PDF (Sedimentación)

40
UNIVERSIDAD NACIONAL - FACULTAD DE MINAS lngo. Jorge Arturo Pérez P. SEDIMENTACION ------------- ------------- l. - INTRODUCCION TRATAMIENTO DE AGUAS Una vez coagulada y f10cu1ada el agua, el problema consiste en separar los 1idos del líquido o sea las partículas flocu1entas del agua, donde están sus- pendidas. Esto se puede conseguir por medio de: 1 - Sedimentación. 2 - Fi ltraci ón. 3 - Combinación de ambos procesos, que es 10 más utilizado. La sedimentación y la fi1traci6n deben considerarse como procesos complementa- rios: la sedimentación realiza la separación de las partículas más densas que el agua tengan una velocidad de sed1mentaci6n tal,que permita que lle- guen al fondo del tanque sedimentador en un tiempo economicamente aceptable. La filtración, en cambio, separa aquellas partículas de una densidad próxima a la del agua y de baja velocidad de sedimentación o que son resuspendidas por cualqJ'Ér causa y, que por esto, no son removidas en la sedimentación. 2. - DEFINICION Por sedimentación se denomina el proceso mediante el cual se asientan los s6- 1idos suspendidas en un fluido, bajo la acción de la gravedad. 3. - TIPOS DE SEDIMENTACION La sedimentación puede ser Simple cuando las partículas que se asientan son discretas, o sea partículas que no cambian de forma. tamaño o densidad duran- te el descenso en el fluido. La sedimentación se denomina Inducida cuando las partículas que se sedimentan son ag1omerables, o sea. que durante la sedimentación se aglutinan entre 96

Transcript of PDF (Sedimentación)

Page 1: PDF (Sedimentación)

\

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS lngo. Jorge Arturo Pérez P.

SEDIMENTACION --------------------------

l. - INTRODUCCION

TRATAMIENTO DE AGUAS

Una vez coagulada y f10cu1ada el agua, el problema consiste en separar los s~ 1idos del líquido o sea las partículas flocu1entas del agua, donde están sus­pendidas.

Esto se puede conseguir por medio de:

1 - Sedimentación. 2 - Fi ltraci ón. 3 - Combinación de ambos procesos, que es 10 más utilizado.

La sedimentación y la fi1traci6n deben considerarse como procesos complementa­rios: la sedimentación realiza la separación de las partículas más densas que el agua y~que tengan una velocidad de sed1mentaci6n tal,que permita que lle­guen al fondo del tanque sedimentador en un tiempo economicamente aceptable. La filtración, en cambio, separa aquellas partículas de una densidad próxima a la del agua y de baja velocidad de sedimentación o que son resuspendidas por cualqJ'Ér causa y, que por esto, no son removidas en la sedimentación.

2. - DEFINICION

Por sedimentación se denomina el proceso mediante el cual se asientan los s6-1idos suspendidas en un fluido, bajo la acción de la gravedad.

3. - TIPOS DE SEDIMENTACION •

La sedimentación puede ser Simple cuando las partículas que se asientan son discretas, o sea partículas que no cambian de forma. tamaño o densidad duran­te el descenso en el fluido.

La sedimentación se denomina Inducida cuando las partículas que se sedimentan son ag1omerables, o sea. que durante la sedimentación se aglutinan entre sí

96

Page 2: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS TRATAMIENTO DE AGUAS Ingo. Jorge Arturo Pérez P • .

. . . . . . " .. . .. . . .. . . . . . . . .. . ... ... .

cambiando de forma y tamaño y aumentando de peso especffico.

La sedimentación simple es, por ejemplo, lo que ocurre en un tanque desarena­dar que se coloca contiguo a la bocatoma y cuyo objeto es separar la arena del agua.

La sedimentación inducida es el tipo que se presenta en una planta de trata­miento y se logra en un tanque, llamado Sedimentador o Decantador, que se c~ loca a continuación del flocu1ador y que permite la separación de las partfc~ las f10cu1entas que se forman en los procesos de coagulación y f10culación.

Las partfcu1as f10cu1entas adquieren su dimensión, forma y peso casi defini­tivos durante la f10cu1ación,de forma que su comportamiento en el sedimenta­dar es muy similar al de las partfculas discretas. Es por esto que los crite­rios para el diseño de los sedimentadores para agua coagulada se basan en la sedimentación de partículas discretas, fenómeno que trata de representar la Ley de Stokes.

Según el sentido de flujo del agua en los sedimentadores, éstos pueden ser de ~

flujo horizontal, de flujo vertical y manto de 10dos,y sedimentadores de al-ta rata. Dentro de los primeros están los sedimentadores de plantas convencía ....

na1es y los desarenadores. Los segundos, según la forma de mantener el manto suspendido, son hidráulicos o mecánicos.

La sedimentación de alta rata es la concepción moderna del diseño de los se­dimentadores.

Se discutirán aquí los sedimentadores de flujo horizontal y los spo imentadores de alta rata.

4. - SEDIMENTACION SIMPLE - LEY DE STOKES

En un fluido en reposo una partfcula que cae está sometida a dos tipos de fuerzas:

97

Page 3: PDF (Sedimentación)

I

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez

TRATAMIENTO DE AGUAS

t __ , Fb = fgV (Peso del volumen de agua desplazado; Principio de Arquímides).

Fg = psgV

Donde:

J = densidad del agua

Js= densidad de la partícula

V '" volumen de la partícula 9 = gravedad

La fuerza que impulsa la partícula hacia abajo será la diferencia

Fi = Fg - Fb Fi = fsgV - JgV

Fi = gV(ps-j) (1)

Arrastrada por esta fuerza, la partícula desciende en el fluido con una velo­cidad creciente, pero a la par se crea una fricción que el líquido genera so­bre la partícula y que aumenta con la velocidad de sedimentación así:

Fr = ~ CdA1Vs2

(2)

Donde:

Fr - Fuerza de fricción. Cd = Geefiente de fricción de Newton. A = Area transversal de la partícula. Vs = Velocidad de asenta liento.

Cuando esta fuerza de roce llega a ser igual a la resultante de las dos ante­riores, la partícula adquiere su velocidad de asentiamiento, Vs, o velocidad límite que es constante durante el resto del descenso.

Para hallar la Vs igualamos (1) y (2):

gV(ps-J) = i CdA'pVs 2

98

Page 4: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P .

