Motor de Carga Estratificada

24
MOTOR DE CARGA ESTRATIFICADA Una variante del motor de encendido con bujías es el motor de carga estratificada, diseñado para reducir las emisiones sin necesidad de un sistema de recirculación de los gases resultantes de la combustión y sin utilizar un catalizador. La clave de este diseño es una cámara de combustión doble dentro de cada cilindro, con una antecámara que contiene una mezcla rica de combustible y aire mientras la cámara principal contiene una mezcla pobre. La bujía enciende la mezcla rica, que a su vez enciende la de la cámara principal. La temperatura máxima que se alcanza es suficiente como para impedir la formación de óxidos de nitrógeno, mientras que la temperatura media es la suficiente para limitar las emisiones de monóxido de carbono e hidrocarburos. Motor de 5 tiempos…¿El futuro del automóvil? Probablemente a la mayoría de ustedes el nombre de Ilmor no le suene en absoluto, pero se trata de un fabricante de motores de gran trayectoria, encargado de, por ejemplo, fabricar los motores F1 que utiliza el equipo Mercedes de la máxima categoría del automovilismo mundial. Esta firma ha creado

Transcript of Motor de Carga Estratificada

Page 1: Motor de Carga Estratificada

MOTOR DE CARGA ESTRATIFICADA

Una variante del motor de encendido con bujías es el motor de carga estratificada, diseñado para reducir las emisiones sin necesidad de un sistema de recirculación de los gases resultantes de la combustión y sin utilizar un catalizador. La clave de este diseño es una cámara de combustión doble dentro de cada cilindro, con una antecámara que contiene una mezcla rica de combustible y aire mientras la cámara principal contiene una mezcla pobre. La bujía enciende la mezcla rica, que a su vez enciende la de la cámara principal. La temperatura máxima que se alcanza es suficiente como para impedir la formación de óxidos de nitrógeno, mientras que la temperatura media es la suficiente para limitar las emisiones de monóxido de carbono e hidrocarburos.

Motor de 5 tiempos…¿El futuro del automóvil?

Probablemente a la mayoría de ustedes el nombre de Ilmor no le suene en absoluto, pero se trata de un fabricante de motores de gran trayectoria, encargado de, por ejemplo, fabricar los motores F1 que utiliza el equipo Mercedes de la máxima categoría del automovilismo mundial. Esta firma ha creado un pequeño motor de 5 tiempos, de gran rendimiento y eficiencia comparado con motores de combustión interna de 4 tiempos actuales, además de tener bajo consumo. A continuación, algunos detalles más de este asombroso pequeño gigante…

Page 2: Motor de Carga Estratificada

Potencia y Eficiencia

El motor que ha presentado Ilmor es un pequeñísimo tres cilindros de 700 cc turboalimentado que, a pesar de tan reducida cilindrada, logra la asombrosa potencia de130 caballos, lo que significa la impresionante cifra de 185 caballos/litro, cifra que supera a los mejores motores chicos de 4 tiempos (como el excelente 1,4 TSI de 170 caballos de Volkswagen, de 121 caballos/litro) e incluso supera a los motores rotativos, como el RENESIS del RX-8 y sus 231 caballos del 1,3 litros bi-rotor (177 caballos/litro). El 0,7 también ha resultado favorecido en las mediciones de par motor, logrando unos buenos 165 Nm.

Y hay más, no solo se aumenta la relación potencia/cilindrada sino que también aumenta la eficiencia del motor. Según Ilmor este 5 tiempos es un 5% más eficiente que un motor pequeño de inyección directa de la actualidad, utilizando una inyección indirecta multipunto. También será ecológico, porque si comparamos sus características técnicas contra un pequeño motor diesel el 5 tiempos termina ganando no solo en potencia y eficiencia, sino también en consumo. 

Aún está en fase experimental, pero desde la firma suponen que su potencia final se

Page 3: Motor de Carga Estratificada

situará alrededor de los 150 caballos y que el motor pesará un 20% menos que un motor convencional.

Cilindros y combustión

Respecto al motor, hablamos de que posee tres cilindros, pero los tres no tienen la misma capacidad, sino que los externos son gemelos pero el central es mayor. Los cilindros exteriores operan en un ciclo convencional de cuatro tiempos (admisión, compresión, explosión y escape) pero sus gases de escape pasan al cilindro central, dentro del cual se realiza un quinto tiempo que es el que consigue más fuerza. Debido al uso de un cilindro central más grande desde Ilmor se afirma que su suavidad será similar a un motor 4 cilindros, solucionando así problemas de descompensación y ruidos molestos característicos de los motores de cuyos 3 cilindros son de igual tamaño.

