Motores y generadores sincronos

17
1. INTRODUCCIÓN Los motores eléctricos son máquinas eléctricas rotatorias que transforman la energía eléctrica en energía mecánica. Debido a sus múltiples ventajas, entre las que cabe citar su economía, limpieza, comodidad y seguridad de funcionamiento, el motor eléctrico ha reemplazado en gran parte a otras fuentes de energía, tanto en la industria como en el transporte, las minas, el comercio, o el hogar. Los motores eléctricos satisfacen una amplia gama de necesidades de servicio, desde arrancar, acelerar, mover, o frenar, hasta sostener y detener una carga. Estos motores se fabrican en potencias que varían desde una pequeña fracción de caballo hasta varios miles, y con una amplia variedad de velocidades, que pueden ser fijas, ajustables o variables. Un motor eléctrico contiene un número mucho más pequeño de piezas mecánicas que un motor de combustión interna o uno de una máquina de vapor, por lo que es menos propenso a los fallos. Los motores eléctricos son los más ágiles de todos en lo que respecta a variación de potencia y pueden pasar instantáneamente desde la posición de reposo a la de funcionamiento al máximo. El uso de los motores eléctricos se ha generalizado a todos los campos de la actividad humana desde que sustituyeran en la mayoría de sus aplicaciones a las máquinas de vapor. Existen motores eléctricos de las más variadas dimensiones, desde los pequeños motores fraccionarios empleados en pequeños instrumentos hasta potentes sistemas que generan miles de caballos de fuerza, Según la naturaleza de la corriente eléctrica transformada, los motores eléctricos se clasifican en motores de corriente continua, también denominada directa, motores de corriente alterna, que, a su vez, se agrupan, según su sistema de funcionamiento, en motores de inducción, motores sincrónicos y motores de colector. Tanto unos como otros disponen de todos los elementos comunes a las máquinas rotativas electromagnéticas.

Transcript of Motores y generadores sincronos

Page 1: Motores y generadores sincronos

1. INTRODUCCIÓN

Los motores eléctricos son máquinas eléctricas rotatorias que transforman la energía eléctrica en energía mecánica. Debido a sus múltiples ventajas, entre las que cabe citar su economía, limpieza, comodidad y seguridad de funcionamiento, el motor eléctrico ha reemplazado en gran parte a otras fuentes de energía, tanto en la industria como en el transporte, las minas, el comercio, o el hogar.

Los motores eléctricos satisfacen una amplia gama de necesidades de servicio, desde arrancar, acelerar, mover, o frenar, hasta sostener y detener una carga. Estos motores se fabrican en potencias que varían desde una pequeña fracción de caballo hasta varios miles, y con una amplia variedad de velocidades, que pueden ser fijas, ajustables o variables.

Un motor eléctrico contiene un número mucho más pequeño de piezas mecánicas que un motor de combustión interna o uno de una máquina de vapor, por lo que es menos propenso a los fallos. Los motores eléctricos son los más ágiles de todos en lo que respecta a variación de potencia y pueden pasar instantáneamente desde la posición de reposo a la de funcionamiento al máximo.

El uso de los motores eléctricos se ha generalizado a todos los campos de la actividad humana desde que sustituyeran en la mayoría de sus aplicaciones a las máquinas de vapor. Existen motores eléctricos de las más variadas dimensiones, desde los pequeños motores fraccionarios empleados en pequeños instrumentos hasta potentes sistemas que generan miles de caballos de fuerza, Según la naturaleza de la corriente eléctrica transformada, los motores eléctricos se clasifican en motores de corriente continua, también denominada directa, motores de corriente alterna, que, a su vez, se agrupan, según su sistema de funcionamiento, en motores de inducción, motores sincrónicos y motores de colector. Tanto unos como otros disponen de todos los elementos comunes a las máquinas rotativas electromagnéticas.

En este trabajo se encuentran las principales definiciones, características, usos y ventajas de los motores sincrónicos.

DEFINICIÓN

Se llama máquina síncrona o sincrónica (MS), a una máquina rotativa reversible de corriente alterna. Como su nombre lo indica son máquinas capaces de operar sólo a la velocidad sincrónica, esto es, a la velocidad mecánica equivalente a la velocidad de rotación de CMR producido por las corrientes del estator. Pueden trabajar como motor o como alternador. Operando cómodo generador son usadas en las centrales para la generación de energía eléctrica (hidráulicas, térmicas o nucleares) en sistemas interconectados. En tales aplicaciones se les denominan generadores sincrónicos o alternadores y normalmente se operan con otras unidades en las distintas centrales, interconectarlas entre si.

