Presentation_Kasemets Et Al

download Presentation_Kasemets Et Al

of 28

Transcript of Presentation_Kasemets Et Al

  • 7/28/2019 Presentation_Kasemets Et Al

    1/28

    Nanotoxicology: Science at theinterphases, Estonian perspective

    Anne Kahru, Kaja Kasemets

    , Angela Ivask, Irina Blinova, Olesja Bondarenko,Monika Mortimer, Margit Heinlaan1, Aleksandr Kkinen, Villem Aruoja

    National Institute of Chemical Physics and Biophysics, Laboratory ofMolecular Genetics, Tallinn, Estonia

    Nordic NanoNet Workshop and EDC discussion, Espoo, Finland, October 11-13, 2011

  • 7/28/2019 Presentation_Kasemets Et Al

    2/28

    Main research areas and key-words: Elucidation of mechanisms of toxic effects of chemicals (e.g.,

    nanoparticles) using in vitro tests (luminescent bacteria,algae, protozoa, animal/human cell cultures etc)

    Construction of new recombinant luminescent bacteria forstudy of the mechanisms of toxic action of chemicals and/ornanoparticles

    Manifestation of toxic effects on physiological endpoints ofmicro-organisms. Intracellular homeostasis.

    Bioavailability and its mechanisms

    Environmental risk assessment

    3R, QSAR, REACH

    Research Group of In vitro toxicology andecotoxicology (head Dr. A. Kahru)

  • 7/28/2019 Presentation_Kasemets Et Al

    3/28

    Nano(eco)toxicology studies: ZnO, CuO, TiO2

    Since 2006 -

    P

    eer-reviewedscientificpapers

    ISI Web of Science (1995-2008)

    Hazard to the environment?

    Toxicity mechanisms?

    ???

  • 7/28/2019 Presentation_Kasemets Et Al

    4/28

    Main directions of the nano-research:

    Evaluation of the hazard of eNPs: EC50, EC20, NOEC,LOEC. How toxic?

    Evaluation of the mechanisms of toxic effect (solubilisation,ROS production). Why toxic?

    Construction of new tools - recombinant luminescentbacteria - formechanistic toxicological profiling ofeNPs.

    Are the NPs more toxic than the same bulkformulation?

    Do the NPs have different toxicity mechanism? If yes,is it nanospecific?

  • 7/28/2019 Presentation_Kasemets Et Al

    5/28

    (In vitro) toxicity testing:test organisms at the various levels of the food-web

    Escherichia coli

    CRUSTACEANS PROTOZOA ALGAE YEAST

    Daphniamagna

    Thamnocephalusplatyurus

    Tetrahymenathermophila

    Pseudo-kirchneriellasubcapitata

    Saccharomycescerevisiae

    Vibrio fischeri

    EUKARYOTIC ORGANISMS PROKARYOTIC

    BACTERIA

    naturally and recombinant

    luminescent bacteria

    ConsumersPrimary

    producesDestructors

  • 7/28/2019 Presentation_Kasemets Et Al

    6/28

    Toxicity mechanism based profiling ofnanoparticles: set of gene modified microbial cells

    Recombinant luminescentEscherichia colistrains

    Wild type

    Superoxide dismutase (sod)

    Catalase (cat)

    mutants

    Responding to toxic compounds by

    decreasing their luminescence

    Specific sensor strains

    - Metal specific (Cu, Zn, Ag, Hg)

    - ROS specific

    Bioluminescence is induced by

    specific compounds (Cu, H2O2)

    Inask et al. (2010). Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene

    nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles andsolubilised metals. Anal Bioanal Chem 398:701716.

  • 7/28/2019 Presentation_Kasemets Et Al

    7/28

    Uptake of the NPs:Two different types of cellular models

    Bakter

    Vetikas

    10 m10 m

    Good models for the

    studying the toxic effects

    of ingested NPs.

    Good models for studying the

    toxic effects of NPs caused by

    the solubilised fraction,

    external ROS effects,

    adsorption onto the cell

    surface etc.

    Particle ingesting organisms Particle non-ingesting

    organisms (particle resistant

    cells)

    http://www.pmf.unsa.ba/biologija/talofiti/Saccharomyces-cerevisiae.jpg
  • 7/28/2019 Presentation_Kasemets Et Al

    8/28

    Possible toxic effect of metal/metal oxide NPs

    NPs

    ROS

    Aggregation

    Ions (Cu2+, Ag+)

    Adsorption

    Test medium

    (modulating effects?)

  • 7/28/2019 Presentation_Kasemets Et Al

    9/28

    Metal oxide nanoparticles: ZnO and CuO

    Scanning electron microscopy (SEM) of

    TiO2, ZnO and CuO suspensions

    Nano-size metal oxides

    Micro-size metal oxides

    Size effect

    control

    Ionic forms of

    respective metals:

    ZnSO4*7H2O, CuSO4

    Ionic effect

    control

    SEM photo: Kahru et al. (2008) Sensors, 8, 5153 - 5170

    New physicochemical

    propertiesIncreased toxicity??

