Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

of 231 /231
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames http://slidepdf.com/reader/full/presentaion-aisc-seismic-design-module2-moment-resisting-frames 1/231 Design of Seismic- Resistant Steel Building Structures Prepared by: Michael D. Engelhardt University of Texas at Austin with the support of the American Institute of Steel Construction. Version 1 - March 2007 2. Moment Resisting Frames

Embed Size (px)

Transcript of Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    1/231

    Design of Seismic-Resistant Steel

    Building Structures

    Prepared by:

    Michael D. EngelhardtUniversity of Texas at Austin

    with the support of the American Institute of Steel Construction.

    Version 1 - March 2007

    2. Moment Resisting Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    2/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    3/231

    2 - Moment Resisting Frames

    Definition and Basic Behavior of Moment ResistingFrames

    Beam-to-Column Connections: Before and After Northridge

    Panel-Zone Behavior

    AISC Seismic Provisions for Special Moment Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    4/231

    Moment Resisting Frames

    Definition and Basic Behavior of Moment ResistingFrames

    Beam-to-Column Connections: Before and After Northridge

    Panel-Zone Behavior

    AISC Seismic Provisions for Special Moment Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    5/231

    MOMENT RESISTING FRAME (MRF)

    Advantages

    Architectural Versatility High Ductility and Safety

    Disadvantages

    Low Elastic Stiffness

    Beams and columns with moment resistingconnections; resist lateral forces by flexure andshear in beams and columns

    Develop ductility by:- flexural yielding of beams

    - shear yielding of column panel zones- flexural yielding of columns

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    6/231

    Moment Resisting Frame

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    7/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    8/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    9/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    10/231

    Achieving Ductile Behavior:

    Choose frame elements ("fuses") that willyield in an earthquake, i.e, choose plastic

    hinge locations. Detail plastic hinge regions to sustain

    large inelastic rotations prior to the onsetof fracture or instability.

    Design all other frame elements to bestronger than the plastic hinge regions.

    Understand and Control Inelastic Behavior:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    11/231

    Behavior of an MRF Under Lateral Load:Internal Forces and Possible Plastic Hinge Locations

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    12/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    13/231M V

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    14/231

    Possible Plastic Hinge Locations

    Beam(Flexural Yielding)

    Panel Zone(Shear Yielding)

    Column(Flexural & Axial

    Yielding)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    15/231

    Plastic HingesIn Beams

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    16/231

    Plastic HingesIn Column Panel Zones

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    17/231

    Plastic HingesIn Columns:

    Potential for SoftStory Collapse

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    18/231

    Critical Detailing Area for Moment Resisting Frames: Beam-to-Column Connections

    Design Requirement:Frame must develop large ductilitywithout failure of beam-to-columnconnection.

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    19/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    20/231

    Moment Connection Design Practice Prior to1994 Northridge Earthquake:

    Welded flange-boltedweb moment connectionwidely used from early1970s to 1994

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    21/231

    Pre-NorthridgeWelded Flange Bolted Web Moment Connection

    Backup Bar

    Beam Flange

    Column FlangeStiffener

    Weld Access Hole

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    22/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    23/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    24/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    25/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    26/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    27/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    28/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    29/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    30/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    31/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    32/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    33/231

    Experimental Data on Pre -NorthridgeMoment Connection

    Typical ExperimentalSetup:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    34/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    35/231

    Initial Tests on Large Scale Specimens:

    Tests conducted at UC Berkeley ~1970 Tests on W18x50 and W24x76 beams Tests compared all-welded connections

    with welded flange-bolted web connections

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    36/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    37/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    38/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    39/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    40/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    41/231

    Welded Flange Bolted Web Detail

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    42/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    43/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    44/231

    Observations from Initial UC Berkeley Tests:

    Large ductility developed by all-weldedconnections.

    Welded flange-bolted web connections developedless ductility, but were viewed as still acceptable.

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    45/231

    Subsequent Test Programs:

    Welded flange-bolted web connections showedhighly variable performance.