Page 2: Motores y generadores sincronos

En aplicaciones industriales los motores sincrónicos son usados donde se deseada velocidad constante. Una característica importante de estos motores es que pueden operar ya sea tomando o entregando potencia reactiva a la red dependiendo el nivel de excitación. Este tipo de máquinas es de doble excitación esto es: los polos del rotor son alimentados con corriente continua mientras que los bobinados del estator están conectados a la red eléctrica. Por lo tanto, el flujo en el entrehierro es la resultante de ambas excitaciones. El motor de inducción solo es excitado por las corrientes del estator, ya que las corrientes de rotor son producto de un efecto inductivo, siempre operará con factor de potencia en atraso. Es decir, que con una apropiada excitación, el motor sincrónico puede no requerir potencia reactiva de la red para su operación y trabajar con factor de potencia unitario. Aumento o disminución de la corriente de campo involucrará en un aporte o consumo de potencia reactiva a la red eléctrica con lo que se puede regular la tensión en sistemas con factor de potencia bajo.

En general la máquina sincrónica tiene en el estator el bobinado de armadura del tipo trifásico y en el rotor el enrollado de excitación alimentado con corriente continua. Al aplicar un juego de corrientes trifásicas simétricas y equilibradas en el bobinado de estator, se genera, un CMR que gira a la frecuencia sincrónica ( s). Si ωpor otro lado se tiene al rotor girando a m= s y se inyecta una corriente ω ωcontinua, If, al campo, se producirá un CMR producido por el giro mecánico también a la velocidad s.ω

. Representación esquemática de la máquina sincrónica

Desde el punto de vista constructivo se distinguen dos formas: de rotor cilíndrico y de rotor de polos salientes. Las MS de rotor cilíndrico se utilizan en aplicaciones de alta velocidad (2 y 4 polos), turbo alteradores. Las MS de polos

salientes es mas apropiada para bajas velocidades (alto numero de polos) se aplica en hidrogeneradores.

a) Rotor cilíndrico

b) Polos salientes

Operación de la MS de Rotor cilíndrico.

La corriente de campo If establece en el entrehierro una distribución senoidal de flujo en elentrehierro f (mediante una geometría especial del polo magnético o la φ

Page 3: Motores y generadores sincronos

distribución del bobinado de campo en el caso rotor cilíndrico). Asimismo la corriente de los bobinados trifásicos del estator produce un flujo a . Parte de esteφ flujo enlaza sólo los bobinados de estator y no enlaza el bobinado de campo, a este flujo de le denomina flujo de fuga o dispersión. La mayor parte de a , denominadaφ flujo de reacción de armadura ar , se establece en el entrehierro y enlaza el φbobinado de campo. El flujo resultante r es por lo tanto debido a la interacción φentre flujos f y ar . Cada una de estas componentes induce tensiones en los φ φbobinados del estator Ef debida a f y Ea debida a ar y la tensión Er debida al φ φflujo resultante r . La tensión Ef se determina para la condición de circuito φabierto, similar al caso de la MCC, esto es, para una velocidad de operación se obtiene la relación entre la corriente de campo y la tensión inducida. La tensión Ear, conocida como‘voltaje de reacción de armadura’ depende de ar y de aquí de φla magnitud y posición de la corriente de armadura Ia .

Potencia y Torque

Una máquina sincrónica normalmente se encuentra conectada a una red cuyo voltaje y frecuencia son constantes. Existe un límite de la potencia que el generador puede entregar a la barra infinita y un torque máximo que puede ser aplicado al motor sin perder sincronismo.

Determinación de la Reactancia Sincrónica Xs.

La reactancia sincrónica es un parámetro determinante en la operación de la MS. Esta se puede determinar realizando dos pruebas: circuito abierto y corto circuito.

