Norma ieee 802.3

25
Norma IEEE 802.3 • Presentado Por: Ingri Lorena Bustos Cardoso • Presentado A: Alfonso Caro Portillo 250597

description

Reglamento Para los futuros Tecnicos en Sistemas

Transcript of Norma ieee 802.3

Page 1: Norma ieee 802.3

Norma IEEE 802.3

• Presentado Por:• Ingri Lorena Bustos Cardoso

• Presentado A:• Alfonso Caro Portillo• • 250597

Page 2: Norma ieee 802.3

IEEE 802.3

• La primera versión fue un intento de estandarizar ethernet aunque hubo un campo de la cabecera que se definió de forma diferente, posteriormente ha habido ampliaciones sucesivas al estándar que cubrieron las ampliaciones de velocidad (Fast Ethernet, Gigabit Ethernet y el de 10 Gigabits), redes virtuales, hubs, conmutadores y distintos tipos de medios, tanto de fibra óptica como de cables de cobre (tanto par trenzado como coaxial).

• Los estándares de este grupo no reflejan necesariamente lo que se usa en la práctica, aunque a diferencia de otros grupos este suele estar cerca de la realidad.

Page 3: Norma ieee 802.3
Page 4: Norma ieee 802.3

Ethernet e IEEE 802.3 Similitudes

• Todas las versiones de Ethernet son similares en que comparten la misma arquitectura de acceso al medio múltiple con detección de errores, CSMA/CD (carrier sense multiple access with collision detection). Sin embargo, el estándar IEEE 802.3 ha evolucionado en el tiempo de forma que ahora soporta múltiples medios en la capa física, incluyendo cable coaxil de 50 Ω y 75 Ω, cable par trenzado sin blindaje (Unshielded Twisted Pair o UTP), cable par trenzado con blindaje (Shielded Twisted Pair o STP) y fibra óptica. Otras diferencias entre los dos incluyen la velocidad de transmisión, el método de señalamiento y la longitud máxima del cableado.

Page 5: Norma ieee 802.3

Ethernet e IEEE 802.3 Similitudes

• La diferencia más significativa entre la tecnología Ethernet original y el estándar IEEE 802.3 es la diferencia entre los formatos de sus tramas. Esta diferencia es lo suficientemente significativa como para hacer a las dos versiones incompatibles.

• Una de las diferencias entre el formato de las dos tramas está en el preámbulo. El propósito del preámbulo es anunciar la trama y permitir a todos los receptores en la red sincronizarse a si mismos a la trama entrante. El preámbulo en Ethernet tiene una longitud de 8 bytes pero en IEEE 802.3 la longitud del mismo es de 7 bytes, en este último el octavo byte se convierte en el comienzo del delimitador de la trama.

• La segunda diferencia entre el formato de las tramas es en el campo tipo de trama que se encuentra en la trama Ethernet. Un campo tipo es usado para especificar al protocolo que es transportado en la trama. Esto posibilita que muchos protocolos puedan ser transportados en la trama. El campo tipo fue reemplazado en el estándar IEEE 802.3 por un campo longitud de trama, el cual es utilizado para indicar el numero de bytes que se encuentran en el campo da datos.

Page 6: Norma ieee 802.3

Ethernet e IEEE 802.3 Similitudes

• La tercera diferencia entre los formatos de ambas tramas se encuentra en los campos de dirección, tanto de destino como de origen. Mientras que el formato de IEEE 802.3 permite el uso tanto de direcciones de 2 como de 6 bytes, el estándar Ethernet permite solo direcciones de 6 Bytes.

• El formato de trama que predomina actualmente en los ambientes Ethernet es el de IEEE 802.3, pero la tecnología de red continua siendo referenciada como Ethernet.

Page 7: Norma ieee 802.3
Page 8: Norma ieee 802.3

Ethernet usa el método de transmisión CSMA/CD

• CSMA/CD, es el acronimo de Carrier Sense Multiple Acces/Collision Detect. Esto quiere decir que Ethernet sensa el medio para saber cuando puede acceder, e igualmente detecta cuando sucede una colision(p.e. cuando dos equipos trasmiten al mismo tiempo).

• Cuando dos estaciones trasmiten, y se sobreponen sus trasmisiones, hay una COLISION y las estaciones deben de retrasmitir la señal. Este principio lo retomo CSMA/CD. Aqui lo que se hace es sensar el medio fisico(el cable) y "mirar" cuando puedo entrar(o sea cuando puedo transmitir). Esto es el Carrier Sense, o sea mirar si hay una portadora sobre el medio. Si no hay portadora puedo trasmitir, pero puede ocurrir que alguna estacion ya halla trasmitido y por retardo en la red algun equipo(en un extremo por ejemplo) no se haya dado cuenta. Si el equipo que no se ha enterado trasmite, existira una colision.