• TRATAMIENTO DE AGUAS

Despejando Vs:

Vs = V ifI . jls-P V J' . A (3 )

Para el caso particular de partículas esféricas:

A = lId 4

lId v= 6

• V • •

A

2

3

-

(4) en (3)

Vs - V ~ Vs = V 4 .

2 3

d (4)

. ps-f . 2 d ¡ 3

,

~ Ps-j. d N . .p (5 )

La anterior es la ecuación general que describe la caída de un cuerpo esfé­rico en un fluido en reposo.

Queda por determinar el coeficiente Cd que varía con el R así~

Cd = ~ + -h + 0.34 En la región de flujo turbulento.

Cd = ~ En la región de flujo laminar. (6)

donde R = Vs d < 0.5* v (7)

2 -V = viscosidad cinemática [Stokes ] o [cm /s 1

= M../J

* Cuando la coagulación es completa, el flujo laminar permite una mayor se­

paración (sedimentac16n) de las partfculas suspendidas en el agua, que el flu

99

Page 5: PDF (Sedimentación)

,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS I ngo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

jo turbulento.Un flujo estrictamente laminar está caracterizado por R < 0.1, pero si R < 0.5 se logra una buena sedimentación .

(7) en (6) y despejando:

R - 24 _ Vsd -Ccf-\)

. _ 24 \) .. Cd - Vs d (8)

(8) en (5)

Vs = nr ( La anterior s la ecuación de Stokes, de la cual se obtuvieron las siguien­tes conclusiones:

- A mayor tamaño de partícula, mayor velocidad de sedimentación .

- A mayor temperatura, mayor velocidad de sedimentación, porque decrece la v";scosidad (\)).

Lo anterior quiere decir que un sedimentador debe diseñarse para la mínima temperatura esperada del agua y para un determinado tamaño mínimo departíc~ la, l~ cual garantiza que se remueven totalmente las partículas mayores que ésta.

5. - SEDIMENTADORES DE FLUJO HORIZONTAL

5.1 Consideraciones Geométricas:

En los sedimentadores de flujo horizontal deben ser consideradas las s;guie~ tes zonas para su correcto funcionamiento:

- Zona de entrada: Distribuye a los sedimentadores el flujo proveniente de

100 .

Page 6: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

los floculadores de forma que la velocidad sea uniforme en toda la sección transversal. Además minimiza las corrientes (la turbulencia).

- Zona de sedimentación: Zona cuyo régimen de flujo y área superficial permi­te la sedimentación de la partícula de diseño y las de velocidades iguales o mayores que ésta.

- Zona de Lodos: Zona adicional utilizada para almacenar los lodos hasta el momento que se retiren del sedimentador.

- Zona de salida: Recoge uniformemente el flujo de salida de forma que la ve­locidad no varíe a 10 ancho del sedimentador.

P/l.l~.E.D tO~ OQ\~\t\O~ ;'

¡I~' _ .,.-'~--~------ ----.. -- ------r-7"--1

1 --1 ~

_1 -1 -, ---- I

I

I , I

--4.L--.J.l--.L-_____________ J---+

+. -1-' ---FLOCUI.A't)()~ 7 cON~ n~ ~ED\UE\JT"'(.\O"l

7..o\.u .. 1Jé E\Jn~l)to.

-- , -- 1

I

I

I -l _ - -- - ~-~-::::.--:..:::-=~ -::.-:--

--\

• - C.O'2TE. /I..-j:I. -

-.. - ---- - ---------<~-+I

101

t/l.~l 'tll:. ",su"", 'Sl:.1)1 NI ~UTb.""Db.

(

Page 7: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS TRATAMIENTO DE AGUAS Ingo. Jorge Arturo Pérez P. . o. •.. ..

5.1.1 Zona de sedimentación.

5.1.1.1 Sedimentación de partículas discretas.

a} Teoría de la sedimentación de partículas discretas:

La teoría del funcionamiento de la zona de sedimentación se basa en las siguientes suposiciones simplificadas:

1.- El asentamiento piente con fluido

tiene lugar exactamente como sucedería en un reci­en reposo de la misma profundidad.

2.- La concentración de las partículas a la entrada de la zona de sedimen tac;ón es homogénea, es decir, la concentración de partículas en sus­pensión de cada tamaño es uniforme en toda la sección transversal pe~ pendicular al flujo.

3.- La velocidad horizontal del fluido en el sedimentador está por debajo de la velocidad de arrastre de los lodos, por 10 tanto, una vez que

h

una partícula llegue al fondo, permanece allí. La velocidad horizon­tal es constante 10 mismo que la velocidad de sedimentación de cada partícu1a,por 10 que la trayectoria de las partículas en el sedimentador es una línea recta.

-- --

I

J

';, \) 1>E. Q. ~\C. \ t 't>l:,.\. b.bU ....

f ~ ~

"102

1.0 1)E

(~;E 't>\ t(\ E MT ~ c. \ "-l

Page 8: PDF (Sedimentación)

,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

-

Se denomina partícula crítica aquella que tiene una velocidad de sedi­mentación Vsc tal que si se encuentra a ras con la superficie líquida al pasar de la zona de entrada a la zona de sedimentación, llegará al fondo del tanque rectangular justo cuando la masa de agua que la trans­porta pasa de la zona de sedimentación a la zona de salida.

Todas las partículas que tengan una velocidad de sedimentación, Vsi, igualo mayor que Vsc, quedan sedimentadas y llegan a la zona de lodos:

Vsi ~ Vs c partículas 100% removidas.

Las partículas con velocidad de sedimentación menor que Vsc quedarán re­movidas en la proporción Vsi/Vsc. lo cual se demuestra de la siguiente forma:

I Por definición, el tiempo que se demora la partícula crítica o partícula { de diseño para llegar a la zona de lodos es el tiempo de detención nomi­

nal:

td = X. Q

Q = Caudal de diseño.

v = Volumen de la zona de sedimentación.

La distancia máxima que la partícula crítica alcanza a recorrer en td es:

H = Vsc x td

La máxima altura sobre el fondo a la cual puede entrar una partícuJa con ..

Vsi < Vsc para llegar a la zona de lodos es h:

h = Vs i x td

103 •

Page 9: PDF (Sedimentación)

r

• .

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS In90. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS . . .

Como b concentración de partículas a la entrada es homogénea, el % de ellas que se sedimenta será:

% removidas h Vsi x td = H = Vsc x td

• • • % removidas - Vsi - VsC

Resumiendo: Un sedimentador se diseña para remover un tamaño de partícula mínimo y todos los tamaños superiores al mínimo y, además, una fracción de todos los más pequeños.