Prueba de circuito abierto. (VACIO)

Si a un alternador trifásico se le retira la máquina motriz y se alimenta su estator mediante un sistema trifásico de C. A. se genera en el estator un campo magnético giratorio, cuya velocidad sabemos que es N =  60 f/p. Si en estas circunstancias, con el rotor parado se alimenta el devanado del mismo con C. C. se produce un campo magnético rotórico fijo, delante del cual pasa el campo magnético del estator. Los polos del rotor están sometidos ahora a atracciones y repulsiones, en breves periodos de tiempo, por parte de los polos del estator, pero el rotor no consigue girar , a lo sumo vibrará. Pero si llevamos el rotor a la velocidad de sincronismo, haciéndole girar mediante un motor auxiliar, al enfrentarse polos de signo opuestos se establece un enganche magnético que les obliga a seguir girando juntos, pudiéndose retirar el motor auxiliar.

Page 4: Motores y generadores sincronos

Diagrama circuital, Línea de entrehierro

Prueba de corto circuito.

Para esta prueba se realiza el arreglo del siguiente diagrama circuital, se conectan amperímetros en cada fase y se cortocircuitan los terminales del bobinado de estator. La máquina se lleva a la velocidad sincrónica, se varía la corriente de campo y se registra su valor, el promedio de las corrientes de armadura se mide en este proceso. La variación de esta corriente respecto de la corriente de campo representa la ‘característica de cortocircuito’ (SCC) de la máquina sincrónica, ésta característica es una línea recta. Esto se debe al hecho que debido a la condición de cortocircuito el flujo presente en la máquina es bajo, por lo que no entra en saturación. Es decir Una vez que se produzca la conexión del motor a la red, se produce un desplazamiento (d/p) del eje de los polos del rotor respecto de los polos ficticios del estator, que aumenta con la carga del motor, y tal que si este desplazamiento supera un límite el motor se para

Diagrama circuital

Circuito equivalente Diagrama fasorial

Operación aislada de la MS

En general las MS’s operan conectadas a un sistema eléctrico infinito, sin embargo

pequeños generadores son utilizados para proveer energía a cargas eléctricas aisladas o

como sistemas de respaldo o emergencia basados en motores a gasolina o diesel. En estos sistemas el voltaje terminal tiende a variar de acuerdo a la variación de la carga conectada por lo que se debe utilizar un sistema regulador de voltaje que ajuste la corriente de campo de manera de mantener el voltaje de salida constante.

MOTORES SÍNCRONOS COMO CONTROL

Los motores sincrónicos son usados como servo-controladores en aplicaciones como equipos periféricos de computadoras, robóticos y como controladores de velocidad ajustables en una variedad de aplicaciones como: bombas de carga proporcional, grandes abanicos y compresores. En aplicaciones de baja potencia hasta unos cuantos kilowatts, son usados motores sincrónicos de imán permanente (ver Figura 1). Estos motores son a menudo referidos como motores "DC sin brocha" o motores conmutados electrónicamente.

Page 5: Motores y generadores sincronos

I. INTRODUCCIÓN

El generador síncrono es un tipo de máquina eléctrica rotativa capaz de transformar energía mecánica (en forma de rotación) en energía eléctrica.

El generador síncrono está compuesto principalmente de una parte móvil o rotor y de una parte fija o estátor.

El rotor gira recibiendo un empuje externo desde (normalmente) una turbina. Este rotor tiene acoplada una fuente de "corriente continua" de excitación independiente variable que genera un flujo constante, pero que al estar acoplado al rotor, crea un campo magnético giratorio que genera un sistema trifásico de fuerzas electromotrices en los devanados estatóricos.

II. ROTOR

El rotor conocido como inductor, pues es la parte que induce el voltaje en el estator. El núcleo del rotor es construido de lámina troquelada de acero al silicio, material de excelentes características magnéticas, con la finalidad de evitar pérdidas por histéresis y corrientes parasitas.

El yugo es una pieza continua con zapata polar, para así eliminar la dispersión del flujo por falsos contactos magnéticos.

En la zapata polar se hacen barrenos para alojar el evanado amortiguador en jaula de ardilla, diseñado con el objeto de reducir armónicas en la forma de onda que entrega el generador.

El rotor gira concéntricamente en la flecha del generador a una velocidad síncrona de 1800 revoluciones por minuto (RPM).

III. TIPOS DE CONSTRUCCION

La principal diferencia entre los diferentes tipos de generadores síncronos, se encuentra en su sistema de alimentación en continua para la fuente de excitación situada en el rotor.