Posibles aplicaciones

Page 4: Motor de Carga Estratificada

El campo de aplicación de este motor es muy amplio, pero se avisoran muchos interesados en fabricantes de autos híbridos, aunque también es un buen candidato a usarse en pequeños autos normales. Un motor de esta potencia y de tan pocas emisiones por su reducida cilindrada será un duro rival de los motores diesel de poca potencia. Por lo pronto está en fase experimental, pero ya están buscando fabricantes a los que vender la idea…

MOTTOR DE GASOLINA (CONVENCIONAL DE OTTO)

El motor se caracteriza por aspirar una mezcla aire-combustible (típicamente gasolina dispersa en aire). El motor Otto es un motor alternativo. Esto quiere decir de que se trata de un sistema pistón-cilindro con válvulas de admisión y válvulas de escape.

El funcionamiento del motor Otto de cuatro tiempos:

Cada cilindro tiene dos válvulas, la válvula de admisión A y la de escape E . Un mecanismo que se llama árbol de llevas las abre y las cierra en los momentos adecuados. El movimiento de vaivén del émbolo se transforma en otro de rotación por una biela y una manivela.

El funcionamiento se explica con cuatro fases que se llaman tiempos:

1. tiempo (aspiración): El pistón baja y hace entrar la mezcla de aire y gasolina preparada por el carburador en la cámara de combustión.

2. tiempo (compresión): El émbolo comprime la mezcla inflamable. Aumenta la temperatura.

3. tiempo (carrera de trabajo): Una chispa de la bujía inicia la explosión del gas, la presión aumenta y empuja el pistón hacia abajo. Así el gas caliente realiza un trabajo.

Page 5: Motor de Carga Estratificada

4. tiempo (carrera de escape): El pistón empuja los gases de combustión hacia el tubo de escape.

El árbol de manivela convierte el movimiento de vaivén del pistón en otro de rotación. Durante dos revoluciones sólo hay un acto de trabajo, lo que provoca vibraciones fuertes. Para reducir éstas, un motor normalmente tiene varios cilindros, con las carreras de trabajo bien repartidas. En coches corrientes hay motores de 4 cilindros, en los de lujo 6, 8, 12 o aún más.

La eficiencia de los motores Otto modernos se ve limitada por varios factores, entre otros la pérdida de energía por la fricción y la refrigeración. En general, la eficiencia de un motor de este tipo depende del grado de compresión. Esta proporción suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octano. La eficiencia media de un buen motor Otto es de un 20 a un 25%: sólo la cuarta parte de la energía calorífica se transforma en energía mecánica.

MOTOR DIESEL

El motor diésel es un motor térmico de combustión interna en el cual el encendido se logra por la temperatura elevada producto de la compresión del aire en el interior del cilindro. Fue inventado y patentado por el ingeniero aleman Rudolf Diesel en 1892. El motor de gasolina al principio tenía muy poca eficiencia. Rudolf Diesel estudió las razones y desarrolló el motor que lleva su nombre (1892), cuya eficiencia es bastante mayor. En teoría, el ciclo diésel difiere del ciclo Otto en que la combustión tiene lugar en este último a volumen constante en lugar de producirse a una presión constante. La mayoría de los motores diesel tienen también cuatro tiempos, si bien las fases son diferentes de las de los motores de gasolina.

Un motor diésel funciona mediante la ignición de la mezcla aire-gas sin chispa. La temperatura que inicia la combustión procede de la elevación de la presión que se produce en el segundo tiempo motor, compresión. El combustible diésel se inyecta en la parte superior de la cámara de compresión a gran presión, de forma que se atomiza y se mezcla con el aire a alta temperatura y presión. Como resultado, la mezcla se quema muy rápidamente. Esta combustión ocasiona que el gas contenido en la cámara se expanda, impulsando el pistón hacia abajo. La biela transmite este movimiento al cigüeñal, al que hace girar, transformando el movimiento lineal del pistón en un movimiento de rotación.

Hay motores diesel de dos y de cuatro tiempos. Uno de cuatro tiempos se explica así: En la primera fase se absorbe aire hacia la cámara de combustión. En la segunda fase, la fase de compresión, el aire se comprime a una fracción de su volumen original, lo cual hace que se caliente hasta unos 440 ºC . Al final de la fase

Page 6: Motor de Carga Estratificada

de compresión se inyecta el combustible vaporizado dentro de la cámara de combustión, produciéndose el encendido a causa de la alta temperatura del aire. En la tercera fase, la fase de potencia, la combustión empuja el pistón hacia atrás, trasmitiendo la energía al cigüeñal. La cuarta fase es, al igual que en los motores Otto, la fase de expulsión.

Algunos motores diésel utilizan un sistema auxiliar de ignición para encender el combustible para arrancar el motor y mientras alcanza la temperatura adecuada.