• b) Eficiencia Teórica de un Sedimentador:

La eficiencia teórica se aclara mediante un ejemplo simple:

Supongamos, para simplificar, que hay 10 partículas de cada tamaño y en total hay 100 partículas suspendidas en un volumen cualquiera de agua, cuya velocidad de sedimentación y tamaño

10 9 8 7 6 5

~ @ ~ ® ~

relativo 4 3

® ~

se muestra: 2 1 Vs(mm/s )

G o

1 2 3 4 5 6 7 8 9 10 Partícula N2

Supongamos que se escoge Vs = 6 mm/s como velocidad de diseño .: Vsc = 6 mm/s ,que corresponde a la partícula NO.5.

El sedimentador retendrá la totalidad de las partículas con Vsi ~ Vsc, o sea 50 partículas. Redendrá además ~Si % de las de velocidad de sedi­

sc mentación Vs; < Vsc

La eficiencia será entonces:

E (%) = 50 + ( ~ + 1. t ~ + ~ t 1) 10 ::::-66666

= 75% 104

Page 10: PDF (Sedimentación)

r

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

~ En la práctica, la eficiencia debe ser determinada en un modelo o planta piloto. También puede ser determinada en un Ensayo de Jarras o midiendo la turbiedad antes y después del sedimentador.

/ La velocidad de sedimentación crítica, Vsc, se puede adoptar de valores comunmente empleados que producen buenos resultados o puede ser obtenida del Ensayo de Columna o más comunmente del Ensayo de Jarras.

c) Parámetro de Diseño:

En un sedimentador de partículas discretas:

td = y Q

donde:

_ A x H - ---::;--Q

td = tiempo de detención V = volumen del sedimentador Q - Caudal de diseño

A = Area superficial de la zona de sedimentación H = Profundidad de la zona de sedimentación

Vsc= .!!...- = ti x Q td AXH

Vsc = ~ (1)

Q­A - Rata o tasa de escurrimiento superfica1 [m 3/m 2X día]

Lo anterior quiere decir que un sedimentador se diseña calculando el área superficial necesaria para una velocidad de sedimentación escogida y un caudal de agua necesario (caudal de diseño).

La expresión (1) quiere decir que la sedimentación de partículas discre­tas es func;on, básicamente, de la tasa de escurrimiento superficial, es­

to es, del caudal tratado y del área horizontal y es, teoricamente, inde-

105

Page 11: PDF (Sedimentación)

f

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

T H

1

pendiente del tiempo de detención.

Vamos a demostrar que la distancia L a la cual se sedimenta la partícula de diseño (Vsc) es independiente de la profundidad:

+1--- L ---+1

a.-Tanque de profundidad H

Vsc = Q = -º-A LW

.". Vh =-º­H.W

H - td = -;-i--­Vsc

L = td x Vh

= vS~W (1)

b.-Tanque de profun didad 2H

Vsc = .Q. = -º-A LW

Vh = Q 2HW

2H td - Vsc

L - td x Vh

106

+---- l -----1

Page 12: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS 1n90. Jorge Arturo Pérez P.

-- Q VscW (2)

TRATAMIENTO DE AGUAS

(1) = (2) ~ L es independiente de la profundidad

En la práctica ciertos fenómenos como corrientes de densidad, corrientes de viento y corrientes cinéticas que se presentan en la entrada y salida del sedimentador alejan el comportamiento d~ un sedimentador de las con clusiones teóricas.

Estos fenómenos de corrientes son minimizados a partir de cierta profun­didad, magnitud que se definirá posteriormente.

d) Ejemplo de Diseño:

Datos: Q = 30 l/s

Partículas de arena: f = 2.65 g /cm 3 T = 10°C (Temperatura mínima)

,'f [mm] Vs [mm/s]

1.0 100 0.5 53

0.2 21

0.1 8

0.08 6

Se escoge la partícula de diseño. Se considera un buen tamaño 0.2 mm .: Vsc = 21 mm/s . Muy comunmente se diseña con este valor.

Vsc = 9.. A

30 X 10,- 3 m •. :L~ 21xlQ-3 m /5

= 1.43 m 2

107

Page 13: PDF (Sedimentación)

r

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS lngo. Jorge Arturo Pérez P.

5.1.1.2 Sedimentación para Agua Coagulada . ~

TRATAMIENTO DE AGUAS •

La mayoría de los pri ncipios estudiados en la sedimentación simple son ap1i cables a los tanques para sedimentación de agua coagulada.

Se supone que el agua que se va a sedimentar ha sido previamente coagulada y que por lo tanto el tamaño de las partículas en suspensión es practica­mente constante. Es por esto que la teoría de sedimentación para partículas discretas sigue siendo válida para el caso de agua coagu1ada~

Los factores que se consideran en el di seño de la zona de sedimentación son los siguientes:

- Carga Superficial. - Período de detención y profundidad. - Forma de los sedimentadores. Relación largo-ancho. - Velocidad horizontal. Relación largo-profundidad. - Número de unidades#

a) Carga Superficial:

Vsc = .Q. A

Es la velocidad crítica de sedimentación. La carga superficial puede ob­

tenerse experimentalmente efectuando un ensayo de sedimentación, que con siste en 10 siguiente:

Del beaker que se utiliza para el ensayo de f10culación se extraen muestras a la misma profundidad. Se mide el tiempo transcurrido y se de­termina la turbiedad residual.

h n::. (TE .

108

Page 14: PDF (Sedimentación)

[

UNIVERSIDAD NA[IONAL - FACULTAD BE MINAS . Ingo. Jorge Arturo Pérez P.

Tiempo Turbiedad (Ti)

O To tI TI

t 2 T2

t 3 T3 ,

TRATAMIENTO DE AGUAS

To - Ti x 100 vs To

- -h/t l To - TI X 100

To h/t 2 To - T2 X 100

To h/t 3 To - Ta x 100

To

Con la distancia, h, y los tiempos se calculan las velocidades: Vsi = hit;

Con la turbiedad inicial y final se calcula la turbiedad removida~

To -Ti . --~- x 100 : porcentaJe de remoción de turbiedad.