Características constructivas de las máquinas sincrónicas

Partes básicas de la máquina sincrónica: • • Estructura del campo magnético, con un devanado excitado con CD Armadura: generalmente con un devanado trifásico donde se genera la fem de corriente alterna

La mayoría de las maquinas sincrónicas actuales tienen armaduras estacionarias y estructuras de campo giratorias. Lo anterior porque los bobinados AC pueden colocarse en el estator donde se pueden diseñar contra fuerzas electromagnéticas y aislarse de los altos voltajes. Los rotores se pueden construir de polos lisos (cilíndricos) o de polos salientes . La velocidad del primotor está ligada a la forma de construcción, y en casos de máquinas de gran tamaño la limitante de diseño es la fuerza “centrífuga” generada en el rotor. El diseño de una máquinas sincrónica también depende del uso para el cual fue fabricado o bien del método de enfriamiento. En la industria se utiliza la máquina sincrónica como generador en la mayoría de las centrales eléctricas y como motor cuando la potencia demandada es

Page 6: Motores y generadores sincronos

muy alta. El estator de una máquina sincrónica es similar al de una máquina de inducción polifásica. El núcleo del estator está troquelado (a menudo construido en sectores segmentados) con láminas de alta calidad con ranuras donde se colocan los devanados. Muchas máquinas sincrónicas de polos salientes están equipadas con devanados amortiguadores, los cuales consisten en un conjunto de barras de acero o latón puestas en los polos de las ranuras y conectadas entre sí. Los devanados amortiguadores sirven para efectos de estabilidad, son útiles por ejemplo para arrancar motores sincrónicos como motores de inducción, para amortiguar oscilaciones en el rotor, para reducir sobrevoltajes en algunas condiciones de cortocircuito y ayudar en la sincronización de la máquina.

Maquina Sincrona

Una máquina síncrona es una máquina eléctrica rotativa de corriente alterna cuya velocidad de giro en régimen permanente está ligada con la frecuencia de la tensión en bornes y el número de pares de polos.

n=\frac{60 \cdot f}{P} = \frac{120 \cdot f}{p}

donde:

* f: Frecuencia de la red a la que está conectada la máquina (Hz)

* P: Número de pares de polos que tiene la máquina

* p: Número de polos que tiene la máquina

* n: Velocidad de sincronismo de la máquina (revoluciones por minuto)

Estas máquinas convierten energía eléctrica en energía mecánica, siendo en este caso utilizadas como motores, (ver Motor síncrono) o convierten energía mecánica en energía eléctrica, siendo en este caso utilizadas como generadores (ver Generador síncrono).

Las máquinas síncronas se utilizan en mayor medida como generadores de corriente alterna que como motores de corriente alterna, ya que no presentan par de arranque y hay que emplear diferentes métodos de arranque y aceleración hasta la velocidad de sincronismo. También se utilizan para controlar la potencia reactiva de la red por su capacidad para, manteniendo la potencia activa desarrollada constante, variar la potencia reactiva que absorbe o cede a la red.

[editar] Aspectos constructivos

Page 7: Motores y generadores sincronos

Estátor:

El estátor, o parte estática, de una máquina síncrona es similar al de una máquina asíncrona. Contiene un devanado trifásico de corriente alterna denominado devanado inducido y un circuito magnético formado por apilamiento de chapas magnéticas.

Rotor:

El rotor, o parte rotativa, de una máquina síncrona es bastante diferente al de una máquina asíncrona. Contiene un devanado de corriente continua denominado devanado de campo y un devanado en cortocircuito, que impide el funcionamiento de la máquina a una velocidad distinta a la de sincronismo, denominado devanado amortiguador.

| Introducción |

Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina que convierte la energía mecánica en eléctrica se le denomina generador, alternador o dinamo, y a una máquina que convierte la energía eléctrica en mecánica se le denomina motor.

