Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
-
Author
nasrullahk24 -
Category
Documents
-
view
234 -
download
8
Embed Size (px)
Transcript of Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
1/231
Design of Seismic-Resistant Steel
Building Structures
Prepared by:
Michael D. EngelhardtUniversity of Texas at Austin
with the support of the American Institute of Steel Construction.
Version 1 - March 2007
2. Moment Resisting Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
2/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
3/231
2 - Moment Resisting Frames
Definition and Basic Behavior of Moment ResistingFrames
Beam-to-Column Connections: Before and After Northridge
Panel-Zone Behavior
AISC Seismic Provisions for Special Moment Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
4/231
Moment Resisting Frames
Definition and Basic Behavior of Moment ResistingFrames
Beam-to-Column Connections: Before and After Northridge
Panel-Zone Behavior
AISC Seismic Provisions for Special Moment Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
5/231
MOMENT RESISTING FRAME (MRF)
Advantages
Architectural Versatility High Ductility and Safety
Disadvantages
Low Elastic Stiffness
Beams and columns with moment resistingconnections; resist lateral forces by flexure andshear in beams and columns
Develop ductility by:- flexural yielding of beams
- shear yielding of column panel zones- flexural yielding of columns
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
6/231
Moment Resisting Frame
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
7/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
8/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
9/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
10/231
Achieving Ductile Behavior:
Choose frame elements ("fuses") that willyield in an earthquake, i.e, choose plastic
hinge locations. Detail plastic hinge regions to sustain
large inelastic rotations prior to the onsetof fracture or instability.
Design all other frame elements to bestronger than the plastic hinge regions.
Understand and Control Inelastic Behavior:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
11/231
Behavior of an MRF Under Lateral Load:Internal Forces and Possible Plastic Hinge Locations
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
12/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
13/231M V
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
14/231
Possible Plastic Hinge Locations
Beam(Flexural Yielding)
Panel Zone(Shear Yielding)
Column(Flexural & Axial
Yielding)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
15/231
Plastic HingesIn Beams
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
16/231
Plastic HingesIn Column Panel Zones
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
17/231
Plastic HingesIn Columns:
Potential for SoftStory Collapse
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
18/231
Critical Detailing Area for Moment Resisting Frames: Beam-to-Column Connections
Design Requirement:Frame must develop large ductilitywithout failure of beam-to-columnconnection.
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
19/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
20/231
Moment Connection Design Practice Prior to1994 Northridge Earthquake:
Welded flange-boltedweb moment connectionwidely used from early1970s to 1994
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
21/231
Pre-NorthridgeWelded Flange Bolted Web Moment Connection
Backup Bar
Beam Flange
Column FlangeStiffener
Weld Access Hole
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
22/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
23/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
24/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
25/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
26/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
27/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
28/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
29/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
30/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
31/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
32/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
33/231
Experimental Data on Pre -NorthridgeMoment Connection
Typical ExperimentalSetup:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
34/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
35/231
Initial Tests on Large Scale Specimens:
Tests conducted at UC Berkeley ~1970 Tests on W18x50 and W24x76 beams Tests compared all-welded connections
with welded flange-bolted web connections
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
36/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
37/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
38/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
39/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
40/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
41/231
Welded Flange Bolted Web Detail
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
42/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
43/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
44/231
Observations from Initial UC Berkeley Tests:
Large ductility developed by all-weldedconnections.
Welded flange-bolted web connections developedless ductility, but were viewed as still acceptable.
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
45/231
Subsequent Test Programs:
Welded flange-bolted web connections showedhighly variable performance.
Typical failure modes: fracture at or near beamflange groove welds. A large number of laboratory tested connections
did not develop adequate ductility in the beam
prior to connection failure.