La eficiencia de los motores diesel depende, en general, de los mismos factores que los motores Otto, y es mayor que en los motores de gasolina, llegando a superar el 40%. Este valor se logra con un grado de compresión de 14 a 1, siendo necesaria una mayor robustez, y los motores diesel son, por lo general, más pesados que los motores Otto. Esta desventaja se compensa con una mayor eficiencia y el hecho de utilizar combustibles más baratos.

Los motores diésel suelen ser motores lentos con velocidades de cigüeñal de 100 a 750 revoluciones por minuto (rpm o r/min), mientras que los motores Otto trabajan de 2.500 a 5.000 rpm. No obstante, algunos tipos de motores diesel trabajan a velocidades similares que los motores de gasolina.

Cómo funciona un motor de 2 tiempos

El motor de 2 tiempos es, junto al motor de 4 tiempos, un motor de combustión interna con un ciclo de cuatro fases de admisión, compresión, combustión y escape, como el 4 tiempos, pero realizadas todas ellas en sólo 2 tiempos, es decir, en dos movimientos del pistón. 

En un motor 2 tiempos se produce una explosión por cada vuelta de cigüeñal mientras que en un motor 4 tiempos se produce una explosión por cada dos vueltas de cigüeñal, lo que significa que a misma cilindrada se genera mayor potencia, pero también un mayor consumo de combustible. 

Los motores 2 tiempos han ido siendo sustituidos por los 4 tiempos dado su carácter más contaminante y en motos sólo lo encontramos hoy día en ciclomotores de motores pequeños y en algunas motos de enduro o motocross. Un motor 2 tiempos es más sencillo y ligero que un 4 tiempos ya que está compuesto por menos piezas, originariamente no utiliza válvulas de admisión y de escape, son más económicos de fabricar y requieren un menor mantenimiento, pero su mayor régimen de giro les provoca sin embargo un mayor desgaste. 

Page 7: Motor de Carga Estratificada

La lubricación de un motor 2 tiempos va incluida en la mezcla y junto a la gasolina y el aire se añade aceite, de ahí que al ser quemado sea mucho menos respetuoso con el medio ambiente. Así pues el cárter del cigüeñal está sellado ya que alberga la entrada de la mezcla y las dos caras del pistón entran en acción, la superior para comprimir la mezcla y la inferior para provocar su admisión al cárter. Estos son los pasos de un ciclo 2 tiempos. 

Tiempo 1: ADMISIÓN - COMPRESIÓN

En un motor 2 tiempos es el propio pistón el que, con su movimiento, abre la admisión de la mezcla, a la altura del cárter, y el escape de los gases quemados, a la altura de la cámara de combustión. 

La admisión y la compresión se realizan al mismo tiempo. En el tiempo 1 el pistón va de abajo a arriba, es decir, desde el cárter hacia la culata. En su desplazamiento succiona la mezcla de gasolina, aire y aceite en su parte inferior, mientras que simultáneamente se encarga de comprimir la mezcla de la admisión anterior en la parte superior. 

Tiempo 2: COMBUSTIÓN - ESCAPE

El segundo tiempo comienza con el pistón situado en su punto muerto superior, comprimiendo al máximo la mezcla de gasolina, aire y aceite, lo que hace chocar sus moléculas más rápidamente y aumentar considerablemente la temperatura de la mezcla. 

Es en ese momento cuando la bujía genera una chispa que incendia la mezcla provocando su combustión. Esta explosión hace mover violentamente el pistón hacia abajo, transmitiendo el movimiento al cigüeñal a través de la biela, y con ese movimiento deja abierto el escape por donde son liberados los gases recién quemados. 

Pero hay más, en ese movimiento descendiente el pistón empuja la mezcla nueva que había entrado en su anterior subida, y al bajar transfiere la mezcla del cárter a la cámara de combustión, preparando así el proceso para volver a comenzar de nuevo en el primer tiempo anteriormente descrito. 

Como ves, un motor de 2 tiempos gira mucho más rápido que uno de 4 tiempos, y aunque su funcionamiento sea un poco más complejo de explicar su funcionamiento es mucho más sencillo. Por si acaso, aquí tienes un vídeo explicativo sobre los

Page 8: Motor de Carga Estratificada

ciclos de un motor de 2 tiempos con el que podrás ver lentamente cada uno de sus movimientos.

Motor Wankel

Para el motor radial rotatorio, véase Motor rotativo.

Motor Wankel en el Deutsches Museumen Múnich (Alemania)

El motor Wankel es un tipo de motor de combustión interna, inventado por Félix Wankel, que utiliza rotores en vez de los pistones de los motores alternativos.

Wankel concibió su motor rotativo en 1924 y obtuvo la patente en 1929. Durante los años 1940 se dedicó a mejorar el diseño. En los años 1950 y los1960 se hicieron grandes esfuerzos en desarrollar los motores rotativos Wankel. Eran especialmente interesantes por funcionar de forma suave y silenciosa, y con escasas averías, gracias a la simplicidad de su diseño.