Dos principios físicos relacionados entre sí sirven de base al funcionamiento de los generadores y de los motores. El primero es el principio de la inducción descubierto por el científico e inventor británico Michael Faraday en 1831. Si un conductor se mueve a través de un campo magnético, o si está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se establece o se induce una corriente eléctrica en el primer conductor.

| | Generadores de corriente continua |

Los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira entre dos polos magnéticos fijos, la corriente en la armadura circula en un sentido durante la mitad de cada revolución, y en el otro sentido durante la otra mitad. Para producir un flujo constante de corriente en un sentido, o corriente continua, en un aparato determinado, es necesario disponer de un medio para invertir el flujo de corriente fuera del generador una vez durante cada revolución. En las máquinas antiguas esta inversión se llevaba a cabo mediante un conmutador, un anillo de metal partido montado sobre el eje de una armadura. Las dos mitades del anillo se aislaban entre sí y servían como bornes de la bobina. Las escobillas fijas de metal o

Page 8: Motores y generadores sincronos

de carbón se mantenían en contacto con el conmutador, que al girar conectaba eléctricamente la bobina a los cables externos. Cuando la armadura giraba, cada escobilla estaba en contacto de forma alternativa con las mitades del conmutador, cambiando la posición en el momento en el que la corriente invertía su sentido dentro de la bobina de la armadura. Así se producía un flujo de corriente de un sentido en el circuito exterior al que el generador estaba conectado. Los generadores de corriente continua funcionan normalmente a voltajes bastante bajos para evitar las chispas que se producen entre las escobillas y el conmutador a voltajes altos. El potencial más alto desarrollado para este tipo de generadores suele ser de 1.500 voltios. En algunas máquinas más modernas esta inversión se realiza usando aparatos de potencia electrónica, como por ejemplo rectificadores de diodo.

Los generadores modernos de corriente continua utilizan armaduras de tambor, que suelen estar formadas por un gran número de bobinas agrupadas en hendiduras longitudinales dentro del núcleo de la armadura y conectadas a los segmentos adecuados de un conmutador múltiple. Si una armadura tiene un solo circuito de cable, la corriente que se produce aumentará y disminuirá dependiendo de la parte del campo magnético a través del cual se esté moviendo el circuito. Un conmutador de varios segmentos usado con una armadura de tambor conecta siempre el circuito externo a uno de cable que se mueve a través de un área de alta intensidad del campo, y como resultado la corriente que suministran las bobinas de la armadura es prácticamente constante. Los campos de los generadores modernos se equipan con cuatro o más polos electromagnéticos que aumentan el tamaño y la resistencia del campo magnético. En algunos casos, se añaden interpolos más pequeños para compensar las distorsiones que causa el efecto magnético de la armadura en el flujo eléctrico del campo.

El campo inductor de un generador se puede obtener mediante un imán permanente (magneto) o por medio de un electroimán (dinamo). En este último caso, el electroimán se excita por una corriente independiente o por autoexcitación, es decir, la propia corriente producida en la dinamo sirve para crear el campo magnético en las bobinas del inductor. Existen tres tipos de dinamo según sea la forma en que estén acoplados el inductor y el inducido: en serie, en derivación y en combinación.

3 | | Motores de corriente continua |

Versión para imprimir la sección

En general, los motores de corriente continua son similares en su construcción a los generadores. De hecho podrían describirse como generadores que funcionan al revés. Cuando la corriente pasa a través de la armadura de un motor de corriente continua, se genera un par de fuerzas debido a la acción del campo magnético, y la armadura gira (véase Momento de una fuerza). La función del conmutador y la de las conexiones de las bobinas del campo de los motores es exactamente la misma que en los generadores. La revolución de la armadura induce un voltaje en las bobinas de ésta. Este voltaje es opuesto al voltaje exterior que se aplica a la armadura, y de ahí que se conozca como voltaje inducido o fuerza contraelectromotriz. Cuando el motor gira más rápido, el voltaje inducido aumenta hasta que es casi igual al aplicado. La corriente entonces es pequeña, y la velocidad

Page 9: Motores y generadores sincronos

del motor permanecerá constante siempre que el motor no esté bajo carga y tenga que realizar otro trabajo mecánico que no sea el requerido para mover la armadura. Bajo carga, la armadura gira más lentamente, reduciendo el voltaje inducido y permitiendo que fluya una corriente mayor en la armadura.

Debido a que la velocidad de rotación controla el flujo de la corriente en la armadura, deben usarse aparatos especiales para arrancar los motores de corriente continua. Cuando la armadura está parada, ésta no tiene realmente resistencia, y si se aplica el voltaje de funcionamiento normal, se producirá una gran corriente, que podría dañar el conmutador y las bobinas de la armadura. El medio normal de prevenir estos daños es el uso de una resistencia de encendido conectada en serie a la armadura, para disminuir la corriente antes de que el motor consiga desarrollar el voltaje inducido adecuado. Cuando el motor acelera, la resistencia se reduce gradualmente, tanto de forma manual como automática.

