EN CHILE 28Emisiones de S02 28Emisiones de As 29Emisiones de MP 29Emisiones de Hg 30

CONTAMINANTES ATMOSFEacuteRICOS Y SUS EFECTOS bullbull 36

MATERIAL PARTICULADO (MP) 37Efectos del MP en Salud 37Efectos del MP sobre el Medioambiente 38DIOacuteXIDO DE AZUFRE (S02) 39Efectos del S02 en Salud 39Efectos del S02 sobre el Medioambiente 40MERCURIO (Hg) 41Efectos del Hg en Salud 41Efectos del Hg sobre el Medioambiente 41ARSEacuteNICO (As) 43Efectos del As en Salud 43Efectos del As sobre el Medioambiente 44

DESCRIPCIOacuteN DE AacuteREA DE ESTUDIO bullbullbullbull 45

DEFINICIOacuteN DEL AacuteREA DE INFLUENCIA 45Anaacutelisis de Estudios Realizados 45Aacuterea de Estudio 46CARACTERIZACIOacuteN DEL MEDIO RECEPTOR 48Indicadores de Diagnoacutestico 57Situacioacuten Ambiental Sin Norma de Emisioacuten 58

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

3

GEOAIRE

5

515115125135145155252152252352452553531532533534

6

6161161261362636465666767168681682

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

ESTIMACIOacuteN DE BEN EFICIOS bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 59

IDENTIFICACIOacuteN DE LOS BENEFICIOS 59Beneficios sobre la salud 60Beneficios sobre el medio ambiente 61Beneficios sobre los materiales 61Beneficios sobre la visibilidad 61Otros beneficios 62CUANTIFICACIOacuteN DE LOS BENEFICIOS 63Modelaeioacuten de Calidad del Aire 63Beneficios sobre la salud 65Beneficios en Agricultura 67Beneficios en Visibilidad 68Beneficios en Materiales 69VALORACIOacuteN DE LOS BENEFICIOS 70Efectos en salud 70Productividad Agriacutecola 71Mejora de la Visibilidad 72Mejora en materiales 72

EVALUACIOacuteN DE BENEFICIOS SEGUacuteN ESCENARIO REGULATORIO bullbullbullbull 73

POTENCIAL DE REDUCCIOacuteN DE EMISIONES 73Reduccioacuten de Emisiones de Dioacutexido de Azufre y Arseacutenico 73Emisiones de Material Particulado (MP) y Mercurio (Hg) 78Reduccioacuten Global de Emisiones 80REDUCCIOacuteN EN CONCENTRACION ES 81BENEFICIOS EN SALUD 84BENEFICIOS EN AGRICULTURA 88BENEFICIOS EN VISIBILIDAD 90BENEFICIOS EN MATERIALES 91EVALUACIOacuteN MONETARIA DE LOS BENEFICIOS 91Beneficios por tonelada reducida 93BENEFICIOS NO VALORADOS 94Reduccioacuten de las Concentraciones de S02 96Depositacioacuten de Material Particulado 98

6

7

8

CONCLUSIONES

REFERENCIAS

99

102

ANEXOS 107

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

4

U597ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE TABLAS

CAPIacuteTULO 2

Tabla n 1 Factores Emisivos por operacioacuten unitaria (2) 27

Tabla n 2 Factores Emisivos de Hg (3) 27

Tabla n 3 Emisiones de 502 por Fundicioacuten de Cobre Antildeo 2010 28

Tabla n 4 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010 29

Tabla n 5 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 6 Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 7 Escenarios Regulatorios en Teacuterminos de Captura Global 31

Tabla n 8 Liacutemites Maacuteximos de Emisioacuten en Chimeneas 32

Tabla n 9 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 yNdeg2 T1 34

Tabla n 10 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 T2 34

Tabla n 11 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario Ndeg2 T2 34

Tabla n 12 Emisiones de MP y Hg por Fundicioacuten de Cobre Escenario N01 yN02 T2 35

CAPIacuteTULO 3

Tabla nI 1 Estudios nacionales sobre efecto del MP en salud 38

Tabla In 2 Contaminante y su Efecto en 5alud 36

CAPIacuteTULO 5

Tabla V 1 Efectos en salud considerados en la estimacioacuten de beneficios 60

Tabla V 2 Betas de MP25 utilizados en la estimacioacuten de beneficios 66

Tabla V 3 Betas de 502 utilizados en la estimacioacuten de beneficios 66

Tabla V 4 Valoracioacuten de efectos en salud (UFcaso al antildeo 2009) 70

Tabla V 5 Precios de los cultivos (U5$ton) 71

Tabla V 6 Costos ($) de repintado y lavado de superficies (m2) bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 72

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmaiJcom -SANTIAGO-CHILE

5

0598ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

CAPIacuteTULO 6

Tabla VI 1 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 74Tabla VI 2 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 74Tabla VI 3 Emisiones y Porcentaje de Captura seguacuten Escenario 1 75Tabla VI 4 Emisiones y Porcentaje de Captura seguacuten Escenario 2 75Tabla VI 5 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 79Tabla VI 6 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 79Tabla VI 7 Emisiones Esperada (Tonantildeo) Seguacuten Escenario Regulatorio 80Tabla VI 8 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario regulatorio 80Tabla VI 9 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 1 84Tabla VI 10 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 2 84Tabla VI 11 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 1 85Tabla VI 12 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 2 85Tabla VI 13 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 14 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 15 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 16 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 17 Casos evitados de Caacutencer por As seguacuten Escenario Regulatorio 86Tabla VI 18 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulatorio 87Tabla VI 19 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulato rio 87Tabla VI 20 Valoracioacuten Beneficios por Morbilidad anual evitada seguacuten Escenarios 88Tabla VI 21 Produccioacuten por Cultivo 89Tabla VI 22 Beneficios en Agricultura seguacuten Escenario regulatorio 90Tabla VI 23 Beneficios por mejora en visibilidad 90Tabla VI 24 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 25 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 27 Concentracioacuten de 502 Evitada (~gm3N) por Escenario Regulatorio 96Tabla VI 28 Porcentaje de Reduccioacuten con respecto a la Norma (60 ~gm3N) 97Tabla VI 29 Depositacioacuten de MPEvitada (tonantildeo) por Escenario Regulatorio 98

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

6

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 4: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

GEOAIRE

5

515115125135145155252152252352452553531532533534

6

6161161261362636465666767168681682

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

ESTIMACIOacuteN DE BEN EFICIOS bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 59

IDENTIFICACIOacuteN DE LOS BENEFICIOS 59Beneficios sobre la salud 60Beneficios sobre el medio ambiente 61Beneficios sobre los materiales 61Beneficios sobre la visibilidad 61Otros beneficios 62CUANTIFICACIOacuteN DE LOS BENEFICIOS 63Modelaeioacuten de Calidad del Aire 63Beneficios sobre la salud 65Beneficios en Agricultura 67Beneficios en Visibilidad 68Beneficios en Materiales 69VALORACIOacuteN DE LOS BENEFICIOS 70Efectos en salud 70Productividad Agriacutecola 71Mejora de la Visibilidad 72Mejora en materiales 72

EVALUACIOacuteN DE BENEFICIOS SEGUacuteN ESCENARIO REGULATORIO bullbullbullbull 73

POTENCIAL DE REDUCCIOacuteN DE EMISIONES 73Reduccioacuten de Emisiones de Dioacutexido de Azufre y Arseacutenico 73Emisiones de Material Particulado (MP) y Mercurio (Hg) 78Reduccioacuten Global de Emisiones 80REDUCCIOacuteN EN CONCENTRACION ES 81BENEFICIOS EN SALUD 84BENEFICIOS EN AGRICULTURA 88BENEFICIOS EN VISIBILIDAD 90BENEFICIOS EN MATERIALES 91EVALUACIOacuteN MONETARIA DE LOS BENEFICIOS 91Beneficios por tonelada reducida 93BENEFICIOS NO VALORADOS 94Reduccioacuten de las Concentraciones de S02 96Depositacioacuten de Material Particulado 98

6

7

8

CONCLUSIONES

REFERENCIAS

99

102

ANEXOS 107

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

4

U597ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE TABLAS

CAPIacuteTULO 2

Tabla n 1 Factores Emisivos por operacioacuten unitaria (2) 27

Tabla n 2 Factores Emisivos de Hg (3) 27

Tabla n 3 Emisiones de 502 por Fundicioacuten de Cobre Antildeo 2010 28

Tabla n 4 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010 29

Tabla n 5 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 6 Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 7 Escenarios Regulatorios en Teacuterminos de Captura Global 31

Tabla n 8 Liacutemites Maacuteximos de Emisioacuten en Chimeneas 32

Tabla n 9 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 yNdeg2 T1 34

Tabla n 10 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 T2 34

Tabla n 11 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario Ndeg2 T2 34

Tabla n 12 Emisiones de MP y Hg por Fundicioacuten de Cobre Escenario N01 yN02 T2 35

CAPIacuteTULO 3

Tabla nI 1 Estudios nacionales sobre efecto del MP en salud 38

Tabla In 2 Contaminante y su Efecto en 5alud 36

CAPIacuteTULO 5

Tabla V 1 Efectos en salud considerados en la estimacioacuten de beneficios 60

Tabla V 2 Betas de MP25 utilizados en la estimacioacuten de beneficios 66

Tabla V 3 Betas de 502 utilizados en la estimacioacuten de beneficios 66

Tabla V 4 Valoracioacuten de efectos en salud (UFcaso al antildeo 2009) 70

Tabla V 5 Precios de los cultivos (U5$ton) 71

Tabla V 6 Costos ($) de repintado y lavado de superficies (m2) bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 72

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmaiJcom -SANTIAGO-CHILE

5

0598ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

CAPIacuteTULO 6

Tabla VI 1 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 74Tabla VI 2 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 74Tabla VI 3 Emisiones y Porcentaje de Captura seguacuten Escenario 1 75Tabla VI 4 Emisiones y Porcentaje de Captura seguacuten Escenario 2 75Tabla VI 5 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 79Tabla VI 6 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 79Tabla VI 7 Emisiones Esperada (Tonantildeo) Seguacuten Escenario Regulatorio 80Tabla VI 8 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario regulatorio 80Tabla VI 9 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 1 84Tabla VI 10 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 2 84Tabla VI 11 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 1 85Tabla VI 12 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 2 85Tabla VI 13 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 14 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 15 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 16 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 17 Casos evitados de Caacutencer por As seguacuten Escenario Regulatorio 86Tabla VI 18 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulatorio 87Tabla VI 19 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulato rio 87Tabla VI 20 Valoracioacuten Beneficios por Morbilidad anual evitada seguacuten Escenarios 88Tabla VI 21 Produccioacuten por Cultivo 89Tabla VI 22 Beneficios en Agricultura seguacuten Escenario regulatorio 90Tabla VI 23 Beneficios por mejora en visibilidad 90Tabla VI 24 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 25 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 27 Concentracioacuten de 502 Evitada (~gm3N) por Escenario Regulatorio 96Tabla VI 28 Porcentaje de Reduccioacuten con respecto a la Norma (60 ~gm3N) 97Tabla VI 29 Depositacioacuten de MPEvitada (tonantildeo) por Escenario Regulatorio 98

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

6

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 5: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

U597ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE TABLAS

CAPIacuteTULO 2

Tabla n 1 Factores Emisivos por operacioacuten unitaria (2) 27

Tabla n 2 Factores Emisivos de Hg (3) 27

Tabla n 3 Emisiones de 502 por Fundicioacuten de Cobre Antildeo 2010 28

Tabla n 4 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010 29

Tabla n 5 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 6 Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010 30

Tabla n 7 Escenarios Regulatorios en Teacuterminos de Captura Global 31

Tabla n 8 Liacutemites Maacuteximos de Emisioacuten en Chimeneas 32

Tabla n 9 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 yNdeg2 T1 34

Tabla n 10 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario N01 T2 34

Tabla n 11 Emisiones de 502 y As por Fundicioacuten de Cobre Escenario Ndeg2 T2 34

Tabla n 12 Emisiones de MP y Hg por Fundicioacuten de Cobre Escenario N01 yN02 T2 35

CAPIacuteTULO 3

Tabla nI 1 Estudios nacionales sobre efecto del MP en salud 38

Tabla In 2 Contaminante y su Efecto en 5alud 36

CAPIacuteTULO 5

Tabla V 1 Efectos en salud considerados en la estimacioacuten de beneficios 60

Tabla V 2 Betas de MP25 utilizados en la estimacioacuten de beneficios 66

Tabla V 3 Betas de 502 utilizados en la estimacioacuten de beneficios 66

Tabla V 4 Valoracioacuten de efectos en salud (UFcaso al antildeo 2009) 70

Tabla V 5 Precios de los cultivos (U5$ton) 71

Tabla V 6 Costos ($) de repintado y lavado de superficies (m2) bullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbullbull 72