Page 9: Norma ieee 802.3

Ethernet usa el método de transmisión CSMA/CD

• Cuando la colision es detectada, ambos equipos dejan de trasmitir, e intentaran trasmitir de nuevo en un tiempo aleatorio, que dependera del tipo de Persistencia de CSMA/CD.

• La aletoriedad del tiempo se incrementa de forma binaria exponencial. A este proceso de deneterse y volver a intentar se le llama Backoff. El backoff es realizado 6 veces, y si no se logra trasmitir el paquete, el envio se descarta. Por esto en Ethernet puede existir perdida de paquetes.

Page 10: Norma ieee 802.3

Ethernet usa el método de transmisión CMSA/CD

• La trama del csma/cd se trasmite a todas las estaciones conectadas al canal. La señal viaja desde el nodo de origen en ambasd irecciones a los otros nodos. Cada estación detecta el preámbulo, se sincroniza con la señal y activa la señal de escucha de portadora. Una vez realizada esta operacion, la entidad de acceso al canal en recepción pasa la señal a la entidad de decodificación de datos. Esta convierte el código manchester en una cadena de datos binarios convencionales y los pasa a la entidad de gestión deacceso al medio.

Page 11: Norma ieee 802.3

CSMA/CD y las Colisiones• CSMA/CD (Carrier Sense Multiple Access, acceso múltiple por detección de

portadora) significa que se utiliza un medio de acceso múltiple y que la estación que desea emitir previamente escucha el canal antes de emitir. En función de como actúe la estación, el método CSMA/CD se puede clasificar en:

• CSMA no-persistente: si el canal está ocupado espera un tiempo aleatorio y vuelve a escuchar. Si detecta libre el canal, emite inmediatamente

• CSMA 1-persistente: con el canal ocupado, la estación pasa a escuchar constantemente el canal, sin esperar tiempo alguno. En cuanto lo detecta libre, emite. Podría ocurrir que emitiera otra estación durante un retardo de propagación o latencia de la red posterior a la emisión de la trama, produciéndose una colisión (probabilidad 1).

• CSMA p-persistente: después de encontrar el canal ocupado y quedarse escuchando hasta encontrarlo libre, la estación decide si emite. Para ello ejecuta un algoritmo o programa que dará orden de transmitir con una probabilidad p, o de permanecer a la espera (probabilidad (1-p)). Si no transmitiera, en la siguiente ranura o división de tiempo volvería a ejecutar el mismo algoritmo hasta transmitir. De esta forma se reduce el número de colisiones (compárese con CSMA 1-persistente, donde p=1).

Page 12: Norma ieee 802.3

• Una vez comenzado a emitir, no para hasta terminar de emitir la trama completa. Si se produjera una colisión, esto es, que dos tramas de distinta estación fueran emitidas a la vez en el canal, ambas tramas serán incompresibles para las otras estaciones y la transmisión fracasaría.

• Finalmente CSMA/CD supone una mejora sobre CSMA, pues la estación está a la escucha a la vez que emite, de forma que si detecta que se produce una colisión, detiene inmediatamente la transmisión.

• La ganancia producida es el tiempo que no se continúa utilizando el medio para realizar una transmisión que resultará inútil, y que se podrá utilizar por otra estación para transmitir.

• Para resolver estos problemas, la IEEE 802.11 propone MACA (MultiAccess Collision Avoidance – Evitación de Colisión por Acceso Múltiple).

CSMA/CD y las Colisiones

Page 13: Norma ieee 802.3
Page 14: Norma ieee 802.3

Segmentación• Hay dos motivos fundamentales para dividir una LAN en

segmentos. El primer motivo es aislar el tráfico entre fragmentos, y obtener un ancho de banda mayor por usuario. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y saturación y virtualmente no ofrecerían ningún ancho de banda. La adición de dispositivos como, por ejemplo, puentes, switches y routers dividen la LAN en partes mas pequeñas, mas eficaces y fáciles de administrar.

• Al dividir redes de gran tamaño en unidades autónomas, los puentes y los switches ofrecen varias ventajas. Un puente o switch reduce el tráfico de los dispositivos en todos los segmentos conectados ya que sólo se envía un determinado porcentaje de tráfico. Ambos dispositivos actúan como un cortafuegos ante algunos de red potencialmente perjudiciales. También aceptan la comunicación entre una cantidad de dispositivos mayor que la que se soportaría en cualquier LAN única conectada al puente. Los puentes y los switches amplían la longitud efectiva de una LAN, permitiendo la conexión de equipos distantes que anteriormente no estaban permitidas.