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
46/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
47/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
48/231
-5000
-4000
-3000
-2000
-1000
0
1000
2000
3000
4000
5000
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
Drift Angle (rad)
B e n
d i n g
M o m
e n
t ( k N - m
)
Brittle Fracture at BottomFlange Weld
Mp
Mp
Pre-Northridge Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
49/231
Summary of Testing Prior toNorthridge Earthquake
Welded flange bolted web connection showedhighly variable performance
Many connections failed in laboratory with littleor no ductility
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
50/231
1994 Northridge Earthquake
Widespread failure of welded flange - boltedweb momentconnections
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
51/231
1994 Northridge Earthquake
January 17, 1994 Magnitude = 6.8
Epicenter at Northridge - San Fernando Valley(Los Angeles area)
Fatalities: 58
Estimated Damage Cost: $20 Billion
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
52/231
Northridge - Ground Accelerations
Sylmar: 0.91g H 0.60g V Sherman Oaks: 0.46g H 0.18g V Granada Hills: 0.62g H 0.40g V Santa Monica: 0.93g H 0.25g V North Hollywood: 0.33g H 0.15g V
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
53/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
54/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
55/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
56/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
57/231
Damage Observations:Steel MomentConnections
Pre-Northridge
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
58/231
Backup Bar
Beam Flange
Column FlangeStiffener
Weld Access Hole
Pre-NorthridgeWelded Flange Bolted Web Moment Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
59/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
60/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
61/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
62/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
63/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
64/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
65/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
66/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
67/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
68/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
69/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
70/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
71/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
72/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
73/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
74/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
75/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
76/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
77/231
Damage Observations
A large number of steel moment frame buildingssuffered connection damage
No steel moment frame buildings collapsed Typical Damage: fracture of groove weld
divot fracture within column flange fracture across column flange and web
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
78/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
79/231
Response to Northridge Moment ConnectionDamage
Nearly immediate elimination of welded flange -bolted web connection from US building codes anddesign practice
Intensive research and testing efforts to understandcauses of damage and to develop improvedconnections AISC, NIST, NSF, etc. SAC Program (FEMA)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
80/231
Causes of Moment ConnectionDamage in Northridge
Welding
Connection Design
Materials
Causes of Northridge Moment Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
81/231
Damage:
Welding Factors
Low Fracture Toughness of Weld Metal
Poor Quality Effect of Backing Bars and Weld Tabs
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
82/231
Weld Metal Toughness
Most common Pre-Northridge welding electrode(E70T-4) had very low fracture toughness.
Typical Charpy V-Notch: < 5 ft.-lbs at 70 0F(7 J at 21 0C)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
83/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
84/231
Welding Quality
Many failed connections showed evidence of poor weld quality
Many fractures initiated at root defects in bottomflange weld, in vicinity of weld access hole
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
85/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
86/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
87/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
88/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
89/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
90/231
Causes of Northridge Moment ConnectionD
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
91/231
Design Factors:
Stress/Strain Too High at Beam Flange Groove Weld
Inadequate Participation of Beam Web Connection inTransferring Moment and Shear
Effect of Weld Access Hole Effect of Column Flange Bending Other Factors
Damage:
s s
Fu
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
92/231
Mp
Increase in Flange Stress Due toInadequate Moment Transfer Through Web Connection
F l a n g e
S t r e s
Fy
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
93/231
Vflange
Increase in Flange Stress Due to Shear in Flange
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
94/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
95/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
96/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
97/231
Strategies for Improved Performanceof Moment Connections
Welding
Materials
Connection Design and Detailing
Strategies for Improved Performance of Moment
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
98/231
Connections:
WELDING
Required minimum toughness for weld metal: Required CVN for all welds in SLRS:
20 ft.-lbs at 0 0 F
Required CVN for Demand Critical welds:20 ft.-lbs at -20 0 F and 40 ft.-lbs at 70 0 F
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
99/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
100/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
101/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
102/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
103/231
Strategies for Improved Performance of MomentConnections:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
104/231
Materials (Structural Steel)
Introduction of expected yield stress into designcodes
Fy = minimum specified yield strength
R y = 1.5 for ASTM A36
= 1.1 for A572 Gr. 50 and A992(See AISC Seismic Provisions - Section 6 for other values of R y )