To

Con los datos anteriores se construye antonces el siguiente Gráfico:

~------~~-------------~~

Para un porcentaje de remoción de turbiedad deseado se encuentra Vs. Vs se divide por un factor de seguridad entre 1.5 y 2 Y se determina la ve­locidad de sedimentación crítica de diseño:

Vsc _ Vs del Gráfico - 1. a 2.0

En ausencia de un ensayo de sedimentación, se adoptan especificaciones de tipo general para los valores de diseño de Vsc, de la siguiente forma:

-Los flóculos de sulfato de aluminio (cuando se utiliza alumbre en la planta, ~ I que es el caso general) se sedimentan con una velocidad comprendida entre

I 0.015 Y 0.070 cm/s == 13 a 60 rn Id == 13 a 60 m 3 1m 2 x d . Por lo ta!].

109

Page 15: PDF (Sedimentación)

f

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS In90. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

to puede considerarse a Vsc comprendido en este rango.

) En Colombia es muy utilizado Por debajo de 20 m 3/m 2 x d

· Por encima de 30 m 3/m 2 x d

entre 24 Y 30 m 3/m 2 x d. los sedimentadores resultan muy se recargan mucho los filtros.

b)Período de detención y profundidad:

grandes.

El período de detención es el tiempo que la partícula de diseño tarda en llegar al fondo del tanque, por lo tanto es directamente dependiente de la profundidad del tanque.En cuanto menor sea la profundidad, menor será el tiempo de detención para recolectar la partícula de diseño. Los sedimentado res de "alta rata", que se discutirán posteriormente, hacen uso de éste

• •• pnnclplo.

Habíamos visto que, tec(ricamente, el diseño de los sedimentadores no depen­día de la profundidad, partiendo de 10 cual se podría decir que el menos profundo (menor costo) sería el más aconsejable; pero no pueden construirse con profundidades muy pequeñas porque:

- La velocidad de flujo no puede hacerse muy alta porque se resuspenden las partículas sedimentadas. La velocidad de flujo pedende de la profundl dad para un ancho determinado: A mayor profundidad, menor velocidad hori zontal. -

- Que existen corrientes que "revuelven 11 el sedimentador y que se minimi­zan a partir de ciertos valores de la profundidad.

- Condiciones estructurales y de operación.

Las profundidades varían entre 3 y 5 m y más corrientemente entre 3.5 y 4.5 m debido, entre otras cosas, a que las estructuras de concreto refor­

\ zado son económicas en ese rango.

r Con estas profundidades (3.5-4.5 m ) y para las tasas de escurrimiento us~ das en Colombia (24-30 m 31m 2 x d ) se obtienen tiempos de detención del

110

Page 16: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo P~rez P .

siguiente orden:

R 24 A

T A 30

TRATAMIENTO DE AGUAS

H=3.5 td=3.5 horas H=4.5 td=4.5 horas

H=3.5 td=2.8 horas H=4.5 td=3.6 horas

c)Forma de los sedimentadores - Relación Largo-Ancho:

La forma de los sedimentadores puede ser:

- Rectangular: Son los más usados en planta de tratamiento para agua po­table dentro del tipo de sedimentadores de flujo horizontal.

Debe existir una relación largo a ancho para producir unas condiciones hidráulicas que hagan que las partículas que entren a la zona de sedi­mentación con velocidad uniforme, las conserven durante toda esta zona y, experimentalmente se ha encontrado que la relación entre el largo y el ancho deberá ser:

Largo Ancho

3 a ~ = T 1

3 T : Si se busca economía.

) ~ : Si se busca eficiencia.

La topografía o el espacio disponible para la construcciónjinf1uyen en

la forma que tendrá el sedimentador.

Hay que sacrificar la economía en función de la eficiencia y viceversa.

- Circular: Los sedimentadores circulares se usan preferentemente en el

• 111

Page 17: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

---------------------------------------------------------------------------------

tratamiento de las aguas residuales y ocasionalmente en el tratamiento de ~gua Potab1e)siendo en este caso modelos patentados la mayoría de las veces. Por eite motivo no se considerarán.

d)Ve10cidad Horizontal y Relación Largo-Profundidad:

Existe tre de

una velocidad horizontal 1 as

cer que la partículas que ya se velocidad horizontal

por encima de la han sedimentado. sea menor que la

cual se produce arras­Por tanto debemos ha­velocidad de arrastre.

\ Para flóculos de sulfato de aluminio o de hierro, la velocidad horizon­tal debe ser menor de 0.5 cmls para que no Sp produzca arrastre.

cmls

En cuanto a la relación Largo-Profundidad:

Q = Vsc As (1)

Q = Vh Av (2)

As= WL Av= WH (1) = (2)

Vsc As = Vh Av

Vsc .WL = Vh HW

. L Vh .. H - Vsc

1 l En palabras, para una carga superficial determinada~la relación largo a profundidad está determinada por la velocidad horizontal.

e)NGmero de Unidades:

En toda planta debe haber por 10 menos dos unidades de sedimentación, -de forma que cuando se saque de servicio una, ya sea por lavado o repa-ración, se pueda seguir trabajando con la otra.

112

Page 18: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

Teniendo en cuenta 10 anterior, el área de los sedimentadores debe in­crementarse en un porcentaje, según aparece en el cuadro siguiente:

No. DE UNIDADES CARGA SUPERFICIAL (m 31m 2 x d )

20 30 40 50 60 2 O O 33 . 67 100

3 O O 11 22 33

4 O O 9 17 25 - . ... - -- - - ---

5.1.2 Zona de Entrada

En un f10culador el gradiente comprendido entre 10 y 100 s ne un gradiente cercano a 1 s el agua de un f10cu1ador a un

de velocidad que tiene el agua puede estar -1, en cambio en un sedimentador, el agoa ti~

-l. Esto implica qoe no es fácil hacer pasar sedimentador sin que se produzcan grandes pe!

turbaciones en las líneas de flujo.

Cualquier sistema que se utilice para romper esa energía que proviene del f10culador, tiende a romper el f10c que entra al sedimentador.

Por lo tanto el propósito de dicha estructura es:

- Distribuir el efluente del floculador uniformemente en el área transver sal del sedimentador.

- Evitar hasta donde sea posible los chorros de agua que crean movimlentos rotacionales y otras corrientes cinéticas.

- Disipar la energía que trap ~, agua,

- Evitar altas velocidad ~s ~u puec3n arrastrar (resuspender) los Iodos ya depositados.

Es conveniente que el gradlente instantáneo sea menor que 15 s

través de cada orificio. 113

-1 , a

Page 19: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTDA DE MINAS Ingo. Jorge Arturo Pérez P.