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmaiJcom -SANTIAGO-CHILE

5

0598ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

CAPIacuteTULO 6

Tabla VI 1 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 74Tabla VI 2 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 74Tabla VI 3 Emisiones y Porcentaje de Captura seguacuten Escenario 1 75Tabla VI 4 Emisiones y Porcentaje de Captura seguacuten Escenario 2 75Tabla VI 5 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 79Tabla VI 6 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 79Tabla VI 7 Emisiones Esperada (Tonantildeo) Seguacuten Escenario Regulatorio 80Tabla VI 8 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario regulatorio 80Tabla VI 9 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 1 84Tabla VI 10 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 2 84Tabla VI 11 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 1 85Tabla VI 12 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 2 85Tabla VI 13 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 14 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 15 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 16 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 17 Casos evitados de Caacutencer por As seguacuten Escenario Regulatorio 86Tabla VI 18 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulatorio 87Tabla VI 19 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulato rio 87Tabla VI 20 Valoracioacuten Beneficios por Morbilidad anual evitada seguacuten Escenarios 88Tabla VI 21 Produccioacuten por Cultivo 89Tabla VI 22 Beneficios en Agricultura seguacuten Escenario regulatorio 90Tabla VI 23 Beneficios por mejora en visibilidad 90Tabla VI 24 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 25 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 27 Concentracioacuten de 502 Evitada (~gm3N) por Escenario Regulatorio 96Tabla VI 28 Porcentaje de Reduccioacuten con respecto a la Norma (60 ~gm3N) 97Tabla VI 29 Depositacioacuten de MPEvitada (tonantildeo) por Escenario Regulatorio 98

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

6

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 6: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

0598ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

CAPIacuteTULO 6

Tabla VI 1 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 74Tabla VI 2 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 74Tabla VI 3 Emisiones y Porcentaje de Captura seguacuten Escenario 1 75Tabla VI 4 Emisiones y Porcentaje de Captura seguacuten Escenario 2 75Tabla VI 5 Reduccioacuten de Emisiones (Tonantildeo) Seguacuten Escenario Regulatorio 79Tabla VI 6 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario Regulatorio 79Tabla VI 7 Emisiones Esperada (Tonantildeo) Seguacuten Escenario Regulatorio 80Tabla VI 8 Porcentaje de Reduccioacuten de Emisiones seguacuten Escenario regulatorio 80Tabla VI 9 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 1 84Tabla VI 10 Nuacutemero de casos evitados de Mortalidad al antildeo para Escenario 2 84Tabla VI 11 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 1 85Tabla VI 12 Nuacutemero de casos evitados de Morbilidad al antildeo para Escenario 2 85Tabla VI 13 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 14 Nuacutemero de casos evitados de Ausentismo laboral al antildeo para 85Tabla VI 15 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 16 Nuacutemero de casos evitados de Actividad Restrictiva al antildeo para 86Tabla VI 17 Casos evitados de Caacutencer por As seguacuten Escenario Regulatorio 86Tabla VI 18 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulatorio 87Tabla VI 19 Valoracioacuten de beneficios por mortalidad y morbilidad evitada seguacutenEscenario regulato rio 87Tabla VI 20 Valoracioacuten Beneficios por Morbilidad anual evitada seguacuten Escenarios 88Tabla VI 21 Produccioacuten por Cultivo 89Tabla VI 22 Beneficios en Agricultura seguacuten Escenario regulatorio 90Tabla VI 23 Beneficios por mejora en visibilidad 90Tabla VI 24 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 25 VAN (MiIlUS$) de los Beneficios seguacuten Escenario Regulatorio 92Tabla VI 27 Concentracioacuten de 502 Evitada (~gm3N) por Escenario Regulatorio 96Tabla VI 28 Porcentaje de Reduccioacuten con respecto a la Norma (60 ~gm3N) 97Tabla VI 29 Depositacioacuten de MPEvitada (tonantildeo) por Escenario Regulatorio 98

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

6

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 7: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

iexcl5D9ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

IacuteNDICE DE FIGURASCAPITULO 2Figura 21 Diagrama de Flujo de los Procesos en Fundicioacuten de Cobre 25

CAPITULO SFigura 51 Esquema del sistema de Modelacioacuten de Beneficios 64

CAPITULO 6Figura 61 Emisiones de S02 Caso Base y Escenarios Regulatorios 76

Figura 62 Potencial de Reduccioacuten de Emisiones de S02 de cada Escenario Regulatorio respecto

a caso Base 76

Figura 63 Emisiones de As Caso Base y Escenarios Regulatorios 77

Figura 64 Potencial de Reduccioacuten de Emisiones de As seguacuten Escenario Regulatorio respecto al

caso Base 77

Figura 65 Diferencia de S02 (Caso Base - Escenarios) 81

Figura 66 Diferencia de As (Caso Base - Escenarios) 82

Figura 67 Diferencia de MP25 (Caso Base - Escenarios) 83

Figura 68 Diferencia de Dv (Caso Base - Escenarios) 91

Figura 69 Distribucioacuten de superficie por tipos de suelo 94

Figura 610 Usos de Suelos Aacuterea de Modelacioacuten 95

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av EliodoroYaacutentildeez1984Of405- ProvidenciaTel (09) 8836590- (56-2) 2093838httpwwwgeoairecl-geoairegmailcom-SANTIAGO-CHILE

7

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 8: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL0600

GEOAIRE

GLOSARIO

As Arseacutenico

Capacidad Nominal Es la capacidad para la que estaacuten disentildeados los equipos La capacidadreal en un momento determinado puede ser mayor o menor que la nominal

Captura capacidad de colectar un elemento o compuesto en un determinado volumen de flujode gas expresado en porcentaje

Concentrado de Cobre pulpa espesa obtenida de la etapa de flotacioacuten en el procesoproductivo en la que se encuentra una mezcla de sulfuro de cobre fierro y una serie de salesde otros metales Su proporcioacuten depende de la mineralogiacutea de la mina

Diaacutemetro Aerodinaacutemico Indicador del tamantildeo de las partiacuteculas y corresponde al tamantildeo deuna partiacutecula esfeacuterica de densidad unitaria que tiene la misma velocidad de sedimentacioacuten quela partiacutecula de intereacutes

Escenario de Regulacioacuten Liacutemite de emisioacuten en (mgNm3) para procesos unitarios y porcen-taje de captura global que debe cumplir la fuente emisora en un determinado tiempo

Criterios de Evaluacioacuten de Beneficios Beneficios obtenidos al aplicar distintas funcionesDosis-Respuestas para los efectos en Salud funciones de dantildeo para la agricultura entre otros

Hg Mercurio

Material particulado fino MP2S Material particulado con diaacutemetro aerodinaacutemico menor oigual que 25 microacutemetros

Potencial de reduccioacuten de emisiones corresponde a la cantidad esperada que se logra re-ducir en un proceso unitario a traveacutes de la incorporacioacuten de un sistema de control yo mejorespraacutecticas operacionales

502 Dioacutexido de Azufre

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httowwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

8

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 9: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

o 01ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

RESUMEN EJECUTIVO

El Ministerio del Medio Ambiente contratoacute a GEOAIRE para realizar el estudio denominadoEvaluacioacuten de beneficios de una norma de emisioacuten para fundiciones de cobre en Chile con elfin de contar con un anaacutelisis y evaluacioacuten de los beneficios sociales de los escenarios regulato-rios para fundiciones de cobre en Chile que serviraacuten de base para la formulacioacuten de un ante-proyecto de norma de emisioacuten para el sector tal como lo exige el Reglamento para la dictacioacutende Normas de Calidad y de Emisioacuten (DS Ndeg 9395 del MINSEGPRES)

Es necesario regular las emisiones de las fundiciones de cobre debido a que son la primerafuente emisora de dioacutexido de azufre (S02) y arseacutenico (As) a nivel nacional ademaacutes de emitirmaterial particulado y sustancias toacutexicas tales como mercurio plomo cadmio entre otrosLos contaminantes prioritarios a regular en la futura norma de emisioacuten son dioacutexido de azufre(S02) material particulado (MP) arseacutenico (As) y mercurio (Hg)

De las emisiones V sus efectos en salud V el medio ambiente

Las fundiciones de cobre son procesos pirometaluacutergicos destinados a producir cobre metaacutelico atraveacutes del uso de calor para separar el cobre de otros minerales contenidos en el concentradoLas principales operaciones unitarias corresponden a secado del concentrado fusioacuten conver-sioacuten refinacioacuten moldeo de aacutenodos tostacioacuten y tratamiento de escoria Estos procesos gene-ran emisiones de material particulado dioacutexido de azufre y sustancias toacutexicas El dioacutexido deazufre liberado a la atmoacutesfera reacciona generando compuestos secundarios denominadossulfatos el cual forma parte del particulado fino (MP25) La materia particulada (MP) emitidacontiene oacutexidos de cobre y fierro ademaacutes de trazas de sustancias toacutexicas tales como arseacutenicoantimonio cadmio plomo mercurio entre otras

La Tabla 1 presenta un resumen de los efectos en salud provocados por los contaminantes emi-tidos por las fundiciones de cobre

Tabla lContaminantes

MP25

As

Pb

Mortalidad PrematuraBronquitis Aguda y CroacutenicaAdmisioacuten Hospitalaria Respiratoria Cardiovascular y Cerebro-VascularVisita de Urgencia por AsmaCaacutencer Pulmoacuten y TraacutequeaEnfermedades respiratorias superior e inferiorDiacuteas de Actividad RestringidaAusentismo LaboralExacerbacioacuten AsmaTos Croacutenica (Nintildeos)Tos (Nintildeos Asmaacuteticos)Mortalidad Infantil

- Admisioacuten Has italaria Res CardiovascularesCaacutencer a la PielCaacutencer al PulmoacutenCaacutencer a la VejigaMortalidad CardiovascularMuerte FetalPeacuterdida de Coeficiente Intelectual en Nintildeos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

9

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 10: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

o 02ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

- Anemia- Peacuterdida de Coeficiente Intelectual en Nintildeos

Hg - Ataxia1

- Disfuncioacuten Renal- OsteoporosisCd - Disfuncioacuten Renal

Fuente Searle 2005 (12) Hunt and Ferquson 2010 (13)

Ademaacutes de los efectos en salud los contaminantes emitidos por las fundiciones generan dantildeossobre el rendimiento agriacutecola deterioran la visibilidad y generan dantildeos en los materiales Es-tos efectos fueron estimados y valorados en este estudio

Descripcioacuten del parque de Fundiciones de cobre en Chile

En Chile existen siete Fundiciones de cobre cinco de ellas son estatales de la cualesChuquicamata Potrerillos Ventanas y Caletones pertenecen a CODELCO y Hernaacuten Videla Liraa ENAMI Las dos restantes pertenecen a empresas privadas Altonorte a Xstrata y Chagres aAngloamericanPara la elaboracioacuten de la norma de emisioacuten se consideroacute el 2010 como antildeo base Para este antildeose establecioacute a partir de los resultados validados de una encuesta aplicada al sector a regularla informacioacuten sobre las instalaciones las horas de funcionamiento el combustible utilizado eltemperatura de los gases) Cabe sentildealar que las fundiciones de cobre generan emisionesfugitivas (asociadas a las transferencias de materiales) y por chimeneas Ambas fueronconsideradas en este estudio

La estimacioacuten de emisiones de 502 y As asiacute como el porcentaje de captura de azufre porfundicioacuten de cobre al antildeo base (2010) se presentan en las Tablas 2 y 3 respectivamente LasTablas 4 y 3 muestran las emisiones basales de MP y Hg respectivamente

Tabla 2 Emisiones de S02 por Fundicioacuten de Cobre Antildeo 2010O2 (Ion antildeo)

Chimeneas(a

108214 41687 66527 91039958 31250 8708 93765280(b) 13679 51601 83521344 10810 10534 89415590 1714 13876 93813944 3374 10570 957

128468(c) 41844 86624

e-

1 Trastorno caracterizado por la disminucioacuten de la capacidad de coordinar los movimientos

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

10

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 11: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Tabla 3 Emisiones de As por Fundicioacuten de Cobre Antildeo 2010

Fugitivas g)