La velocidad a la que funciona un motor depende de la intensidad del campo magnético que actúa sobre la armadura, así como de la corriente de ésta. Cuanto más fuerte es el campo, más bajo es el grado de rotación necesario para generar un voltaje inducido lo bastante grande como para contrarrestar el voltaje aplicado. Por esta razón, la velocidad de los motores de corriente continua puede controlarse mediante la variación de la corriente del campo.

4 | | Generadores de corriente alterna (alternadores) |

Versión para imprimir la sección

Como se decía antes, un generador simple sin conmutador producirá una corriente eléctrica que cambia de sentido a medida que gira la armadura. Este tipo de corriente alterna es ventajosa para la transmisión de potencia eléctrica, por lo que la mayoría de los generadores eléctricos son de este tipo. En su forma más simple, un generador de corriente alterna se diferencia de uno de corriente continua en sólo dos aspectos: los extremos de la bobina de su armadura están sacados a los anillos colectores sólidos sin segmentos del árbol del generador en lugar de los conmutadores, y las bobinas de campo se excitan mediante una fuente externa de corriente continua más que con el generador en sí. Los generadores de corriente alterna de baja velocidad se fabrican con hasta 100 polos, para mejorar su eficiencia y para lograr con más fácilidad la frecuencia deseada. Los alternadores accionados por turbinas de alta velocidad, sin embargo, son a menudo máquinas de dos polos. La frecuencia de la corriente que suministra un generador de corriente alterna es igual a la mitad del producto del número de polos por el número de revoluciones por segundo de la armadura.

A veces, es preferible generar un voltaje tan alto como sea posible. Las armaduras rotatorias no son prácticas en este tipo de aplicaciones, debido a que pueden producirse chispas entre las escobillas y los anillos colectores, y a que pueden producirse fallos mecánicos que podrían causar cortocircuitos. Por tanto, los alternadores se construyen con una armadura fija en la que gira un rotor compuesto de un número de imanes de campo. El principio de funcionamiento es el mismo que el del generador de corriente alterna descrito con anterioridad, excepto en que el campo magnético (en lugar de los conductores de la armadura) está en movimiento.

Page 10: Motores y generadores sincronos

La corriente que se genera mediante los alternadores descritos más arriba aumenta hasta un pico, cae hasta cero, desciende hasta un pico negativo y sube otra vez a cero varias veces por segundo, dependiendo de la frecuencia para la que esté diseñada la máquina. Este tipo de corriente se conoce como corriente alterna monofásica. Sin embargo, si la armadura la componen dos bobinas, montadas a 90º una de otra, y con conexiones externas separadas, se producirán dos ondas de corriente, una de las cuales estará en su máximo cuando la otra sea cero. Este tipo de corriente se denomina corriente alterna bifásica. Si se agrupan tres bobinas de armadura en ángulos de 120º, se producirá corriente en forma de onda triple, conocida como corriente alterna trifásica. Se puede obtener un número mayor de fases incrementando el número de bobinas en la armadura, pero en la práctica de la ingeniería eléctrica moderna se usa sobre todo la corriente alterna trifásica, con el alternador trifásico, que es la máquina dinamoeléctrica que se emplea normalmente para generar potencia eléctrica.

| Motores de corriente alterna |

Versión para imprimir la sección

Se diseñan dos tipos básicos de motores para funcionar con corriente alterna polifásica: los motores síncronos y los motores de inducción. El motor síncrono es en esencia un alternador trifásico que funciona a la inversa. Los imanes del campo se montan sobre un rotor y se excitan mediante corriente continua, y las bobinas de la armadura están divididas en tres partes y alimentadas con corriente alterna trifásica. La variación de las tres ondas de corriente en la armadura provoca una reacción magnética variable con los polos de los imanes del campo, y hace que el campo gire a una velocidad constante, que se determina por la frecuencia de la corriente en la línea de potencia de corriente alterna.

La velocidad constante de un motor síncrono es ventajosa en ciertos aparatos. Sin embargo, no puede utilizarse este tipo de motores en aplicaciones en las que la carga mecánica sobre el motor llega a ser muy grande, ya que si el motor reduce su velocidad cuando está bajo carga puede quedar fuera de fase con la frecuencia de la corriente y llegar a pararse. Los motores síncronos pueden funcionar con una fuente de potencia monofásica mediante la inclusión de los elementos de circuito adecuados para conseguir un campo magnético rotatorio.

