MOVIMIENTO OSCILATORIO - M.A.S

8

Transcript of MOVIMIENTO OSCILATORIO - M.A.S

Page 1: MOVIMIENTO OSCILATORIO - M.A.S
Page 2: MOVIMIENTO OSCILATORIO - M.A.S

EL MOVIMIENTO ARMÓNICO SIMPLEMOVIMIENTO ARMÓNICO SIMPLE El movimiento armónico simple (M.A.S), también denominado movimiento vibratorio armónico simple(M.V.A.S), es un movimiento periódico, y vibratorio en ausencia de fricción, producido por la acción de una fuerza recuperadora que es directamente proporcional a la posición, y que queda descrito en función del tiempo por una función senoidal (seno o coseno). Si la descripción de un movimiento requiriese más de una función armónica, en general sería un

movimiento armónico, pero no un M.A.S. En el caso de que la trayectoria sea rectilínea, la partícula que realiza un M.A.S. Oscila alejándose y acercándose de un punto, situado en el centro de su trayectoria, de tal manera que su posición en función del tiempo con respecto a ese punto es una sinusoide. En este movimiento, la fuerza que actúa sobre la partícula es proporcional a su desplazamiento respecto a dicho punto y dirigida hacia éste. ENERGIA DEL MOVIMIENTO ARMÓNICO SIMPLE Las fuerzas involucradas en un movimiento armónico simple son centrales y, por tanto, conservativas. En consecuencia, se puede definir un campo escalar llamado energía potencial (Ep) asociado a la fuerza. Para hallar la expresión de la energía potencial, basta con integrar la expresión de la fuerza

Definición: es un movimiento vibratorio bajo la acción de una fuerza recuperadora elástica, proporcional al desplazamiento y en ausencia de todo rozamiento.Solemos decir que el sonido de una determinada nota musical se representa gráficamente por la función seno. Ésta representa un movimiento vibratorio llamado movimiento armónico simple, que es aquel que se obtiene cuando los desplazamientos del cuerpo vibrante son directamente proporcionales a las fuerzas causantes de este desplazamiento.Un ejemplo de este movimiento se puede encontrar a partir del desplazamiento de un punto cualquiera alrededor de toda la longitud de una circunferencia.

Cuando un punto (P) recorre una circunferencia con velocidad uniforme, su proyección (Q) sobre cualquiera de los diámetros de esta, realiza un tipo de movimiento armónico simple. Cada vez que el punto se encuentre en uno de los cuatro cuadrantes de la circunferencia, se trazará una perpendicular desde el punto a un diámetro fijo de la circunferencia. A medida que el punto escogido se mueve a velocidad uniforme, el punto proyectado en el diámetro, realizará un movimiento oscilatorio rectilíneo.

Para representar gráficamente (en una función) el movimiento armónico simple de un punto, se toman como abscisas los tiempos medidos como fracciones del período (T/12, T/6, T/4...) que es el tiempo que este punto tarda en dar una vuelta completa a la circunferencia; y como a ordenadas las sucesivas prolongaciones del mismo. La resultante es una sinusoide, ya que la variación del tiempo t, se traduce como una variación del sin x, donde x es el ángulo que forma el radio con el semi-eje positivo de abscisas (x es proporcional al tiempo).

Page 3: MOVIMIENTO OSCILATORIO - M.A.S

SISTEMA MASA RESORTEEl sistema masa-resorte consiste en la unión entre un resorte y una masa en donde la masa empieza a oscilar al ser separada de su punto de equilibrio es decir, que se separa del punto de equilibrio la masa. Y luego el resorte se estira, vuelve a la posición de equilibrio luego comprime, vuelve a su punto de equilibrio y se vuelve a estirar, luego de suceder esto se completa una oscilación. PÉNDULO SIMPLE Y OSCILACIONES El péndulo simple (también llamado péndulo matemático o péndulo ideal) es un sistema idealizado constituido por una partícula de masa m que está suspendida de un punto fijo o mediante un hilo inextensible y sin peso. Naturalmente es

imposible la realización práctica de un péndulo simple, pero si es accesible a la teoría. El péndulo simple o matemático se denomina así en contraposición a los péndulos reales, compuestos o físicos, únicos que pueden construirse. ECUACIÓN DEL MOVIMINETO.

El sistema masa resorte está compuesto por una masa puntual, un resorte ideal una colgante y un punto de sujeción del resorte.El resorte ideal puede ser un resorte de alto coeficiente de elasticidad y que no se deforma en el rango de estiramiento del resorte. La ecuación de fuerzas del sistema masa resorte es: m a = – k x donde x es la posición (altura) de la masa respecto a la línea de equilibrio de fuerzas del sistema, k es la constante de elasticidad del resorte y m la masa del cuerpo que es sometido a esta oscilación. Esta ecuación puede escribirse como :m d2 x/d t2 = – k x cuya solución es x = Am sin ( w t + ø), donde: Am es la máxima amplitud de la oscilación, w es la velocidad angular que se calcula como ( k /m) 0,5. La constante ø es conocida como ángulo de desfase que se utiliza para ajustar la ecuación para que calce con los datos que el observador indica.

De la ecuación anterior se puede despejar el periodo de oscilación del sistema que es dado por: T = 2 pi (m/k)0,5 A partir de la ecuación de posición se puede determinar la rapidez con que se desplaza el objeto: Vs = valor absoluto de ( dx /dt). Vs = |Am (k/m)0,5 * cos(wt + ø) |. En la condición de equilibrio la fuerza ejercida por la atracción gravitacional sobre la masa colgante es cancelada por la fuerza que ejerce el resorte a ser deformado. A partir de esta posición de equilibrio se puede realizar un estiramiento lento hasta llegar a la amplitud máxima deseada y esta es la que se utilizará como Am de la ecuación de posición del centro de masa de la masa colgante. Si se toma como posición inicial la parte más baja, la constante de desfase será – pi/2, pues la posición se encuentra en la parte más baja de la oscilación.