    Typical failure modes: fracture at or near beamflange groove welds. A large number of laboratory tested connections

    did not develop adequate ductility in the beam

    prior to connection failure.

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    46/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    47/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    48/231

    -5000

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

    Drift Angle (rad)

    B e n

    d i n g

    M o m

    e n

    t ( k N - m

    )

    Brittle Fracture at BottomFlange Weld

    Mp

    Mp

    Pre-Northridge Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    49/231

    Summary of Testing Prior toNorthridge Earthquake

    Welded flange bolted web connection showedhighly variable performance

    Many connections failed in laboratory with littleor no ductility

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    50/231

    1994 Northridge Earthquake

    Widespread failure of welded flange - boltedweb momentconnections

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    51/231

    1994 Northridge Earthquake

    January 17, 1994 Magnitude = 6.8

    Epicenter at Northridge - San Fernando Valley(Los Angeles area)

    Fatalities: 58

    Estimated Damage Cost: $20 Billion

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    52/231

    Northridge - Ground Accelerations

    Sylmar: 0.91g H 0.60g V Sherman Oaks: 0.46g H 0.18g V Granada Hills: 0.62g H 0.40g V Santa Monica: 0.93g H 0.25g V North Hollywood: 0.33g H 0.15g V

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    53/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    54/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    55/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    56/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    57/231

    Damage Observations:Steel MomentConnections

    Pre-Northridge

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    58/231

    Backup Bar

    Beam Flange

    Column FlangeStiffener

    Weld Access Hole

    Pre-NorthridgeWelded Flange Bolted Web Moment Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    59/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    60/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    61/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    62/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    63/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    64/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    65/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    66/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    67/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    68/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    69/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    70/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    71/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    72/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    73/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    74/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    75/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    76/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    77/231

    Damage Observations

    A large number of steel moment frame buildingssuffered connection damage

    No steel moment frame buildings collapsed Typical Damage: fracture of groove weld

    divot fracture within column flange fracture across column flange and web

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    78/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    79/231

    Response to Northridge Moment ConnectionDamage

    Nearly immediate elimination of welded flange -bolted web connection from US building codes anddesign practice

    Intensive research and testing efforts to understandcauses of damage and to develop improvedconnections AISC, NIST, NSF, etc. SAC Program (FEMA)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    80/231

    Causes of Moment ConnectionDamage in Northridge

    Welding

    Connection Design

    Materials

    Causes of Northridge Moment Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    81/231

    Damage:

    Welding Factors

    Low Fracture Toughness of Weld Metal

    Poor Quality Effect of Backing Bars and Weld Tabs

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    82/231

    Weld Metal Toughness

    Most common Pre-Northridge welding electrode(E70T-4) had very low fracture toughness.

    Typical Charpy V-Notch: < 5 ft.-lbs at 70 0F(7 J at 21 0C)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    83/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    84/231

    Welding Quality

    Many failed connections showed evidence of poor weld quality

    Many fractures initiated at root defects in bottomflange weld, in vicinity of weld access hole

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    85/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    86/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    87/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    88/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    89/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    90/231

    Causes of Northridge Moment ConnectionD

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    91/231

    Design Factors:

    Stress/Strain Too High at Beam Flange Groove Weld

    Inadequate Participation of Beam Web Connection inTransferring Moment and Shear

    Effect of Weld Access Hole Effect of Column Flange Bending Other Factors

    Damage:

    s s

    Fu

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    92/231

    Mp

    Increase in Flange Stress Due toInadequate Moment Transfer Through Web Connection

    F l a n g e

    S t r e s

    Fy

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    93/231

    Vflange

    Increase in Flange Stress Due to Shear in Flange

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    94/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    95/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    96/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    97/231

    Strategies for Improved Performanceof Moment Connections

    Welding

    Materials

    Connection Design and Detailing

    Strategies for Improved Performance of Moment

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    98/231

    Connections:

    WELDING

    Required minimum toughness for weld metal: Required CVN for all welds in SLRS:

