Modelos generales para la estimación de la radiación solar global diaria para diferentes zonas de...

download Modelos generales para la estimación de la radiación solar global diaria para diferentes zonas de radiación solar en China continental

of 11

Transcript of Modelos generales para la estimación de la radiación solar global diaria para diferentes zonas de...

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    1/11

    Contents lists available at SciVerse ScienceDi rect

    Energy Conversion and Management

    journal homepage:www.elsevier.com/locate/enconman

    Energy Conversion and Management 70 (2013) 139148

    General models for estimating daily global solar radiation for differentsolar radiation zones in mainland China

    Mao-Fen Li a, Xiao-Ping Tang b, Wei Wu c, Hong-Bin Liu a,d, aCollege of Resources and Environment, Southwest University, Chongqing 400716,China bShapingba Meteorological Bureau, Chongqing 400030, China cCollege of Computer and Information Science, Southwest University, Chongqing 400716, China d

    Chongqing Tobacco Science Institute, Southwest University, Chongqing 400716, China

    A R T i C L E i N F O ABSTRACT

    Article history:Received 22 November 2012Accepted 2 March 2013Available online 2 April 2013

    Keywords:General modelSolar radiation zoneTemperature-basedSunshine-based k-Means

    Empirical models, proposed to estimate solar radiation (Rs) in various areas, were site-specific in essence.However, it is questionable when they are applied to other stations where there is no record of Rs. Thisstudy aimed to develop general models to estimate daily Rs for different solar radiation zones in main-land China. Daily weather data including Rs, sunsh ine duration, relative humidity, maximum and mini-mum temperatures were collected and analyzed from 83 stations. Two types of simple empiricalequations, namely, temperature- and sunshine-b ased models, were obtained for each site. Five Rs zoneswere determined by k-means clustering algorithm based on long-term mean daily Rs. For each zone, thegeneral model for Rs estimation was developed based on geographical factors (latitude, longitude andaltitude) and site-specific models. Coefficient of residual mass (CRM), mean bias error (MBE), mean per-centage error (MPE), root mean square error (RMSE) and percent root mean square error (%RMSE) wereused to investigate the model performance. The comparative results between measure d and estimateddaily Rs showed that the general models had an acceptable accuracy. It is believed that the general mod-els developed in this work can be reliable and applicable for the locations without available Rs data in

    mainland China. 2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Solar radiation (Rs), as a vital primary input for crop models11,2], earth eco-envir onment model 13] and building energy effi-ciency codes 14], is measured at limited stations worldwide due tothe cost and techniqu es involved. For instance, there are more than2500 ground meteorological observation stations in mainland China,but only 98 of them have recorded daily Rs 15,6]. Long termmeasured daily global Rs data are not available for most areas inChina, especially in remote rural and mountainou s areas, where

    about 80% Chinese inhabited 17]. Hence, methods to estimate Rs forthe locations with no records of solar radiation are of greatsignificance.

    By reviewin g the literature, two types of empirical models,namely, temperat ure-base and sunshine-ba sed, are used exten-sivelyto estimate Rs at present 1825]. All of these models have easilyaccessible input parameters (such as temperatures, precipi-tation,relative humidity , dew point temperature, and sunshine

    Corresponding author at: College of Resources and Environment, SouthwestUniversity, Chongqing 400716, China. Tel.: +86 23 6825 1069; fax: +86 23 68250444.

    E-mail address:[email protected](H.-B. Liu).

    0196-8904/$ - see front matter 2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.enconman.2013.03.004

    hours), reasonable accuracy (root mean square error ranging be-tween 1.0 and 6.0 MJ m-2 d-1) and convenient applications . How-ever, most of them are in essence site-specific. Also, it isquestionable whether they could be applied to other locations wherethere is no record of observed Rs. Besides, some physical-basedmodels for Rs estimation that can be applied generally are usuallyin complex form 119,22].

    In China, two zoning were proposed for building designs ther-mal climate zones (GB50176-93) 126] and solar climate zones 127].Based on the average temperatures in the coldest and hottest months

    of the year, five thermal climate zones called severe cold (SC), cold(C), hot summer and cold winter (HSCW), mild, and hot summer andwarm winter (HSWW) (GB50176-93) 126] were de-rived. Recently,Lau et al. 127] proposed solar climate zones in terms of monthlymean daily clearness index derived from 123 stations. For Rsestimation at these zones, Lam et al. 128] develope d sun-shine-based models using artificial neural networks (ANNs) to esti-mate dailyRs for 40 cities covering nine major thermal climatic zones and sub-zones. Wan et al. 129] conducted a study of daily Rs estimation forthermal and solar zones using clearness index and sunshine durationextracted from 41 stations. They found that the regressio n modelstended to have slightly smaller mean bias error (MBE) and root meansquare error (RMSE) than ANN approaches.

    http://www.elsevier.com/locate/enconmanhttp://www.elsevier.com/locate/enconmanhttp://www.elsevier.com/locate/enconmanmailto:[email protected]:[email protected]:[email protected]://dx.doi.org/10.1016/j.enconman.2013.03.004http://dx.doi.org/10.1016/j.enconman.2013.03.004http://dx.doi.org/10.1016/j.enconman.2013.03.004mailto:[email protected]://www.elsevier.com/locate/enconman
  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    2/11

    140 M.-F. Li et al./Energy Conversion and Management 70 (2013) 139148

    Then they concluded that there was little to choose between ther-mal and solar climate zone models.

    However, both aforementione d zoning were based on measuredmonthly data rather than daily global Rs data. Different data wererequired for identifying different climatic characterist ics with re-spect to the intended application [29]. Consideri ng the simplifica-tion of calculatio n, this study complemented earlier work with the

    following objectives : (1) to identify different solar radiation zonesusing observed long-term mean daily Rs, (2) to propose and vali-date site specific daily Rs estimation models based on measuredsunshine hours and temperat ures and relative humidity, respec-tively, and (3) to develop general models based on the best per-formed models and site geographical indicators to estimate dailyglobal Rs for different Rs zones in mainland China.

    2. Data and methods

    2.1. Data gathering

    Daily data, including Rs (MJ m-2 d-1), maximum and minimumtemperature s (Tmax

    and Tmin, OC), sunshine hours and relative humidity

    (Hum, %), were provided by the Chinese National Cli-matic DataCenter (CDC). There are 98 stations measured and re-corded dailyglobal solar radiation in China [21], while the data of 83 stations(Fig. 1 and Table 1) in mainland China before 2000 were used inthis study. Data quality control is first conducted by the suppliers.For the present study, records with missing data indicated by 32,766were removed from the data set. Missing data were replaced withmeans of the nearby points. A month with more than five continuousmissing or faulty data was eliminated.

    2.2. Solar radiation zoning

    Zoning would give a better understand ing of the distribution ofRs and an overview of the general solar radiation climatic condi-

    tions within a region. There are different ways to classify zonesaccording to different criteria using different climatic variables

    and indices in China [30]. This depends largely on the purpose ofestablishi ng such classification. For solar radiation modeling, long-term records of observed solar radiation should be considered forsolar radiation zoning. Measured daily Rs around 40 years of 83stations in China were used in the current study (Table 1). A con-sensus clustering techniquek-means clustering methodwas usedto identify solar radiation zones. The k-means clustering tech-nique

    divides the high-dim ensional data space into a number of clusters,each one defined by a prototype and formed by the data for whichthe prototype is the nearest. Existing research showed that k-meansclearly outperform ed classical climate classifications (KppenGeiger approach) [31].

    The process of clustering was conducted in SPSS 18.0. Initially,long-term mean daily Rs data for all years of 83 stations were cal-culated and arranged in a data matrix. Five clusters were set in ad-vance in accordance with existing zones in China and maximumiterates (100) were set for the large quantity of data. When theiteration (assign each observati on to the cluster whose mean isclosest to it and calculate the new means to be the centroids of theobservations in the new clusters) stopped until no reclassifica-tionwas necessary, five solar radiation zones were obtained by k-meansclustering methods (Fig. 1). The Rs zoning could be of inter-est forfurther solar radiation estimation.

    2.3. Solar radiation modeling

    Two types of commonly used Rs estimating models, namelytemperat ure-based and sunshine-ba sed models, were adopted. Theindependen t variables were Tmax, Tmin, and Hum for tempera-ture-base d models and sunshine hours for sunshine-base d equa-tions.Table 2 showed the models used in the present study to estimateglobal Rs on a horizontal surface. In view of the practical propertie sand easy to operate of Rs estimating, linear models were constructedwith measured Rs, temperat ures, sunshine duration and relativehumidity to estimate daily global Rs in mainland China. Models 14

    were based on temperat ures and relatively humidity while models 5and 6 were based on sunshine hours, respectively .

    Fig. 1. Distribution of the studied stations in different solar radiation zones in mainland China.

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    3/11

    (continued on next page )

    M.-F. Li et al./Energy Conversion and Management 70 (2013) 139148

    Table 1Meteorological stations and period of daily data records used in this study.