Funcionamiento[editar]

Page 9: Motor de Carga Estratificada

Animación de un motor Wankel

Un motor rotativo o Wankel, en honor a su creador Félix Wankel, es un motor de combustión interna que funciona de una manera completamente diferente de los motores alternativos.

En un motor alternativo, se efectúan sucesivamente 4 diferentes operaciones dentro de una cámara -admisión, compresión, combustión y escape-. En un motor Wankel se desarrollan los mismos 4 tiempos pero en zonas distintas del estator o bloque, con el pistón moviéndose sin detenciones de un tiempo a otro. Más concretamente, el envolvente es una cavidad con forma de 8, dentro de la cual se encuentra un rotor triangular o triángulo lobular que realiza un giro de centro variable. Este pistón transmite su movimiento rotatorio a un eje cigüeñal que se encuentra en su interior, y que gira ya con un centro único.

Al igual que un motor de pistones, el rotativo utiliza la presión producida por la combustión de la mezcla aire-combustible. La diferencia radica en que esta presión está contenida en la cámara formada por una parte de la envolvente o estator y cerrada por uno de los lados del rotor triangular, que en este tipo de motor reemplaza a los pistones.

El rotor sigue un recorrido en el que mantiene sus 3 vértices en contacto con el "estator" o "epitrocoide", delimitando así tres compartimentos separados de mezcla. A medida que el rotor gira dentro de la cámara, cada uno de los 3 volúmenes se expande y contrae alternativamente; es esta expansión-contracción la que aspira el aire y el combustible hacia el motor, comprime la mezcla, extrae su energía expansiva y luego expulsa los gases quemados hacia el escape. 1

Ventajas e inconvenientes[editar]

Page 10: Motor de Carga Estratificada

Ventajas[editar]

Menos piezas móviles: el motor Wankel tiene menos piezas móviles que un motor convencional, tan solo 4 piezas; bloque, rotor (que a su vez está formado por segmentos y regletas), árbol motriz y sistema de refrigeración/engrase (similar a los que montan los motores de pistón). Esto redunda en una mayor fiabilidad.

Suavidad de marcha: todos los componentes de un motor rotativo giran en el mismo sentido, en lugar de sufrir las constantes variaciones de sentido a las que está sometido un pistón. Están equilibrados internamente con contrapesos giratorios para suprimir cualquier vibración. Incluso la entrega de potencia se desarrolla en forma más progresiva, dado que cada etapa de combustión dura 90° de giro del rotor y a su vez como cada vuelta del rotor representa 3 vueltas del eje, cada combustión dura 270° de giro del eje, es decir, 3/4 de cada vuelta; compárenlo con un motor monocilíndrico, donde cada combustión transcurre durante 180° de cada 2 revoluciones, o sea 1/4 de cada vuelta del cigüeñal: se produce una combustión cada 120º del rotor y 360º del eje. Un motor Wankel de dos rotores equivale en uniformidad de par a un 6 cilindros alternativo.

Menor velocidad de rotación: dado que los rotores giran a 1/3 de la velocidad del eje y al tocar el estator, las piezas principales del motor se mueven más lentamente que las de un motor convencional, aumentando la fiabilidad, una vez resueltos los problemas iniciales en elegir los materiales más adecuados, los segmentos siempre están en movimiento respecto a las partes fijas, no hay puntos muertos como en los motores alternativos, y precisamente en esos puntos muertos, donde al no haber velocidad relativa de una pieza respecto a otra no hay lubricación (ver tribología) se producen los mayores desgastes.

Menores vibraciones: dado que las inercias internas del motor son muy pequeñas (no hay bielas, ni volante de inercia, ni recorrido de pistones, ni movimiento), solo se producen pequeñas vibraciones en la excéntrica.

Menor peso: debido al menor número de piezas que forman el motor en comparación con los de pistones y dado que generalmente se construyen motores de dos o tres rotores de 600 cc o 700 cc cada uno, ayuda a conseguir un menor peso final del mismo.

Inconvenientes[editar]

Emisiones: es más complicado (aunque no imposible) ajustarse a las normas de emisiones contaminantes, ya que trabaja igual que un motor de 2 tiempos, consumiendo aire, combustible y aceite.

Costos de mantenimiento: al no estar tan difundido, su mantenimiento resulta más complejo por la dificultad en encontrar personal adecuadamente formado en este tipo de motor.

Page 11: Motor de Carga Estratificada

Consumo: la eficiencia termodinámica (relación energía disponible en el combustible/potencia efectiva) se ve reducida por la forma alargada de las cámaras de combustión, con una alta relación superficie/volumen.

Difícil estanqueidad: resulta muy difícil aislar cada una de las 3 secciones del rotor, que deben ser estancas unas respecto a otras para un buen funcionamiento. Además se hacía necesario cambiar el sistema de estanqueidad cada 6 años aproximadamente, por su fuerte desgaste.