    20 ft.-lbs at 0 0 F

    Required CVN for Demand Critical welds:20 ft.-lbs at -20 0 F and 40 ft.-lbs at 70 0 F

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    99/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    100/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    101/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    102/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    103/231

    Strategies for Improved Performance of MomentConnections:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    104/231

    Materials (Structural Steel)

    Introduction of expected yield stress into designcodes

    Fy = minimum specified yield strength

    R y = 1.5 for ASTM A36

    = 1.1 for A572 Gr. 50 and A992(See AISC Seismic Provisions - Section 6 for other values of R y )

    Expected Yield Stress = R y Fy

    Strategies for Improved Performance of MomentConnections:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    105/231

    Materials (Structural Steel)

    Introduction of ASTM A992 steel for wide flangeshapes

    ASTM A992Minimum F y = 50 ksi

    Maximum F y = 65 ksi

    Minimum F u = 65 ksi

    Maximum F y / Fu = 0.85

    Strategies for Improved Performance of MomentConnections:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    106/231

    Connections:

    Connection Design

    Improved Weld Access Hole Geometry

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    107/231

    Improved Weld AccessHole

    See Figure 11-1 in the2005 AISC Seismic Provisions for dimensionsand finish requirements

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    108/231

    Strategies for Improved Performance of MomentConnections:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    109/231

    Connections:

    Connection Design

    Development of Improved Connection Designsand Design Procedures

    Reinforced Connections Proprietary Connections Reduced Beam Section (Dogbone)

    Connections Other SAC Investigated Connections

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    110/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    111/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    112/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    113/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    114/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    115/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    116/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    117/231

    Proprietary Connections

    SIDE PLATE

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    118/231

    SIDE PLATECONNECTION

    SLOTTED WEB

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    119/231

    SLOTTED WEBCONNECTION

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    120/231

    Connections Investigated ThroughSAC-FEMA Research Program

    Reduced BeamSection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    121/231

    Section

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    122/231

    WeldedUnreinforcedFlange - BoltedWeb

    WeldedUnreinforced

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    123/231

    Flange - WeldedWeb

    Free Flange

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    124/231

    Free FlangeConnection

    Welded FlangePlate Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    125/231

    Plate Connection

    Bolted UnstiffenedEnd Plate

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    126/231

    End Plate

    Bolted StiffenedEnd Plate

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    127/231

    Bolted FlangePlate

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    128/231

    Double Split Tee

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    129/231

    Double Split Tee

    Results of SAC-FEMA Research ProgramR d d S i i D i C it i

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    130/231

    Recommended Seismic Design Criteriafor Steel Moment Frames

    FEMA 350Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings

    FEMA 351Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings

    FEMA 352Recommended Postearthquake Evaluation and Repair Criteriafor Welded Steel Moment-Frame Buildings

    FEMA 353Recommended Specifications and Quality AssuranceGuidelines for Steel Moment-Frame Construction for Seismic

    Applications

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    131/231

    FEMA 350

    Moment Resisting Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    132/231

    Definition and Basic Behavior of Moment ResistingFrames

    Beam-to-Column Connections: Before and After Northridge

    Panel-Zone Behavior AISC Seismic Provisions for Special Moment Frames

    Column Panel Zone

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    133/231

    Colum n Panel Zon e: - subject to high shear - shear yielding and large

    shear deformations possible(forms shear hinge)

    - provides alternate yieldingmechanism in a steel momentframe

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    134/231

    Joint deformationdue to panel zoneshear yielding

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    135/231

    Plastic Shear HingesIn Column Panel Zones

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    136/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    137/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    138/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    139/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    140/231

    "kink" at corners of panel zone

    400C i RBS S i i h

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    141/231

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

    Story Drift Angle (rad)

    C o

    l u m n

    T i p

    L o a

    d ( k i p s

    )

    Composite RBS Specimen withWeak Panel Zone

    1200Composite RBS Specimen with

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    142/231

    -1200

    -800

    -400

    0

    400

    800

    -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

    Panel Zone g (rad)

    P a n e

    l Z o n e

    S h e a r

    F o r c e

    ( k i p s

    )

    Weak Panel Zone

    g

    Observations on Panel Zone Behavior

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    143/231

    Observations on Panel Zone Behavior

    Very high ductility is possible. Localized deformations (kinking) at corners of panel

    zone may increase likelihood of fracture in vicinity of beam flange groove welds.