    141

    Station Longitude (, E) Latitude (, N) Altitude (m) Data period Data No. Solar climatezone [27]

    Thermal climatezone [26]

    Heihe 127.27 50.15 166.4 19612000 14,478 II SCHailaer 119.45 49.13 610.2 19601968, 19721977, 19822000 12,077 II SCHarbin 126.46 45.45 142.3 19612000 14,610 III SCAltai 88.05 47.44 735.3 19602000 14,911 II SC

    Qitai 89.34 44.01 793.5 19871990 1461 II SCYining 81.2 43.57 662.5 19602000 14,941 II SCUrumchi 87.37 43.47 917.9 19592000 15,340 II SCTurpan 89.12 42.56 34.5 19612000 14,548 II MildKuqa 82.54 41.48 1072.5 19571990 12,235 II SCKash 75.59 39.28 1288.7 19572000 15,808 II ColdRuoqiang 88.1 39.02 888.3 19572000 15,918 II ColdHetian 79.56 37.08 1374.6 19572000 15,920 II ColdKumul 93.31 42.49 737.2 19612000 14,570 I SCDunhuang 94.41 40.09 1139.0 19572000 15,769 I Cold

    Jiuquan 98.29 39.46 1477.2 19932000 2922 II SCMinqin 103.05 38.38 1367.0 19612000 14,608 II SCGangcha 100.08 37.2 3301.5 19932000 2922 I SCGolmud 94.54 36.25 2807.6 19572000 15,828 I SCXining 101.46 36.37 2261.2 19592000 15,340 II SCLanzhou 103.53 36.03 1517.2 19592000 15,221 III ColdErenhot 111.58 43.39 964.7 19572000 15,917 I SC

    Haliut 108.31 41.34 1288.0 19922000 3288 II SCHohhot 111.41 40.49 1063.0 19591966, 19681968 2585 II SCDatong 113.2 40.06 1067.2 19612000 14,609 II SCYinchuan 106.13 38.29 1111.4 19611967, 19732000 12,625 II SCTaiyuan 112.33 37.47 778.3 19612000 14,610 III ColdYanan 109.3 36.36 958.5 19902000 4018 III ColdAnyang 114.22 36.07 75.5 19611990 10,956 III ColdXilinhot 116.04 43.57 989.5 19902000 3987 II SCTongliao 122.16 43.36 178.5 19601992 9799 III SCChangchun 125.13 43.54 236.8 19591981, 19832000 14,945 III SCYenki 129.28 42.53 176.8 19602000 14,915 III SCChaoyang 120.27 41.33 169.2 19632000 13,759 III SCShenyang 123.27 41.44 42.8 19612000 14,607 III SCBeijing 116.17 39.56 54.0 19572000 15,951 III ColdTianjin 117.04 39.05 2.5 19592000 15,339 III ColdLeting 118.54 39.25 10.5 19922000 3288 III ColdDalian 121.38 38.54 91.5 19632000 12,386 III ColdYantai 121.15 37.3 32.6 19952000 2160 III Cold

    Jinan 116.59 36.41 51.6 19612000 14,605 III ColdGar 80.05 32.3 4278.0 19712000 10,499 I SCNakchu 92.04 31.29 4507.0 19611968, 19722000 13,025 II ColdLhasa 91.08 29.4 3648.7 19611968, 19712000 13,573 I ColdYushu 97.01 33.01 3681.2 19601973, 19782000 12,871 II ColdGolok 100.15 34.28 3719.0 19932000 2922 II SCChamdo 97.1 31.09 3306.0 19611968 19702000 14,183 II SCGanzi 100 31.37 3393.5 19942000 2557 II ColdChengdu 104.01 30.4 506.1 19612000 14,610 V HSCWEmeishan 103.2 29.31 3047.4 19612000 14,578 III HSCWChaotung 103.45 27.2 1949.5 19611967, 19691990 10,401 III MildLijiang 100.13 26.52 2393.2 19611967, 19691974, 19762000 13,330 II MildPanzhihua 101.43 26.35 1190.1 19922000 3288 III MildTengchong 98.3 25.01 1654.6 19612000 14,577 III MildKunming 102.41 25.01 1891.4 19611967, 19692000 13,848 III Mild

    Jinghong 100.48 22 552.7 19612000 14,394 III MildMengzi 103.23 23.23 1300.7 19612000 14,609 III Mild

    Tianshui 105.38 34.36 1368.0 19601966 2280 III ColdXian 108.56 34.18 397.5 19612000 14,601 IV ColdZhengzhou 113.39 34.43 110.4 19612000 14,606 III ColdNanchong 106.05 30.48 297.7 19811990 3652 V HSCWWanhsien 108.21 30.48 432.7 19611967, 19681990 10,743 V HSCWYichang 111.18 30.42 133.1 19612000 14,546 IV HSCWWuhan 114.08 30.37 23.3 19612000 14,578 IV HSCWChongqing 106.28 29.35 259.1 19612000 14,426 V HSCWChangsha 112.55 28.13 68.0 19882000 4749 IV HSCWZunyi 106.55 27.41 849.3 19611990 10,954 V HSCWGuiyang 106.43 26.35 1074.3 19612000 14,608 V MildGuilin 110.18 25.19 194.4 19612000 14,457 IV HSCWGanzhou 114.57 28.52 123.8 19612000 14,244 IV HSCWGushi 115.4 32.1 57.1 19612000 14,518 III HSCWNanjing 118.48 32 8.9 19612000 14,610 IV HSCWHefei 117.14 31.52 27.9 19612000 13,929 IV HSCWBaoshan 121.29 31.24 3.5 19912000 3653 IV HSCW

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    4/11

    n1MBE1/4

    n i1/41

    142

    Table 1 (continued)

    M.-F. Li et al./Energy Conversion and Management 70 (2013) 139148

    Station Longitude (, E) Latitude (, N) Altitude (m) Data period Data No. Solar climatezone [27]

    Thermal climatezone [26]

    Shanghai 121.26 31.1 4.5 19611990 10,957 IV HSCWHangzhou 120.1 30.14 41.7 19612000 14,610 IV HSCWCixi 121.1 30.16 7.1 19611990 10,773 IV HSCWLushan 115.59 29.35 1243.3 19611990 10,957 IV HSCWNanchang 115.55 28.36 46.7 19612000 14,543 IV HSCW

    Fuzhou 119.17 26.05 84.0 19612000 14,579 IV HSCWShaoguan 113.36 24.48 68.7 19611990 10,957 IV HSWWGuangzhou 113.19 23.08 6.6 19612000 14,549 IV HSWWShantou 116.41 23.24 1.1 19612000 14,606 IV HSWWNanning 108.21 22.49 73.1 19612000 14,580 IV HSWW

    Table 2Models proposed in this study. RMSE1/4

    sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPni1/41Oi ~Ei2 1

    nModel No. Models

    1 Rs =( a~ Tmax+b~ Tmin+c~Hu m)~R0+ m2 Rs =( a~ Tmax+b~ Tmin)~R0+ c~Hu m)+ m

    pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3 Rs 1/4 a ~ Tmax ~ Tmin b ~Hum ~R0 m

    pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4 Rs 1/4 a ~ Tmax ~ Tmin ~R0 b ~Hum m5a Rs/R0 = a ~ n/N+ m6 Rs=a~ n+b ~R0 + m

    a, b, c and m were coefficients. n was the daily actual sunshine duration (h), Nwasthe daily maximum possible sunshine duration (h). R0 was daily extraterrestrialradiation on horizontal surface (MJ m~2 d~1).R0 andNwere calculated by Allen et al. [32] and Liu et al. [33], respectively.a ngstrmPrescott model [8,9].

    The data set were randomly divided into a calibrate d dataset (inthis study, 67% of the whole data) and a validation data set (33% ofthe whole data). The calibrated set was used to develop Rs estimat-ing models and the validation set was used to evaluate the models.

    The general model for each zone was then developed using thecoefficients of the best performed models and the site geographical

    indicators (altitude, latitude, and longitude). Correlations werebuilt between the coefficients of best performed model and thecorrespondi ng site geographical indicators, because someresearchers found that coefficients of estimating models varyingwith latitude and ngsrm coefficients strongly correlate d to lati-tude (or elevation) [34].