Expected Yield Stress = R y Fy
Strategies for Improved Performance of MomentConnections:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
105/231
Materials (Structural Steel)
Introduction of ASTM A992 steel for wide flangeshapes
ASTM A992Minimum F y = 50 ksi
Maximum F y = 65 ksi
Minimum F u = 65 ksi
Maximum F y / Fu = 0.85
Strategies for Improved Performance of MomentConnections:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
106/231
Connections:
Connection Design
Improved Weld Access Hole Geometry
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
107/231
Improved Weld AccessHole
See Figure 11-1 in the2005 AISC Seismic Provisions for dimensionsand finish requirements
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
108/231
Strategies for Improved Performance of MomentConnections:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
109/231
Connections:
Connection Design
Development of Improved Connection Designsand Design Procedures
Reinforced Connections Proprietary Connections Reduced Beam Section (Dogbone)
Connections Other SAC Investigated Connections
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
110/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
111/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
112/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
113/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
114/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
115/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
116/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
117/231
Proprietary Connections
SIDE PLATE
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
118/231
SIDE PLATECONNECTION
SLOTTED WEB
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
119/231
SLOTTED WEBCONNECTION
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
120/231
Connections Investigated ThroughSAC-FEMA Research Program
Reduced BeamSection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
121/231
Section
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
122/231
WeldedUnreinforcedFlange - BoltedWeb
WeldedUnreinforced
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
123/231
Flange - WeldedWeb
Free Flange
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
124/231
Free FlangeConnection
Welded FlangePlate Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
125/231
Plate Connection
Bolted UnstiffenedEnd Plate
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
126/231
End Plate
Bolted StiffenedEnd Plate
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
127/231
Bolted FlangePlate
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
128/231
Double Split Tee
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
129/231
Double Split Tee
Results of SAC-FEMA Research ProgramR d d S i i D i C it i
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
130/231
Recommended Seismic Design Criteriafor Steel Moment Frames
FEMA 350Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings
FEMA 351Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings
FEMA 352Recommended Postearthquake Evaluation and Repair Criteriafor Welded Steel Moment-Frame Buildings
FEMA 353Recommended Specifications and Quality AssuranceGuidelines for Steel Moment-Frame Construction for Seismic
Applications
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
131/231
FEMA 350
Moment Resisting Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
132/231
Definition and Basic Behavior of Moment ResistingFrames
Beam-to-Column Connections: Before and After Northridge
Panel-Zone Behavior AISC Seismic Provisions for Special Moment Frames
Column Panel Zone
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
133/231
Colum n Panel Zon e: - subject to high shear - shear yielding and large
shear deformations possible(forms shear hinge)
- provides alternate yieldingmechanism in a steel momentframe
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
134/231
Joint deformationdue to panel zoneshear yielding
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
135/231
Plastic Shear HingesIn Column Panel Zones
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
136/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
137/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
138/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
139/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
140/231
"kink" at corners of panel zone
400C i RBS S i i h
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
141/231
-400
-300
-200
-100
0
100
200
300
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Story Drift Angle (rad)
C o
l u m n
T i p
L o a
d ( k i p s
)
Composite RBS Specimen withWeak Panel Zone
1200Composite RBS Specimen with
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
142/231
-1200
-800
-400
0
400
800
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Panel Zone g (rad)
P a n e
l Z o n e
S h e a r
F o r c e
( k i p s
)
Weak Panel Zone
g
Observations on Panel Zone Behavior
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
143/231
Observations on Panel Zone Behavior
Very high ductility is possible. Localized deformations (kinking) at corners of panel
zone may increase likelihood of fracture in vicinity of beam flange groove welds.
Building code provisions have varied greatly on panelzone design.
Current AISC Seismic Provisions permits limitedyielding in panel zone.
Further research needed to better define acceptablelevel of panel zone yielding
Moment Resisting Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
144/231
Definition and Basic Behavior of Moment ResistingFrames
Beam-to-Column Connections: Before and After Northridge
Panel-Zone Behavior AISC Seismic Provisions for Special Moment Frames
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
145/231
2005 AISC Seismic Provisions
Section 9 Special Moment Frames (SMF)
Section 10 Intermediate Moment Frames (IMF)
Section 11 Ordinary Moment Frames (OMF)
Section 9Special Moment Frames (SMF)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
146/231
p ( )9.1 Scope
9.2 Beam-to-Column Joints and Connections
9.3 Panel Zone of Beam-to-Column Connections
9.4 Beam and Column Limitations
9.5 Continuity Plates
9.6 Column-Beam Moment Ratio
9.7 Lateral Bracing of at Beam-to-Column Connections
9.8 Lateral Bracing of Beams
9.9 Column Splices
AISC Seismic Provisions - SMF 9.1 Scope
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
147/231
Special moment frames (SMF) are expected to withstandsignificant inelastic deformations when subjected to theforces resulting from the motions of the designearthquake.