Sincronización: la sincronización de los distintos componentes del motor debe ser muy buena para evitar que el encendido de la mezcla se inicie antes de que el pistón rotativo se encuentre en la posición adecuada. Si el encendido es precoz, empujará en sentido contrario al deseado, pudiendo averiar el motor.

Encendido: El número y la situación de las bujías influían en el rendimiento del motor y en su complejidad: han evolucionado a una única bujía por cámara para la mayoría de aplicaciones, como en los motores alternativos.

Mantenimiento: Los segmentos que garantizan la estanqueidad debían cambiarse en plazos determinados debido al desgaste producido por el constante rozamiento de los vértices del rotor con la superficie de revestimiento de la epitrocoide, asunto solucionado desde los años 70.

Freno motor El motor rotativo Wankel, como los motores de 2T, tiene menos freno motor que los motores alternativos de 4T, por lo que los vehículos que lo usan precisan unos frenos de mayores dimensiones.

Historia[editar]

El NSU Spider fue el primer coche de producción en el mundo propulsado por un motor rotativo Wankel

Hacia 1972 se presentaron algunos prototipos de motocicletas con motor Wankel de dos rotores: la Yamaha RZ-201 (Patente US Nº 396448) y la Kawasaki X-99 (Pat US 3848574), que aunque aseguraron haber resuelto los problemas técnicos planteados, no llegaron a fabricarse en serie. DKW-Hercules tuvo en venta entre

Page 12: Motor de Carga Estratificada

1970 y 1975 una motocicleta, la W-2000, con un motor Sachs KC-27 refrigerado por aire, de un desplazamiento equivalente a 600 cc y 27 CV. En Gran Bretaña, David W. Garside -SAE paper 821068- desarrolló a partir del motor de esa DKW un motor Wankel de dos rotores para motocicletas, en versiones con refrigeración por aire y por líquido, los rotores iban refrigerados por la mezcla que llegaba a la admisión, que fueron instalados en la Norton Commander y la Norton Interpol; Suzuki también fabricó una moto con motor Wankel, la RE-5. John Deere Inc., en EEUU, invirtió un gran esfuerzo de investigación en motores rotativos y diseñó una versión multirotor que era capaz de usar varios tipos de combustible sin tener que cambiar el motor. El diseño fue propuesto como sistema motriz para varios vehículos de combate de la Marina estadounidense en los últimos años de la década de 1980.

Ingersoll-Rand fabricó y vendió durante más de diez años un motor para usos industriales que quemaba gas, con un desplazamiento de 41 litros, 1000 CV y un solo rotor. Curtiss-Wright ha fabricado diversos prototipos de motor para automoción y aviación general, en ésta tendrían la ventaja del menor peso, ausencia de vibraciones y una mejor pauta de funcionamiento en caso de averías, que nunca serían instantáneas, totales y catastróficas como en un motor convencional de pistones alternativos, suministrando el Wankel algo de potencia durante un tiempo, lo que permite buscar una zona de aterrizaje más segura. Rolls-Royce (D W Garside) desarrolló un motor de encendido por compresión (Diesel), con etapas de compresión y combustión independientes. Graupner vendió un mini-motor para aeromodelos de 4'5 cc.

La japonesa Yanmar Diesel fabricó varios motores pequeños, incluso una motosierra Wankel, Sachs fabricó en serie varios motores refrigerados por aire y mezcla, uno de ellos equipó una segadora de césped francesa: Outils Wolf Rotondor, que para reducir costes no llevaba segmentos en la parte inferior del rotor, que iba en posición horizontal. También Kawasaki patentó un motor con refrigeración por mezcla aire-combustible (Pat US 3991722), y un procedimiento para mejorar la combustión y con ello el consumo y la emisión de contaminantes (Pat. U.S. 3848574) y presentó un prototipo de motocicleta con un motor bi-rotor, la Kawasaki X-99, que no llegó a entrar en producción, como tampoco lo hizo un modelo similar de Yamaha, la RZ-201. La línea de rotativos para aviones ligeros desarrollados a partir de los modelos de Norton, fabricados con la marca Mid-West Aeroengines, pasó a la austriaca Diamond Engines, después Austro Engines.

Tras un uso ocasional en automóviles, por ejemplo NSU con sus modelos Spider y Ro 80 2  y el prototipo Audi 200, que hacia 1975 montaba en una carrocería de Audi 100 un motor Wankel KKM 871, con 3000 cc, admisión por lumbreras laterales, 170 CV a 6500 rpm y un par motor de 220 Nm a 3500 rpm, o Citroën con el M 35 y GS Birrotor, e intentos fracasados llevados a cabo porGeneral Motors que anunció haber resuelto el problema del consumo pero no lograrlo en el de las emisiones en los gases de escape, o Mercedes-Benz (véase el prototipo Mercedes-Benz C111), la compañía japonesa Mazda ha sido la que ha

Page 13: Motor de Carga Estratificada

hecho un mayor uso de motores Wankel en automóviles. En China, el profesor Teluan Chen estuvo al frente de una amplia línea de investigación en motores Wankel, obteniendo resultados valiosos.