    Building code provisions have varied greatly on panelzone design.

    Current AISC Seismic Provisions permits limitedyielding in panel zone.

    Further research needed to better define acceptablelevel of panel zone yielding

    Moment Resisting Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    144/231

    Definition and Basic Behavior of Moment ResistingFrames

    Beam-to-Column Connections: Before and After Northridge

    Panel-Zone Behavior AISC Seismic Provisions for Special Moment Frames

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    145/231

    2005 AISC Seismic Provisions

    Section 9 Special Moment Frames (SMF)

    Section 10 Intermediate Moment Frames (IMF)

    Section 11 Ordinary Moment Frames (OMF)

    Section 9Special Moment Frames (SMF)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    146/231

    p ( )9.1 Scope

    9.2 Beam-to-Column Joints and Connections

    9.3 Panel Zone of Beam-to-Column Connections

    9.4 Beam and Column Limitations

    9.5 Continuity Plates

    9.6 Column-Beam Moment Ratio

    9.7 Lateral Bracing of at Beam-to-Column Connections

    9.8 Lateral Bracing of Beams

    9.9 Column Splices

    AISC Seismic Provisions - SMF 9.1 Scope

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    147/231

    Special moment frames (SMF) are expected to withstandsignificant inelastic deformations when subjected to theforces resulting from the motions of the designearthquake.

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    148/231

    AISC Seismic Provisions - SMF - Beam-to-Column Connections9.2a Requirements

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    149/231

    Beam-to-column connections shall satisfy the following three

    requirements:

    1. The connection shall be capable of sustaining aninterstory drift angle of at least 0.04 radians.

    2. The measured flexural resistance of theconnection, determined at the column face, shall

    equal at least 0.80 M p of the connected beam atan interstory drift angle of 0.04 radians.

    9.2a Requirements

    Beam-to-column connections shall satisfy the following three

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    150/231

    requirements (cont):

    3. The required shear strength of the connectionshall be determined using the following quantityfor the earthquake load effect E :

    E = 2 [ 1.1R y

    M p

    ] / Lh

    (9-1)

    where:

    R y = ratio of the expected yield strength to theminimum specified yield strength

    M p = nominal plastic flexural strength

    Lh = distance between plastic hinge locations

    Required Shear Strength of Beam-to-Column Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    151/231

    Lh

    (1.2 + 0.2S DS ) D + 0.5 L or (0.9-0.2S DS ) D1.1 R y M p 1.1 R y M p

    V u = 2 [ 1.1 R y M p ] / L h + V gravity

    V u V u

    AISC Seismic Provisions - SMF - Beam-to-Column Connections9.2b Conformance Demonstration

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    152/231

    Demonstrate conformance with requirements of Sect. 9.2a by one of

    the following methods:

    I. Conduct qualifying cyclic tests in accordance with Appendix S.

    Tests conducted specifically for the project, with test specimens thatare representative of project conditions.

    or

    Tests reported in the literature (research literature or other

    documented test programs), where the test specimens arerepresentative of project conditions.

    9.2b Conformance Demonstration

    Demonstrate conformance with requirements of Sect 9 2a by one of

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    153/231

    Demonstrate conformance with requirements of Sect. 9.2a by one of the following methods (cont):

    II. Use connections prequalified for SMF in accordance with Appendix P

    Use connections prequalified by the AISC ConnectionPrequalification Review Panel (CPRP) and documented in StandardANSI/AISC 358 -"Prequalified Connections for Special and IntermediateSteel Moment Frames for Seismic Applications"

    or

    Use connection prequalified by an alternative review panel that isapproved by the Authority Having Jurisdiction.