Los dos dispositivos de entrada más utilizados son: - Pantalla perforada. - Canal con orificios de fondo.

Pueden utilizarse ambos o por separado.

TRATAMIENTO DE AGUAS

Como una aclaración se puede observar la Figura siguiente: f o.'eO,

~ - :

I )

1.. • I ? 0"1 ~ 1:)E E "l n t. .. :t> b.

- '5Et)\M~~.J'T~t>OR. e~ (.0'2.\1:. -

5.1.2.1 Pantalla Perforada

Debe cumplir los siguientes requisitos:

- Debe hacerse en gran número de orificios pequeños mas bien que pocos grandes.

- La forma ideal de los orificios es la circular y luego la cuadrada.

- Los orificios más bajos deben quedar H/4 o H/5 por encima del fondo.

Los orificios más altos deben quedar H/5 o H/6 por debajo de la superfi cie del agua.

- La pantalla perforada debe quedar mfnimo a 0.80 m de la pared frontal del sedimentador o de la pared interior del canal con orificios, para rea lizar la limpieza.

El diseño de la pantalla perforada se hace mediante los siguientes pasos: 114

Page 20: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Ar'turo Pérez P.

TRATAMIENTO DE AGUAS

a. Area de la pantalla:

Ap = W x H

b. Cálculo del número y tamaño de los orificios:

Sea n = No. de orificios A = Area de cada orificio

nA = ~

donde Q - caudal de diseño del sedimentador m 3/S

V - velocidad a través de los orificios m Is

El caudal Q es un dato. La ~elocidad V se puede fijar = 0.15 m /s n (~2) = ~

Reemplazando en funci6n de ~ y ~:

nd 2 = constante = 4Q/V~

Se tabula para diferentes diámetros y diferente número de orificios.

Por facilidad de construcci6n, y sin dejar de cumplir la condición de que es mejor muchos orificios pequeños que pocos grandes, se escoge de esta tabulación la pareja de ~y ~ más conveniente .

5.1.2.2 Can~ con Orificios de Fondo: I

1!.3 @ Ir.l ® " i ~, @-+--++---'

Q

tQ ® I I Ir. I I t

I@

1

>---....... _.- -- ------'

~ ~i'-r-~----~VA~"~~~l~fr-

Page 21: PDF (Sedimentación)

,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

ct. I

TRATAMIENTO DE AGUAS

ttwa\..l)1!, IIt.E,VIIt. ~u ~\.. c,..~,..\. C.()t~ OQ.\~\c.\()~

1----=---- -

- - - - ---.r-lt - -

------------ - -- --

g" 'l"l. ~

VlIl/lA elll!ll/l evmzzOI ~ Vlll7ln \ WffA11 I ,~I M~t \ln

CO~TE. \_ \ I

Un aspecto importante en el diseño de la entrada a los sedimentadores, es asegurar que el flujo se distribuya por partes iguales a todas las unida­des.

En el caso ideal. Q se distribuirá por partes iguales en un número n de •

entradas similares, esto es, ql = q2 = q3 = Q/3 .

Estos es, teoricamente: qi = ~: El caudal que pasa por cada orificio es i­gua l.

En el caso real, en cambio, el flujo ql a través del primer orificio es ma­

yor que q2 y este a su vez mayor que q3, que es el flujo a través del úl­timo orificio.

Esto se debe a dos cosas:

- Que el flujo se va perdiendo por cada orificio que encuentra. - Que hay una pérdida de carga en el canal.

El caudal que pasa por un orificio es!

q = Cd a V 2 gh I Cd = coeficiente de descarga.

A mayor carga, mayor caudal por un orificio y tiende a presentarse mayor

116

Page 22: PDF (Sedimentación)

I

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

caudal por ql que por qa.

TRATAMIENTO DE AGUAS

Sea Q el caudal a través del canal ( consideremos solo la mitad). q el caudal a través de un orificio.

q = Q ( 10 que se busca). n

Sea h = pérdida de carga a través de un orificio,

h = kV2 (todas las pérdidas localizadas son de esta expresión). 2g

h - k V2 a2 donde k = Cd 2 " 2g x i2

haciendo k/2ga 2= k'

= klq2: La pérdida de carga es proporcional al cuadrado del gasto.

h1= klql~ Pérdida de carga en el orificio más cercano.

ha= kJqa~ Pérdida de carga en el orificio más lejano.

qa/ql = m fm = N2 real entre O y ~ (caso real)

h1 - ha = ~h ) ~h = pérdida de carga en el canal.

. t\h - 1 _ m2 .. ti: -

117

Page 23: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS TRATAMIENTO DE AGUAS •

1n90. Jorge Arturo Pérez P.

Q

Si m ... 1 >q3-?ql o sea que hay distribución uniforme del flujo a tra vés del canal con orificios.

Si m- l=?~h/hl >-0 Lo que sucede si ~ ~ O Ó hit pérdida de car­ga en el primer orificio, es grande.

En palabras: Haciendo la pérdida de carga en el canal muy pequeña con res pecto a la pérdida que se produce en el primer orificio, la distribución de flujo es más uniforme.

En la práctica 10 que se busca es cierto tipo de re que la diferencia de caudales entre el primer del 10% se hace m = p.9.

precisión, así, si se quie -y el último orificio sea

Los pasos de diseño se aclaran mediante el siguiente ejemplo:

Se quiere conocer cuáles deben ser las dimensiones de un canal con orifi­cios de fondo y cuál el tamaño de los orificios, de forma que la relación entre el caudal que sale por el primer orificio y por el último no sea m~ yor del 5%.

El caudal que recibe el sedimentador es 120 1 /s

Se adopta un valor para la rugosidad del concreto n - 0.013 .

• La Figura aclara el caso particular que se trata:

I

"t~ /

r ~ I

a.rt'TI M!'t

) ~ ~

"'111 II'!I 8

~ -- --::. \10 Lll~

~

I

~

~

1 '

Page 24: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

El problema se resuelve por tanteo y error suponiendo unas dimensiones del canal y encontrando el área de los orificios (todos iguales), conservando los caudales a través de los mismos dentro del grado de precisi6n.

Por cada lado del canal se va la mitad del caudal, o sea:

Q = 60 1 /s

Se considerará el diseño de la mitad qee aparece en la parte superior del eje de simetría.

Precisi6n = 95% ;;- m = 0.95 I

.: q3/ql = 0.95

Ah/h 1 = 1 - m2

= 0.098

Supongamos las siguientes el canal:

dimensiones y calculemos la pérdida de carga en r N.W\:.L '\)~ "c..I.)~ e." E.L c.~~M_l \I~~\~aLE.)