    2.4. Statistical evaluation

    The performance of the models was evaluated in terms of thefollowing statistical indices: root mean square error (RMSE), meanbias error (MBE), coefficient of residual mass (CRM) mean percent-age error (MPE) and percent root mean square error (%RMSE), anindicator of the overall relative accuracy of a model. MBE is an indi-

    cation of the average deviation of the estimated values from thecorrespondi ng measured data. A negative value of MBE indicatesthe amount of overestimat ion in the estimated global Rs and viceversa. RMSE provides informat ion on the short term performanc eand is a measure of the variation of estimate d values around themeasured data. Low value of RMSE indicates that the estimationmodel performs well. MPE can be defined as the percentage devi-ation of the estimate d and measured daily solar radiation. CRM de-notes the overall under- or over-estimati on. A positive value ofCRM indicates the tendency of the model to under estimate the Rs,whereas the negative value of CRM shows a tendency to over-estimate solar radiation. In general, a positive MBE (the tendency ofthe model to underestimati on) coincides with a positive CRM andvice versa. While in the same tendency (under- or over-esti-mation),value of RMSE was the conclusive index on the performance of thestudied models in the current study. The five indicators werecalculated as follows:

    Oi ~Ei 2

    Pni1/41Oi~ Pni1/41Ei

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    5/11

    n1MPE1/4

    n i1/41Ei ~ Oi

    CRM 1/4 Pn 3i1/41Oi

    4Oi

    %RMSE1/4RMSEO 100 5

    where n was the number of validatio n data of each site; Oi and Eiwas daily observed and estimated Rs, respective ly. was the meanvalue of observed Rs. The indicators were capable for performanc ecompari son between studied models at each zone. For compar isonof model performanc e between solar radiation zones, CRM and%RMSE were fairer than RMSE and MBE, for CRM and %RMSEwere dimens ionless. In this study, model accuracy was consider edexcel-lent when %RMSE < 10%; good if 10% < %RMSE < 20%; fairif 20% < %RMSE < 30%; and poor if %RMSE P 30% [35,36]. Allcalcula-tions were done in SPSS 18.0.

    3. Results and discussion

    3.1. Solar radiation zones

    Five solar radiation zones (Table 3) were obtained by k-meansclustering and shown in Fig. 1, Stations of zone 1 (eight sites)mainly concentr ated in Yunnan province. A total of 21 stations inzone 2 scattered in the upper basin of Yangtze River and YellowRiver. In zone 3, the seven stations distributed in Sichuan Basin,particular ly, along the borders of Yunnan, Sichuan and Chongqingprovince s. And stations of zone 4 occurred in the SE coastal areain the south of 35N. The rest stations belonged to zone 5 andspread in the NE and NW China.

    It was clear in Table 3 that zone 2 had abundan t solar resource swith annual averaged daily Rs of 17.406 MJ m~2 d~1, followed aszone 1 which had annual averaged daily Rs of 15.022 MJ m~2 d~1,zone 5 of 14.246 MJ m~2 d~1, zone 4 of 12.362 MJ m~2 d~1 and zone 3of 9.782 MJ m~2 d~1.

    Solar radiation zoning in the present study was slightly differ-entfrom the published solar climatic zones using monthly mean daily

    clearness sky index [27] and different from the thermal cli-matezones (GB50176-93) [26] (Fig. 1 and Tables 1 and 3). For in-stance,Rs zone 1 in the current study was largely in line with the solarclimate zone III-B [27] and mild climatic zone (GB50176-93)

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    6/11

    M.-F. Li et al./Energy Conversion and Management 70 (2013) 139148

    Table 3Summary of the five solar radiation zones derived in current study.

    143

    Zone Stations Station Average RsNo. (MJ m d )

    1 Emeishan, Chaotung, Lijiang, Panzhihua, Tengchong, Kunming, Jinghong, Mengzi 8 15.0222 Kuqa, Ruoqiang, Hetian, Kumul, Dunhuang, Jiuquan, Minqin, Gangcha, Golmud, Xining, Erenhot, Haliut, Hohhot, Yinchuan,

    Gar, Nakchu, Lhasa, Yushu, Golok, Chamdo, Ganzi21 17.406

    3 Chengdu, Nanchong, Wanhsien, Yichang, Chongqing, Zunyi, Guiyang 7 9.782

    4 Xian, Wuhan, Changsha, Guilin, Ganzhou, Gushi, Nanjing, Hefei, Baoshan, Shanghai, Hangzhou, Cixi, Lushan, Nanchang,Fuzhou, Shaoguan, Guangzhou, Shantou, Nanning 19 12.362

    5 Heihe, Hailaer, Harbin, Altai, Qitai, Yining, Urumchi, Turpan, Kash, Lanzhou, Datong, Taiyuan, Yanan, Anyang, Xilinhot,Tongliao, Changchun, Yenki, Chaoyang, Shenyang, Beijing, Tianjin, Leting, Dalian, Yantai, Jinan, Tianshui, Zhengzhou

    28 14.246

    Fig. 2. Comparison of daily global Rs of observed, best modeled and general modeled at representative stations of each zone.

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    7/11

    144

    M.-F.Lietal./EnergyConversionandManagement70(2013)1391

    48

    Table 4

    Performance of the proposed solar radiation estimation models for mainland China.

    Zone Site MBE (MJ m-2d-1) RMSE(MJm-2d-1) CRM MPE %RMSE

    M1 M2 M3 M4 M5 M6 GM(T) GM(S) M1 M2 M3 M4 M5 M6 GM(T) GM(S) M1 M2 M3 M4 M5 M6 GM(T) GM(S) M1 M2 M3 M4 M5 M6 GM(T) GM(S) M1 M2 M3 M4 M5 M6 GM(T) GM(S)

    1 Emeishan 0.92 1.07 1.19 1.03 0.5 0.65 4.19 0.86 4.56 4.68 4.68 4.91 3.39 3.50 6.11 3.46 0.07 0.08 0.09 0.08 0.0 4 0.05 0 0.07 0.34 0.32 0.3 0.29 0.17 0.18 0.41 0.26 36.02 36.95 36.93 38.78 26.77 27.66 48.22 27.28

    Chaotung -0.06 0.11 0.24 0.18 -0.14 -0.2 -0.9 0.31 3.88 3.98 3.89 4.02 2.94 3.02 4.01 3 -0.01 0.01 0.02 0.01 -0.01 -0.02 -0.07 0.02 0.23 0.23 0.19 0.26 0.62 0.68 0.63 0.63 27.9 28.65 28.01 28.92 21.14 21.73 28.84 21.58 Lijiang 0.25 0.18 0.17 0.14 0.41 0.41 -1.26 0.47 3.23 3.27 3.3 3.38 2.26 2.29 3.57 2.29 0.02 0.01 0.01 0.01 0.0 3 0.02 -0.08 0.03 0.44 0.47 0.35 0.42 0 0.01 0.14 -0.01 19.29 19.47 19.67 20.18 13.47 13.66 21.27 13.66 Panzhihua -1.09 -1.01 -0.89 -0.91 -0.72 -0.77 -2.55 -1.38 3.46 3.5 3.5 3.57 1.7 1.78 4.19 2.09 -0.07 -0.07 -0.06 -0.06 -0.05 -0.05 -0.17 -0.09 0.05 0.06 0.0 6 0.07 0.14 0.16 0.44 0.2 22.88 23.19 23.19 23.66 11.24 11.8 27.75 13.81 Tengchong 0.63 1.27 1.05 0.9 0.69 0.68 0.97 0.82 3.51 3.87 3.84 3.92 2.88 2.90 3.67 2.91 0.04 0.08 0.07 0.06 0.0 5 0.05 0.06 0.05 0.29 0.29 0.27 0.29 0.07 0.07 0.25 0.07 23.08 25.46 25.26 25.75 18.95 19.06 24.13 19.1Kunming 0.18 0.47 0.76 0.44 1.35 1.34 -1.17 0.06 3.66 3.91 4.03 4.03 3.02 3.02 3.88 2.69 0.01 0.03 0.05 0.03 0.0 9 0.09 -0.08 0 0.11 0.09 0.0 9 0.12 0.08 0.09 0.73 0.25 24.69 26.38 27.21 27.2 20.38 20.41 26.21 18.13 Jinghong -0.97 -1.11 -0.37 -1.08 0.18 0.23 0.11 0.73 4.61 4.41 5.06 4.53 2.8 2.84 4.69 2.83 -0.06 -0.07 -0.02 -0.07 0.0 1 0.02 0.01 0.05 0.25 0.26 0.23 0.27 0.05 0.06 0.27 0.03 30.4 29.11 33.4 29.89 18.46 18.74 30.93 18.67 Mengzi 0.17 0.16 0.19 0.1 0.31 0.26 -0.47 0.59 3.73 3.8 3.76 3.79 2.68 2.64 3.79 2.78 0.01 0.01 0.01 0.01 0.0 2 0.02 -0.03 0.04 0.3 0.29 0.3 0.28 0.06 0.07 0.25 0.04 24.58 25.04 24.79 24.98 17.65 17.41 25.02 18.32 Mean 0 0.14 0.29 0.1 0.32 0.33 -0.14 0.31 3.83 3.93 4.01 4.02 2.71 2.75 4.24 2.76 0 0.01 0.02 0.01 0.0 2 0.02 -0.05 0.02 0.25 0.25 0.22 0.25 0.15 0.17 0.39 0.18 26.11 26.78 27.31 27.42 18.51 18.81 29.05 18.82

    2 Kuqa -1.27 -1.26 -1.11 -1.18 0.13 0.33 -0.16 1.86 3.72 3.71 3.7 3.79 2.21 2.42 3.61 3.06 -0.08 -0.08 -0.07 -0.08 0.0 1 0.02 -0.01 0.12 0.16 0.17 0.15 0.17 0 0.03 0.13 0.01 24.17 24.1 24.02 24.61 14.36 15.68 23.42 19.84