    9.2b Conformance Demonstration - by Testing

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    154/231

    Test connectionin accordancewith Appendix S

    Appendix SQualifying Cyclic Tests of Beam-to-Column

    and Link-to-Column Connections

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    155/231

    Testing Requirements:

    Test specimens should be representative of prototype(Prototype = actual building)

    Beams and columns in test specimens must be nearly full-scalerepresentation of prototype members:

    - depth of test beam 0.90 depth of prototype beam- wt. per ft. of test beam 0.75 wt. per ft. of prototype beam

    - depth of test column 0.90 depth of prototype column

    Sources of inelastic deformation (beam, panel zone, connectionplates, etc) in the test specimen must similar to prototype.

    Appendix S

    Testing Requirements (cont):

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    156/231

    Lateral bracing in test specimen should be similar to prototype. Connection configuration used for test specimen must match

    prototype.

    Welding processes, procedures, electrodes, etc. used for test

    specimen must be representative of prototype.

    See Ap pendix S for o th er requirements .

    Typical Test Subassemblages

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    157/231

    Exterior Subassemblage Interior Subassemblage

    Typical Exterior Subassemblage

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    158/231

    Lbeam

    Interstory Drift Angle = Lbeam

    Typical Exterior Subassemblage

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    159/231

    Typical Interior Subassemblage

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    160/231

    Hcolumn

    Interstory Drift Angle =

    Hcolumn

    Typical Interior Subassemblage

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    161/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    162/231

    Appendix S

    Testing Requirements - Loading History

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    163/231

    Apply the following loading history:6 cycles at = 0.00375 rad.

    6 cycles at = 0.005 rad.

    6 cycles at = 0.0075 rad.

    4 cycles at = 0.01 rad.

    2 cycles at = 0.015 rad.

    2 cycles at = 0.02 rad.

    2 cycles at = 0.03 rad.2 cycles at = 0.04 rad.

    continue at increments of 0.01 rad, with twocycles of loading at each step

    Appendix S Testing Requirements - Loading History

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    164/231

    -0.05

    -0.04

    -0.03

    -0.02

    -0.010

    0.01

    0.02

    0.03

    0.040.05

    0.06

    I n t e

    r s t o

    r y D

    r i f t A

    n g

    l e

    Acceptance Criteria for SMF Beam-to-Column Connections: After completing at least one loading cycle at 0.04 radian, the measured flexuralresistance of the connection, measured at the face of the column, must be at least0.80 M p of the connected beam

    Example of Successful Conformance Demonstration Testper Appendix S:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    165/231

    -40000

    -30000

    -20000

    -10000

    0

    10000

    20000

    30000

    40000

    -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

    Interstory Drift Angle (rad)

    B e a m

    M

    o m e n

    t a

    t F a c e o f

    C o

    l u m n

    ( i n - k

    i p s )

    0.8 M p

    - 0.8 M p

    M0.04 0.8 M p

    M0.04 0.8 M p

    9.2b Conformance Demonstration........by use of Prequalified Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    166/231

    A Prequalified connection is one that has undergone sufficient

    testing (per Appendix S)

    analysis

    evaluation and review

    so that a high level of confidence exists that the connection canfulfill the performance requirements specified in Section 9.2a for

    Special Moment Frame Connections

    9.2b Conformance Demonstration .....by use of Prequalified Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    167/231

    Requirements for Prequalification of Connections:Appendix P - Prequalification of Beam-to-Column

    and Link-to-Column Connections

    Authority to Prequalify of Connections:AISCConnection Prequalification Review Panel (CPRP)

    Information on Prequalified Connections:Standard ANSI/AISC 358 - "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications "

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    168/231

    ANSI/AISC 358 - "Prequalified Connections for Special and I di S l M F f S i i A li i "

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    169/231

    Intermediate Steel Moment Frames for Seismic Applications "

    Connections Prequalified in ANSI/AISC 358 (1st Ed - 2005)

    Reduced Beam Section (RBS) Connection

    Bolted Unstiffened and Stiffened Extended End-Plate Connection

    Reduced Beam Section (RBS) Moment Connection

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    170/231

    RBS Concept:

    Trim Beam Flanges Near Connection Reduce Moment at

    Connection

    Force Plastic Hinge Awayfrom Connection

    Example of laboratory performance of an RBS connection:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    171/231

    Whitewashed connection prior to testing:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    172/231

    Whitewashed connection prior to testing:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    173/231

    Connection at 0.02 radian......