11485

6042

17534

1156

255

5560

13054

7015

4388

21466

4844

3795

1870

2596

Tabla 4 Emisiones de MP por Fundicioacuten de Cobre Antildeo 2010i1ItQ iexcla X

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

11

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 12: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

C~uuml4ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tabla s Emisiones de Hg por Fundicioacuten de Cobre Antildeo 2010Hg(IonJantildeo)Chimeneas(lj)

0501 1501 0900 050105

De los escenarios regulatorios evaluados

Los escenarios de regulacioacuten contemplan la regulacioacuten de los siguientes contaminantesMaterial Particulado (MP) Dioacutexido de Azufre (502) Arseacutenico (As) y Mercurio (Hg) Lasfundiciones de cobre deberaacuten cumplir con 2 liacutemites de emisioacuten global y en la o las chimeneasde los procesos unitarios

La Tabla 6 presenta los escenarios regulatorios a evaluar donde se ha considerado ademaacutes ungradualismo en el cumplimiento Es asiacute como el Escenario 1 que corresponde a un 95 decaptura de 502 y 96 de As contiene una primera etapa (Ti) en que se debe alcanzar un 94de 502 y 95 de As

Escenario Ndeg1

Escenario Ndeg2 94 502 96 50295 As 97 AsFuente Ministerio del Medio Ambiente

Las fuentes emisoras deberaacuten cumplir los liacutemites en chimeneas de los procesos unitarios de laTabla 7 en el plazo T2 dando asiacute cumplimiento al concepto de gradualidad

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

12

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 13: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

G~05ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

Tabla 7 Liacutemites Maacuteximos de Emisioacuten en Chimeneas

Planta de Aacutecido No Aplica o 5(2)

o 1(3)

o 1(3)

No Aplica

o 5(2)

o 5(2)

No AplicaNo Aplica

50

50(3)

Informar

Limpieza de Escoria(No aplica Plantas deFlotacioacutenSecador de Concentrados deCobrePlanta de Tostacioacuten (paramolibdenita y fuentesnuevasLos valores de los liacutemites en chimenea corresponden a1) Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the NonFerrous Metals Industries 2001 Valor para plantas de aacutecido p146 Para limpieza de escoria p 2682) Tomado y adaptado de la Guiacutea sobre medioambiente salud y seguridad Fusioacuten y refinado de metal base del IFC delBanco Mundial 2007p18y193) Valores considerados en la regulacioacuten de otras megafuentes existentes reguladas en Chile incineradores y plantas deeneracioacuten D5 NO452007 DS NO132011 MINSEGPRES

Fuente Ministerio del Medio Ambiente

De las reducciones de emisioacuten obtenidas

Al aplicar los escenarios regulatorios se obtienen las siguientes reducciones en emisiones para502 y As (Tabla 8) MP Y Hg (Tabla 9)

o60119201448095T2 2014Chuquicamata

Tabla 8 Reduccioacuten de Emisiones de 502

96

378

8

10

81

97139

64234

85645

2014

2012

2014

I 5532___ _ __ __ iexcl -

2012 O 1 o_-__- ---1-__ __ ---- 12014 1748 07

O

88

118

O

3017

74940

1748 07 ---6-4-~-234 _- g] +-_

T2 2014

T1 2012

Ventanas

Caletones

L T12012 --L~~--_--- 2012 I 1903 I oAltonorte __~__L__~2~01~__ 12813 I o I 2014 --l

i

4141558482_1_31234_I T1 2012 41542 I 324 _ 2012 r-

Potrerillos iexcl---T2 2014---- 45498 f 3Stt--- 2014 i 49455

----------r----Tl201i--iexcl---9262--i-s-r---W12 9262

Hernt~r~idela 1- T2 2014 --[--11276 j-9T---20i4 ------L--1-]-29-0--I I I iexcl

I T1 2012 503 81 2012 503iI T2 2014

--r--Ti 2012Chagres r--- T2 2014

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecj -ggQairegmailcom -SANTIAGO-CHILE

13

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 14: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

bull 46ULUASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOA1RE

Tiem OS P Tiem OS MPTi 2012 O O 2012 O

Chuquicamata T22014 O O 2014 O

Ti 2012 O O 2012 OAltonorte T2 2014 O O 2014 O

Ti 2012 O O 2012 OPotrerillos T22014 989 O 2014 989

Hernaacuten Vide la Ti 2012 O O 2012 OLira T22014 8 O 2014 8

Ti 2012 O O 2012 OVentanas T2 2014 57 O 2014 57

Ti 2012 O O 2012 OChagres T2 2014 O O 2014 O

Ti 2012 O O 2012 OCaletones T2 2014 O O 2014 O

Modelos utilizados en la estimacioacuten de beneficios

Para estimar los beneficios de los escenarios regulatorios se utilizaron varios modelos siendolos maacutes relevantes los que estiman las concentraciones y depositaciones de contaminantes ylas funciones de dantildeo que ligan dichas concentracionesjdepositaciones con un efecto especiacuteficosobre la salud la agricultura la visibilidad los materiales entre otros La cuantificacioacuten selogra al estimar las concentraciones y depositaciones de contaminantes para la situacioacuten sinnorma (caso base) y con norma de emisioacuten (escenario regulatorio)

Para estimar las concentraciones de partiacuteculas y gases primarias y secundarias producto delas emisiones para el caso base y los escenarios de norma de emisioacuten de fundiciones de cobrese utilizoacute el sistema de modelacioacuten de transporte y dispersioacuten de contaminantes atmosfeacutericosaprobado y recomendado por la U5EPA denominado CALMETjCALPUFF el cual ha sido utilizadoen diversas evaluaciones en Chile y en extranjero y en particular en la norma de emisioacuten paratermoeleacutectricas en Chile Con el sistema CALMETjCALPUFF se estimaron las concentraciones de502 As y MP25 tambieacuten las tasas de depositacioacuten de gases y partiacuteculas y la reduccioacuten envisibilidad (deciview) La Figura 1 muestra el sistema de modelacioacuten de beneficios utilizado

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

14

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 15: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

EvaluacioacutenBeneficios

Usode suelo

BeneficiosNo Valorados

- Concentraciones- Depositaciones- Visibilidad

ValoracioacutenMonetaria

-Casos evitados-Aumento ProdudiVidad-Mejora Visibilidad- Daacutentildeo Materiales

Figura 1 Esquema del sistema de Modelacioacuten de Beneficios

Estimacioacuten de beneficios

Para la estimacioacuten de los beneficios de la norma de emisioacuten para Fundiciones de cobre en Chilese ha seguido la metodologiacutea recomendada por la Agencia de Proteccioacuten Ambiental de losEstados Unidos (USEPA) denominada Regulatory Impact Analysis (RIA) la cual es ademaacutesrecomendada por la OCDE para sus paiacuteses integrantes En conjunto con lo anterior se hanseguido tambieacuten las recomendaciones establecidas en la Guiacutea Metodoloacutegica para la elaboracioacutende un anaacutelisis general del impacto econoacutemico y social (AGIES) para instrumentos de gestioacuten decalidad del aire en Chile desarrollado por el Ministerio del Medioambiente

La Guiacutea Metodoloacutegica para la estimacioacuten de beneficios del Ministerio del Medio Ambiente soacutelopropone funciones de dantildeo para salud y agricultura (soacutelo cebada) Sin embargo existen otrasfunciones de dantildeo y recomendaciones para otros cultivos utilizadas en evaluaciones tanto enChile como en el extranjero por tanto se estimoacute los beneficios considerando dos criterios deevaluacioacuten denominados Guiacutea MMA y Consultor

El criterio del Consultor consideroacute para la estimacioacuten de beneficios en salud y visibilidad lopropuesto por la agencia ambiental de Estado Unidos (USEPA) en todos sus anaacutelisis de impactoregulatorio (RIA) Para determinar los beneficios en agricultura se consideroacute la propuesta deExternE (Grupo de Investigacioacuten de la Comunidad Europea) y para los dantildeos en materiales loutilizado por CONAMA en la evaluacioacuten del Plan de Descontaminacioacuten de la RegioacutenMetropol ita na

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

15

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 16: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Se reconoce que no todos los impactos asociados a una reduccioacuten de emisiones pueden llegar aser valorados y en algunos casos ni siquiera llegan a ser cuantificados no obstante en estoscasos se realiza una descripcioacuten cualitativa de los impactos esperados Dado lo anterior serecomienda tener cautela a la hora de interpretar los resultados de los beneficios debidoque al NO valorizar monetariamente todos los efectos se estaraacute subestimando losefectos de la aplicacioacuten de la norma

Para aquellos efectos cuantificables se utiliza el meacutetodo de la funcioacuten de dantildeo con lo cual esposible obtener valores asociados al beneficio de contar con una norma de emisioacuten parafundiciones de cobre versus el caso base sin regulacioacuten La evaluacioacuten se realiza al compararla situacioacuten base proyectada (BAU) con la situacioacuten esperada al aplicar la norma de emisioacuten

Beneficios en Salud

Las Tablas 10 a la 13 presentan los casos evitados de mortalidad y morbilidad anual seguacuten es-cenario regulatorio para la norma de fundiciones de cobre para los dos criterios utilizadosGuiacutea MMAy Consultor

Mortalidad evitada seguacuten Escenario 1Mortalidad evitada seguacuten Escenario 2

GUIA MMACifuentes Pope2000 200476 28288 322

CONSULTORPope Laden2004 2006282 913322 1047

CONSULTORMP2S S02865 1153987 1355

GUIA MMAMP2S865987

Tabla 11 Nuacutemero de casos evitados de Morbilidad al antildeo

Morbilidad evitada seguacuten Escenario 1Morbilidad evitada seguacuten Escenario 2

Tabla 12 Nuacutemero de casos evitados Diacuteas de Ausentismo laboral y actividadRestrictiva al antildeo

200381228989

727904831831

Tabla 13 Nuacutemero de casos de Caacutencer evitados al antildeo

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Ellodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

16

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 17: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

La Tabla 14 presenta la valoracioacuten de los beneficios en salud considerando los casos evitadosde mortalidad y morbilidad para los escenarios regulatorios

57-161161-541164-544

482-1714

50 -141140-473143-476

421-1496

Cifuentes 2000Po e 2004Po e 2004Laden 2006

Guiacutea MMA

Consultor

Tabla 14 Beneficios en Salud por Mortalidad y Morbilidad evitada(Millones de USOantildeo

Beneficios en agricultura

La Tabla 15 presenta la valoracioacuten de los beneficios en agricultura para cada escenarioregulatorio considerando el aumento en la productividad por disminucioacuten de lasconcentraciones de 502 asociados a la norma de emisioacuten de fundiciones de cobre El criterio dela Guiacutea MMA considera solo la cebada y el criterio del Consultor todos los cultivos(considerando la recomendacioacuten del grupo ExternE)

0002

CONSULTORMiIIUS$antildeo

16

GUiacuteA MMAMiIIUS$antildeo

0003 19

Beneficios en visibilidad

La Tabla 16 presenta la valoracioacuten por una mejora en la visibilidad para cada escenarioregulatorio de norma de emisioacuten de fundiciones de cobre

Tabla 16 Beneficios or meora en visibilidad CONSULTOR

Escenario 1

004

Escenario 2

16

Beneficios en materiales

No se obtuvo beneficios en materiales para los escenarios regulatorios de la norma de emisioacutende fundiciones de cobre debido a que los porcentajes de reflectancia no superaban el 30considerado significativo para realizar la mantencioacuten (repintado)

Evaluacioacuten de beneficios

Las Tablas 17 y 18 presentan el valor actual neto (VAN) para el escenario regulatorio 1 y 2considerando un periacuteodo de 25 antildeos respectivamente Para la valoracioacuten de la mortalidad se

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httpwwwgeoairec1 -geoairegmailcom -SANTIAGO-CHILE

17

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 18: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

06 OASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

presentan dos estimaciones que consideran distintos coeficientes concentracioacuten-respuesta(betas) para fines de considerar la incertidumbre en este estimador debido a que el efectomaacutes valorado

Salud

AgriculturaVisibilidad

Total

904 - 25241

2512 - 84332

0033

904 - 25242512 - 8433

2564 - 84854

7514-266745

2436

1

2808-87297758-26918

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Salud

Agricultura

Visibilidad

Total

1021-28521

2843-95432

0043

1021-2852

2843-9543

2904-96044

8517-302295

2756

203199-9899

8812-30524

l-Cifuentes 2000 + morbilidad por MP252-Pope2004 + morbilidad por MP253-Soacutelo considera la Cebada4-Pope 2004 + morbilidad por MP25 y S025-Laden 2006 + morbilidad por MP25 y S026-Considera todos los cultivos Tri o Maiacutez Uva de Mesa