    Ruoqiang 0.0 1 0.01 0.11 0.03 -0.01 0.0 9 -0.87 0.51 3.37 3.37 3.45 3.46 2.22 2.36 3.57 2.38 0 0 0.01 0 0 0.01 -0.05 0.03 0.21 0.21 0.2 0.21 0.02 0.03 0.13 0.07 19.86 19.86 20.31 20.38 13.08 13.91 21.07 14.05 Hetian -0.05 0 0.05 -0.05 -1.04 -0.94 0.37 0.1 3.34 3.35 3.35 3.46 2.13 2.22 3.53 2.01 0 0 0 0 -0.07 -0.06 0.02 0.01 0.25 0.26 0.24 0.25 0.38 0.39 0.17 0.12 20.77 20.83 20.87 21.53 13.25 13.82 21.98 12.5Kumul -1 -0.81 -0.66 -0.74 -1.21 -1.10 -0.55 1.27 3.58 3.43 3.21 3.28 3.49 3.45 3.23 2.38 -0.06 -0.05 -0.04 -0.04 -0.07 -0.07 -0.03 0.08 0.09 0.09 0.0 8 0.09 0.19 0.19 0.13 0.03 21.35 20.49 19.2 19.56 20.83 20.6 19.27 14.19 Dunhuang 0.0 1 0.11 0.14 0.1 -0.67 -0.60 -0.51 0.54 3.50 3.49 3.39 3.43 1.99 2.12 3.46 2.10 0 0.01 0.01 0.01 -0.04 -0.03 -0.03 0.03 0.13 0.12 0.12 0.13 0.06 0.07 0.12 0.07 19.94 19.84 19.29 19.52 11.35 12.09 19.71 11.97 Jiuquan -0.28 -0.23 -0.24 -0.25 -0.31 -0.49 -0.70 -0.18 3.38 3.37 3.32 3.41 1.53 1.72 3.53 1.59 -0.02 -0.01 -0.01 -0.02 -0.02 -0.03 -0.04 -0.01 0.18 0.16 0.14 0.15 0.04 0.05 0.14 0.09 20.1 19.99 19.71 20.27 9.09 10.23 20.96 9.42Minqin 1.3 1.23 1.21 1.15 0.37 0.3 -0.65 -0.72 4.26 4.23 4.11 4.16 2.28 2.07 3.98 2.17 0.08 0.07 0.07 0.07 0.0 2 0.02 -0.04 -0.04 0.09 0.08 0.0 8 0.08 0.05 0.05 0.21 0.14 25.16 24.97 24.26 24.58 13.47 12.21 23.48 12.83 Gangcha -1.3 -1.3 -1.13 -1.17 -1.3 -1.34 0.77 -0.11 3.88 3.88 3.86 4.02 2.58 2.54 4.04 2.1 -0.08 -0.08 -0.07 -0.07 -0.08 -0.08 0.04 -0.01 0.09 0.09 0.0 8 0.09 0.19 0.18 0.17 0.16 22.33 22.33 22.24 23.15 14.83 14.62 23.25 12.07

    Golmud 2.94 2.7 1.86 1.68 -0.32 -0.29 1 1.09 5.10 5.10 4.03 4.19 1.71 1.85 4.01 2.03 0.17 0.16 0.11 0.10 -0.02 -0.02 0.02 0.06 0.07 0.08 0.0 7 0.08 0.04 0.04 0.05 -0.01 26.55 26.55 20.99 21.79 8.9 9.62 20.85 10.58

    Xining-1.26 -1.32 -1.17 -1.20 -0.48 -0.42 -1.43 -1.17 4.19 4.21 4.01 4.11 2.31 2.53 4.22 2.56 -0.08 -0.09 -0.08 -0.08 -0.03 -0.03 -0.09 -0.08 0.03 0.3 0.28 0.31 0.14 0.15 0.44 0.25 27.43 27.57 26.27 26.93 15.16 16.61 27.67 16.8Erenhot -0.59 -0.41 0.01 0.06 -0.56 -0.32 -0.06 0.85 4.69 4.36 6.01 5.26 2.23 2.30 5.84 2.29 -0.03 -0.02 0 0 -0.03 -0.02 0.04 0.05 -0.04 -0.05 0.0 3 0.02 0.07 0.08 0.12 0.05 27.65 25.73 35.48 31.05 13.14 13.58 34.46 13.5

    Haliut -0.84 -0.81 -0.66 -0.66 -0.86 -0.8 -0.31 -0.27 3.98 3.94 3.77 3.76 1.85 2.03 3.77 1.66 -0.05 -0.05 -0.04 -0.04 -0.05 -0.05 -0.02 -0.02 0.39 0.4 0.36 0.39 0.08 0.09 0.12 0.08 24.41 24.15 23.11 23.08 11.32 12.44 23.13 10.19

    Hohhot -0.56 -0.71 -0.65 -0.68 -0.41 -0.45 -0.04 -0.32 4.24 4.19 4 4.02 2.46 2.57 3.89 2.49 -0.03 -0.04 -0.04 -0.04 -0.02 -0.03 0 -0.02 0.24 0.2 0.28 0.19 0.22 0.21 0.45 0.28 25.23 24.97 23.84 23.93 14.67 15.32 23.16 14.85

    Yinchuan -0.58 -0.6 -0.52 -0.51 -0.09 0.0 3 0.18 -0.74 4.02 3.99 3.85 3.93 1.85 2.12 3.96 2.08 -0.04 -0.04 -0.03 -0.03 -0.01 0 0.01 -0.05 0.18 0.16 0.15 0.14 0.18 0.19 0.39 0.3 24.82 24.64 23.81 24.28 11.46 13.08 24.47 12.87 Gar 3.15 3.15 2.93 2.87 1.68 1.87 2.45 0.73 6.69 6.67 6.37 6.31 5.22 5.42 6.13 4.97 0.14 0.14 0.13 0.13 0.0 8 0.09 0.11 0.03 0.46 0.46 0.48 0.5 0.01 0 0.07 0.11 30.48 30.38 29.02 28.74 23.75 24.7 27.89 22.61 Nakchu -1.52 -1.26 -0.87 -0.75 -0.63 -0.48 -1.76 -1.98 6.25 6.18 6.41 6.31 5.36 5.30 6.68 5.79 -0.09 -0.08 -0.05 -0.05 -0.04 -0.03 -0.11 -0.12 0.55 0.58 0.55 0.59 0.17 0.17 0.35 0.24 38.92 38.46 39.91 39.3 33.35 33 41.55 36.02 Lhasa -1.98 -1.92 -1.67 -1.67 -1.73 -1.67 1.02 -1.08 4.26 4.23 4.14 4.15 3.53 3.47 3.94 3.39 -0.10 -0.10 -0.09 -0.09 -0.09 -0.09 0.05 -0.06 -0.04 -0.04 -0.04 -0.04 0.12 0.12 -0.01 0.05 22.21 22.06 21.62 21.65 18.41 18.13 20.56 17.67

    Yushu -0.52 -0.39 -0.13 -0.03 -0.55 -0.31 -1.28 -0.48 5.22 5.12 5.64 5.44 2.60 2.58 5.72 2.58 -0.03 -0.02 -0.01 0 -0.03 -0.02 -0.08 -0.03 0.16 0.16 0.14 0.14 0.06 0.06 0.23 0.03 31.48 30.88 33.99 32.84 15.71 15.54 34.48 15.58

    Golok -1.17 -1.12 -0.83 -0.8 -0.27 -0.29 -0.41 0.23 3.97 3.86 3.72 3.72 1.78 1.93 3.65 1.89 -0.07 -0.07 -0.05 -0.05 -0.02 -0.02 -0.02 0.01 0.18 0.17 0.18 0.16 0.03 0.03 0.08 -0.01 23.25 22.6 21.77 21.81 10.43 11.29 21.37 11.07 Chamdo -1.69 -1.6 -1.52 -1.51 -1.73 -1.63 -3.17 -1.73 4.35 4.32 4.34 4.38 3.65 3.55 5.19 3.64 -0.11 -0.1 -0.1 -0.1 -0.11 -0.11 -0.20 -0.11 0.13 0.13 0.1 0.1 0.17 0.17 0.33 0.13 28.03 27.83 27.93 28.19 23.5 22.85 33.39 23.46 Ganzi -0.67 -0.67 -0.42 -0.38 0 0 0.37 0.40 3.23 3.23 3.06 3.11 1.64 1.77 3.17 1.97 -0.04 -0.04 -0.02 -0.02 0 0 0.02 0.02 0.21 0.21 0.2 0.2 0.01 0.02 0.03 -0.06 18.3 18.3 17.36 17.62 9.3 10.03 17.94 11.16 Mean -0.37 -0.34 -0.25 -0.27 -0.48 -0.41 -0.27 -0.06 4.25 4.20 4.18 4.18 2.60 2.68 4.24 2.63 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.02 -0.01 0.19 0.19 0.18 0.19 0.11 0.11 0.18 0.1 24.88 24.6 24.52 24.51 15.21 15.68 24.96 15.39