Page 15: Norma ieee 802.3

Segmentacion• Aunque los puentes y los switches comparten los atributos más

importantes, todavía existen varias diferencias entre ellos. Los switches son significativamente más veloces porque realizan la conmutación por hardware, mientras que los puentes lo hacen por software y pueden interconectar las LAN de distintos anchos de banda. Una LAN Ethernet de 10 Mbps y una LAN Ethernet de 100 Mbps se pueden conectar mediante un switch. Los switches pueden soportar densidades de puerto más altas que los puentes. Por último, los switches reducen las saturación y aumentan el ancho de banda en los segmentos de red ya que suministran un ancho de banda dedicado para cada segmento de red.

• La segmentación por routers brinda todas estas ventajas e incluso otras adicionales. Cada interfaz (conexión) del router se conecta a una red distinta, de modo que al insertar el router en una LAN se crean redes mas pequeñas. Esto es así porque los routers no envían los broadcasts a menos que sean programados para hacerlo. Sin embargo, el router puede ejecutar las funciones de puenteo y transmisión de información. El router puede ejecutar la selección de mejor ruta y puede utilizarse para conectar distintos medios de red (una zona con fibra óptica y otra con UTP) y distintas tecnologías de LAN simultáneamente. El router, en la topología del ejemplo conecta las tecnologías de LAN Ethernet, Token Ring y FDDI, dividiendo la LAN en segmentos, pero hace muchas cosas más. Los routers pueden conectar las LAN que ejecutan distintos protocolos (IP vs. IPX vs. AppleTalk) y pueden tener conexiones con las WAN.

Page 16: Norma ieee 802.3
Page 17: Norma ieee 802.3

Segmentación mediante switches

• Una LAN que usa una topología Ethernet crea una red que funciona como si sólo tuviera dos nodos el nodo emisor y el nodo receptor. Estos dos nodos comparten un ancho de banda de 100 Mbps, lo que significa que prácticamente todo el ancho de banda está disponible para la transmisión de datos. Una LAN Ethernet permite que la topología LAN funcione más rápida y eficientemente que una LAN Ethernet estándar, ya que usa el ancho de banda de modo muy eficiente. En esta implementación Ethernet, el ancho de banda disponible puede alcanzar casi un 100%.

• Es importante observar que aunque 100% del ancho de banda puede estar disponible, las redes Ethernet tienen un mejor rendimiento cuando se mantiene por debajo del 30-40% de la capacidad total. El uso de ancho de banda que supere el límite recomendado tiene como resultado un aumento en la cantidad de colisiones (saturación de información). El propósito de la conmutación de LAN es aliviar las insuficiencias de ancho de banda y los cuellos de botella de la red como, por ejemplo, los que se producen entre un grupo de PC y un servidor de archivos remoto. Un switch LAN es un puente multipuerto de alta velocidad que tiene un puerto para cada nodo, o segmento, de la LAN. El switch divide la LAN en microsegmentos, creando de tal modo segmentos mas aliviados de tráfico.

Page 18: Norma ieee 802.3

Segmentación mediante switches

Cada nodo está directamente conectado a uno de sus puertos, o a un segmento que está conectado a uno de los puertos del switch. Esto crea una conexión de 100 Mbps entre cada nodo y cada segmento del switch. Un ordenador conectado directamente a un switch Ethernet está en su propio dominio de colisión y tiene acceso a los 100 Mbps completos. Cuando una trama entra a un switch, se lee para obtener la dirección origen o destino. Luego, el switch determina cuál es la acción de transmisión que se llevará a cabo basándose en lo que sabe a partir de la información que ha leído en la trama. Si la dirección destino se encuentra ubicada en otro segmento, la trama se conmuta a su destino.

Nota Todas las ramas de un hub forman un mismo dominio de colisión (las colisiones se retransmiten por todos los puertos del hub). Cada rama de un switch constituye un dominio de colisiones distinto (las colisiones no se retransmiten por los puertos del switch). Este es el motivo por el cual la utilización de conmutadores reduce el número de colisiones y mejora la eficiencia de las redes. El ancho de banda disponible se reparte entre todos los ordenadores conectados a un mismo dominio de colisión

Page 19: Norma ieee 802.3

Ethernet Conmutada• El tipo de LAN que se ha instalado mas que cualquier otro es

basado en el protocolo de acceso CSMA /CD. Esta definida en IEEE 802.3 Se le conoce como Ethernet. Las primeras instalaciones se trazaban con cables coaxial grueso . En instalaciones mas recienes se emplea cableado de par trenzado como concentradores,.estas redes se basan en una tropología de estrella, por ejemplo: Los DTE/estaciones dentro de su campo de coberturas estan conectados a el por cable de par trenzado de grado de voz .