Beneficios por tonelada reducida de S02

Se determinoacute un iacutendice que da cuenta de los beneficios por tonelada reducida de S02 debido aque la reduccioacuten de S02 (precursor de MP25) genera beneficios en mortalidad (MP25)agricultura y visibilidad Al respecto se obtuvo que

El Escenario 1 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

180 a 640 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Cifuentes 2000)

637 a 2321 millones de doacutelares por tonelada de S02 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQwwwgeoairecl -geoalregmallcom -SANTIAGO-CHILE

18

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 19: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

0611ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

GEOAIRE

735 - 2419 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2143 - 7591 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

El Escenario 2 reporta seguacuten criterio de la Guiacutea del Ministerio del Medio Ambiente y criterio delconsultor

Guiacutea MMA

176 - 626 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Cifuentes 2000)

625-2275 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

Consultor

730 - 2380 millones de doacutelares por tonelada de 502 reducida (utilizando el betarecomendado por Pope 2004)

2112 - 7459 millones de doacutelares por tonelada de 502 reducida (utilizando elbeta recomendado por Laden 2006)

Beneficios No Valorados

Al existir una norma de emisioacuten de contaminantes atmosfeacutericos para las Fundiciones de Cobrese generaraacuten otros beneficios que no se pueden valorar pero si cuantificar Tal es el caso delos dantildeos en vegetacioacuten por concentraciones de 502 y depositacioacuten de materia particulada (portal razoacuten existen en Chile dos normas de calidad del aire secundaria destinadas a proteger losrecursos silvoagropecuarios Una de ellas es el D5 NO 222009 del Minsegpres que establecelos valores maacuteximos permisibles de concentraciones de 502 aplicable a todo el territorio de laRepuacuteblica y el D5 NO 41992 del Ministerio de Agricultura el cual establece los valoresmaacuteximos de material particulado sedimentable y es aplicable soacutelo para la Cuenca del HuascoPor tal motivo los beneficios de una norma de emisioacuten de Fundiciones de Cobre sobre losrecursos naturales se estimaron a traveacutes de la reduccioacuten en las concentraciones de 502 y enla reduccioacuten en la depositacioacuten de materia particulada

Concentraciones de 502 sobre la vegetacioacuten

En el aacuterea de influencia de las emisiones de las Fundiciones de cobre existen 857 millones deHa con recursos naturales de las cuales 33 millones de Ha son Terrenos Agriacutecolas 05 millo-nes de Ha son Bosque Nativo 22 millones de Ha son Plantaciones 10 millones de Ha son Pra-deras y 15 millones de Ha corresponden a Renovales

La Tabla 19 resume las concentraciones promedio anual de 502 evitadas al considerar los dis-tintos Escenarios de la Norma de emisioacuten para Fundiciones de Cobre en Chile De ella se des-prende que existe una reduccioacuten significativa si se comparan los valores con la norma secun-daria de 502 de 60 ugm3

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838http~wwg=oair~ampl -geoairegmailcom -SANTIAGO-CHILE

19

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 20: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

0612ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRL

lEOAIRE

Escenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 33 38 290 341

Bosque 554551 60 70 301 356

Total Plantaciones 2186688 15 18 270 316

Praderas 1047363 36 43 336 396

Renovales 1483968 36 42 304 359

Depositacioacuten de MP sobre la vegetacioacuten

Las emisiones de las fundiciones provocan un dantildeo sobre la vegetacioacuten y por tanto se estimoacute ladepositacioacuten de materia particulada formada por MP 504 N03 As y Hg para toda el aacuterea demodelacioacuten a fin de evaluar el beneficio de la norma de emisioacuten de Fundiciones de Cobre enteacuterminos de la reduccioacuten de material particulado sedimentable sobre los recursos naturales

La Tabla 20 presenta la Depositacioacuten de MP evitada (tonantildeo) (promedio y maacutexima) por tipode uso de suelo para cada uno de los Escenarios de Regulacioacuten El detalle espacial indica quepara ambos escenarios los mayores beneficios se obtienen en la zona central especialmenteen el sector agriacutecola sector de gran desarrollo en la zona Central del paiacutes

PromedioEscenario 2 Escenario 1 Escenario 2

Agriacutecola 3300954 281 321 2010 2510Bosque 554551 532 606 105 119

Total Plantaciones 2186688 170 196 418 479

Praderas 1047363 979 113 559 691Renovales 1483968 137 157 291 328

- Del anaacutelisis de Incertidumbre

Hay varias fuentes de incertidumbre en cualquier anaacutelisis de beneficios de una norma deemisioacuten En particular en este estudio se reconocen como fuentes de incertidumbre la calidadde la informacioacuten de las emisiones principalmente las fugitivas

Otra fuente de incertidumbre corresponde a la estimacioacuten de los efectos en salud principal-mente en la mortalidad en el estudio se presenta resultados utilizando coeficientes concentra-cioacuten-respuesta de Cifuentes Pope y Laden2bull

2 Laden 2006 (24) Pope 2004 (36) Cifuentes 2000 (37)

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838httQJLwwwqeoairec1 -qeoairegmailcom -SANTIAGO-CHILE

20

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 21: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLGEOAIRE

Un tercer aspecto que arrastra una mayor incertidumbre corresponde a la modelacioacuten deMP25 Para minimizar esto se usoacute una herramienta de modelacioacuten probada disponible y re-comendada para evaluaciones regulatorias

Conclusiones

Dado que en la actualidad las Fundiciones de Cobre poseen distintos porcentajes de captura de502 y As los Escenarios propuestos aplican soacutelo a algunas de ellas Es asiacute como para elEscenario 1 de regulacioacuten la Fundicioacuten Potrerillos es la que maacutes reduce sus emisionesalcanzado un 697 de disminucioacuten en las emisiones de 502 un 763 en las emisiones deAs y un 254 de reduccioacuten de MP Por otro lado la Fundicioacuten Chagres es la que menosreduce sus emisiones en este Escenario debido que el porcentaje de captura actual de 502(957) Y As (992) es superior al exigido en el Escenario 1 sin embargo debe cumplir lanorma en sus chimeneas

En el Escenario 2 se mantiene la jerarquiacutea de reduccioacuten de emisiones del Escenario 1 donde laFundicioacuten Potrerillos alcanza un porcentaje de reduccioacuten de 758 502 Y 822 As mientrasque la Fundicioacuten Chagres disminuye en un 125 sus emisiones de 502 y en un 259 susemisiones de As

5e destaca el caso del Hg que para ambos escenarios los liacutemites impuestos para las chimeneasde la o las Plantas de Aacutecido (007 mgm3N) y Limpieza de Escoria (01 mgm3N) se encuentransobre los valores de emisioacuten estimados por eacuteste motivo el porcentaje de reduccioacuten es 0

En teacuterminos generales se obtuvo que para el Escenario 1 las emisiones de 502 As MP sereducen en un 503 595 Y 104 respectivamente y en el Escenario 2 las emisiones de502 As MP se reducen en un 587 668 Y 104 respectivamente

Para ambos escenarios las emisiones de MP se reducen el mismo porcentaje debido a que lanorma considera limitar las emisiones de MP soacutelo por chimenea de Plantas de Aacutecido y Limpiezade Escoria

Con las emisiones definidas del caso Base y ambos escenarios regulatorios se corrioacute el sistemade modelacioacuten CALMETCALPUFF con el cual se estimaron las concentraciones de 502 As MPMP25 Y Hg para el Caso Base y para cada Escenario regulatorio La diferencia de lasconcentraciones (caso Base - Escenario) permitioacute estimar los beneficios en 5alud AgriculturaMateriales y Visibilidad al usar ecuaciones concentracioacuten-respuesta y funciones de dantildeo

Es asiacute como con las diferencias de concentraciones de 502 y MP25 Y las ecuaciones de dosis-respuesta se estimoacute el nuacutemero de casos evitados de mortalidad y morbilidad utilizando tresbetas alternativos Con el beta de Cifuentes los casos evitados de mortalidad son 76 para elEscenario 1 y 88 para el Escenario 2 con el beta de Pope los casos evitados de mortalidad son282 para el Escenario 1 y 322 para el Escenario 2 mientras que al utilizar los betas Laden loscasos evitados son 913 para el Escenario 1 y 1047 para el Escenario 2

5e evitariacutean 868 casos de Caacutencer pulmonar al antildeo al considerar el Escenario 1 y 1065 casosal antildeo si se implementa el Escenario 2

Los beneficios anuales valorados en salud resultaron ser entre MU5D 50 y MU5D 141 para elEscenario 1 y entre MU5D 57 y MU5D 161 para el Escenario 2 al considerar el beta deCifuentes (2000) entre MU5D 140 y MU5D 473 para el Escenario 1 y entre MU5D 161 yMU5D 541 para el Escenario 2 al considerar el beta de Pope (2004) Y ser entre MU5D 421 y

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Vaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838ltJ1lwwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

21

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 22: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

ASESORIAS EN INGENIERIA AMBIENTAL PEDRO ALEX SANHUEZA HERRERA EIRLliEOAIRE

MUSO 1496 para el Escenario 1 y entre MUSO 482 Y MUSO 1714 para el Escenario 2 alconsiderar el beta de Laden (2006)

Los beneficios en agricultura corresponden a 0002 MUSO al antildeo para el Escenario 1 y 0003MUSO al antildeo para el Escenario 2 seguacuten la Guiacutea MMA que considera soacutelo la cebada mientrasque los beneficios al considerar todos los cultivos (Consultor) se encuentran entre 16 MUSO alantildeo para el Escenario 1 y 19 MUSO al antildeo para el Escenario 2 Este beneficio corresponde a unaumento en el rendimiento de la produccioacuten agriacutecola producto de una reduccioacuten en lasconcentraciones de S02 debido a la norma de emisioacuten

Los beneficios en visibilidad resultaron ser de 004 MUSO al antildeo para el Escenario 1 y 16MUSO al antildeo para el Escenario 2

Por uacuteltimo con las estimaciones de beneficios en salud agricultura y visibilidad se calculoacute elVAN para un periacuteodo de 25 antildeos asociado a cada Escenario regulatorio Oado que la valoracioacutenmaacutes significativa corresponde a la mortalidad se presentan dos estimaciones que considerandistintos coeficientes concentracioacuten-respuesta (betas) para fines de considerar laincertidumbre en este estimador Al aplicar la Guiacutea MMA se tiene que el VAN al utilizar el Betade Cifuentes (2000) se encuentra entre los 904 y 1021 millones de doacutelares para el Escenario 1y entre 2524 y 2852 millones de doacutelares para el Escenario 2 mientras que al utilizar el Betade Pope (2004) el VAN se encuentra entre los 2512 y 2843 millones de doacutelares para elEscenario 1 y entre 8433 y 9543 millones de doacutelares para el Escenario 2

Por otra parte al aplicar el Criterio de evaluacioacuten del Consultor (USEPA-RIA) se tiene que setiene el VAN al utilizar el Beta de Pope (2004) se encuentra entre los 2808 y 3199 millones dedoacutelares para el Escenario 1 y entre 8729 Y 9899 millones de doacutelares para el Escenario 2mientras que al utilizar el Beta de Laden (2006) el VAN se encuentra entre los 7758 y 8812millones de doacutelares para el Escenario 1 y entre 26918 y 30524 millones de doacutelares para elEscenario 2

Se obtendraacuten beneficios sobre los recursos naturales pues se evitariacutea que se depositen 281 a321 tonantildeo de MP sobre aacutereas agriacutecolas y entre 458 y 527 tonantildeo de MP en plantacionesbosques praderas y renovales en Chile seguacuten se aplique el Escenario 1 o 2 de la norma res-pectivamente

ASESORIAS EN INGENIERIA AMBIENTAL - PEDRO A SANHUEZA H EIRL Av Eliodoro Yaacutentildeez 1984 Of 405- ProvidenciaTel (09) 8836590 - (56-2) 2093838blli1wwwgeoairecl -geoairegmailcom -SANTIAGO-CHILE

22

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 23: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

INFORME FINAL EVALUACIOacuteN DE BENEFICIOS DE UNA NORMA DE EMISIOacuteN PARA FUNDICIONES DE COBRE

GEOAIRE

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 24: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 610616