    3 Chengdu -1.33 -1.37 -1.26 -1.40 -0.71 -0.75 -1.32 -0.50 3.34 3.37 3.35 3.57 2.41 2.49 3.56 2.37 -0.16 -0.16 -0.15 -0.16 -0.08 -0.09 -0.15 -0.06 0.09 0.09 0.0 7 0.07 0.62 0.68 0.67 0.8 38.86 39.25 39 41.58 28.06 29 41.48 27.63

    Nanchong -0.56 -0.26 -0.34 -0.07 -0.13 -0.12 0.21 0.09 3.51 3.54 3.53 3.74 2.60 2.63 3.53 2.6 -0.06 -0.03 -0.04 -0.01 -0.02 -0.01 0.02 0.01 0.61 0.63 0.48 0.57 0.57 0.64 0.67 0.69 38.44 38.77 38.7 40.98 28.48 28.87 38.74 28.45 Wanh sien -0.7 -0.67 -0.63 -0.7 -0.03 0.0 3 -1.01 -0.51 3.49 3.63 3.58 3.92 2.48 2.51 3.73 2.53 -0.08 -0.07 -0.07 -0.08 0 0 -0.11 -0.05 0.62 0.49 0.49 0.42 0.61 0.71 0.83 0.79 37.36 38.86 38.35 41.98 26.59 26.93 39.97 27.16 Yichang -0.84 -0.85 -0.69 -0.8 -0.03 -0.04 -0.64 0.24 6.64 5.93 6.9 6.06 2.78 2.94 5.97 2.8 -0.08 -0.08 -0.07 -0.08 0 0 -0.06 0.02 0.69 0.72 0.4 0.75 0.69 0.77 0.9 0.68 63.82 56.98 66.33 58.24 26.72 28.26 57.41 26.95 Chongqing 0.0 2 0 0.05 -0.02 0.41 0.36 -0.52 0.04 2.98 3.04 3.13 3.26 2.53 2.5 3.09 2.48 0 0 0.01 0 0.0 5 0.04 -0.06 0.01 0.85 0.61 0.67 0.75 0.66 0.75 0.76 0.81 35.12 35.77 36.84 38.39 29.8 29.47 36.38 29.22 Zunyi -0.73 -0.84 -0.73 -0.97 -0.83 -0.87 -0.89 -0.67 3.11 3.14 3.16 3.43 2.84 2.82 3.21 2.75 -0.09 -0.1 -0.09 -0.11 -0.1 -0.1 -0.11 -0.08 0.49 0.26 0.2 0.09 0.85 0.88 0.63 0.77 36.63 36.96 37.15 40.35 33.39 33.15 37.73 32.32 Guiyang 0.0 9 -0.02 0.12 -0.01 0.78 0.73 0.12 0.73 3.62 3.60 3.86 3.76 3.21 3.21 3.61 3.21 0.01 0 0.01 0 0.0 8 0.08 0.01 0.08 0.34 0.15 0.21 0.09 0.4 0.41 0.48 0.41 37.12 36.95 39.62 38.58 32.96 32.91 37.08 32.95 Mean -0.58 -0.57 -0.5 -0.57 -0.08 -0.09 -0.58 -0.08 3.81 3.75 3.93 3.96 2.69 2.73 3.81 2.68 -0.07 -0.06 -0.06 -0.06 -0.01 -0.01 -0.07 -0.01 0.53 0.42 0.36 0.39 0.63 0.69 0.71 0.71 41.05 40.51 42.28 42.87 29.43 29.8 41.26 29.24

    4 Xian -0.67 -0.67 -0.73 -0.83 1 1.19 -1.09 1.15 3.66 3.67 3.68 3.80 3.56 3.75 4.08 3.70 -0.06 -0.06 -0.06 -0.07 0.0 9 0.10 -0.09 0.10 0.5 0.49 0.31 0.38 0.39 0.51 0.88 0.32 31.44 31.49 31.59 32.62 30.55 32.22 35 31.75

    Wuha n -1.43 -1.49 -0.98 -1.35 -1.06 -1.02 -0.76 -1.15 4.11 4.23 4.33 4.41 3.02 3.1 4.1 3.05 -0.13 -0.14 -0.09 -0.12 -0.1 -0.09 -0.07 -0.11 0.42 0.4 0.38 0.37 0.64 0.73 0.91 0.76 37.48 38.65 39.51 40.22 27.53 28.31 37.44 27.82

    Changsha -0.19 0.20 0.23 0.36 0.50 0.43 0.62 0. 24 3.5 3.61 4.02 3.88 2.94 2.99 3.69 2.90 -0.02 0.02 0.02 0.03 0.0 5 0.04 0.06 0.02 0.68 0.69 0.6 0.68 0.36 0.45 0.45 0.45 32.7 33.75 37.52 36.28 27.43 27.92 34.45 27.06

    Guilin -1.04 -0.98 -0.7 -0.88 -0.6 -0.58 -1.65 -0.75 3.97 4.01 4.06 4.12 2.93 2.95 4.20 2.95 -0.10 -0.09 -0.07 -0.08 -0.06 -0.06 -0.16 -0.07 0.77 0.77 0.68 0.72 0.63 0.67 0.83 0.75 37.68 37.99 38.49 39.02 27.76 27.97 39.86 28.01 Ganzhou -0.16 -0.23 -0.05 -0.18 -0.06 0.0 4 -1.08 0.12 3.47 3.45 3.78 3.62 2.26 2.36 3.59 2.26 -0.01 -0.02 0 -0.01 -0.01 0 -0.09 0.01 0.44 0.38 0.39 0.35 0.32 0.34 0.52 0.31 28.51 28.34 31.12 29.79 18.59 19.39 29.54 18.63 Gushi -1.36 -1.74 -0.74 -1.36 -0.31 -0.35 -0.38 0.07 6.64 5.98 7.36 6.78 2.93 3.05 7.02 2.85 -0.11 -0.14 -0.06 -0.11 -0.03 -0.03 -0.03 0.01 0.35 0.23 0.24 0.15 0.25 0.37 0.91 0.31 53.78 48.46 59.66 54.97 23.72 24.71 56.88 23.09 Nanjing -0.89 -0.98 -0.69 -0.85 -0.63 -0.58 -1.43 -0.58 3.81 3.73 3.93 3.86 2.23 2.38 3.87 2.2 -0.08 -0.08 -0.06 -0.07 -0.05 -0.05 -0.12 -0.05 0.97 0.7 1.11 0.82 0.47 0.57 0.84 0.6 32.26 31.58 33.24 32.61 18.87 20.16 32.72 18.57

    Hefei -1.03 -1.35 -0.45 -1.07 0.16 0.16 -2.02 -0.37 6.46 5.52 7.27 6.15 2.66 2.79 7.20 2.67 -0.09 -0.12 -0.04 -0.09 0.0 1 0.01 -0.18 -0.03 0.75 0.67 0.69 0.65 0.61 0.8 0.94 0.72 55.91 47.73 62.84 53.16 23.01 24.15 62.31 23.07