~-t---;~ r N.\~E.ll)l:. ~\}h. E él St.~\~~""h.l>~~

OAO

Calcular el flujo desde el orificio NO.l hasta el orificio NO.3 es compli­cado porque a medida que avanzamos en el canal hasta el extremo, tanto el caudal como la velocidad van disminuyendo. Lo que se hace es calcular el flujo entre dos orificios consecutivos ,

Cálculo del flujo entre el l~ y el 2~ orificio:

Se supone flujO uniforme y caudal igual por cada orificio, esto es, qi -20 1 /s

119

Page 25: PDF (Sedimentación)

UNI VERS IDAD NACIONAL - FACULTAD DE MINAS

Ingo. Jorge Arturo Pérez P.

v - Q - 0.04 m 3/S - EH - 0.50xO.40 m ~ = 0.20 m /s

R = 0,4Q x 0.50 = 0,154 m (0.40x2)+0.50

. : s _ 0.202 X O. O 13 2

- 0.082 4/3

5 = 8.2 x 10- .

Cálculo del flujo entre el 20. y el 30. orificio:

v - 0.02 - O 10 / - 0,50 x 0,40 - . m. s .

. s • •

- 0.102 X 0.013 2

_ 2 05 x 10 _5 - O , 092'+ h -. . .

TRATAMIENTO DE AGUAS

• :8h = (8.2 x 10- 5+ 2.05 xlO- S) x 2.0 ro,. - l> Ah -:.. S ~ L . Óh = 2.05 x 10-~ m -

1111 ':5 - ( .:( h, = 0.099 = 0.002 m - ~ 1

q = Cd a ~ (caudal por un orificio) Cd = 0.70

.: a = Cd ~2 gh' = 0,02 m 3/S

0,70 x 'V2x9.8 m 75 - \Ex 0.002 m '.= 0.14 m 2

Area de cada orificio = 0,14 m 2 .

Chequeo~l Gradiente:

G = n ~~' Rt-j -0.67 V 1·5

Supongamos orificios circulares iguales:

120

Page 26: PDF (Sedimentación)

r

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS 1ngo Jorge Arturo Pérez P.

D = 4 x 0.14 1T

D = 0.422 m I

v = .9. a

= 0.02 m 0.14 s

m = 0.143"5

V 1.5 = 0.054 .

G = 0.013 1000 1 1.138xlO-" x 4.51 x 0.054 s-

= 9.38 < 15 S-1

5.1.3 Zona de Salida

TRATAMIENTO DE AGUAS

El agua puede ser r.etirada del sedimentador por medio de vertederos, O cana­letas que al mismo tiempo fijan el nivel de agua en el mismo.

La longitud necesaria del vertedero ha de ser tal, que la carga unitaria (ca~ dal por unidad de longitud) esté comprendida entre 1.67 y 3.3 1 /s , por metro de vertedero.

Si el Si el

floc es liviano debe usarse 1.67 a 2.5

f10c es pesado puede usarse 2.5 a 3.3

1 /s 1 Is

x metro de vertedero. x metro de vertedero.

Si la carga unitaria del vertedero es mayor, puede causar perturbaciones que resusperlden los floc ya depositados en la zona de lodos,ya que aumenta la com ponente vertical de la velocidad de flujo hasta valores mayores que Vs .

121

Page 27: PDF (Sedimentación)

,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

El objeto del vertedero es recolectar el agua a todo 10 ancho del sedimen­tador. No puede funcionar ahogado. Si funciona libre, se puede garantizar que la carga sobre el vertedero es constante y el agua sale uniformemente,

LO~~\T\)\)

'i&e,.5b.1ll1l.. lL')

I~ rt

,.., Cuando la longitud necesaria de vertedero no cabe en el ancho del sedimen tador, 10 que se hace es colocar canaletas para poder aumentar la longi­tud de vertedero.

Una \

forma de uniformizar la recolección del agua sedimentada se consigue colocando una lámina metálica graduable, en forma de sierra, en las cana­letas .

• ' . • , . ~ .

• ,L--_--' ' l • • ' ," , '

122

Page 28: PDF (Sedimentación)

,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

Los dientes de la lámina mejoran la uniformidad del flujo y por ser gra­duable puede corregir asentamientos diferenciales qae pueden presentarse.

Las dimensiones necesarias de las canaletas de recolección se calculan me­diante la siguiente fórmula:

donde:

h = lámina máxima de agua en la canaleta. (cm) Q = caudal de diseño ( 1 /s ) b = ancho de la canaleta (cm)

ro 6 i

El procedimiento de diseño es el siguiente:

- Se supone un ancho de canaleta.

- Se encuentra lamrga correspondiente a la canaleta según el caudal del sedimentador y la longitud de vertedero utilizada.

- Se calcula h. ' - Se deja adicionalmente un borde libre que garantiza que la canaleta tra

baja libre, el cual puede ser de 5 a 10 cm.

123

Page 29: PDF (Sedimentación)

• ,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS lngo. Jorge Arturo Pérez P .

5.1.4 Zona de Lodos

5.1.4.1 Tolva de Lodos

TRATAMIENTO DE AGUAS

Los lodos se depositan en el sedimentador de forma que entre el 60% y el 90% 10 hacen en el primer tercio de su longitud. Para almacenarlos adecua­damente la tol va debe tener la siguiente forma:

~,~----------------------------,~~.

____ h-- ro~M~ (D\ IJ ~E \)'E.\)';),;:)\Th.-

L/?J

,.~-5 .,. ,-L/3

- C.Q1<.TE.-

- ~LMJT~-

12.' ~J \..\)~ LO _ ~ "5\ EL t:"o -0 0 1='m:.u. ~UI.{ o

La cantidad de lodos depositados varía directamente con la cantidad de coa­gulante utilizado.

Proyectar la cantidad de lodos es muy difícil porque las condiciones del agua

no se pueden preveer y con ellas varían también las características de los 10 dos. Normalmente los f1ócu10s frescos tienen densidades, ¡ = 1.02 a 1.05

9 /cm 3 con un contenido de humedad del 95% al 98%, los cuales sufren un pro­ceso de contracción cuando están sedimentados.

Los lodos no se deben almacenar mucho tiempo porque: - Se compactan y es difícil removerlos de la tolva.