Arsenic

General descriptionArsenic (As) and its compounds are ubiquitous in nature and exhibit both metallic and nonmetallicproperties The trivalent and pentavalent fonns are the most cornmon oxidation states From boththe biological and he toxicological points of view arsenic compounds can be classified into threemajor groups inorganic arsenic compounds organic arsenic compounds and arsine gas The mostcommon trivalent inorganic arsenic compounds are arsenic trioxide sodium arsenite and arsenictrichloride Pentavalent inorganic compounds include arsenic pentoxide arsenic acid and arsenateseg lead arsenate and calcium arsenate Common organic arsenic compounds are arsanilic acidmethylarsonic acid dimethylarsinic acid (cacodylic acid) and arsenobetaine

Arsenic trioxide is onIy slightIy soluble in water in sodium hydroxide it fonns arsenite and withconcentrated hydrochloric acid it fonnsarsenic trichloride Sodium arsenite and sodium arsenate arehighly soluble in water Interchanges of valence state may occur in aqueous solutions depending onthe pH and on the presence of other substances which can be reduced or oxidized (1)

SourcesArsenic appears in nature primarily in the fonn of sulfides in association with the sulfides of ores ofsilver lead copper nickel antimony cobalt and Iacuteron Trace amounts of arsenic are found in soilsand other environmental media

(rsenic is mainly transported in the environment by water In oxygenated water arsenic usualIyoccurs as arsenate but under reducing conditions for instance in deep welI- waters arsenitespredominate In water the methylation of inorganic arsenic to methyl- and dimethylarsenic acids isassociated with biological activity Sorne marine organisms have been shown te transfonn inorganicarsenic into more complex organic compounds such as arsenobetaine arsenocholine andarsoniumphospholipids In oxygenated soil inorganic arsenic is present in the pentavalent fonnUnder reducing conditions it is in the trivaIent fonn Leaching of arsenate is slow because of bindingto hydrous oxides of iron and aluminium There is ample evidence ofbiomethylation in the soil and ofthe release of methylarsines into the airo However airbome arsenic is mainly inorganic (2)

Arsenic concentrations in uncontaminated soil are generalIy in the range 02-40 mglkg (2)However levels of 100-2500 mglkg have been found in the vicinity of copper smelters (23) In thepast numerous arsenical pesticides were used widely and as a result arsenic concentrations of200-2500 mglkg occurred in the soil of orchards (4)

Arsenic is released to the atrnosphere from both natural and anthropogenic sources The principalnatural source is volcanic activity with minor contributions by exudates frem vegetation and wind-blown dusts Man-made emissions to aIacuter arise from the smelting of metals the combustion of fuelsespecialIy of low- grade brown coal and the use of pesticides (5)

WHO Regional Office for Europe Copenhagen Denmark 2000

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 25: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

0616 VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

Global natural emissions have been estimated to be 7900 tonnes per year while anthropogenicemissions are about three times higher ie 23 600 tonnes per year (6) Concentrations of arsenic incoal range from 1-10 mgkg to 1500 mgkg and in peat represent 16-340 mgkg of dry mass (2)These relatively high concentrations may result in substantial emission to aIacuter on combustion Whitearsenic (arsenic (lIl) oxide) is principally obtained as a by-product in the smelting of copper lead orgold ores The arsenic then becomes gaseous and is collected on electrofilters and serves as a basisfor the manufacture of virtually all arsenicals

World production of arsenic kept rising until about the mid -1940s (in 1943 it was estIacuternated at sorne70 000 tonnes annually) As arsenic pesticides specifically insecticides were gradually replaced byother preparations the production of arsenic declined World production of arsenic in 1975 wasabout 60 000 tonnes (2) After 1985 arsenic trioxide was not produced in the United States ofAmerica and imports there rose to 33 000 tones in 1989 (7) Arsenic is still used in the productionof agricultural chemicals although the amounts produced vary between countries depending on therestrictions on this use that are in force (it is banned in the United States) (8) Arsenic is an activecomponent of antifungal wood preservatives (eg Wolmans salt which contains 25 sodiumarsenite) In the United States 74 of arsenic is contained in products used for wood preservation(7) It is also used in the pharmaceutical and glass industries and in the manufacture of sheep-dipsleather preservatives and poisonous baits Arsenicals are used in the manufacture of pigments whilemetallic arsenic is used in the manufacture of alloys Gallium arsenide and indium arsenide are used inthe production of certain semiconductor devices such as field-effect transistors and microwaveintegrated circuits and in optoelectronics

Arsanilic acid and its derivatives 4-aminophenylarsonic and 3-nitro-4- hydroxyphenylarsonic acidsare in sorne countries added to cattle and poultry feed at a concentration of 25-45 mgkg for useas growth-stimulating agents (9)

As a consequence of the many different uses of arsenic and arsenicals there is a wide spectrum ofsituations in which humans may be exposed to this element

Occurrence in airMean levels in ambient aIacuter in the United States range from lt1 to 3 nglm3 in remote areas and from20 to 30 nglm3 in urban areas (7) Mean airbome concentration ofarsenic in 11 Canadian cities andone rural site amounted to l nglm3 (range 05-17 nglm3) (lO) In England the mean concentrationwas 54 nglm3 with a declining trend over the period 1957-1974 (ll)

Concentrations can reach several hundred nanograms per cubic metre in sorne cities and exceed1000 nglm3 near nonferrous metal smelters (2) and sorne power plants depending on the arseniccontent in the coal that is bumt For example in Prague airbome arsenic concentrations reported inthe past were found to average 450 nglm3 in winter and 70 nglm3 in summer (12)

Arsenic in air is present mainly in particulate forrns as inorganic arsenic lt is assumed that methylatedarsenic is a minor component in the air of suburban urban and industrial areas and that the majorinorganic portion is a variable mixture of the trivalent and pentavalent forrns (9) the latter beingpredominant

WHO Regional Office for Europe Copenhagen Denmar1lt2000 2

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 26: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 61 Arsenic

0617Air Quality Guidelines Second Edition

Analytical methods in airSeveral methods for the colleetion and quantitative determination of arsenic In air have beendeveloped

Air samples can be collected on a cellulose acetate filter porosity 08 11m pretreated with sodiumcarbonate and glycerol 12 hours before use A collection efficiency for the treated filters for arsenictrioxide dust and fumes exceeding 95 has been confirmed (13) Arsine can be colleeted in solidsorbent tubes filled with coconut shell charcoal A cellulose ester filter in front of a charcoal- filledtube may be used to remove aerosols (14)

The molybdenum blue and silver diethyldithiocarbamate methods are two reasonably goodquantitative colorirnetric methods which have a lirnit of detection in the range of 1-50 Ilgllitre in a 5-mI solution Neutron activation analysis (NAA) has a deteetion limit of 01 ng for total arsenicProton- induced X-ray emission (PIXE) analysis with a detection limit of 01 mglkg has been usedfor sirnultaneous determination of arsenic and a number of other elements (1) Atomic absorptionspectrometry (AAS) is at present commonly used to determine arsenic in air in both theoccupational and general environment Eleetrothermal (ET- AAS) (14) and arsine generation (AG-AAS) techniques (313) have also been applied AG- AAS has a detection limit of 200 ngllitre in a5-ml solution (15)

Routes of exposure

AirParticulate arsenic compounds may be inhaled deposited in the respiratory tract and absorbed intothe blood Inhalation of arsenic from ambient air is usually a minor exposure route for the genera]population Assuming a breathing rate of 20 m3day the estirnated daily intake may amount to about20-200 ng in rural areas and 400-600 ng in cities without substantial industrial emission of arsenic

Tobacco smoke may contain arsenic especially when the tobacco plants have been treated withlead arsenate inseeticide Although the use of arsenic pesticides is now prohibited in most countriesthe natural content of arsenic in tobacco may still result in sorne exposure It is estimated that thearsenic content of mainstream cigarette smoke is in the range 40-120 ng per cigarette Ifconsumption is 20 cigarettes per day the daily intake from this source would amount to 08-24 Ilg(10)

Occupational exposure to arsenic occurs prirnarily among workers in the copper smelting industry(16) at power plants buming arsenic-rich coal (9) and using or producing pesticides containingarsenic (1) Inhalation exposure to arsenic can also take place during production of gallium arsenidein the microeleetronics industry (17) demolition of oil- fired boilers (18) and metal ore mining (19)

Drinking -waterDrinking- water may contribute significantly to oral intake in regions where there are high arsenicconcentrations in well-water or in mine drainage areas More common drinking-water sourcesgenerally contain arsenic at concentrations of less than 10 IlWlitre The concentrations ingroundwater depend on the arsenic content of the bed-rock Unusually high levels have beenreported in carbonate spring waters in New Zealand Romania the Russian Federation and the

WHO Regional Office for Europe Copenhagen Denmar1lt2000 3

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 27: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

061 ~ VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

United States (04-13 mgllitre) in artesian wells in Taiwan China (up to 18 mgllitre) and ingroundwater in Cordoba Argentina (up to 34 mgllitre) In oxygenated water arsenic occurs inpentavalent form but under reducing conditions the trivalent form predominates (2)

Flocculation treatment using either aluminium or femc salts removes a high proportion at least ofpentavalent arsenic (2)

FoodWith the exception of sorne kinds of seafood most foods contain low levels of arsenic normally lessthan 025 mglkg Marine organisms may contain large amounts of organo-arsenicals (egarsenobetaine) These arsenic derivatives are not acutely toxic because of their low biologicalreactivity and their rapid excretion in urine Concentrations in seafood amount to 24-167 mglkg inmarine fish 35 mglkg in mussels (20) and more than 100 mglkg in certain crustaceans (1) Winemade from grapes sprayed with arsenic pesticides may contain appreciable levels of arsenic (up to05 mgllitre) in the trivalent inorganic form (la)

The amount of arsenic ingested daily by humans via food is greatly influenced by the amount ofseafood in the diet The intake in Japan where the diet has a large seafood component is higherthan that in Europe and the United States (Table 1) The diet in Japan was found to contain 57-17 inorganic arsenic 11-36 monomethylarsonate (MMA) 66-27 dimethylarsinate (DMA)and 479-752 arsenobetaine (23)

Other routes oC exposureCertain pharmaceutical products contain arsenic (eg Fowler solution which contains 1 potassiumarsenite) and for sorne individuals the exposure from these source can be significant (24) Soil anddust in the vicinity of copper smelters can contain arsenic in high concentrations

Relative significance oC different routes oC exposureIn the general environment the oral route constitutes the main route of absorption of arsenic (Table1) In occupational exposures arsenic is absorbed mainly through the lungs

Table 1 Estimated daily intake of arsenic by the general population

RouteAirRural areasCitiacutees

FoodUnited StatesBelgiumCanadaJapan

SoildirtTobacco smoking (20 cigarettesper day)

Daily intake(lJgday)

002-D2004-06

60457 (inorganic)126-273014-02807-216

Reference

(71012)(7)

(21)(22)(10)(23)(10)(10)(23)

WHO Regional Office for Europe Copenhagen Denmar1lt2000 4

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 28: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 61 Arsenic

uuml618Air Quality Guidelines Second Edition

Population groups at higher probability oCexposureThere are three population groups at high exposure risk the occupationally exposed peopledrinking water with abnormally high concentrations of arsenic and children living in the cIose vicinityof copper smeIters

In the case of occupational exposure workers employed in copper smeIters where concentrationsof arsenic in the air can range from 00 l to 68 mgm3 represent the group with the highest health risk(1425) Unexpectedly high exposure (0054 and 13 mgm3

) was found in workers during thedemolition of oil-fired boilers (18)

Blackfoot disease and cancers of the skin lung bladder kidney liver and colon have beendocumented among residents of Taiwan China who consume arsenic-contaminated well-water(242627)

In the cIose vicinity of copper smelters the soil can be heavily contaminated with arsenic AroundsmeIters in Butte and Anaconda United States more than 6500 acres are considered to becontaminated with arsenic levels in the soil of more than 90 mgkg (28) Near a smelter in San LuisPotosi Mexico median concentrations of arsenic in soil and dust were 502 and 857 mgkg Themedian concentration of arsenic in the urine of children living nearby was 196 lgg of creatinine(range 69-594 lgg of creatinine) Arsenic in the soil could contribute from 30 to 88 ofthe totalamount ingested (3)

Toxicokinetics

AbsorptionThe major routes of arsenic absorption in the general population are ingestion and inhalation

Human and animal data indicate that over 90 of the ingested dose of dissolved inorganic trivalentor pentavalent arsenic is absorbed from the gastrointestinal tracto Organic arsenic compounds inseafood are also readily absorbed (75-85) Absorption ofless soluble forms eg arsenic trioxideis much lower (1) The bioavailability of arsenic in soil contaminated by smelter activities followingoral administration in rabbits is about 25 (29)