    Baoshan-

    0.37-

    0.11

    0.28 0.27 0.53 0.54-

    0.20

    1.03 4.93 4.53 5.01 4.67 2.64 2.71 4.57 2.78-

    0.03-

    0.01

    0.02 0.02 0.0 4 0.05-

    0.02

    0.09 0.88 0.85 0.7 0.98 0.38 0.48 0.87 0.27 41.08 37.68 41.69 38.9 21.99 22.54 38.03 23.13 Shanghai -1.07 -1.45 -0.84 -1.21 -0.4 -0.37 -1.09 -0.14 4.27 4.16 4.35 4.26 2.34 2.45 4.06 2.3 -0.09 -0.12 -0.07 -0.1 -0.03 -0.03 -0.09 -0.01 0.77 0.56 0.69 0.55 0.34 0.39 0.91 0.37 35.48 34.57 36.16 35.42 19.46 20.36 33.79 19.12 Hangzhou -0.48 -0.6 -0.29 -0.48 0.56 0.57 -2.15 -0.12 4.15 4.06 4.21 4.17 2.95 3.11 4.6 2.89 -0.04 -0.05 -0.03 -0.04 0.0 5 0.05 -0.19 -0.01 0.5 0.49 0.54 0.54 0.39 0.51 0.85 0.49 36 35.23 36.52 36.15 25.62 26.99 39.86 25.07 Cixi -1.18 -1.12 -1.02 -1.1 -0.5 -0.49 -0.34 -0.66 4.86 4.57 4.68 4.56 2.93 2.99 4.44 2.91 -0.1 -0.10 -0.09 -0.09 -0.04 -0.04 -0.03 -0.06 0.54 0.63 0.41 0.57 0.65 0.76 0.9 0.77 40.88 38.42 39.38 38.35 24.64 25.17 37.36 24.48 Lushan -2.17 -2.08 -2.07 -2.09 -1.06 -1 -1.47 -1.07 5.93 5.97 6.4 6.21 3.67 3.73 5.73 3.65 -0.19 -0.18 -0.18 -0.18 -0.09 -0.09 -0.13 -0.09 0.84 0.66 0.72 0.64 0.63 0.68 0.91 0.77 50.51 50.85 54.58 52.95 31.29 31.8 48.89 31.12 Nanchang -1.12 -1.04 -0.89 -0.92 -0.67 -0.67 -0.29 -0.35 4.34 4.36 4.57 4.51 3.35 3.47 4.27 3.29 -0.1 -0.09 -0.08 -0.08 -0.06 -0.06 -0.03 -0.03 0.78 0.79 0.83 0.82 0.65 0.7 0.93 0.81 37.77 37.93 39.71 39.26 29.13 30.15 37.14 28.61 Fuzhou -0.63 -0.59 -0.4 -0.46 0.72 0.73 -3.26 0.59 4.06 4.1 4.32 4.3 3.54 3.56 5.22 3.50 -0.05 -0.05 -0.03 -0.04 0.0 6 0.06 -0.28 0.05 0.74 0.75 0.64 0.66 0.16 0.21 0.73 0.2 34.64 35 36.82 36.67 30.15 30.32 44.55 29.83 Shaoguan -2.26 -2.15 -1.82 -2.01 -1.76 -1.76 -3.47 -1.40 4.29 4.27 4.36 4.37 3.48 3.54 5.03 3.29 -0.21 -0.20 -0.17 -0.19 -0.17 -0.17 -0.33 -0.13 0.25 0.2 0.22 0.18 0.63 0.68 0.85 0.8 40.47 40.24 41.1 41.2 32.83 33.39 47.37 31.03 Guangzhou -1.76 -1.82 -1.3 -1.61 -0.22 -0.14 -2.66 -0.56 5.49 5.09 5.52 5.05 2.61 2.65 6.11 2.68 -0.16 -0.17 -0.12 -0.15 -0.02 -0.01 -0.25 -0.05 0.61 0.71 0.82 0.78 0.42 0.43 0.92 0.45 50.62 46.9 50.84 46.59 24.06 24.4 56.28 24.71 Shantou -1.35 -1.16 -0.51 -0.86 0.04 0.1 1.09 0.26 3.96 4.05 4.24 4.25 2.21 2.3 4.11 2.27 -0.1 -0.08 -0.04 -0.06 0 0.01 1.06 0.02 0.68 0.5 0.65 0.47 0.16 0.16 0.86 0.11 28.66 29.31 30.7 30.74 15.99 16.64 29.73 16.45 Nanning -0.13 -0.06 0.44 0.18 1.1 1.10 0.72 1.11 3.59 3.67 4.06 3.92 3.26 3.32 3.81 3.28 -0.01 0 0.04 0.02 0.0 9 0.09 0.06 0.09 0.33 0.35 0.32 0.35 0.39 0.41 0.49 0.43 28.8 29.42 32.57 31.46 26.14 26.64 30.62 26.3Mean -1.02 -1.02 -0.66 -0.87 -0.14 -0.11 -1.1 -0.14 4.50 4.37 4.74 4.57 2.92 3.01 4.72 2.92 -0.09 -0.09 -0.06 -0.07 -0.01 -0.01 -0.05 -0.01 0.62 0.57 0.58 0.56 0.45 0.52 0.82 0.51 38.67 37.55 40.74 39.28 25.2 25.96 40.62 25.15

    5 Heihe -0.34 -0.59 -0.39 -0.55 -0.41 -0.5 -0.74 -0.47 4.01 3.8 3.69 3.68 2.01 2.47 3.70 1.95 -0.03 -0.05 -0.03 -0.05 -0.03 -0.04 -0.06 -0.04 0.03 0.21 0.28 0.28 0.18 0.24 0.63 0.16 33.05 31.28 30.44 30.35 16.6 20.37 30.51 16.09

    Hailaer -0.44 -0.41 -0.46 -0.47 -0.63 -0.26 0.42 0.10 4.02 3.89 3.67 3.66 2.15 2.32 3.61 1.96 -0.03 -0.03 -0.03 -0.04 -0.05 -0.02 0.03 0.01 0.56 0.54 0.44 0.51 0.05 0.12 0.35 -0.02 29.97 28.99 27.35 27.31 16.05 17.29 26.94 14.58 Harbin 0.53 0.42 0.62 0.49 0.69 0.92 -0.19 0.37 4.46 4.24 4.21 4.12 2.83 3.18 4.05 2.77 0.04 0.03 0.05 0.04 0.0 5 0.07 -0.01 0.03 0.27 0.25 0.24 0.23 -0.06 0.01 0.37 -0.06 33.97 32.31 32.1 31.35 21.54 24.24 30.85 21.11 Altai -0.53 -0.33 -0.36 -0.38 -0.92 -0.64 0.30 -0.77 4.15 4.03 3.89 3.93 2.24 2.40 4.09 2.19 -0.04 -0.02 -0.03 -0.03 -0.06 -0.04 0.02 -0.05 0.25 0.24 0.21 0.21 0.09 0.16 0.84 0.1 28.05 27.28 26.33 26.58 15.18 16.25 27.64 14.8Qitai -1.52 -1.82 -1.54 -1.66 -1.5 -1.42 -1.39 -1.52 3.77 3.88 3.58 3.7 2.48 2.73 3.60 2.47 -0.12 -0.14 -0.12 -0.13 -0.12 -0.11 -0.11 -0.12 0.36 0.3 0.33 0.32 0.07 0.16 0.86 0.2 29.54 30.39 28.06 28.99 19.41 21.4 28.17 19.31 Yining 0.21 0.15 0.11 0.03 -0.84 -0.8 -0.17 -0.75 4.11 4.01 3.84 3.88 2.37 2.5 3.92 2.34 0.01 0.01 0.01 0 -0.06 -0.05 -0.01 -0.05 0.41 0.39 0.38 0.36 0.06 0.09 0.64 0.26 27.19 26.56 25.4 25.69 15.67 16.54 25.92 15.5Urumchi -0.52 -0.57 -0.53 -0.67 0 0 -0.26 -0.85 4.69 4.38 4.24 4.17 2.14 2.47 4.22 2.31 -0.04 -0.04 -0.04 -0.05 0 0 -0.02 -0.06 0.13 0.13 0.12 0.12 0.11 0.23 0.89 0.12 34.44 32.11 31.1 30.58 15.67 18.11 30.96 16.93 Turpan -0.43 -0.38 -0.31 -0.42 -0.58 -0.45 -2.29 -0.03 5.06 4.93 4.64 4.54 1.89 2.15 5.19 1.79 -0.03 -0.03 -0.02 -0.03 -0.04 -0.03 -0.15 0 0.66 0.53 0.55 0.52 0.03 0.09 0.35 0 33.69 32.81 30.9 30.21 12.57 14.28 34.52 11.91 Kash -1.3 -1.38 -1.17 -1.31 -0.97 -0.98 -0.94 -0.99 4.05 4.08 4 4.11 2.87 3.01 4.02 2.93 -0.09 -0.09 -0.08 -0.09 -0.06 -0.07 -0.06 -0.07 0.30 0.24 0.24 0.22 0.12 0.15 0.22 0.11 26.87 27.09 26.54 27.26 19.02 19.99 26.69 19.45

    Lanzhou -1 -0.95 -0.95 -1.03 -0.34 -0.39 -1.59 -1.11 4.3 4.28 4.26 4.4 2.09 2.48 4.55 2.33 -0.07 -0.07 -0.07 -0.07 -0.02 -0.03 -0.11 -0.08 0.57 0.57 0.55 0.6 0.28 0.3 0.75 0.41 30.92 30.76 30.56 31.61 15.01 17.83 32.7 16.71

    Datong -1.46 -1.49 -1.41 -1.43 -1.17 -1.02 -1.51 -0.46 4.37 4.3 4.09 4.09 2.44 2.67 4.14 2.12 -0.10 -0.1 -0.1 -0.1 -0.08 -0.07 -0.11 -0.03 0.53 0.51 0.5 0.5 0.21 0.25 0.49 0.11 30.33 29.86 28.42 28.4 16.92 18.51 28.78 14.72

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    8/11

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    9/11

    146 M.-F. Li et al./Energy Conversion and Management 70 (2013) 139148

    Lg: longitude (E); La: latitude (N); AL: altitude (m).

    (zone 1). Similar to temperat ure-based models, the studied sun-shine-based models underestimate d daily Rs in zone 1 whereasoverestimat ed Rs in zones 25.

    In terms of RMSE, model 5 (ngstrmPrescott model) per-formed better than model 6 in all the five zones. Based on %RMSE,models of sunshine based were classified as good (model 5) andfair (model 6). And there were about 75 stations showed fair per-

    formances and over half of the studied stations displayed good per-formances. So it could be reasonable to develop sunshine-ba sedgeneral model from model 5. The comparison between measuredand estimated daily Rs from best site-specific model (sunshinebased) at representat ive stations of five Rs zones was also shown inFig. 2.