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
148/231
AISC Seismic Provisions - SMF - Beam-to-Column Connections9.2a Requirements
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
149/231
Beam-to-column connections shall satisfy the following three
requirements:
1. The connection shall be capable of sustaining aninterstory drift angle of at least 0.04 radians.
2. The measured flexural resistance of theconnection, determined at the column face, shall
equal at least 0.80 M p of the connected beam atan interstory drift angle of 0.04 radians.
9.2a Requirements
Beam-to-column connections shall satisfy the following three
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
150/231
requirements (cont):
3. The required shear strength of the connectionshall be determined using the following quantityfor the earthquake load effect E :
E = 2 [ 1.1R y
M p
] / Lh
(9-1)
where:
R y = ratio of the expected yield strength to theminimum specified yield strength
M p = nominal plastic flexural strength
Lh = distance between plastic hinge locations
Required Shear Strength of Beam-to-Column Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
151/231
Lh
(1.2 + 0.2S DS ) D + 0.5 L or (0.9-0.2S DS ) D1.1 R y M p 1.1 R y M p
V u = 2 [ 1.1 R y M p ] / L h + V gravity
V u V u
AISC Seismic Provisions - SMF - Beam-to-Column Connections9.2b Conformance Demonstration
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
152/231
Demonstrate conformance with requirements of Sect. 9.2a by one of
the following methods:
I. Conduct qualifying cyclic tests in accordance with Appendix S.
Tests conducted specifically for the project, with test specimens thatare representative of project conditions.
or
Tests reported in the literature (research literature or other
documented test programs), where the test specimens arerepresentative of project conditions.
9.2b Conformance Demonstration
Demonstrate conformance with requirements of Sect 9 2a by one of
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
153/231
Demonstrate conformance with requirements of Sect. 9.2a by one of the following methods (cont):
II. Use connections prequalified for SMF in accordance with Appendix P
Use connections prequalified by the AISC ConnectionPrequalification Review Panel (CPRP) and documented in StandardANSI/AISC 358 -"Prequalified Connections for Special and IntermediateSteel Moment Frames for Seismic Applications"
or
Use connection prequalified by an alternative review panel that isapproved by the Authority Having Jurisdiction.
9.2b Conformance Demonstration - by Testing
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
154/231
Test connectionin accordancewith Appendix S
Appendix SQualifying Cyclic Tests of Beam-to-Column
and Link-to-Column Connections
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
155/231
Testing Requirements:
Test specimens should be representative of prototype(Prototype = actual building)
Beams and columns in test specimens must be nearly full-scalerepresentation of prototype members:
- depth of test beam 0.90 depth of prototype beam- wt. per ft. of test beam 0.75 wt. per ft. of prototype beam
- depth of test column 0.90 depth of prototype column
Sources of inelastic deformation (beam, panel zone, connectionplates, etc) in the test specimen must similar to prototype.
Appendix S
Testing Requirements (cont):
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
156/231
Lateral bracing in test specimen should be similar to prototype. Connection configuration used for test specimen must match
prototype.
Welding processes, procedures, electrodes, etc. used for test
specimen must be representative of prototype.
See Ap pendix S for o th er requirements .
Typical Test Subassemblages
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
157/231
Exterior Subassemblage Interior Subassemblage
Typical Exterior Subassemblage
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
158/231
Lbeam
Interstory Drift Angle = Lbeam
Typical Exterior Subassemblage
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
159/231
Typical Interior Subassemblage
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
160/231
Hcolumn
Interstory Drift Angle =
Hcolumn
Typical Interior Subassemblage
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
161/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
162/231
Appendix S
Testing Requirements - Loading History
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
163/231
Apply the following loading history:6 cycles at = 0.00375 rad.
6 cycles at = 0.005 rad.
6 cycles at = 0.0075 rad.
4 cycles at = 0.01 rad.
2 cycles at = 0.015 rad.
2 cycles at = 0.02 rad.