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    174/231

    Connection at 0.02 radian......

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    175/231

    Connection at 0.03 radian......

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    176/231

    Connection at 0.04 radian......

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    177/231

    3000

    4000

    5000

    Mp

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    178/231

    -5000

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

    Drift Angle (radian)

    B e n

    d i n g

    M o m e n

    t ( k N - m

    )

    RBS Connection

    Mp

    ANSI/AISC 358:

    Prequalification Requirements for RBS in SMF

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    179/231

    Beam depth: up to W36 Beam weight: up to 300 lb/ft

    Column depth: up to W36 for wide-flange

    up to 24-inches for box columns Beam connected to column flange

    (connections to column web not prequalified)

    RBS shape: circular

    RBS dimensions: per specified design procedure

    ANSI/AISC 358:Prequalification Requirements for RBS in SMF

    cont......

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    180/231

    Beam flange welds: - CJP groove welds- Treat welds asDemand Critical - Remove bottom flange backing and provide

    reinforcing fillet weld

    - Leave top flange backing in-place; fillet weldbacking to column flange

    - Remove weld tabs at top and bottom flanges

    Beam web to column connection:

    - Use fully welded web connection (CJP weldbetween beam web and column flange)

    See ANSI/AISC 358 for additional requirements (continuity plates, beamlateral bracing, RBS cut finish req'ts., etc.)

    RBS with welded web

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    181/231

    RBS with welded web

    connection:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    182/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    183/231

    Examples of RBS Connections.....

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    184/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    185/231

    AISC Seismic Provisions - SMF - Panel Zone Requirements9.3a Shear Strength

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    186/231

    The minimum required shear strength,R u , of the panel zone shall betaken as the shear generated in the panel zone when plastic hinges formin the beams.

    To compute panel zone shear.....Determine moment at beam plastic hinge locations

    (1.1 R y M p or as specified in ANSI/AISC 358)

    Project moment at plastic hinge locations to the faceof the column (based on beam moment gradient)

    Compute panel zone shear force.

    Panel Zone Shear Strength (cont)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    187/231

    M pr-2 M pr1

    V beam-2

    V beam-1

    Beam 1 Beam 2

    Plastic Hinge Location

    Plastic Hinge Location

    s h s h

    M f1 M f2

    M pr = expected moment at plastic hinge = 1.1R y M p or as specified in ANSI/AISC 358

    V beam = beam shear (see Section 9.2a - beam required shear strength)

    sh = distance from face of column to beam plastic hinge location (specified in ANSI/AISC 358)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    188/231

    Panel Zone Shear Strength (cont)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    189/231

    c

    f b

    f u V

    t d

    M R Panel Zone Required Shear Strength =

    Panel Zone Shear Strength (cont)

    Panel Zone Design Requirement:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    190/231

    Panel Zone Design Requirement:

    R u v R v wh ere v = 1.0

    R v = nominal shear strength, basedon a limit state of shear yielding, ascomputed per Section J10.6 of the

    AISC Specification

    Panel Zone Shear Strength (cont)

    To compute nominal shear strength, R v , of panel zone:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    191/231

    When P u 0.75 P y in column:

    pc b

    2 cf cf

    pc y v

    t d d

    t b31t d F 6 .0 R

    (AISC Spec EQ J10-11)

    Where: d c = column depth

    d b = beam depth

    bcf = column flange width

    t cf = column flange thickness

    F y = minimum specified yield stress of column web

    t p = thickness of column web including doubler plate

    Panel Zone Shear Strength (cont)

    To compute nominal shear strength, R v , of panel zone:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    192/231