    3.3. General models for different solar radiation zones

    3.3.1. General models based on temperaturesModels performed well at individual stations according to the

    statistic indicators (Table 4). But these models were site-spec ificin nature. It was questionable when the site-depend ent modelswere applied to locations with different Rs conditions [37]. Sodeveloping a general model for each Rs zone would make asignif-icant sense.

    In the present work, a general model for each zone was ob-tained using geographical factors (latitude, longitude and elevationof the stations) and the proposed equation which performed best atthe correspondi ng zone. According to RMSE, MBE, %RMSE andMPE, the proposed model 1 was used to develop the general modelfor zone 1, model 4 for zones 2 and 5, and model 2 for zones 3 and4. The coefficients of the general models were shown in Table 5.The performance of the general models based on temperature s foreach zone was given in Table 4.

    Obviously, for the present solar radiation zone, estimated error fromgeneral model (based on temperature s) of zone 2 got lowest errors withmean CRM of-0.02, mean MPE of 0.18 and mean RMSE of 4.24 MJm-2 d-1. Whereas general model of zone 3 yielded high-est errors with

    mean CRM of-0.07, mean MPE of 0.71, mean %RMSE of 41.26%,and mean RMSE of 3.81 MJ m-2 d-1.

    It was not surprising that the general models, which developed tocater for all the stations within the correspond ing solar radiationzones, had higher values of mean RMSE than the best performedmodel at individua l station (Table 4). This was consisten t with thefinding reported by Lam et al. [28]. In terms of RMSE, the dif-

    ferences in the two models (temperature-based) were smaller inzones 2 and 3; best site-specific model had only 1.58% and 1.78% ofRMSE improvem ent to generalized model, respectively. While thedifferences were larger in zones 4 and 1, RMSE of site-spec ificmodel had 8.06% and 10.69% improvement, respectivel y. Theselarge divergences mainly occurred at Emeishan and Panzhihu a sta-tions in zone 1 and Hefei, Fuzhou, Shaoguan and Guangzhou sta-

    tions in zone 4. However, there were 21 stations where generalmodels performed better than best site-depend ent models in termsof RMSE. These stations included Kuqa, Kumul, Minqin, Gol-mud,Hohhot, Gar, Lhasa and Golok of zone 2, Nanchong of zone 3,Wuhan, Shanghai, Cixi, Lushan and Nanchang of zone 4, Hailaer,Harbin, Kash, Qitai, Shenyang , Beijing and Tianjin of zone 5.

    General model of zone 2 performed best with mean %RMSE of24.96% (fair) and there were 36 stations had fair performances. Bycomparison with published work on daily Rs estimating usingtemperat ures in China, the present general model had satisfactoryaccuracy (RMSE varied between 3.81 and 4.72 MJ m-2 d-1 for Rszones). The RMSE of 16 evaluated temperat ure-based models inChina was 3.55.5 MJ m-2 d-1 [23], and RMSE of daily Rs estimat-ing in Nanchang station was 4.325.16 MJ m-2 d-1 [38].

    Fig. 2 showed the correlations between observed and estimated daily Rs from the temperature -based generaliz ed models at therepresentat ive stations of the five zones. Similar fluctuationbehav-iors were also observed between the measured and estimated daily Rs using the best site-depend ent and general models atthese sta-tions. These results indicated that the performanc e ofthe general models should be appreciated.

    3.3.2. General models based on sunshine hoursGeneral models based on sunshine hours for all zones, shown in

    Table 6, were developed from model 5 and correspond ing site geo-graphic informat ion. Validation results of sunshine-ba sed generalmodels were presented in Table 3. In terms of RMSE, the accuracyof general models for zones 35 had a little advanced (about 0.010.06%) to the best site-specific model (model 5), though the

    improvem ent did not show statistic significant. However , general-ized models for zones 1 and 2 did not perform as well as the bestmodel, which was not surprising.

    There were 43 stations that generalized model performed as wellas or even better than the best site-specific models: Hetian, Kumul,Minqin, Gangcha, Haliut, Gar, Lhasa, Yushu, Chamdo in zone 2;Chengdu , Nanchong, Chongqing, Zunyi, Guiyang in zone

    Table 5

    General model and its coefficients based on temperatures for each Rs zone.

    Zone Best model Coefficient

    1 1 a = 1.1096 x 10-3 xLg+ 1.0339 x 10-3 xLa + 1.1745 x 10-5 xAL - 0.1283b = -2.3259 x 10-3 xLg- 1.6079 x 10-3 x La - 9.9444 x 10-6 xAL + 0.2758

    c = 3.0347x

    10-4x

    Lg+ 4.0910x

    10-4x

    La-

    1.0983x

    10-6x

    AL-

    4.3121x

    10-2

    m = -0.59 x Lg- 1.3393 xLa + 1.4215 x 10-3 x AL + 100.9627

    2 4 a = -2.1810 x 10-4 xLg- 1.9361 x 10-3 x La - 5.0589 x 10-6 xAL + 0.2412b = -1.9195 x 10-3 x Lg- 9.7064 x 10-3 x La - 3.7620 x 10-5 x AL + 0.5739m = 0.1454 x Lg+ 0.8317 xLa + 2.8742 x 10-3 x AL - 45.7067

    3 2 a = -3.8086 x 10-3 xLg+ 4.4710 x 10-3 xLa + 2.0595 x 10-5 xAL + 0.2986b = 4.6372 x 10-3 xLg- 4.4339 x 10-3 xLa - 1.8163 x 10-5 xAL - 0.3857c = -1.4080 x 10-2 x Lg+ 5.8467 x 10-2 x La + 2.4218 x 10-4 x AL - 0.5158m = 1.5245 x Lg- 5.3492 x La - 2.4812 x 10-5 xAL + 21.4445

    4 2 a = 1.3868 x 10-3 xLg- 1.8841 x 10-3 xLa + 1.3931 x 10-5 x AL - 7.1953 x 10-2b = -1.1416 x 10-3 xLg+ 1.3806 x 10-3 x La - 9.7985 x 10-6 xAL + 7.0315 x 10-2c = -1.1771 x 10-4 x Lg+ 2.4810 x 10-4 x La - 1.1716 x 10-6 x AL + 1.5744 x 10-3m = 0.1741 x Lg+ 4.7798 x 10-2 x La + 2.5133 x 10-3 x AL-11.7621

    5 4 a = 2.3949 x 10-4 xLg- 2.5318 x 10-3 xLa - 4.6482 x 10-6 xAL + 0.2242b = -3.7143 x 10-4 xLg- 8.4269 x 10-4 x La + 6.5681 x 10-7 x AL - 1.5521 x 10-2m = -8.5609 x 10-3 x Lg+ 0.3568 x La - 1.2468 x 10-4 x AL - 7.1950

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    10/11

    M.-F. Li et al. / Energy Conversion and Management 70 (2013) 139148 147

    Table 6General model and its coefficients based on sunshine hours for each Rs zone.

    Zone Best model Coefficient

    1 5 a = 3.3411 x 10-3 xLg- 2.5937 x 10-3 xLa + 4.0251 x 10-5 xAL + 0.2394m = -4.0154 x 10-3 xLg- 1.437 x 10-4 xLa + 4.7267 x 10-6 xAL + 0.5809

    2 5 a = 5.1597 x 10-3 xLg- 9.0242 x 10-3 xLa + 4.1183 x 10-5 xAL + 0.2754m = -1.6791 x 10-3 x Lg- 2.8984 x 10-3 xLa - 3.1107 x 10-5 xAL + 0.5764

    3 5 a = 1.9863 x 10-3 xLg- 4.0733 x 10-3 xLa + 3.7908 x 10-6 xAL + 0.4855

    m = -4.0766 x 10-3

    xLg+ 7.2451 x 10-3

    xLa + 2.2822 x 10-5

    x AL + 0.35254 5 a = 3.8595 x 10-3 xLg+ 8.1466 x 10-4 xLa + 1.455 x 10-4 xAL + 0.0953

    m = -1.4409 x 10-3 x Lg- 4.8707 x 10-4 xLa - 1.9018 x 10-5 xAL + 0.3285 5 a = 8.7085 x 10-4 xLg+ 1.1277 x 10-3 xLa + 3.4923 x 10-6 xAL + 0.4038

    m = -9.9688 x 10-4 xLg+ 2.4799 x 10-3 xLa + 8.3594 x 10-6 x AL + 0.1827

    Lg: longitude (E); La: latitude (N); AL: altitude (m).

    3; Changsha, Gushi, Nanjing, Shanghai, Hangzhou, Cixi, Lushan,Nanchang, Fuzhou, Shaoguan in zone 4 and Heihe, Hailaer, Harbin,Altai, Qitai, Yining, Turpan, Datong, Taiyuan, Xilinhot, Changchun,Chaoyang, Shenyang, Beijing, Tianjin, Leting, Dalian, Yantai, Jinanin zone 5.