Page 4: MOVIMIENTO OSCILATORIO - M.A.S

PÉNDULO SIMPLE Y OSCILACIONESEl péndulo simple o matemático es un sistema idealizado constituido por una partícula desamas que está suspendida de un punto fijo O mediante un hilo inextensible y sin peso. Naturalmente es imposible la realización práctica de un péndulo simple, pero si es accesible la teoría. El péndulo simple o matemático se denomina así en contraposición a los péndulos reales, compuestos o físicos, únicos que pueden construirse Método de Newton Consideremos un péndulo simple, como el representado en la Figura. Si desplazamos la partícula desde la posición de equilibrio hasta que el hilo forme un ángulo Θ con la vertical, y luego la abandonamos partiendo del reposo, el péndulo oscilará en un plano vertical

bajo la acción de la gravedad. Las oscilaciones tendrán lugar entre las posiciones extremas Θ y -Θ, simétricas respecto a la vertical, a lo largo de un arco de circunferencia cuyo radio es la longitud, , del hilo. El movimiento es periódico, pero no podemos asegurar que sea armónico. Para determinar la naturaleza de las oscilaciones deberemos escribir la ecuación del movimiento de la partícula. La partícula se mueve sobre un arco de circunferencia bajo la acción de dos fuerzas: su propio peso (mg) y la tensión del hilo (N), siendo la fuerza motriz la componente tangencial del peso. Aplicando la segunda ley de Newton obtenemos: siendo at, la aceleración tangencial y donde hemos incluido el signo negativo para manifestar que la fuerza tangencial tiene siempre sentido opuesto al desplazamiento (fuerza recuperadora).Al tratarse de un movimiento circular, podemos poner siendo la aceleración angular, de modo que la ec. dif. del movimiento es:

Esta ec. dif. no corresponde a un movimiento armónico simple (m.a.s.) debido a la presencia de la función seno, de modo que podemos asegurar que el movimiento del péndulo simple no es armónico simple, en general. Método de LaGrange El la gran giano del sistema es donde es la elongación angular (ángulo que forma el hilo con la vertical) y es la longitud del hilo. Aplicando las ecuaciones de LaGrange se sigue obtenemos la ecuación del movimiento es de modo que la masa no interviene en el movimiento de un péndulo. Pequeñas oscilaciones

Péndulo simple en movimiento armónico simple con oscilaciones pequeñas. Para pequeñas oscilaciones, la función que representa la elongación angular con el tiempo, , es casi sinusoidal; para mayores amplitudes la oscilación ya no es sinusoidal. La figura muestra un movimiento de gran amplitud (negro), junto a un movimiento de pequeña amplitud (gris).Si consideramos tan sólo oscilaciones de pequeña amplitud, de modo que el ángulo θ sea siempre suficientemente pequeño, entonces el valor del senθ será muy próximo al valor deθ expresado en radianes (senθ ≈ θ, para θ suficientemente pequeño), como podemos apreciaren la Tabla I, y la ec. dif. del movimiento se reduce aque es idéntica a la ec. dif.

Page 5: MOVIMIENTO OSCILATORIO - M.A.S

HIDROSTÁTICAEs un tipo de presión debida al peso de un fluido en reposo, en éste la única presión existente es la presión hidrostática. En un fluido en movimiento además puede aparecer una presión hidrodinámica relacionada con la velocidad del fluido.Un fluido pesa y ejerce presión sobre las paredes, sobre el fondo del recipiente que lo contiene y sobre la superficie de cualquier objeto sumergido en él. Esta presión, llamada presión hidrostática provoca, en fluidos en reposo, una fuerza perpendicular a las paredes del recipiente o a la superficie del objeto sumergido sin importar la orientación que adopten las caras. Si el líquido fluyera, las fuerzas

resultantes de las presiones ya no serían necesariamente perpendiculares a las superficies.

La hidrostática, por su parte, es la rama de la mecánica que se especializa en el equilibrio de los fluidos. El término también se utiliza como adjetivo para referirse a lo que pertenece o está vinculado a dicha área de la mecánica.

La presión hidrostática, por lo tanto, da cuenta de la presión o fuerza que el peso de un fluido en reposo puede llegar a provocar. Se trata de la presión que experimenta un elemento por el sólo hecho de estar sumergido en un líquido. El fluido genera presión sobre el fondo, los laterales del recipiente y sobre la superficie del objeto introducido en él. Dicha presión hidrostática, con el fluido en estado de reposo, provoca una fuerza perpendicular a las paredes del envase o a la superficie del objeto.

El peso ejercido por el líquido sube a medida que se incrementa la profundidad. La presión hidrostática es directamente proporcional al valor de la gravedad, la densidad del líquido y la profundidad a la que se encuentra.

La presión hidrostática (p) puede ser calculada a partir de la multiplicación de la gravedad (g), la densidad (d) del líquido y la profundidad (h). En ecuación: p = d x g x h.

Este tipo de presión es muy estudiada en los distintos centros educativos para que los jóvenes puedan entenderla bien y ver cómo la misma se encuentra en su día a día. Así, por ejemplo, uno de los experimentos más utilizados por los profesores de Ciencias para explicar aquella es la que se realiza mezclando diversos fluidos.

En este caso concreto, es habitual que apuesten por introducir en un vaso o cubeta agua, aceite y alcohol. Así, en base a las densidades de cada uno de estos líquidos se consigue que el agua quede abajo del todo, el aceite sobre ella y finalmente sobre ambos se situará el alcohol. Y es que este cuenta con una mayor densidad.