Factors affecting the extent of absorption from the lungs incIude the chemical form particle size arxisolubility ParticIes of more than 10 lm in aerodynamic diameter are predominantly deposited in theupper airways (nasophaIyI1X) particIes of between 5 and 10 lm are deposited in the airwayscIeansed by mucociliary action and particIes with diameters of less than 2 lm penetrate significantlyinto the alveoli Airbome arsenic is usuaIly in the form of arsenic trioxide More than 23 of theparticIes in samples of arsenic-poIluted air in occupational settings were reported to be larger than55lm (30) Analysis of arsenic in airbome t1yash from coal-fired power plants indicated that 76of the arsenic was recovered from particles with a diameter of less than 73 lm (31)

In eight terminal lung cancer patients exposed to arsenic in cigarette smoke deposition wasestimated to be about 40 and absorption was 75-85 (32) Thus overaIl absorption (as aproportion ofthe inhaled dose) was about 30-35 In workers exposed to arsenic trioxide dusts in

WHO Regional Office for Europe Copenhagen Denmar1lt2000 5

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 29: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

061 ti VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

smelters the amount of arsenic excreted in urine was about 40-60 of the estimated inhaled dose(7)

DistributionBlood is the main vehicle for the transport of arsenic following absorption and arsenic is clearedrelatively rapidly ampom it Arsenic movement ampom the blood appears to confonu to a three-compartment model which must ref1ect in part the biomethylation of inorganic arsenicIn humans infonuation on tissue- partitioning is mainly available ampom autopsy data The musclesbones kidneys and lungs have the highest absolute amounts of arsenic but skin andexcreto)storage organs such as nails and hair have the highest concentrations Transplacentaltransfer of arsenic appears to occur in humans This finding is based on autopsy data and on reportsshowing that blood levels in the cords of neonates approximate those of their mothers (2) Data onthe effects of valency and exposure level on the tissue distribution of arsenic indicate that levels ofarsenic in the kidneys liver bile brain skeleton skin and blood are 2-25 times higher for thetrivalent than for the pentavalent fonu and are greatly increased at higher doses (9) Autopsy datatrom retired metal-smelter workers obtained several years after cessation of occupational exposureshowed that arsenic levels in the lung were eight times higher than in a control group (33) Thissuggests the existence of arsenic compounds of ve) low solubility in the smelter envIacuteronment

Metabolisrn and elirninationTrivalent inorganic arsenic is oxidized in vivo in animals and humans exposed to arsenite Theopposite reaction the reduction of arsenate to arsenite has also been demonstrated in mice andrabbits Both arsenite and arsenate after reduction to arsenite are methylated in the liver Bothmethylated species MMA and DMA are considered to be less toxic and to bind less to tissuesand are eliminated more rapidly than the unmethylated fonu There is a great variation betweenspecies in the urinary excretion of the different arsenic metabolites The marmoset monkey is theonly species which has been S1own to be unable to methylate inorganic arsenic The low urinaryexcretion of methylated arsenic metabolites in the rat is not an indication of low methylating capacitybut is due to the specific retention of DMA in the erythrocytes An interesting feature is that onlyhumans excrete significant amounts of MMA following exposure to inorganic arsenic The rabbitseems to be the species most similar to humans with regard to the methylation of arsenic (34) Inhuman volunteers who ingested a single oral dose of arsenic (500 flg) either as sodium arseniteMMA or DMA the excretion rate increased in order inorganic arsenic (In-As)ltMMAltDMA(35) Assuming that methylation is the detoxifiyng mechanism for In-As it has been suggested thatwhen uptake exceeds a certain value the methylation mechanism becomes saturated and itsefficiency declines as exposure increases However analysis of excretion of In-As MMA andDMA in the urine of different groups of people nonexposed occupationally exposed andvolunteers did not support this methylation threshold hypothesis On average 20-25 of In-Asremains unmethylated regardless of exposure level In population groups receiving backgroundexposure 21 15 and 64 of the arsenic was excreted as In-As MMA and DMArespectively (average urinary arsenic concentration 44-572 glitre) Respective values in anoccupationally exposed group (average urinary arsenic concentration 102-245 flglitre) were 1915 and 65 (36) According to Offergelt et al (13) occupational exposure to concentrations ofup to 300 flgm3 does not inhibit the methylation of arsenic

WHO Regional Office for Europe Copenhagen Denmarilt2000 6

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 30: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 61 Arsenic

0619Air Quality Guidelines Second Edition

After oral intake in humans ofradiolabelled pentavalent arsenic 66 was excreted with a half-timeof21 days 30 with a half-time of95 days and 37 with a half-time of38 days (37) In anotherhuman experiment following an arsenic dose of 3 mg in the form of sodium arsenite 48 of thedose was excreted within five days with a biological half-life of 30 hours Arsenobetaine present inseafood is apparently not metabolized in vivo and is eliminated rapidly via the kidneys (half-time 18hours)(38)

Biomarkers oC exposureAfter exposure to inorganic arsenic the only significant arsenic species excreted in urine are In-AsMMA and DMA In non-occupationally exposed subjects the sum ofthe concentration ofthe threemetabolites in urine is usually less than 10 flglg of creatinine For occupational exposures significant(logarithmic scales) correlation was found between airbome time-weighted average exposure toarsenic trioxide at arsenic concentrations of 6-502 flglm3 and the inorganic arsenic metabolites inurine collected immediately after a shift or just before the next shift At a concentration of 50 flglm3the mean concentration of arsenic derived from the sum of the three inorganic arsenic metabolites ina postshift urine sample was 55 flglg of creatinine (13)

AG-AAS is the method of choice for biological monitoring of exposure to inorganic arsenic becauseit allows the simultaneous determination of In-As MMA and DMA eliminating the possibleinfluence of organo-arsenicals such as arsenobetaine of dietary origin (38) Recent data suggesthowever that because ofpossible direct release ofDMA from organo-arsenicals during digestion itis still justified to instruct workers to refrain from eating marine organisms for at least 48 hoursbefore urine is collected for the assessment of exposure to inorganic arsenic (20)

Health effects

Effects on experimental animals and in vitro test systemsThere has reen no consistent demonstration of carcinogenicity in test animals for various chemicalforms of arsenic administered by different routes to several species (439) There are sorne data toindicate that arsenic may produce animal tumours ifretention time in the lung is increased (40) Twostudies suggest a positive interaction between arsenic trioxide and benzo(a]pyrene in relation topulmonaty tumours but the evidence is not conclusive (4041) According to the InternationalAgency for Research on Cancer there is inadequate evidence for the carcinogenicity of arseniccompounds in animals (439)

Arsenic is clastogenic and induces sister chromatid exchanges in a variety of marnmalian cells invitro (42) trivalent arsenic is approximately one order of magnitude more potent than pentavalentarsenic (43) Sodium arsenite caused a slight increase in chromosomal aberrations in the bone-marrow cells ofmice treated in vivo (4)

Several studies have suggested that inorganic arsenic affects DNA repair mechanisms and acts as aco-mutagen in bacterial test systems by inhibiting the repair of damage to DNA caused byanotheragent (44)

At relatively high exposure levels arsenic is teratogenic in a number of animal species includinghamster rat and mouse (1) Such effects have generally been observed after parenteral

WHO Regional Office for Europe Copenhagen Denmark 2000 7

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 31: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTAChapter 61 Arsenic Air Qualily Guidelines Second Edition

administration of either arsenite or arsenate Oral exposures have not produced any notable effectson reproduction or development

EfTects 00 humaos

Toxicological effectsThe clinical picture of chronic poisoning with arsenic varies widely It is usually dominated bychanges in the skin and mucous membranes and by neurological vascular and haematologicallesions Involvement ofthe gastrointestinal tract increased salivation irregular dyspepsia abdominalcramps and loss of weight may also occur Reports of diminished sexual activity in persons withchronic arsenic exposure are frequent (12)

Arsenic and its inorganic compounds have long been known to be neurotoxic Peripheral neuropathyin arsenic smelter workers has been reported Chronic exposure to arsenic dust caused a decreasein peripheral nerve conduction velocities (45)

The skin is a common critical organ in people exposed to inorganic arsenical compoundsEczematoid symptoms develop with varying degrees of severity Hyperkeratosis warts andmelanosis of the skin are the most commonly observed lesions in chronic exposure

Increased mortality from cardiovascular diseases has been observed in epidemiologicalinvestigations of smelter workers exposed to high levels of airbome arsenic A peripheral vasculardisorder leading to gangrene ofthe extremities known as blackfoot disease has been observed

Inorganic arsenic has an inhibitOl) effect on haematopoiesis giving rise to anaemia most commonlyof the hypoplastic type In severe cases of arsenical poisoning agranulocytosis or thrombopenia maydevelop

An increased rate of spontaneous abortions and lower mean birth weights has been reported amongSwedish smelter workers and among subjects living in the vicinity of the smelter The rate ofcongenital malformations in the offspring of women working at the smelter was also higherHowever it is not possible to link these effects with exposure to any specific compound in thesmelter environment (12) The United States Environmental Protection Agency (EPA) consideringhyperpigmentation keratosis and possible vascular complications (blackfoot disease) as the criticaleffects accepted the value of 03 ~glkg per day (no-observed-adverse-effect level (NOAEL)0009 mgllitre converted to 00008 mglkg per day uncertainty factor 3) as the reference dose inthe case ofhuman chronic oral exposure (46)

Carcinogenic effectsThere is sufficient evidence that inorganic arsenic compounds are skin and lung carcinogens Inhumans (439)

Several studies show that exposure to inorganic compounds can increase the risk of lung cancer insmelter workers those involved in the production of arsenic-containing pesticides and metal oreminers (162547-56) The data ofien indicate positive dose--response relationships Both trivalentand pentavalent arsenic compounds have occurred in these exposure situations and at present thepossibility eannot be ruled out that any form of inorganic arsenic may be carcinogenic Results of

WHO Regional Oflice for Europe Copenhagen Denmar1lt2000 8

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 32: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 61 Arsenic

-~) OJViexcl

Air Quality Guidelines Second Edition

studies on the interaction between inorganic arsenic and smoking are conflicting one study providedevidence of a multiplicative interaction (57) according to another the interaction between arsenicand smoking was intermediate between additive and multiplicative and appeared to be lesspronounced among heavy smokers (58)

Sorne investigations of populations living near copper smelters and other point sources of arsenicemission to the air have revealed moderate increases in lung cancer mortality (59-61) Other studieshave failed to detect an effect in such situations (6263) Significantly elevated standard mortalityratios for cancer of the bladder lung liver kidney skin and colon were found in the populationlivingin an area of Taiwan China where arsenic contamination of the water supply was endemic(242664) Lung cancer is considered as the critical effect following exposure via inhalationConsequently cancer at other sites eg skin cancer will not be discussed in detail here Anincreased frequency of chromosomal aberrations has been found in peripheral blood lymphocytes ofwine-growers exposed to arsenic in psoriasis patients treated with arsenic and in arsenic-exposedcopper smelter workers Sodium arsenate inhibits DNA repair in human skin biopsy cells and inlymphocytes (2)

Evaluation of human health risks

ExposureThere are many arsenic compounds both organic and inorganic in the environment Airbomeconcentrations of arsenic range from 1 nglm3 to 10 nglm3 in rural areas and from a few nanogramsper cubic metre to about 30 nglm3 in noncontaminated urban areas Near emission sources such asnonferrous metal smelters and power plants buming arsenic- rich coal concentrations of airbomearsenic can exceed 1 iexcltglm3

Healtb risk evaluationlnorganic arsenic can have acute subacute and chronic effects which may be either local orsystemic Lung cancer is considered to be the critical effect following inhalation An increasedincidence of lung cancer has been seen in several occupational groups exposed to inorganic arseniccompounds Sorne studies also show that populations near emission sources of inorganic arsenicsuch as smelters have a moderately elevated risk of lung cancer lnformation on the carcinogenicityof arsenic compounds in experimental animals was considered inadequate to make an evaluation (639)

A significant number of studies conceming occupational exposure to arsenic and the occurrence ofcancer have been described Unit risks derived by the EPA Carcinogen Assessment Group in 1984(9) were not changed until 1994 (46) They form five sets of data involving two independentlyexposed worker populations in Montana and Tacoma smelters in the United States ranging from125 x 10-3 to 76 X 10-3

a weighted average ofthese five estimates giving a composite estimate of429 x 10-3

WHO Regional Office for Europe Copenhagen Denmark 2000 9

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 33: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTAChapler 61 Arsenic Air Qualily Guidelines Second Ed~on