2 cycles at = 0.03 rad.2 cycles at = 0.04 rad.
continue at increments of 0.01 rad, with twocycles of loading at each step
Appendix S Testing Requirements - Loading History
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
164/231
-0.05
-0.04
-0.03
-0.02
-0.010
0.01
0.02
0.03
0.040.05
0.06
I n t e
r s t o
r y D
r i f t A
n g
l e
Acceptance Criteria for SMF Beam-to-Column Connections: After completing at least one loading cycle at 0.04 radian, the measured flexuralresistance of the connection, measured at the face of the column, must be at least0.80 M p of the connected beam
Example of Successful Conformance Demonstration Testper Appendix S:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
165/231
-40000
-30000
-20000
-10000
0
10000
20000
30000
40000
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Interstory Drift Angle (rad)
B e a m
M
o m e n
t a
t F a c e o f
C o
l u m n
( i n - k
i p s )
0.8 M p
- 0.8 M p
M0.04 0.8 M p
M0.04 0.8 M p
9.2b Conformance Demonstration........by use of Prequalified Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
166/231
A Prequalified connection is one that has undergone sufficient
testing (per Appendix S)
analysis
evaluation and review
so that a high level of confidence exists that the connection canfulfill the performance requirements specified in Section 9.2a for
Special Moment Frame Connections
9.2b Conformance Demonstration .....by use of Prequalified Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
167/231
Requirements for Prequalification of Connections:Appendix P - Prequalification of Beam-to-Column
and Link-to-Column Connections
Authority to Prequalify of Connections:AISCConnection Prequalification Review Panel (CPRP)
Information on Prequalified Connections:Standard ANSI/AISC 358 - "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications "
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
168/231
ANSI/AISC 358 - "Prequalified Connections for Special and I di S l M F f S i i A li i "
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
169/231
Intermediate Steel Moment Frames for Seismic Applications "
Connections Prequalified in ANSI/AISC 358 (1st Ed - 2005)
Reduced Beam Section (RBS) Connection
Bolted Unstiffened and Stiffened Extended End-Plate Connection
Reduced Beam Section (RBS) Moment Connection
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
170/231
RBS Concept:
Trim Beam Flanges Near Connection Reduce Moment at
Connection
Force Plastic Hinge Awayfrom Connection
Example of laboratory performance of an RBS connection:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
171/231
Whitewashed connection prior to testing:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
172/231
Whitewashed connection prior to testing:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
173/231
Connection at 0.02 radian......
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
174/231
Connection at 0.02 radian......
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
175/231
Connection at 0.03 radian......
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
176/231
Connection at 0.04 radian......
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
177/231
3000
4000
5000
Mp
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
178/231
-5000
-4000
-3000
-2000
-1000
0
1000
2000
3000
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Drift Angle (radian)
B e n
d i n g
M o m e n
t ( k N - m
)
RBS Connection
Mp
ANSI/AISC 358:
Prequalification Requirements for RBS in SMF
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
179/231
Beam depth: up to W36 Beam weight: up to 300 lb/ft
Column depth: up to W36 for wide-flange
up to 24-inches for box columns Beam connected to column flange
(connections to column web not prequalified)
RBS shape: circular
RBS dimensions: per specified design procedure
ANSI/AISC 358:Prequalification Requirements for RBS in SMF
cont......
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
180/231
Beam flange welds: - CJP groove welds- Treat welds asDemand Critical - Remove bottom flange backing and provide
reinforcing fillet weld
- Leave top flange backing in-place; fillet weldbacking to column flange
- Remove weld tabs at top and bottom flanges
Beam web to column connection:
- Use fully welded web connection (CJP weldbetween beam web and column flange)
See ANSI/AISC 358 for additional requirements (continuity plates, beamlateral bracing, RBS cut finish req'ts., etc.)
RBS with welded web
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
181/231
RBS with welded web
connection:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
182/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
183/231
Examples of RBS Connections.....
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
184/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
185/231
AISC Seismic Provisions - SMF - Panel Zone Requirements9.3a Shear Strength
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
186/231
The minimum required shear strength,R u , of the panel zone shall betaken as the shear generated in the panel zone when plastic hinges formin the beams.
To compute panel zone shear.....Determine moment at beam plastic hinge locations
(1.1 R y M p or as specified in ANSI/AISC 358)
Project moment at plastic hinge locations to the faceof the column (based on beam moment gradient)
Compute panel zone shear force.