    When P u > 0.75 P y in column (not recommended) :

    y

    u

    pc b

    2 cf cf pc y v P

    P 2 .19.1t d d t b31t d F 6 .0 R (AISC Spec EQ J10-12)

    If shear strength of panel zone is inadequate:

    - Choose column section with larger web area

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    193/231

    - Weld doubler plates to column

    Options for Web Doubler Plates

    AISC Seismic Provisions - SMF 9.4 Beam and Column Limitations

    Beam and column sections must satisfy the width-

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    194/231

    y

    thickness limitations given in Table I-8-1

    y

    s

    f

    f

    F E 30 .0

    t 2 b

    Beam Flanges

    Beam Web

    y

    s

    w F E

    45 .2 t h

    b f

    t f

    h

    t w

    Column Flanges sf E 30 .0 b

    9.4 Beam and Column Limitations

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    195/231

    y f F t 2

    Column Web

    125 .0 P

    P

    y

    u

    y

    u

    y

    s

    w P

    P 54.11

    F

    E 14.3

    t

    h

    125 .0

    P

    P

    y

    u

    y

    s

    y

    u

    y

    s

    w F E

    49.1P

    P 33.2

    F E

    12 .1t h

    Note: Column flange and web slenderness limits can be taken as p in AISCSpecificationTable B4.1, if the ratio for Eq. 9-3 is greater than 2.0

    AISC Seismic Provisions - SMF 9.5 Continuity Plates

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    196/231

    Continuity Plates

    9.5 Continuity Plates

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    197/231

    Continuity Plates

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    198/231

    AISC Seismic Provisions - SMF 9.5 Continuity Plates

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    199/231

    Continuity plates shall be consistent with therequirements of a prequalified connection as specified inANSI/AISC 358 (Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications)

    or

    As determined in a program of qualification testing inaccordance with Appendix S

    ANSI/AISC 358 -Continuity Plate Requirements

    Continuity PlatesFor Wide-Flange Columns:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    200/231

    Continuity plates are required, unless:

    yc yc

    ybybbf bf cf F R

    F R t b8 .14.0 t

    6 b

    t bf cf

    and

    t cf = column flange thickness

    bbf = beam flange width

    t bf = beam flange thickness

    ANSI/AISC 358 -Continuity Plate Requirements

    For Box Columns:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    201/231

    Continuity Plates

    For Box Columns:

    Continuity plates must be provided.

    ANSI/AISC 358 -Continuity Plate Requirements

    Required thickness of continuity plates

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    202/231

    a) For one-sided (exterior) connections, continuity plate thickness shall beat least one-half of the thickness of the beam flange.

    b) For two-sided (interior) connections, continuity plate thickness shall be atleast equal to the thicker of the two beam flanges on either side of the

    column

    For other design, detailing and welding requirements for continuity plates - See ANSI/AISC 358

    t

    ANSI/AISC 358 -Continuity Plate Requirements

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    203/231

    t cp

    t bf t cp 1/2 t bf

    t cp

    ANSI/AISC 358 -Continuity Plate Requirements

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    204/231

    p

    t bf-2 t bf-1

    t cp larger of ( t bf-1 and t bf-2 )

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    205/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    206/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    207/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    208/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    209/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    210/231

    AISC Seismic Provisions - SMF 9.6 Column-Beam Moment Ratio

    Section 9.6 requires strong column - weak girder design for SMF (with a few exceptions)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    211/231

    design for SMF (with a few exceptions)

    Purpose of strong column -weak girder requirement:

    Prevent Soft Story Collapse

    AISC Seismic Provisions - SMF 9.6 Column-Beam Moment Ratio

    The following relationship shall be satisfied at beam-to-l ti

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    212/231

    column connections:

    0 .1M

    M * pb

    * pc Eqn. (9-3)

    9.6 Column-Beam Moment Ratio

    0 .1M

    M * pb

    * pc

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    213/231

    pb

    * pc M the sum of the moments in the column above and below the joint at

    the intersection of the beam and column centerlines.M * pc is determined by summing the projections of thenominal

    flexural strengths of the columnsabove and below the joint to thebeam centerline with a reduction for the axial force in the column.