    Increased bioavailability??

    The same nominal

    concentration

  • 7/28/2019 Presentation_Kasemets Et Al

    10/28

    Solubility??

  • 7/28/2019 Presentation_Kasemets Et Al

    11/28

    Solubility of ZnO and CuO

    0

    25

    50

    75

    100

    10 100 1000

    ZnO (mg Zn/l)

    Bioavailablezinc(mgZn/l)

    Nano ZnO

    Bulk ZnO

    Yeast growth medium

    0

    10

    20

    30

    40

    50

    1 10 100 1000 10000

    CuO (mg Cu/l)

    Bioa

    vailablecopper(mgCu/l)

    Nano CuO

    Bulk CuO

    Kasemets, et al (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae.

    Toxicology in vitro 23, 1116 1122.

  • 7/28/2019 Presentation_Kasemets Et Al

    12/28

    Toxicity of ZnO NPs, EC50

    Test organism Nano ZnOppm

    Bulk ZnOppm

    Bacteria (V. fischeri) 1.8 1.9

    Algae (P. subcapitata) 0.037 0.042

    Yeast (S. cerevisiae) 121 134

    Protozoa (T. thermophila) 4.3 3.9

    Crustacean (D. magna) 3.2 8.8

    Toxicity of nano ZnO was comparable to bulk formulation andmainly due to the dissolved zinc ions (Zn-sensor data).

  • 7/28/2019 Presentation_Kasemets Et Al

    13/28

    Toxicity of CuO NPs, EC50

    Test organism Nano CuOppm

    Bulk CuOppm

    Bacteria (V. fischeri) 79 3811

    Algae (P. subcapitata) 0.710 11.5

    Yeast (S. cerevisiae) 21 2031

    Protozoa (T. thermophila) 127 1580

    Crustacean (D. magna) 4.0 175

    Nano CuO was more toxic than bulk CuO.

    Toxicity of bulk CuO due to the dissolved copper ions (Cu-sensor data)

  • 7/28/2019 Presentation_Kasemets Et Al

    14/28

    Characterization of nano CuO

    0 hour (100 ppm nCuO)

    MQ 0.9% NaCl 2%

    NaCl

    24 hours

    MQ 0.9% NaCl 2%

    NaCl

    MQ

    Osterhouts medium

    MQ water (100 ppm) 0 hour 24 hours

    Hydrodynamic diameter, nm 16711 21821

    Zeta potential, mV 27 1 19 2

    0.9% NaCl (100 ppm) 0 hour 24 hours

    Hydrodynamic diameter, nm 1613357 4136 675

    Zeta potential, mV n.d n.d

    24 h

  • 7/28/2019 Presentation_Kasemets Et Al

    15/28

    Daphnia magna

    Do CuO NPs enter Daphnis via gut epithelial

    cells?

    Equitoxic

    concentrations(EC50)

    Nano CuO

    4 mg/L

    Bulk CuO

    175 mg/L

    Exposure up to 48 h

    Alive daphnids were fixed and

    analysed by the TEM

    Margit Heinlaan, Tours

    University, France

    Case study 1

  • 7/28/2019 Presentation_Kasemets Et Al

    16/28

    Nano CuO dispersed, bulk CuO clumped in the

    midgut lumen

  • 7/28/2019 Presentation_Kasemets Et Al

    17/28

    No uptake of nano CuO by

    the intestinal cells

  • 7/28/2019 Presentation_Kasemets Et Al

    18/28

    Lot of bacteria in the lumen of intestine: only in thecase of exposure to nano CuO

    PhD Thesis of Margit HEINLAAN (Dec, 2010)

  • 7/28/2019 Presentation_Kasemets Et Al

    19/28

    Toxic effect of nano CuO on membranes of T.

    thermophila (protozoa)

    The effects of nCuO and bulk on the fatty acid composition in T. thermophila were

    measured after 2 h and 24 h exposure.

    NanoCuO

    24 h

    10 m

    +

    Case study 2

  • 7/28/2019 Presentation_Kasemets Et Al

    20/28

    CuO NPs make the membranes

    of protozoa more rigid

    Control Nano CuO Bulk CuO

    Unsaturated fatty acids

    Saturated fatty acids

    Increase in the

    membrane rigidity

    PhD Thesis of Monika MORTIMER (august, 2011)

    Mortimer et al. (2011). Exposure to CuO Nanoparticles Changes the Fatty Acid Composition of

    Protozoa Tetrahymena thermophila. Environ. Sci. Technol. 2011, 45, 66176624.

  • 7/28/2019 Presentation_Kasemets Et Al

    21/28

    Saccharomyces cerevisiae:Phenotype analysis - comparison of sensitivity of the

    mutated and non-mutated strains

    pre-screening with 10 delete strains

    The complete collection of open reading frame deletion mutants (~6000 single-

    gene mutants) have been generated by the Saccharomyces Gene Genome Deletion

    Project (EUROSCARF collection).