Table 2 Updated unit risk estimates

Risk updatePooled estimate usingupdated Swedish andTacoma cohorts

Smelter populationTacoma 1987Ronnskar 1989- workers hired pre-1940- workers hired post-1939

Study128 x 10-3

046 X 10-3

171 x 10-3

Estimated unit riskPooled unit

Cohort risk128 x 10-3

107 X 10-3

089 X 10-3

128 x 10-3

128 X 10-3

Updated Tacomacohort with originalEPA estimates forMontana cohort

Pooled across allsmelter cohorts

Tacoma 1987 (updatedresults supersede earlierestimates)Montana 1984 (EPA) (newestimates not available 1984EPA estimates apply)Ronnskar 1989Tacoma 1987Montana 1984 (EPA)

256 X 103

089 X 10-3

128 X 103256 X 103

143 X 10-3

Source Viren amp Silvers (65)

A WHO Working Group on Arsenic (2) conducted a quantitative risk assessment for arsenicassuming a linear relationship between the cumulative arsenic dose and the relative risk of developinglung cancer Risk estimates for lung cancer ampom inorganic arsenic exposure were based on the studyby Pinto et al (49) of workers at the Tacoma smelter The lifetime risk of lung cancer wascalculated to be 75 x 103 per microgram of airbome arsenic per cubic metre

The second study relating to the quantitative risk assessment included a large number of the 8047males employed as smelting workers at the Montana copper smelter (48) Exposure to airbomearsenic levels were estimated to average 1117 058 and 027 mglm3 in the high- medium- andlow- exposure areas Unit risks for these three groups were calculated to be 39 x 10-3 51 x 10-3

and 31 x 10-3 respectively

Assuming that the risk estirnation based on the Tacoma study was higher because of the urinemeasurements made it may have underestimated the actual inhalation exposure the unit risk wasconsidered to be 4 x 10-3

In 1994 Viren amp Silvers (65) using updated results from the cohort mortality sttrly in the Tacomasmelter workers together with findings from a cohort study of 3619 Swedish smelter workersdeveloped other unit risk estimates A unit risk of 128 x 10-3 was estimated for the Tacoma smeltercohort and 089 x 103 for the Swedish cohort Pooling these new estimates with the EPAs earlierestimates from the Montana smelter yielded a composite unit risk of 143 x 10-3 (Table 1) Thisvalue is three times lower than the EPA estimate (46) and two times lower than the value assumed inthe 1987 edition of Air quality guidelines far Eurape (64)

WHO Regional Oflice for Europe Copenhagen Denmarllt2000 10

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 34: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 61 Arsenic

0621Air Quality Guidelines Second Edition

GuidelinesArsenic is a human carcinogen Present risk estimates have been derived from studies in exposedhuman populations in the United States and Sweden When assuming a linear dose-responserelation a safe level for inhalation exposure cannot be recommended At an air concentration of 1Ilglm3 an estimate of lifetIacuteme risk is 15 x 103 This means that the excess lifetIacuteme risk level is 11O000 1100 000 or 11 000 000 at an air concentration of about 66 nglm3

66 nglm3 or 066 nglm3

respectively

References

1 ISHIN1SHIN ETAL Arsenic In Friberg L Nordberg GF amp Vouk BV ed Handbookofthe toxicology ofmetals Vol n Amsterdam-New York-Oxford Elsevier 1986

2 Arsenic Geneva World Health Organization 1981 (Environmental Health Criteria No 18)3 DIAZ-BARRIGAF ETAL Arsenic and cadmium exposure in children living near a smelter

complex in San Luis Potosi Mexico Environmental research 62 242-250 (1993)4 Some metals and metallic compounds Lyon International Agency for Research on Cancer

1980 pp 39-142 (IARC Monographs on the Evaluation ofthe Carcinogenic Risk ofChemicals to Humans Vol 23)

5 MERIANE lntroduction on environmental chemistry and global cycles of chromium nickelcobalt bel)llium arsenic cadmium and se1eniumand their derivatives Toxicological andenvironmental chemistry 8 9-38 (1984)

6 WOOLSONEA Mans perturbation ofthe arsenic cycle In Lederer WH amp FensterheimRJ ed Arsenic industrial biomedical and environmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MD New York Van Nostrand Reinhold 1983

7 AGENCYFORTOXICSUBSTANCESANDDISEASEREGISTRYToxicological profile forarsenic Atlanta GA US Department of Health and Human Services 1991

8 KORENH Handbook of environmental health and safety Vol I Chelsea LevisPublishers 1991

9 Health assessment document for inorganic arsenic Research Triangle Park NC USEnvironmental Protection Agency 1984 p 351 (Final report No EPA-6008-83-021F)

1O HUGHESK ETAL Inorganic arsenic evaluation of risks to health from environmentalexposure in Canada Environmental carcinogenesis amp ecotoxicology reviews 12 145-149 (1994)

11 SALAMONL ETAL Retrospective trend analysis ofthe content ofUK air particulatematerial 1957-74 Science ofthe total environment 9161-200 (1978)

12 VONDRAacuteCEKV Koncentrace 34-benzpyrenu a sloucenin arzeacutenu v prazskeacutem ovzdusIacute[Concentration of34-benzpyrene and arsenic compounds in the Prague atmosphere]Ceskoslovenska hygiena 8 333-339 (1963)

13 OFFERGELTJA ETAL Relation between airborne arsenic trioxide and urinal) excretion ofinorganic arsenic and its methylated metabolites Britishjournal ofindustrial medicine 49387-393 (1992)

14 Manual of analytical methods Method 6001 (Ars ine) 3rd ed Vol 2 Cincinnati OHNational lnstitute for Occupational Safety and Health 1985 (DHHS (NI0SH) Pub No 84-100)

15 FRITSCHW ETAL Determination of arsenic in urine using the jlow injection techniqueTechnical summary Wellesley MA Perkin Elmer undated (Order No TSAA-23)

WHO Regional Office for Europe Copenhagen Denmark 2000 11

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 35: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

16 JARUP L ETAL Cumulative arsenic exposure and lung cancer in smelter workers Adose-response study American journal 01 industrial medicine 15 31-41 (1989)

17 SHEEHYlW amp JONES lH Assessment ofarsenic exposures and control in gallium arsenideproduction American Industrial Hygiene Association journal 54 61-69 (1993)

18 FAIRFAX RE Exposure to different metals during the demolition of oil- fired boilers Appliedoccupational and environmental hygiene 8 151-152 (1993)

19 TAYLOR PP ET AL Relation of arsenic exposure to lung cancer among tin miners in YunnanProvince China British journal 01 industrial medicine 46 881-886 (1989)

20 BUCHET JP ET AL Assessment of exposure to inorganic arsenic folIowing ingestion ofmarine organisms by volunteers Environmental research 66 44-51 (1994)

21 GARTELLMJ ET AL Pesticides selected elements and other chemicals in adult total dietsamples October 1978-September 1979 Journal 01the Association olOfficialAnalytical Chemists 68 862-875 (1985)

22 BUCHET JP ET AL Oral daily intake of cadmium lead manganese copper chromiummercury calcium zinc and arsenic in Belgium A duplicate meal study Food and chemicaltoxicology 21 19-24 (1983)

23 YAMAUCHI H amp FOWLER BA Toxicity and metabolism ofinorganic and methylatedarsenicals In Nriagu lO ed Arsenic in the environment Part II Human health andecosystem effects New York John Wiley amp Sons 1994 pp 35-53

24 BATES MN ETAL Arsenic ingestion and internal cancers a review American journal 01epidemiology 135 462-476 (1992)

25 LEE-FELDSTEINA Cumulative exposure to arsenic and its relationship to respiratory canceramong copper smelter employees Journal oloccupational medicine 28 296-302 (1986)

26 TSENGWP Effects and dose response relationships of skin cancer and blackfoot diseasewith arsenic Environmental health perspectives 19 109-119 (1977)

27 CHEN C-J ET AL Malignant neoplasms among residents ofa blackfoot disease-endemicarea in Taiwan high-arsenic artesian welI water and cancers Cancel research 45 5895-5899 (1985)

28 WONG O ETAL An ecologic study ofskin cancer and environmental arsenic exposureInternational archives oloccupational and environmental health 64 235-241 (1992)

29 FREEMAN GB ETAL Bioavailability of arsenic $Oilimpacted by smelter activities folIowingoral administration in rabbits Fundamental and applied toxicology 21 83-88 (1993)

30 PINTO SS amp McGILL CM Arsenic trioxide exposure in industry Industrial medicineand surgery 22 281-287 (1953)

31 NATUSCH OFS ET AL Toxic trace elements preferential concentration in respirableparticles Science 183 202-204 (1974)

32 HOLLANDRH ETAL A study ofinhaled arsenic-74 in mano Cancel research 19 1154-1156 (1959)

33 BRUNE O ETAL Oistribution of23 elements in the kidney liver and lungs ofworkers from asmeltery and refinery in North Sweden exposed to a number of elements and of a controlgroup Science olthe total environment 16 13-35 (1980)

34 VAHTER M amp MARAFANTE E In vivo methylation and detoxication of arsenic In CraigPJ amp Glockling F ed The biological alkylation 01heavy elements London RoyalSociety of Chemistry 1988 pp 105-119 (Specia1 Publication No 66)

WHO Regional Office tor Europe Copenhagen Denmarlt2000 12

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 36: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

Chapter 61 Arsenic Air Quality Guidelines Second Edition

35 BUCHETJP ETAL Comparison ofthe urinary excretion of arsenic metabolites after a singleoral dose of sodium arsenite monomethylarsonate or dimethylarsinate in manlnternationalarchives ofoccupational and environmental health 48 71-79 (1981)

36 HOPENHAYN-RICHC ETAL Human studies do not support the methylation thresholdhypothesis for the toxicity of inorganic arsenic Environmental research 60 161-177(1993)

37 POMORYC ETAL Human retention studies with 74AsToxicology and appliedpharmacology 53 550-556 (1980)

38 BUCHETlP Comparison of several methods for the determination of arsenic compounds inwater and in urine their application for the study of arsenic metabolism and for the monitoringof workers exposed to arsenic lnternational archives of occupational and environmentalhealth 46 11-29 (1980)

39 Overall evaluations of carcinogenicity An updating of lARC Monographs Volumes 1 to42 Lyon Intemational Agency for Research on Cancer 1987 pp 100-106 (IARCMonographs on the Evaluation of Carcinogenic Risk to Humans Supplement 7)

40 PERSHAGENG ETAL Carcinomas ofthe respiratory tract in harnsters given arsenic trioxideandor benzo[a]pyrene by the pulmonary route Environmental research 34 227-241(1984)

41 ISHINISHIN ETAL Preliminary experimental study on carcinogenicity of arsenic trioxide inrat longEnvironmental health perspectives 19 191-196 (1977)

42 VAINIOH amp SORSAM Chromosome aberrations and their relevance to metalcarcinogenesis Environmental health perspectives 40 173-180 (1981)

43 WAN B ETAL Studies of cytogenetic effects of sodium arsenicals on marnmalian cells invitro Environmental mutagenesis 4 493-498 (1982)

44 ROSSMANTG Enhancement of UV-mutagenesis by low concentrations of arsenite in Ecoli Mutation research 91 207-211 (1981)

45 LAGERKVISTBJ amp ZETTERLUNDB Assessment ofexposure to arsenic arnong smelterworkers A five-year follow-up American journal of industrial medicine 25477-488(1994)

46 INTEGRATEDRISKINFORMATIONSYSTEM(IRIS) Carcinogenicity assessment for lifetimeexposure to arsenic (httpwwwepagovngispgm3irissubst0278htmIB) CincinnatiOH US Environmental Protection Agency (accessed January 1994)

47 BENCKOV ETAL Rate of malignant tumor mortality among coaJ-buming power plantworkers occupationally exposed to arsenic Journal of hygiene epidemiologymicrobiology and immunology (Prague) 24 278-284 (1980)

48 LEE-FELDSTEINA Arsenic and respiratory cancer in man follow-up ofan occupationalstudyln Lederer WH amp Fensterheim RJ ed Arsenic industrial biomedical andenvironmental perspectives Proceedings ofthe Arsenic Symposium Gaithersburg MDNew York Van Nostrand Reinhold 1983 pp 245-254

49 PINTOSS ETAL Mortality experience in relation to a measured arsenic trioxide exposureEnvironmental health perspectives 19 127-130 (1977)