    General model based on sunshine hours performed better than thatbased on temperatures. And accordin g to %RMSE, general modelsof zones 2 and 5 were good (%RMSE < 20%) while general modelsof zones 1, 3 and 4 were fair (20% < %RMSE < 30%). For sta-tions,there were 51 stations had good validation results (%RMSE < 20%)based on sunshine general models. Since there was little workfocused on daily Rs estimation for Rs zone in China, the currentresult was compared with Lam et al. [28]. They applied ANN toestimate daily Rs for nine climatic zones [28]. RMSE value yieldedby the current study based on sunshine data was 2.3252.916 MJ m-2d-1 whereas RMSE of ANN model [28] for climatic zones was 1.423.98 MJ m-2 d-1. This indicated that the current general models hadacceptable accuracy in daily Rs estimation for Rs zones in China. Thecomparison between the observed daily Rs and best modeled andgeneral modeled Rs were shown in Fig. 2. The closeness of measuredRs and estimated Rs confirmed the abil-ity of the general model to

    estimate daily Rs in mainland China.

    4. Conclusions

    The long term measured daily global solar radiation, relativehumidity, maximum and minimum temperature s, and sunshinehours from 83 stations in mainland China were collected and ana-lyzed. Five solar radiation zones were identified by k-means clus-tering based on the measured daily mean Rs. Models based ontemperature s and sunshine hours were developed and validated,respectively . According to RMSE, MBE, MPE, %RMSE andCRM, the best model (temperature- and sunshine-ba sed,respectively) for estimating daily Rs was determined . Linearregression between the coefficients of the best site-depend entmodel and the geo-graphical parameters (latitude, longitude andelevation) of the cor-responding station were carried out to developthe general model (temperature- and sunshine -based, respectivel y)for each solar radiation zone. The results showed that the proposedgeneral mod-els for each solar radiation zone should be appreciated.The devel-oped models are useful to estimate solar radiation wheneither temperature and humidity data or sunshine hour data areavailable for the locations in mainland China.

    Acknowled gements

    The work described in this paper was supported by Chongqin gKey Laborato ry of Digital Agriculture, Southwest University Sci-ence and Technology Innovation Fund for graduate student (No.2010014), the Fundamental Research Funds for the Central Univer-

    sities (XDJK2011D001) and Science, and Technolo gy Projects ofChina National Tobacco Corporation (CNTC) Chongqing companies(NY20110601070002).

    References

    [1] Hansen S, Jensen HE, Nielsen NE, Svendsen H. DAISY: soil plantatmosphere system model. NPO Report No. A10. The National Agency forEnvironmental Protection, Copenhagen; 1990.

    [2] Stckle CO, Donatelli M, Nelson R. CropSyst, a cropping systems simulationmodel. Eur J Agron 2003;18:289307.

    [3] Haxeltine A, Prentice IC. BIOME3: an equilibrium terrestrial biosphere modelbased on ecophysiological constraints, resources availability, and competitionamong plant function types. Global Biogeochem Cycles 1996;10:693709.

    [4] Yang L, Lam JC, Liu J. Analysis of typical meteorological years in differentclimates of China. Energy Convers Manage 2007;48:65468.

    [5] Chen R, Kang E, Yang J, Lu S, Zhao W. Validation of five global radiation modelswith measured daily data in China. Energy Convers Manage 2004;45:175969.

    [6] Chen JL, Liu HB, Wu W, Xie DT. Estimation of monthly solar radiationfrom measured temperatures using support vector machines a case study.Renew Energy 2011;36:41320.

    [7] Zhou J, Wu YZ, Yan G. General formula for estimation of monthly average dailyglobal solar radiation in China. Energy Convers Manage 2005;46:25768.

    [8] ngstrm A. Solar and terrestrial radiation. Quart J Roy Met Soc1924;50:1215.

    [9] Prescott JA. Evaporation from water surface in relation to solar radiation.Trans Roy Soc Sci Aust 1940;64:11425.

    [10] Almorox J, Hontoria C. Global solar radiation estimation using sunshineduration in Spain. Energy Convers Manage 2004;45:152935.

    [11] Supit I, van Kappel RR. A simple method to estimate global radiation. SolEnergy 1998;63:14760.

    [12] Muneer T, Gul MS. Evaluation of sunshine and cloud cover based models forgenerating solar radiation data. Energy Convers Manage 2000;41:46182.

    [13] Hargreaves GH, Samani ZA. Estimating potential evapotranspiration. J IrrigDrain Eng 1982;108:22330.

    [14] Bristow KL, Campbell GS. On the relationship between incoming solarradiation and daily maximum and minimum temperature. Agric ForestMeteorol 1984;31:59166.

    [15] Hargreaves GH. Simplified coefficients for estimating monthly solarradiation in North America and Europe. Departmental Paper, Dept of Bioland Irrig Eng, Utah State University, Logan; 1994.

    [16] Allen RG. Self-calibrating method for estimating solar radiation from airtemperature. J Hydrol Eng 1997;2:5667.

    [17] Ehnberg JSG, Bollen MHJ. Simulation of global solar radiation based oncloud observations. Sol Energy 2005;78:15762.

    [18] Almorox J, Hontoria C, Benito M. Models for obtaining daily global solarradiation with measured air temperature data in Madrid (Spain). Appl Energy2011;88:17039.

    [19] Yang K, Koike T, Ye BS. Improving estimation of hourly, daily, and monthlysolar radiation by importing global data sets. Agric Forest Meteorol2006;137:4355.

    [20] Hargreaves GL, Hargreaves GH, Riley P. Irrigation water requirement for theSenegal River Basin. J Irrig Drain Eng 1985;111:26575.

    [21] Chen R, Kang E, Lu S, Yang J, Ji X, Zhang Z, et al. New methods to estimateglobal radiation based on meteorological data in China. Energy ConversManage 2006;47:29918.

    [22] Janjai S, Pankaew P, Laksanaboonsong J. A model for calculating hourly globalsolar radiation from satellite data in the tropics. Appl Energy 2009;86:14507.

    [23] Liu X, Mei X, Li Y, Wang Q, Jensen JR, Zhang Y, et al. Evaluation oftemperature-based global solar radiation models in China. Agric ForestMeteorol 2009;149:143346.

    [24] Grant RH, Hollinger SE, Hubbard KG, Hoogenboom G, Vanderlip RL. Ability to

    predict daily solar radiation values from interpolated climate records for use incrop simulation models. Agric Forest Meteorol 2004;127:6575.

  • 7/27/2019 Modelos generales para la estimacin de la radiacin solar global diaria para diferentes zonas de radiacin solar e

    11/11

    148 M.-F. Li et al./Energy Conversion and Management 70 (2013) 139148

    [25]Li MF, Liu HB, Guo PT, Wu W. Estimation of daily solar radiation fromroutinely observed meteorological data in Chongqing, China. Energy ConversManage 2010;51:25759.

    [26]Thermal design code for civil building (GB50176-93). Beijing: ChinaArchitecture and Building Press; 1993. [in Chinese].

    [27]Lau CCS, Lam JC, Liu Y. Climate classification and passive solar designimplications in China. Energy Convers Manage 2007;48:200615.

    [28]Lam JC, Wan KKW, Liu Y. Solar radiation modelling using ANNs fordifferent climates in China. Energy Convers Manage 2008;49:108090.

    [29]Wan KKW, Tang HL, Yang L, Lam JC. An analysis of thermal and solar zone

    radiation models using an AngstromPrescott equation and artificial neuralnetworks. Energy 2008;33:111527.

    [30]Jiang Y. Estimation of monthly mean daily diffuse radiation in China. ApplEnergy 2009;86:145864.

    [31]Zscheischler J, Mahecha MD, Harmelin S. Climate classifications: the value ofunsupervised clustering. Procedia Computer Sci 2012;9:897906.

    [32]Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspirationguidelinesfor computing crop water requirementsFAO irrigation and drainage paper 56.Food and Agriculture Organization of the United Nations, Rome; 1998.

    [33]Liu X, Mei X, Li Y, Zhang Y, Wang Q, Jensen RJ, et al. Calibration of thengstrmPrescott coefficients (a and b) under different time scales and theirimpacts in estimating global solar radiation in the Yellow River basin. AgricForest Meteorol 2009;149:697710.

    [34]Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R. Estimation ofmonthly solar radiation from measured air temperature extremes. Agric ForestMeteorol 2008;148:170718.

    [35]Jamieson PD, Porter JR, Wilson DR. A test of the computer simulation modelARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Res1991;27:33750.

    [36]Heinemann AB, van Oort PAJ, Fernandes DS, de H.N. Maia A. Sensitivity ofAPSIM/ORYZA model due to estimation errors in solar radiation. Bragantia,Campinas, vol. 71; 2012. p. 57282. doi:10.1590/S0006-87052012000400016 .

    [37]Skeiker K. Correlation of global solar radiation with common geographicaland meteorological parameters for Damascus province, Syria. Energy ConversManage 2006;47:33145.

    [38]Wu G, Liu Y, Wang T. Methods and strategy for modeling daily global solarradiation with measured meteorological data a case study in Nanchangstation, China. Energy Convers Manage 2007;48:244752.