    Wild type

    Oxidative stress response deficient strains

    Elevated copper ions stress response deficient strains

    EC50

    Case study 2

  • 7/28/2019 Presentation_Kasemets Et Al

    22/28

    y = 24,854x + 2,7931

    R2

    = 0,775

    0,0

    5,0

    10,0

    15,0

    20,0

    25,0

    30,0

    0,00 0,20 0,40 0,60 0,80

    Cu2+ EC50, ppm

    NanoCu

    O

    EC50,pp

    CUP2

    GSH

    CCS1

    SOD

    Sensitivity correlations

    y = 906,83x + 86,214

    R2

    = 0,8064

    0

    250

    500

    750

    1000

    0,00 0,20 0,40 0,60 0,80

    Cu2+ EC50, ppm

    BulkCuO

    EC50,ppm

    CCS1

    GSH1

    CUP2

    SOD

    Copper ions versus Nano CuO Copper ions versus Bulk CuO

    Nano CuO Bulk CuO

    Kasemets et al. (2011). In preparation

  • 7/28/2019 Presentation_Kasemets Et Al

    23/28

    Saccharomyces cerevisiae BY4741:

    dyed by the Trypan Blue (cell viability dye)

    Cells have been exposed to the CuO nanoparticles for 24 hours

  • 7/28/2019 Presentation_Kasemets Et Al

    24/28

    Conclusions

    With few exceptions, the solubility seems to be the

    key determinant of the toxicity of metal-containing

    NPs. Thus, for the toxic outcome the NPs do not

    necessarily have to enter the cell/organism, as the

    metal-ions will do the job.

    Tailored construction, modification and use of gene-

    modified microbial cells provides new possibilities

    for rapid toxicological profiling of NPs.

  • 7/28/2019 Presentation_Kasemets Et Al

    25/28

    Nano publications

    1. Mortimer et al. (2011). Exposure to CuO Nanoparticles Changes the Fatty Acid Composition of Protozoa

    Tetrahymena thermophila. Environ. Sci. Technol. 2011, 45, 66176624.

    2. Heinlaan M, et al (2011). Changes in the Daphnia magna midgut upon ingestion of copper oxidenanoparticles: a transmission electron microscopy study. Water Research, 45: 179-190.

    3. Ivask A, et al (2010). Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver

    and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating

    the impact of particles and solubilised metals. Anal Bioanal Chem, Anal Bioanal Chem 398:701-16.

    Kahru A, Dubourguier H-C (2010). From ecotoxicology to nanoecotoxicology. Toxicology 269:105-119.

    4. Mortimer M, et al (2010). Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena

    thermophila. Toxicology 269, 182-189.

    5. Blinova I, et al (2009).. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut.Environmental Pollution 15, 41-47.

    6. Kasemets K, et al (2009).Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces

    cerevisiae, Toxicology in Vitro, Volume 23, Issue 6, p. 1116-1122

    7. Ivask A, et al (2009). A suite of recombinant luminescent bacterial strains for the quantification of

    bioavailable heavy metals and toxicity testing. BMC Biotechnol. 9: 41.

    8. Aruoja V, et al (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella

    subcapitata. Sci. Total. Environ. 407, 1461-1468.9. Kahru A, et al (2008). Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview.

    Sensors 8, 5153 - 5170.

    10. Mortimer M, et al (2008). High-throughput kinetic Vibrio fischeribioluminescence inhibition assay for study of

    toxic effects of nanoparticles. Toxicology in Vitro 22, 1412-1417.

    11. Heinlaan M. et al (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeriand

    crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308 1316.

  • 7/28/2019 Presentation_Kasemets Et Al

    26/28

    EU FP7 NMP NanoValid 2011-2014

    November 2011

    35 partners. Coordinator Dr. Rudolf Reuther,

    NordMilj, Sweden.

    Priotity 1 test materials: metal oxides (SiO2, TiO2, ZnO, CuO4), metals (Ag, Au

    and Pd), CNTs, (SWCNTs and MWCNTs) and fullerenes.

    Priority 2 test materials: quantum dots (CdSe, CdS, CeO2), salts (Ca-

    phosphates, PbS), nanocellulosic materials, polystyrene, dendrimers, ceramics,

    nanoclays.

  • 7/28/2019 Presentation_Kasemets Et Al

    27/28

    Acknowledgements

    Financial support:

    Estonian target funding project 0690063s08 and Estonian Science Foundation

    (Grant 7686)

    Research group ofIn vitro and Ecotoxicology

    THANK YOU!

  • 7/28/2019 Presentation_Kasemets Et Al

    28/28

    Tetrahymena thermophila exposed tocarbon nanotubes (2800 mg/L)

    Photo: Monika Mortimer

    Movie made by Monika Mortimer and HC Dubourguier