    It is permitted to take M * pc = Z c ( F yc - P uc /Ag )

    * pbM the sum of the moments in the beams at the intersection of the beamand column centerlines.

    M * pb is determined by summing the projections of theexpectedflexural strengths of the beamsat the plastic hinge locations to thecolumn centerline.

    C ColumnL0 .1M M

    * pb

    * pc

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    214/231

    C BeamL

    M* pc-top

    M* pc-bottom M* pb-left

    M* pb-right

    Note:M* pc is based on minimum specified yieldstress of column

    M* pb is based on expected yield stress of beamand includes allowance for strain hardening

    V beam-right

    Left Beam Right Beam

    Plastic Hinge Location

    Computing M* pb

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    215/231

    M pr-right M pr-left

    beam right

    V beam-left Plastic Hinge Location

    s h+d col /2

    M pr = expected moment at plastic hinge = 1.1R y M p or as specified in ANSI/AISC 358

    V beam = beam shear (see Section 9.2a - beam required shear strength)sh = distance from face of column to beam plastic hinge location (specified in

    ANSI/AISC 358)

    M* pb-left M* pb-r ight

    s h+d col /2

    M* pb = M pr + V beam (s h + d col /2 )

    Top Column

    Computing M* pc M pc- top

    M* pc- top

    V col-top

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    216/231

    Bottom Column

    M pc = nominal plastic moment capacity of column, reduced for presence of axial force; cantake M pc = Z c (F yc - P uc / Ag ) [or use more exact moment-axial force interaction

    equations for a fully plastic cross-section]V col = column shear - compute from statics, based on assumed location of column inflectio

    points (usually midheight of column)

    M* pc-bot tom

    M* pc = M pc + V col (d beam /2 )

    M pc-bot tom

    d beam

    V col-bottom

    AISC Seismic Provisions - SMF 9.8 Lateral Bracing of Beams

    Must provide adequate lateral bracing of beams in SMF

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    217/231

    Must provide adequate lateral bracing of beams in SMFso that severe strength degradation due to lateraltorsional buckling is delayed until sufficient ductility isachieved

    (Sufficient ductility = interstory drift angle of at least 0.04rad is achieved under Appendix S loading protocol)

    Lateral Torsional BucklingLateral torsionalbuckling controlled by: b

    r

    L

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    218/231

    y r

    L b = dis tanc e betw een beam lateral br aces

    r y = w eak axis radius o f gyrat ion

    L b L b

    Beam lateral braces (top & bottom flanges)

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    219/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    220/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    221/231

    Effect of Lateral Torsional Buckling on Flexural Strength and Ductility:

    M

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    222/231

    M

    M p

    Increasing L b / r y

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    223/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    224/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    225/231

    AISC Seismic Provisions - SMF 9.8 Lateral Bracing of Beams

    In addition to lateral braces provided as a maximum spacing

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    226/231

    of Lb = 0.086r y E / F y :

    Lateral braces shall be placed near concentrated forces, changes in cross-section and other locations where analysis indicates that a plastic hinge

    will form.

    The placement of lateral braces shall be consistent with that specified inANSI/AISC 358 for aPrequalified Connection , or as otherwise determined

    by qualification testing.

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    227/231

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    228/231

    ANSI/AISC 358 -Lateral Bracing Requirements for the RBS

    For beams with an RBS connection:

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    229/231

    When a composite concrete floor slab is present, no additionallateral bracing is required at the RBS.

    When a composite concrete floor slab is not present, provide anadditional lateral brace at the RBS. Attach brace just outside of the RBS cut, at the end farthest from the column face.

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    230/231

    Section 9Special Moment Frames (SMF)

    9.1 Scope

  • 7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames

    231/231

    9.2 Beam-to-Column Joints and Connections9.3 Panel Zone of Beam-to-Column Connections

    9.4 Beam and Column Limitations

    9.5 Continuity Plates9.6 Column-Beam Moment Ratio

    9.7 Lateral Bracing of at Beam-to-Column