Panel Zone Shear Strength (cont)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
187/231
M pr-2 M pr1
V beam-2
V beam-1
Beam 1 Beam 2
Plastic Hinge Location
Plastic Hinge Location
s h s h
M f1 M f2
M pr = expected moment at plastic hinge = 1.1R y M p or as specified in ANSI/AISC 358
V beam = beam shear (see Section 9.2a - beam required shear strength)
sh = distance from face of column to beam plastic hinge location (specified in ANSI/AISC 358)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
188/231
Panel Zone Shear Strength (cont)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
189/231
c
f b
f u V
t d
M R Panel Zone Required Shear Strength =
Panel Zone Shear Strength (cont)
Panel Zone Design Requirement:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
190/231
Panel Zone Design Requirement:
R u v R v wh ere v = 1.0
R v = nominal shear strength, basedon a limit state of shear yielding, ascomputed per Section J10.6 of the
AISC Specification
Panel Zone Shear Strength (cont)
To compute nominal shear strength, R v , of panel zone:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
191/231
When P u 0.75 P y in column:
pc b
2 cf cf
pc y v
t d d
t b31t d F 6 .0 R
(AISC Spec EQ J10-11)
Where: d c = column depth
d b = beam depth
bcf = column flange width
t cf = column flange thickness
F y = minimum specified yield stress of column web
t p = thickness of column web including doubler plate
Panel Zone Shear Strength (cont)
To compute nominal shear strength, R v , of panel zone:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
192/231
When P u > 0.75 P y in column (not recommended) :
y
u
pc b
2 cf cf pc y v P
P 2 .19.1t d d t b31t d F 6 .0 R (AISC Spec EQ J10-12)
If shear strength of panel zone is inadequate:
- Choose column section with larger web area
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
193/231
- Weld doubler plates to column
Options for Web Doubler Plates
AISC Seismic Provisions - SMF 9.4 Beam and Column Limitations
Beam and column sections must satisfy the width-
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
194/231
y
thickness limitations given in Table I-8-1
y
s
f
f
F E 30 .0
t 2 b
Beam Flanges
Beam Web
y
s
w F E
45 .2 t h
b f
t f
h
t w
Column Flanges sf E 30 .0 b
9.4 Beam and Column Limitations
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
195/231
y f F t 2
Column Web
125 .0 P
P
y
u
y
u
y
s
w P
P 54.11
F
E 14.3
t
h
125 .0
P
P
y
u
y
s
y
u
y
s
w F E
49.1P
P 33.2
F E
12 .1t h
Note: Column flange and web slenderness limits can be taken as p in AISCSpecificationTable B4.1, if the ratio for Eq. 9-3 is greater than 2.0
AISC Seismic Provisions - SMF 9.5 Continuity Plates
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
196/231
Continuity Plates
9.5 Continuity Plates
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
197/231
Continuity Plates
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
198/231
AISC Seismic Provisions - SMF 9.5 Continuity Plates
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
199/231
Continuity plates shall be consistent with therequirements of a prequalified connection as specified inANSI/AISC 358 (Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications)
or
As determined in a program of qualification testing inaccordance with Appendix S
ANSI/AISC 358 -Continuity Plate Requirements
Continuity PlatesFor Wide-Flange Columns:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
200/231
Continuity plates are required, unless:
yc yc
ybybbf bf cf F R
F R t b8 .14.0 t
6 b
t bf cf
and
t cf = column flange thickness
bbf = beam flange width
t bf = beam flange thickness
ANSI/AISC 358 -Continuity Plate Requirements
For Box Columns:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
201/231
Continuity Plates
For Box Columns:
Continuity plates must be provided.
ANSI/AISC 358 -Continuity Plate Requirements
Required thickness of continuity plates
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
202/231
a) For one-sided (exterior) connections, continuity plate thickness shall beat least one-half of the thickness of the beam flange.
b) For two-sided (interior) connections, continuity plate thickness shall be atleast equal to the thicker of the two beam flanges on either side of the
column
For other design, detailing and welding requirements for continuity plates - See ANSI/AISC 358
t
ANSI/AISC 358 -Continuity Plate Requirements
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
203/231
t cp
t bf t cp 1/2 t bf
t cp
ANSI/AISC 358 -Continuity Plate Requirements
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
204/231
p
t bf-2 t bf-1
t cp larger of ( t bf-1 and t bf-2 )
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
205/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
206/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
207/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
208/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
209/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
210/231
AISC Seismic Provisions - SMF 9.6 Column-Beam Moment Ratio
Section 9.6 requires strong column - weak girder design for SMF (with a few exceptions)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
211/231
design for SMF (with a few exceptions)
Purpose of strong column -weak girder requirement:
Prevent Soft Story Collapse
AISC Seismic Provisions - SMF 9.6 Column-Beam Moment Ratio
The following relationship shall be satisfied at beam-to-l ti
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
212/231
column connections:
0 .1M
M * pb
* pc Eqn. (9-3)
9.6 Column-Beam Moment Ratio
0 .1M
M * pb
* pc
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
213/231
pb
* pc M the sum of the moments in the column above and below the joint at
the intersection of the beam and column centerlines.M * pc is determined by summing the projections of thenominal
flexural strengths of the columnsabove and below the joint to thebeam centerline with a reduction for the axial force in the column.