Después de muchos años de desarrollo, Mazda lanzó sus primeros coches con motores Wankel en los primeros años 1970. Aunque la mayoría de los clientes adoraban estos coches, especialmente por su suavidad, tuvieron la mala suerte de ser puestos a la venta en una época de grandes esfuerzos para reducir las emisiones y aumentar la economía en combustible. Mazda abandonó el Wankel casi totalmente en el diseño de sus coches generalistas, pero continuó usando una versión biturbo de entrada en funcionamiento secuencial y dos rotores en su mítico deportivo RX-7 hasta el final de su producción en agosto de 2002. En el 2003, la marca japonesa relanzó el motor Wankel con el RX-8, que montaba una nueva versión atmosférica del birrotor, teóricamente más fiable y con menores consumos tanto de combustible como de lubricante, la característica más novedosa de este motor es que tanto la admisión como el escape se hacen mediante lumbreras laterales, lo que elimina el solapamiento entre los tiempos de admisión y escape, y con ello el paso de mezcla sin quemar al escape, y de gases del escape al tiempo de admisión.

En el mundo de las carreras, Mazda ha tenido un éxito sustancial con sus coches de dos y cuatro rotores, y corredores privados han cosechado también un considerable éxito con coches Mazda propulsados por motores Wankel, tanto originales como modificados. En 1991 el motor Wankel llegó a uno de los mejores momentos en competición, al conseguir Mazda la victoria en las 24 horas de Le Mans con su prototipo 787B que montaba un motor de cuatro rotores y 2622 cc de cilindrada, con lumbreras de admisión en posición periférica y conductos de admisión de geometría variable, al estilo de un trombón de varas. Este automóvil fue el que menos consumo de combustible tuvo en la carrera de ese año, y al año siguiente Mazda ya no pudo participar con motores Wankel en esa carrera al cambiarse el reglamento.

Dificultades técnicas[editar]

Curtiss-Wright demostró que el factor que controla las emisiones de hidrocarburos no quemados (HC) era la temperatura de la superficie del rotor, a mayor temperatura, menos concentración de HC sin quemar en los gases de escape, y demostraron también que se podía ensanchar el rotor manteniendo el resto de la geometría del motor y aumentando así el desplazamiento y la potencia. Otros fabricantes proponen que la causa fundamental de la emisión de contaminantes a altas rpm es el laminado dentro de la cámara de combustión, y a bajas velocidades las fugas de estanqueidad. El motor Wankel por sus propias características produce poca contaminación por NO; uno de los procedimientos clásicos de reducción de emisiones de NO ha sido la recirculación de los gases de escape, que en el motor Wankel era un rasgo intrínseco. (En general, en los motores se producen más NOx si la temperatura en la cámara de combustión es

Page 14: Motor de Carga Estratificada

más alta; según Harry Ricardo -1920, por cada 1% de incremento de la proporción de gases de escape en la mezcla que entra en el tiempo de admisión, se produce un descenso de 45º F en la temperatura de la llama).

Yanmar Diesel ha publicado información referente a las características propias de diversas formas y posiciones del hueco de combustión en la superficie del rotor en relación con el número y posición de la/s bujía/s, (Puede verse también en el libro de Kenichi Yamamoto "Rotary engine"); en sus motores de pequeño desplazamiento y refrigeración del rotor por mezcla aire/combustible, Yanmar Diesel y Toyota (SAE paper 790435) comprobaron que la colocación de una válvula de lengüetas (reed-valve) en el colector de admisión o cerca de la lumbrera de admisión mejoraba las actuaciones bajo carga parcial y a bajas rpm. En los motores de mayor tamaño, Mazda, que en algún momento tuvo en venta motores con el hueco de combustión en forma de gota, lo que Yanmar Diesel llamó LDR, y dobles segmentos en las caras laterales del rotor, con el tiempo pasó a fabricar motores con el receso en posición central y segmentos únicos en los laterales, buscando un compromiso entre consumo y emisión de gases contaminantes; también abandonaron los segmentos de vértice de tres piezas (Pat. española 0418430 de Citroën) en favor de los de dos piezas al estilo de los del motor de OMC.