50 AxELSONO ETAL Arsenic exposure and mortality a case-referent study from a Swedishcopper smelter British journal of industrial medicine 35 8-15 (1978)

51 RENCHERAC ETAL A retrospective epidemiological study ofmortality at a large westemcopper smelter Journal of occupational medicine 19 754-758 (1977)

WHO Regional Oflice for Europe Copenhagen Denmarllt 2000 13

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 37: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTAChapter 61 Arsenic Air Quality Guidelines Second Edition

52 LEE-FELDSTEINA A comparison of several measures of exposure to arsenic matchedcase-control study of copper smelter employees American jaurnal af epidemialagy 129112-124 (1989)

53 WELCHK ETAL Arsenic exposure smoking and respiratory cancer in copper smelterworkers Archives af enviranmental health 37 325-335 (1982)

54 ENTERLINEPE ETAL Exposure to arsenic and respiratory cancer a reanalysis Americanjaurnal af epidemialagy 125 929-938 (1987)

55 HIGGINS1 ET AL Martality af Anacanda smelter warkers in relatian ta arsenic andather expasures Ann Arbor MI University ofMichigan undated

56 ENTERLINEPE amp MARSH GM Cancer among workers exposed to arsenic and othersubstances in a copper smelter American jaurnal af epidemialagy 116 895-911 (1982)

57 PERSHAGENG ETAL On the interaction between occupational arsenic exposure andsmoking and its relationship to lung cancer Scandinavian jaurnal af wark enviranment amphealth 7 302-309 (1981)

58 JARUP L amp PERSHAGENG Arsenic exposure smoking and lung cancer in smelter workers- a case-control study American jaurnal af epidemialagy 134 545-551 (1991)

59 BLOT WJ amp FRAUMENIJF Jr Arsenical air pollution and lung cancer Lancet 2 142-144 (1975)

60 PERSHAGENG Lung cancer mortality among men living near an arsenic emitting smelterAmerican jaurnal af epidemialagy 122 684-694 (1985)

61 MATANOSKI G ETAL Cancer mortality in an industrial area ofBaltimore Enviranmentalresearch 25 8-28 (1981)

62 GREAVESWW ETAL Relationship between lung cancer and distance ofresidence fromnonferrous smelter stack effiuent American jaurnal af industrial medicine 2 15-23(1981)

63 ROM WN ETAL Lung cancer mortality among residents living near the El Paso smelterBritish jaurnal af industrial medicine 39 269-272 (1982)

64 Air quality guidelinesfar Eurape Copenhagen World Health Organization Regional Officefor Europe 1987 (WHO Regional Publications European Series No 23)

65 VIREN JR amp SILVERSA Unit risk estimates for airbome arsenic exposure An updatedview based on recent data from two copper smelter cohorts Regulatary taxicalagy andpharmacalagy20 125-138 (1994)

WHO Regional Office tor Europe Copenhagen Denmar1lt2000 14

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 38: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

1

Acta Reunioacuten Fundicioacuten ChagresFecha de la reunioacuten 22-02-2012 Hora 1000 -1300

AsistentesPedro Reyes Gerente General Fundicioacuten ChagresRafael Moraga Fundicioacuten ChagresLuis Brito Fundicioacuten ChagresCarlos Salvo Fundicioacuten ChagresMarcelo Fernaacutendez MMACarmen Gloria Contreras MMAPriscilla Ulloa MMA

Lugar Fundicioacuten Chagres Catemu

Objetivo de la reunioacutenPresentar el plan de modernizacioacuten de la fundicioacuten Chagres Esta fundicioacuten informo queaumentaraacute la capacidad de la fundicioacuten Chagres de 660 mil toneladas de concentrado a 850mil toneladas junto con mejorar su desempentildeo ambiental Es decir la fundicioacuten Chagres secompromete a reducir las emisiones de material particulado de 1390 a 1044 toneladas alantildeo de dioacutexido de azufre de 14400 a 11600 toneladas al antildeo de arseacutenico de 90 a 45toneladas al antildeo lo cual representa una reduccioacuten de un 20 25 Y50 respectivamente

Se adjunta1 Presentacioacuten realizada por Pedro Reyes de la fundicioacuten Chagres2 Memo de la visita delegacioacuten MMA este documento da respuesta a una serie de inquietudesplanteadas por el Ministerio del Medio Ambiente al equipo teacutecnico de la fundicioacuten Chagres

Acta preparada por

Carmen Gloria ContrerasPriscilla Ulloa

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 39: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

A

V

~(Q)VEC1(Q~lA(c~~N(cMA~~E~

febrero 2012

iacuteNDICE

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 40: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTA

rE~[p)IiacuteQ)~~ctiQIcOJi1J~(~m[p)~~1Juacute[p)1J~9Jiexcliexclm

1J~~lIJ]~~giexclIJ~l~lJuacute

o J iexcliexcliexcliexcl~j[raquorniexclju dl$Al~~TlD~ili[raquoilll~iexclji[raquo~iexcliexcliexcliexclltilD~Iliexcl~t

o UIJuacute QBm~U1~(Ql cdl~ ~lCC[pJ~~cdllcdl[pliexclr(QlcdlQBd~WlOi1JlaquoIJOm~liacutel~((raquo tQ1~~giexcl

ff~~kOacuteJi1JtQ1~~j)IJuacuteIA~IJuacute~rrgiexcltQ1iQ1~dl~ ~giexcl~ iexcliexclJd~~~it (6(Q)(Q)JD)(Q)(Oacute) ~iQlli1l~tQ1i1JlIJ]giexcl~l~

illiIDg)~) ~JQ)~OOIntildeJlIJ]lJuacutem~21~miDl 8i5(Q)(Q)(Q)(Q) ~iDllJuacute~~(Q1~~ iDl

- bull-~

li1

iquestiJUiacuteJj(jjiexcliexcliexclltIDlliacuteruOIii~

~IiiiiexcliexcliliriiJ r ffwlDl1iJfr(jjG

~~~(iexclUumlUiacuteJjDIii~

~U1IiexclVililiriexcliexcliexcl11~

- - -

ElltnwUil1ll18l~illiexclQ)~

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 41: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

amp AngloAmerican

PROCESO FUTURO CHAGRES

CHAGRES DEL FUTURO

ALMACENADO U CONCENTRADOy FUNDENTE

1ltJpound)o DE MOLDEO

ampAngloAmericanMEJORAS AL PROCESO

PROCESO ACTUAL CHAGRES

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 42: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

~ AngloAmerican

-1SECADO DE CONCENTRADOS

- UNiDAD MAS EFiCiENTE DE SECADO(uso DE TECNOLOGiacuteA DI CLASE MUNDiAL)

- MAYOR EFicieNCiA EN EL FiLTRADO DE GASES

eMAacutes LiMPio

DESPUEacutes

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO

~ AngloAmerican

2FusioacuteN DE CONCENTRADOS (HORNO FLASH)

- AUMENTO DE HERMETiciDAD DEL HORNO- AUMENTO CAPTACioacuteN y FilTRADO DEGASES FUGiTivos

1IfTtllll

ANTpoundS DeSPUEacutes

BE NEFicios- DiSMiNucioacuteN EMisioacuteN DE MATERiAL PARTicULAOO-DISMINucioacuteN DE GASeS EMiTIDOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 43: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

~ AngloAmerican

3 LiMPiEZA DEESCORiA- ELiMiNAcioN PIlOCESO liMPiEZA DEESCORiA-DlFRiANiENTO y DESPACHO DE ESCORiA A PLANTA CONCENTRADORA

ANTES

HORNOSDE liMPiEZADE ESCORiA (Z)

DesPUEacuteS

A flOTAciOacuteN

BENEFicios -MiNiMizACioacuteN DEHlJMOS NEGROS-DisMiNuciOacuteN DE GASES EMirIDOS

~ AngloAmerican

4 CONVERSioacuteN

- REEMPlAZO DE CDNVERriooRES y Deacute CAMPANAS PRiMARiAS

- iNCORPORACioacuteN DE CAMPANA ENVOLVENTE (SECUNDARiA)

DESPUEacuteS

BENEFicios - DiSMiNucioacuteN EMisioacuteN MATERiAL PARTicULADO- DiSMiNucioacuteN DE GASES EMiriDOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 44: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

~)

~ AngloAmerican

5 REFiNACioacuteN (HORNOS DE REFiNO)

- iNSTALACioacuteN SiSTEMA DE FiLTRADO GASES DE REFiNO

DeSPUEacutes

BENEFicios -MINIMizACioacuteN HUMOSNEGROS- DisMiNUcioacuteN MATERiAL PARTlcULADO

~ AngloAmerican Cartera de Proyectos Complementariosyo detalles 2011 al 2015

bull FILTRADO DE GASES DE REDUCCION HORNO DE REFINO

bull PLANTA DE TRATAMIENTO DE ACIDO GRADO C

bull SISTEMA DE SUMINISTRO DE SILlCE y CIRCULANTES PARA CONVERSiOacuteN

bull CAMBIO CATALIZADOR CONVERTIDOR PLANTA ACIDO

bull FILTRADO DE GASES DE REDUCCION H REFINO FASE 11

bull MEJORAMIENTO SISTEMA DE SECADO amp MANEJO DE CIRCULANTES

bull INVERSIONES REDUCCION AGUAS ENERGIA Y C02

bull SISTEMA AUTOMATICO DE TAPADO DE SANGRIA DE ESCORIA

bull MEJORAMIENTO VENTILACION NAVE DE CONVERSION

bull NUEVO PRECIPITADOR ELECTROESTATlCO

bull CAMBIO INTERCAMBIADOR GAS PLANTA ACIDO

bull INVERSIONES MANTENCION MAYOR (CADA 12 ANtildeOS)12

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 45: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

iacuteNDICE

PRINCIPALES BENEFICIOS MEDIOAMBIENTALES

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 46: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTA~ AngloAmerican

~ AngloAmerican

El 100 de los ga~es a chimeneasseraacuten filtrados

Se disminuiraacute en alrededor de un25 la emisioacuten de materialparticulado en chimenea

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 47: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

~~r~9u ~u

~ AngloAmerican

Se disminuiraacute en alrededor de un20 la emisioacuten de gases

~ AngloAmerican

CRONOGRAMA2013 2014 2015

MINIMIZACiOacuteNHUMOS NEGROS

DISMINUCiOacuteNDE GASES

Instalacioacuten sistema defiltrado de gases de hornosde refino

Eliminacioacuten proceso limpieza deescoria

xAumento capacidad sistema decaptacioacuten y filtrado gases de HornoFlash

Reemplazo de secadoresIncorporacioacuten campana envolvente ynuevos convertidores

~- -iquest------ ~ ---

iexcl

iexcl

iexcl

iexcl

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 48: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

VTA

~ AngloAmerican

DATOS CLAVESr EMISIONES

Azufre (tonantildeo)

Material Particulado (tonantildeo)

Arseacutenico (tonantildeo)t

NormativaActual

7200

1390

950

CompromisoProyecto

5800

1044

48

ReduccioacutenEmisiones ()

20

25

50

Nota Compromiso proyecto representa el valor maacuteximo esperado De acuerdo a DIA Proyecto Optimizacioacuten 2005

~ AngloAmerican

MAacuteSPRODUCCiOacuteNDe 600 a 800 miltoneladas por antildeo

EN SiacuteNTESIS ELPROYECTO DE

MODERNIZACiOacuteNIMPLICA

Inversioacuten US$ XXX millones

20

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026
Page 49: Ministerio del Medio Ambiente - INFORME FINAL EVALUACIÓN …planesynormas.mma.gob.cl/archivos/2014/proyectos/Folio_N... · 2014-12-01 · INFORME FINAL EVALUACIÓN DE BENEFICIOS

~ AngloAmerican

  • 00000001
  • 00000002
  • 00000003
  • 00000004
  • 00000005
  • 00000006
  • 00000007
  • 00000008
  • 00000009
  • 00000010
  • 00000011
  • 00000012
  • 00000013
  • 00000014
  • 00000015
  • 00000016
  • 00000017
  • 00000018
  • 00000019
  • 00000020
  • 00000021
  • 00000022
  • Exp_002_018pdf
    • 00000001
    • 00000002
    • 00000003
    • 00000004
    • 00000005
    • 00000006
    • 00000007
    • 00000008
    • 00000009
    • 00000010
    • 00000011
    • 00000012
    • 00000013
    • 00000014
    • 00000015
    • 00000016
    • 00000017
    • 00000018
    • 00000019
    • 00000020
    • 00000021
    • 00000022
    • 00000023
    • 00000024
    • 00000025
    • 00000026