• Como podemos ver existe un par de alambres independientes para trasmitir y recibir, y los circuitos de repetición del concentrador -repiten - retransmiten la señal recibida en cualquiera de sus pares de salida .Esto emula el modo de trasmisión para difusión que se emplea con cable coaxial y permite que todos los DTE conectados detecten las colisiones en la forma normal .

Page 20: Norma ieee 802.3

Ethernet Conmutada• Incrementando la complejidad de la electrónica de repetición, el

concentrador puede operar en un modo no difundido , si lee la dirección de origen de la cabecera de cada trama que repite. Puede conocer la dirección de MAC del DTE conectada a cada uno de sus puertos. Una conectada cada una en sus puertos. De esta manera, el concentrador puede elaborar una tabla (de enrutamiento) que contenga la dirección de MAC del DTE conectadas a cada una de sus puertos, una vez hecho esto el repetidor al recibir la dirección del MAC del destino de la cabecera de cada trama que llega puede trasmitir la trama únicamente por el puerto a los que va dirigida, este es el principio de Ethernet conmutada. La ventaja es que, con tal que la trasmisión se den entre DTE diferentes, es posible realizar al mismo tiempo mas de una transferencia de trama a través del concentrador.

• Cada línea de entrada de un puerto termina en un Buffer de primero que entra primero que sale (PEPS) a través del cual pasan todas las tramas entrantes, en cuanto se ha recibido en el Buffer PEPS la dirección de origen que esta en la cabecera de una trama , el procesador del control la lee y crea una entrada en su tabla de enrutamiento con el numero del puerto y la dirección de DTE correspondiente. Luego el procesador de control inicia la trasmisiones de la trama completa a través del Buffer PEPS por toda la línea del BUS del plano posterior .

Page 21: Norma ieee 802.3

Ethernet Conmutada• Una vez que el procesador del control ha aprendido las direcciones del MAC de todos

los puertos, simplemente lee direcciones de MAC de destino que viene en la cabecera, consulta su tabla de enrutamiento para determinar el numero del puerto de destino correspondiente e inicia la transferencia de la trama por el mediante la línea del Bus del plano posterior correspondiente. El ultimo punto por considerar es la detección de colisiones con este esquema, la única posibilidad de colisión se presenta cuando una trama recibida requiere un puerto de destino que ya esta recibida una trama de otro puerto. Para cubrir esta posibilidad es necesaria una línea adicional - par de hilos - que devuelva al DTE transmisor la indicación de que se ha presentado una colisión.

• Así podemos concluir que si bien puede efectuarse varias trasmisiones en paralelo cada una se realizan a solo 10 mbps. En muchas situaciones el grupo del trabajo varios DTE ( clientes ) comparten un solo DTE servidor , de modo que el servidor interviene en casi todas las trasmisiones. Desde luego, como cada vez puede haber una trasmisión que implique al servidor, son limitadas las ganancias de rendimiento que puede obtenerse .Al recibirse una trama de un DTE cliente, se almacena completa antes de trasmitirla a la velocidad mas alta por el puerto del servidor. De manera similar en el sentido opuesto por el buffer PEPS del servidor puede almacenar temporalmente varias tramas, que luego trasmiten a la velocidad mas baja a sus clientes,. Esto significa que el servidor puede hacer varias transacciones al mismo tiempo, cada una de las cuales opera a 10 Mbps igualmente cuando el puerto de alta velocidad interconectan dos concentradores, es posible realizar en forma concurrente varias transferencias de tramas

Page 22: Norma ieee 802.3
Page 23: Norma ieee 802.3

Segmentación mediante Routers

• Los routers son más avanzados que los puentes. Un puente es pasivo (transparente) en la capa de red y funciona en la capa de enlace de datos. Un router funciona en la capa de red y basa todas sus decisiones de envío en la dirección de protocolo de Capa 3. El router logra esto examinando la dirección destino del paquete de datos y buscando las instrucciones de envío en la tabla de enrutamiento (ya lo veremos mas adelante). Los routers producen el nivel más alto de segmentación debido a su capacidad para determinar exactamente dónde se debe enviar el paquete de datos.

• Como los routers ejecutan más funciones que los puentes, operan con un mayor nivel de latencia. Los routers deben examinar los paquetes para determinar la mejor ruta para enviarlos a sus destinos. Inevitablemente, este proceso lleva tiempo e introduce latencia (retardo).

Page 24: Norma ieee 802.3
Page 25: Norma ieee 802.3

Conclusión

Estos estándares y dispositivos nos han hecho que hagamos mas rápido la transferencia de archivos atreves de una red, y de evitar las colisiones en los envíos de archivos . Es también mucho mejor para las empresas, así ya no tienen tantos papeles los pueden enviar y almacenar con facilidad.