Inicialmente, algunos motores Wankel tenían las lumbreras de admisión y escape en las caras laterales del rotor, lo que produjo problemas de distorsiones térmicas y de depósitos de carbonilla y de gomas, que sólo llegaron a resolverse en el motor Renesis de Mazda mediante la colocación de segmentos especiales rascadores en la caras laterales del rotor, y mejoras en los materiales, como inclusión de piezas de materiales cerámicos. Las lumbreras laterales evitan el solapamiento de los tiempos de admisión y escape que podría producir entrada de gases quemados en la fase de admisión, y salida de mezcla aire/combustible sin quemar al sistema de escape, ambas cosas pueden ser perjudiciales para la emisión de gases contaminantes. La entrada de gases de escape al tiempo de admisión producía lo que se llamaba en inglés "misfirings", o ciclos sin encendido de la mezcla, también desfavorables para la estabilidad del ralentí y el consumo.

De las dos disposiciones posibles para las lumbreras de admisión, la periférica y la lateral, se sabe que la periférica obtiene la máxima presión media efectiva (PME) en el motor, especialmente con una lumbrera de forma rectangular y más a altas rpm (SAE paper 288A), pero en uso automovilista fuera de la competición se han preferido (Mazda) las lumbreras de admisión laterales, una o varias por rotor, que proporcionan un mejor régimen de ralentí y actuaciones bajo carga parcial. El motor Renesis del RX8 de Mazda, emplea lumbreras laterales tanto de admisión como de escape, con lo que elimina totalmente el cruce o solapamiento entre las fases de admisión y escape, suprime la recirculación de gases de escape y la salida de mezcla aire/combustible sin quemar por el escape, este motor Renesis obtuvo unos consumos razonables y buenas actuaciones a bajo régimen, cumpliendo al mismo tiempo las normas anticontaminación más severas.

Page 15: Motor de Carga Estratificada

Algún motor Wankel de los primeros tiempos producía un ruido que los mecánicos comparaban al que hace un motor convencional poco antes de fundir una biela; el ruido se debía a lastolerancias entre el engranaje del eje y el del rotor que era necesario establecer para no comprometer la duración del motor. Ya se ha solucionado (Libro de K Yamamoto, 1ª edición). El motor Wankel funciona mejor con sistemas de escape con baja presión, la configuración y longitud de los conductos de admisión y escape también influye en las características y rendimiento del motor, y en los primeros tiempos la mayor temperatura de los gases de escape facilitó el uso de sistemas de catalizador o de post-combustión tras la lumbrera de escape de la mezcla incompletamente quemada en la cámara de combustión, mediante mezclas combustible/aire más adecuadas y un dispositivo específico con inyección de aire al escape, más barato que los catalizadores de los primeros tiempos hechos con metales semipreciosos. La temperatura de los gases de escape está en relacion inversa con la relación de compresión efectiva de los motores, a menor relación de compresión, mayor temperatura de los gases de escape, AutolineDetroit ha propuesto en un video en YouTube -Rotary Engine Breakthrough- el cambiar los agujeros en la zona interior de la carcasa que se solían usar para las bujías, por unas pequeñas ranuras lineales paralelas a los segmentos de vértice o de arista; dicen haber conseguido mejoras en el consumo, y reducción de emisones contaminantes y de la temperatura de los gases de escape.

Otro problema inicial fue la aparición de rayas y fisuras en la superficie de la epitrocoide, llamadas "arañazos del diablo" por los ingenieros, unas se debían a incompatibilidades entre el material de recubrimiento de la epitrocoide y el de los segmentos de arista, y otras -chattered marks, marcas de repiqueteo- a vibraciones por resonancia en los segmentos de vértice, tema que abordaron reduciendo el peso de los segmentos y su tamaño; la aparición de grietas en la zona donde se colocaba la bujía se resolvió colocando la bujía en un casquillo incrustado en el bloque, en vez de ir la bujía atornillada directamente sobre el bloque mismo, y también a través de la mejora de materiales. Para ajustar los segmentos de vértice a las dilataciones térmicas que se producen con el motor en funcionamiento, Mazda modificó los segmentos de vértice, a los que daba una altura distinta en la zona central del segmento respecto a las zonas laterales (En inglés "crowning" -coronamiento-) y Citroen patentó unos segmentos formados por varias piezas.

Los últimos motores Wankel de producción en serie son del tipo de motores rápidos, que entregan su potencia a altas rpm, y con peor rendimiento en todos los sentidos en la zona de carga parcial y bajas rpm, aunque el motor de 40 litros de desplazamiento que fabricó Ingersoll-Rand daba la máxima potencia a unas 1.500 r.p.m. David W. Garside de Norton declaró que habían conseguido solucionar el problema de la elasticidad, y construir un motor que daba toda su potencia a pocas rpm. Parece que una apertura más temprana en el ciclo de la lumbrera de admisión, y la existencia de unos conductos de admisión más largos, que favorecen la resonancia, con ondas de presión que mejoran el llenado, y una mayor