- Se descomponen produciendo gases que hacen flotar los propios lodos.

12'4

Page 30: PDF (Sedimentación)

, •

t

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

Un buen criterio es dejar para depósito de lodos un 20% adicional sobre el vólumen de la zona de sedimentación.

La frecuencia dé lavado está determinada por dicho volumen.

5.1.4.2 Drenaje de Lodos

'\ El drenaje se efectGa por medio de una taberfa ~ ~ 12" o el que resulte de aplicar la siguiente fórmula:

_ A 112 S - 4850 t . h

donde:

s = Sección del tubo (m ) A = Area superficial de la zona de sedimentaéión (m~)

h = profundidad del sedimentador (m ) t = Tiempo de vaciado (horas)

Se escoge el diámetro y se encuentr.a el tiempo o viceversa. Un tiempo de vaciado normal está comprendido entre 1 y 2 horas.

5.1.4.3 Remoción de Lodos:

La remoción puede ser:

- Manual - Mecánica

a.- Manual: Se deja vaciar el sedimentador y luego con agua

pillos se llevan los lodos hacia el orificio de salida.

. .. a ¡:reSl0n y ce-

Para facil itar esta operación debe dejarse alrededor del tanque llaves de mangueras, pa­ra poder lanzar el agua.

125 .

Page 31: PDF (Sedimentación)

i i

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P .

T TAMIENTO DE AGUAS

b.- Mecánica: Se arrastran los lodos continuameente hacia el orificio de sa lida, por medio de un barredor. r: \o\CffQ ~ E. 1)\1 C. TQ ~

----r------F~~-\-------

Velocidad de traslación: 20 - 30 cm/mino

I I MOTQ"Q..éWC.~~

- --f} - -

~ -0-

/"vt •

-j t- -,

'1/ \

- c.aR:c. -

Se utilizan cuando el agua cruda tiene mucha turbiedad.

6. SEDIHENTACION DE ALTA RATA

6.1 Consideraciones Generales

De acuerdo con la teoría presentada anteriormente en lo referente a la zona de sedimentación, si ésta se parte en dos por medio de una bandeja, se po­drán recoger partículas con una velocidad de sedimentación menor que la v~ bcidad de sedimentación crítica.

T -

l-_._ __ ____ _ __________ ,

126

Page 32: PDF (Sedimentación)

I

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

J

1

Como la acción de un tanque sedimentador, según lo propuso Hazen en 1909, depende de su área superficial y no de su profundidad, una subdivisión nQ rizontal produciría una superficie doble para recibir sedimentos, dos sub­divisiones la duplicarfan y así sucesivamente.

Si la zona de sedimentación se subdivide por una serie de bandejas horizo~

tales en un gran número de celdas de poca profundidad, el incremento de e­ficiencia sería muy grande.

El problema práctico que presentaban era la remoción de los lodos depo~it! dos. Como una temprana solución a este problema, se propuso sacar de fun­cionamiento el sedimentador y lavarlo con agua a presión cada determinado período de tiempo. Más tarde se propuso dar cierta inclinacion a las bande­jas con respecto a la horizontal para que los lodos pudieran deslizarse por su propio peso y llegar a la zona de lodos de donde son retirados periódic! mente.

El esquema de un sedimentador de alta rata de placas inclinadas es mostrado a continuación:

'2.'

- .- . - - - -- •

I I !' / ,

l' r ~ :

I .. I

• f

1 , ,

I I

Ji !.i L

CAN~-;:~~' ~ ~\~c.l\l~'\.lh,

127

__ o

Page 33: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

TRATAMIEI.TO DE AGUAS

r:r-i:- r-- - --- - ' ,..---n I

. , ~ • · •

,

-

C.O~TE \_ \ I (OlITE c.- c.'

Las placas planas constituyen la celda de sedimentación y están fabricadas en asbesto cemento. La celda también puede ser construida con tubos circu­lares, tubos cuadrados, tubos exagonales o láminas onduladas paralelas de­bidamente colocadas en el tanque, haciendo un ángulo con la horizontal que garantice deslizamiento de los lodos, de tal forma que el agua ascienda por dentro de la celda con flujo laminar, esto es, R ~ 250. Estas celdas permiten cargas IIhorizonta1es equivalentes" del orden de 120 a 300 m 31m 2

x d l contra 20 a 60 m 31m 2 x d de la sedimentación convencional .

\

,.'

El período de detención en este tipo de sedimentadores es generalmente me­nor de 10 minutos, contra varias horas en los sedimentadores convencionales.

Los sedimentadores de alta rata son utilizados en Europa y Norte América desde hace cerca de 15 años, y en el país desde hace algunos años con mag­níficos resultados en cuanto se refiere a su eficiencia, obteniéndose es­tru3uras más compactas, con la consiguiente economía en el proyecto.

El presente tema sólo estará dedicado al análisis de los sedimentadores de placas planas inclinadas, que son en la actualidad los más utilizados.

128

. ,

Page 34: PDF (Sedimentación)

t '

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS lngo. Jorge Arturo Pérez P.

TRATAMIENTO DE AGUAS

Los sedimentadores de placas son empleados también con éxito como desare­nadores y sedimentadores de aguas negras.

6.2 Fórmulas Básicas:

Cuando una partícula' asciende con una velocidad media Va arrastrada por el flujo entre dos placas planas paralelas que forman un ángulo -9- con la nori zontal, la velocidad resultante que determina la trayectoria de l a partíc~

la puede descomponerse en dos componentes Vx y Vy:

\ \ .so , e

\ \

La , fórmula general de cálculo puede hallarse mediante sencillas relaciones geométricas. de la siguiente manera :

El triángulo ABe es semejante al triángulo , DEF, y por tanto:

Reemplazando:

Vx _ vv T--=t

Vo - Vsc sen .g.. _ V"c cos .Q. ~---'1~="-~ -

e

129

Page 35: PDF (Sedimentación)

,

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS 1ngo. Jorge Arturo Pérez P.

Multiplicando ambos lados de la igualdad por 1:

Vo - Vsc sen -G- = l Vsc cos 4 e

Haciendo L =! y despejando Vo~

Vo = Vsc (sen -G- + L cos 4) (1) .