El más simple de todos los tipos de motores eléctricos es el motor de inducción de caja de ardilla que se usa con alimentación trifásica. La armadura de este tipo de motor consiste en tres bobinas fijas y es similar a la del motor síncrono. El elemento rotatorio consiste en un núcleo, en el que se incluye una serie de conductores de gran capacidad colocados en círculo alrededor del árbol y paralelos a él. Cuando no tienen núcleo, los conductores del rotor se parecen en su forma a las jaulas cilíndricas que se usaban para las ardillas. El flujo de la corriente trifásica dentro de las bobinas de la armadura fija genera un campo magnético rotatorio, y éste induce una corriente en los conductores de la jaula. La reacción magnética entre el campo rotatorio y los conductores del rotor que transportan la corriente hace que éste gire. Si el rotor da vueltas exactamente a la misma velocidad que el campo magnético, no habrá en él corrientes inducidas, y, por tanto, el rotor no debería girar a una velocidad síncrona. En funcionamiento, la velocidad de

Page 11: Motores y generadores sincronos

rotación del rotor y la del campo difieren entre sí de un 2 a un 5%. Esta diferencia de velocidad se conoce como caída.

Los motores con rotores del tipo jaula de ardilla se pueden usar con corriente alterna monofásica utilizando varios dispositivos de inductancia y capacitancia, que alteren las características del voltaje monofásico y lo hagan parecido al bifásico. Estos motores se denominan motores multifásicos o motores de condensador (o de capacidad), según los dispositivos que usen. Los motores de jaula de ardilla monofásicos no tienen un par de arranque grande, y se utilizan motores de repulsión-inducción para las aplicaciones en las que se requiere el par. Este tipo de motores pueden ser multifásicos o de condensador, pero disponen de un interruptor manual o automático que permite que fluya la corriente entre las escobillas del conmutador cuando se arranca el motor, y los circuitos cortos de todos los segmentos del conmutador, después de que el motor alcance una velocidad crítica. Los motores de repulsión-inducción se denominan así debido a que su par de arranque depende de la repulsión entre el rotor y el estátor, y su par, mientras está en funcionamiento, depende de la inducción. Los motores de baterías en serie con conmutadores, que funcionan tanto con corriente continua como con corriente alterna, se denominan motores universales. Éstos se fabrican en tamaños pequeños y se utilizan en aparatos domésticos.

6 | | Otros tipos de máquinas |

Versión para imprimir la sección

En aplicaciones especiales se emplean algunos tipos de máquinas dinamoeléctricas combinadas. Por lo general, es deseable cambiar de corriente continua a alterna o a la inversa, o cambiar de voltaje de alimentación de corriente continua, o la frecuencia o fase con alimentación de corriente alterna. Una forma de realizar dichos cambios, es usar un motor que funcione con el tipo disponible de alimentación eléctrica para que haga funcionar un generador que proporcione a su vez la corriente y el voltaje deseados. Los generadores de motor, que están compuestos de un motor que se acopla mecánicamente a un generador adecuado, pueden realizar la mayoría de las conversiones antes indicadas. Un transformador rotatorio es una máquina que sirve para convertir corriente alterna en continua, usando bobinas separadas en una armadura rotatoria común. El voltaje de alimentación de corriente alterna se aplica a la armadura a través de los anillos colectores, y el voltaje de la corriente continua se extrae de la máquina con un conmutador independiente. Un dinamotor, que se usa por lo general para convertir corriente continua de bajo voltaje en corriente de alto voltaje, es una máquina parecida que tiene bobinas de armadura independientes.

Las máquinas de corriente continua conocidas como amplidinas o rototroles, que tienen varias bobinas de campo, se usan como amplificadores de potencia. Un pequeño cambio en la potencia suministrada a una bobina de campo produce un gran cambio en la potencia de salida de la máquina. Estos amplificadores electrodinámicos se utilizan a menudo en servomecanismos y otros sistemas de control. Ver Automatización; Electricidad.

Page 12: Motores y generadores sincronos

www.elprisma.com

www.virtual.unal.edu.co

www.monografías.com

www.google.com

es.wikipedia.org