It is permitted to take M * pc = Z c ( F yc - P uc /Ag )
* pbM the sum of the moments in the beams at the intersection of the beamand column centerlines.
M * pb is determined by summing the projections of theexpectedflexural strengths of the beamsat the plastic hinge locations to thecolumn centerline.
C ColumnL0 .1M M
* pb
* pc
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
214/231
C BeamL
M* pc-top
M* pc-bottom M* pb-left
M* pb-right
Note:M* pc is based on minimum specified yieldstress of column
M* pb is based on expected yield stress of beamand includes allowance for strain hardening
V beam-right
Left Beam Right Beam
Plastic Hinge Location
Computing M* pb
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
215/231
M pr-right M pr-left
beam right
V beam-left Plastic Hinge Location
s h+d col /2
M pr = expected moment at plastic hinge = 1.1R y M p or as specified in ANSI/AISC 358
V beam = beam shear (see Section 9.2a - beam required shear strength)sh = distance from face of column to beam plastic hinge location (specified in
ANSI/AISC 358)
M* pb-left M* pb-r ight
s h+d col /2
M* pb = M pr + V beam (s h + d col /2 )
Top Column
Computing M* pc M pc- top
M* pc- top
V col-top
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
216/231
Bottom Column
M pc = nominal plastic moment capacity of column, reduced for presence of axial force; cantake M pc = Z c (F yc - P uc / Ag ) [or use more exact moment-axial force interaction
equations for a fully plastic cross-section]V col = column shear - compute from statics, based on assumed location of column inflectio
points (usually midheight of column)
M* pc-bot tom
M* pc = M pc + V col (d beam /2 )
M pc-bot tom
d beam
V col-bottom
AISC Seismic Provisions - SMF 9.8 Lateral Bracing of Beams
Must provide adequate lateral bracing of beams in SMF
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
217/231
Must provide adequate lateral bracing of beams in SMFso that severe strength degradation due to lateraltorsional buckling is delayed until sufficient ductility isachieved
(Sufficient ductility = interstory drift angle of at least 0.04rad is achieved under Appendix S loading protocol)
Lateral Torsional BucklingLateral torsionalbuckling controlled by: b
r
L
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
218/231
y r
L b = dis tanc e betw een beam lateral br aces
r y = w eak axis radius o f gyrat ion
L b L b
Beam lateral braces (top & bottom flanges)
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
219/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
220/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
221/231
Effect of Lateral Torsional Buckling on Flexural Strength and Ductility:
M
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
222/231
M
M p
Increasing L b / r y
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
223/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
224/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
225/231
AISC Seismic Provisions - SMF 9.8 Lateral Bracing of Beams
In addition to lateral braces provided as a maximum spacing
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
226/231
of Lb = 0.086r y E / F y :
Lateral braces shall be placed near concentrated forces, changes in cross-section and other locations where analysis indicates that a plastic hinge
will form.
The placement of lateral braces shall be consistent with that specified inANSI/AISC 358 for aPrequalified Connection , or as otherwise determined
by qualification testing.
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
227/231
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
228/231
ANSI/AISC 358 -Lateral Bracing Requirements for the RBS
For beams with an RBS connection:
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
229/231
When a composite concrete floor slab is present, no additionallateral bracing is required at the RBS.
When a composite concrete floor slab is not present, provide anadditional lateral brace at the RBS. Attach brace just outside of the RBS cut, at the end farthest from the column face.
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
230/231
Section 9Special Moment Frames (SMF)
9.1 Scope
-
7/27/2019 Presentaion-AISC Seismic Design-Module2-Moment Resisting Frames
231/231
9.2 Beam-to-Column Joints and Connections9.3 Panel Zone of Beam-to-Column Connections
9.4 Beam and Column Limitations
9.5 Continuity Plates9.6 Column-Beam Moment Ratio
9.7 Lateral Bracing of at Beam-to-Column