TRATAMIENTO DE AGUAS

Según el tipo de celda de sedimentación empleada, existe un factor de efi­ciencia S, quedando la ecuación (1) de la siguiente forma:

Va = V~c (sen-&+ L cos~) (2)

Según el tipo de celda, los valores de S son los siguientes:

tubos circulares: 4/3

conductos cuadrados: 11/8 placas planas paralelas: 1 conductos exagonales: 1 placas onduladas paralelas: 1

Para el caso que nos interesa, las placas planas paralelas, la fórmula qu~

da entonces:

Va = Vsc (sen ~ + L cos ~) (3)

Para que la ecuación anterior sea válida es indispensable que se establezca entre las placas un flujo laminar (R(250). ¡

Aunque el R sea bajo, el flujo laminar no se establece inmediatamente al entrar a las placas y las velocidades se distribuyen como se muestra a co~ tinuac;ón.Al comienzo de la celda de sedimentación, se establece una región de flujo con capa límite no uniforme, régimen turbulento, que se extiende una distancia x. A partir de ésta se establece una región de flujo plena­mente desarrollado, con capa límite uniforme.

l~O

Page 36: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P .

TRATAMIENTO DE AGUAS

.... \:,.í:I\ ~ tl~ ~L\)'10' IJ'¡;t'OUlE\"."O

~.­ -+-•

El flujo laminar desarrollado sólo se obtiene a partir de una distancia x tomada desde la entrada.

El valor de x puede calcularse con la fórmula de Boussinesq, así:

x = 0.03 R1(e

O puede utilizarse la fórmula de Langhaar:

x = 0.058 R .. e

El número de Reynolds se puede determinar así:

R = VO.e v

F 1

En la región de flujo turbulento prácticamente no se produce sedimentación;

es por ésto que esta distancia x debe ser restada de la longnud 1 de la placa.

La longitud relativa en la cual no hay sedimentación es:

L'= ~ e

131

Page 37: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

L' = 0.058 R (Se adopta por seguridad )

La longitud relativa útil de la placa será entonces:

Lu = L - 0.058 R

La Fórmula No.3 queda entonces de la siguiente manera,

TRATAMIENTO DE AGUAS

I Va = Vsc [sen ~ + (L - 0.058 R) cos BJI (4)

6.3 Inclinación de las Placas:

La inclinación de las placas, o sea el ángulo ~ que forman con la horizon tal, es el otro parámetro que caracteriza el comportamiento de este tipo de sedimentador.

El ángulo debe seleccionarse entre 40° y 60°. Un ángulo> 60° disminuiría mucho la eficiencia. Un ángulo < 40° hace dificultoso el deslizamiento de los lodos.

6.4 Aplicaciones Prácticas de los Sedimentadores de Alta Rata:

Los sedimentadores de alta rata pueden usarse para:

- Aumentar el flujo en sedimentadores convencionales aprovechando la estruc tura actual.

Disminuir el área de sedimentación, con las consiguientes economías.

- Desarenar el agua.

6.5 Ejemplo de aseñº:

Diseñar la celda de sedimentación de alta rata utilizando placas de asbesto

132 .

Page 38: PDF (Sedimentación)

-

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

cemento de 2.40m xl.20m ~.006m

Q = 100 1 Is T = 16°C

TRATAMIENTO DE AG

El cálculo se hace con la ayuda de las siguientes ecuaciones:

Vo = Vsc (sen ~ + L cosG) (3) Vo = Vsc [sen G + (l-0.058 R) cos Q] (4)

Con ayuda de la ecuación No.3, para un valor determinado de Vsc, se halla un primer valor aproximado de Vo. Con este Vo se encuentra el R y se ree~ plaza en la ~cuación No.4 para hallar un segundo valor aproximado de Vo. Con este nuevo valor se recalcula R y se obtiene un nuevo valor de Vo, y así sucesivamente, según el grado de precisión que se quiera obtener.

El valor de Vsc, punto de partida, se puede obtener de dos maneras:

- Experimentalmente del Ensayo de Jarras. - Adoptado de pa rámetros generales (20 ~ Vsc ~ 60 m 31m 2 x d ).

Supongamos Vsc = 40 m3 1m 2 x día

Vsc = 40 m3 x d x 100 cm m2 x d x86400 'S.xm

Vsc = 0.046 cmls

- El ángulo de inclinación de las placas = supongamos ~ = 60°

- Espaciamiento entre las placas = 0.05 m

133

Page 39: PDF (Sedimentación)

r

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS lngo. Jorge Arturo Pérez P.

.' , . . t . ~.

I

\/tI.'lt.ILlb. cfJ '/4 ~"'61J\.O ""~L.l(.a ~Lt:\~\)b.

L - 1 - 1.20 - 24 - e - 0.05 -

Va = 0.046 (sen 60°+ 24 cos 60? = 0.59 cm/s

R = 06:61125 = 263 > 250 No hay flujo laminar.

Hay que aumentar la separación entre las placas: Supongamos e = 0.06 m

L = 1.20 = 20 0.06

Vo = 0.046 (sen 60° + 20 cos 60°) = 0.50 cmls

_ 0.50 x 6' R - 0.0112 = 223 < 250

~ (,0. ~ .."

Reemplazando en la ecuación NO.4:

Vo = 0.046 [sen 60° + (20-0.058 x 223) cos 60 0 J = 0.20 cmls

TRATAMIENTO DE AGUAS

., .

..' • . . a.

Con este valor de Vo calculamos nuevamente el R y con este, en la ecuación No.4, el correspondiente valor de Vo, hasta que se haga mínima la diferen-. ~

C 1 a, as 1 :

134

Page 40: PDF (Sedimentación)

UNIVERSIDAD NACIONAL - FACULTAD DE MINAS Ingo. Jorge Arturo Pérez P.

Vo (supuesto) R Vo (obtenido) (cm/s ) (cm/s

0.20 0.33 0.24 0.31 0.26 O 29 0.27 0.28 0.27 0.28

0.27 0.28

.: Vo = 0.28 cm/s R = 150 < 250

Número de placas:

Sea N = Número de canales Número de placas = N + 1

N = ----:+Q­a Vo e

107 178 127 163 138 156 143 153 146 151

147 150

donde a = ancho de las placas

N - O .10 x 100 - 248 - 2.40xO.28xO.06 -

.: Número de placas = 249

Longitud ocupada por las placas:

L = 1 cos -G + r Nxe + (N+1)x espesorl t sen ~ -J L = 1.20 x cos60o+ 248xO.06+249xO.006

sen 60°

L = 19.51 m / 135

0.33 0.24 0.31 0.26 0.29 0.27 0.28 0.27 0.28 0.27

0.28 0.28

)

TRATAMIENTO DE AGUAS