Page 16: Motor de Carga Estratificada

excentricidad en el rotor, equivalente a la carrera de los motores alternativos, permiten conseguir motores con más par y potencia a bajo régimen de giro, conceptos aplicados en motor con el que Mazda ganó en las 24 horas de le Mans. Hay más estudios sobre la influencia del diseño de los colectores de admisión y escape en las actuaciones -"performances" en inglés- de los motores Wankel. (SAE paper 2012-32-0064)

Materiales[editar]

Para el estátor o bloque motor se han utilizado aleaciones de aluminio, aluminio/silicio o Al/Si/Cu como por ejemplo la aleación Alcoa A-132, ya que el aluminio tiene una mayor conductividad térmica y un coeficiente de dilatación más adecuado. En el interior del bloque se colocaba una chapa de acero con la forma de la epitrocoide, con rugosidades en su cara externa para asegurar el anclado al bloque, y sobre esta lámina se aplicaba una capa de revestimiento antifricción, que al mismo tiempo permitía que se mantuviese una lámina de aceite lubricante, como por ejemplo la aleación Nickasil que usó Comotor (Citroen-NSU), Nikasil que siguió utilizando Derbi en el recubrimiento del interior de los cilindros de sus motores de motocicleta.Nota 1 Los rotores se suelen fabricar en fundición y también de aluminio. Suzuki resolvió el problema de la duración del motor extendiéndola a más de 250.000 km, empleando segmentos de vértice hechos de la aleación ferrotic junto con el revestimiento de la superficie de trabajo del estator descrito por A EP Grazen.

Se dice que los prototipos de motor rotativo Wankel que construyó General Motors -GM- tenían una duración superior a los 800.000 km, y aunque GM aseguró haber resuelto el problema de la economía en el consumo del motor Wankel, no llegaron a poder resolver en un mismo diseño los problemas del consumo y de la emisión de gases contaminantes, K Ludvigsen da cifras comparativas de emisiones y consumo entre los rotativos de Mazda y de GM. Las máquinas-herramienta para producir motores Wankel de OMC (Outboard Marine Co) y GM (General Motors) y la tecnología de John Deere las adquirieron Freedom-Motors y Möller, el club Wankel alemán tendría los elementos de producción de los motores rotativos Sachs. Inicialmente era necesaria una máquina específica para producir cada tamaño distinto de motor rotativo, pero una empresa inglesa patentó una "Máquina generadora de epitrocoides" que facilitaba la producción de modelos distintos con la misma maquinaria.

Combustible[editar]

Dada la ausencia de puntos calientes en la cámara de combustión, se ha calculado que una gasolina con un octanaje de 87 es suficiente para un motor Wankel, lo que puede representar una ventaja práctica. Para la lubricación, que se hace como en los motor de dos tiempos mediante mezcla combustible/aceite, se han usado los sistemas de mezcla previa o una bomba dosificadora que añade una pequeña cantidad de aceite a la admisión, lubricante igual al empleado para lubricación y

Page 17: Motor de Carga Estratificada

refrigeración del rotor. En los motores con refrigeración por la mezcla de aire/combustible, uno de los aceites que dio mejores resultados fue el Shell Rotella 30. Los motores con refrigeración por líquido necesitan un lubricante multigrado para facilitar los arranques en frío, aceite que inicialmente debía ser de naturaleza mineral y no sintético para evitar la producción de cenizas y gomas en la combustión.Nota 2 Al igual que en los motores alternativos, el acelerar el motor Wankel antes de que haya llegado a su temperatura ideal de funcionamiento aumenta en gran medida el desgaste del motor y las emisiones tóxicas en el escape, y el acelerar un motor Wankel en vacío, sin carga que emplee la potencia, podría facilitar el que se transmitiese el frente de llama a la cámara previa en tiempo de admisión, destruyendo el motor.

Otros motores rotativos[editar]

Además del motor que inventó Félix Wankel (www.der-wankelmotor.de) ha habido y hay muy diversos tipos de motores rotativos, por ejemplo el del jesuíta José Ignacio Martín-Artajo,Nota 3 o el que construyó e hizo funcionar el francés J C Lefeuvre,Nota 4 , la canadiense Quasiturbine, o varias patentes concedidas al catalán José Mª Bosch-Barata (oepm nº 0228187, 0254176 o 0407242). La empresa Renault, en colaboración con la Rambler, trabajó en el desarrollo de un motor rotativo de pistones lobulados (patente española nº 0313466). Jan P. Norbye publicó en 'Popular Science', enero de 1967, páginas 80-85, un trabajo: 'Rivals to the Wankel: A Roundup of Rotary Engines', que resumía los conceptos básicos de motor rotativo distintos del Wankel en estudio en ese momento. En la base de datos internacional de patentes, ESPACENET, buscando con las palabras clave 'Rotary Engine' se pueden ver muchas y muy diversas propuestas de motores rotativos, ya desde los primeros tiempos del motor de combustión interna, de los cuales pocos llegaron a la fase de prototipo.