Problemas propuestos de programación lineal

24
Dr. Denis González Problemas de programación lineal 1Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 $ y el de la chaqueta en 40 $. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que éstos consigan una venta máxima? 2Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2 . Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para el L 2 ; y un trabajo de máquina para L 1 y de 10 minutos para L 2 . Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L 1 y L 2 , respectivamente, planificar la producción para obtener el máximo beneficio. 3Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m 3 y un espacio no refrigerado de 40 m 3 . Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m 3 de producto que necesita refrigeración y 4 000 m 3 de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 $ y el B de 40 $. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo? 4En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 $ y del tipo Y es de 30 $. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo? 5Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 $, respectivamente. ¿Cuántos

Transcript of Problemas propuestos de programación lineal

Page 1: Problemas propuestos de programación lineal

Dr. Denis González

Problemas de programación lineal1Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 $ y el de la chaqueta en 40 $. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que éstos consigan una venta máxima?

2Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

3Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m3 y un espacio no refrigerado de 40 m3. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m3 de producto que necesita refrigeración y 4 000 m3

de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 $ y el B de 40 $. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo?

4En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 $ y del tipo Y es de 30 $. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

5Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 $, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?

6Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 $; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 $. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

7Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 $ y la pequeña de 1 $. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

8Una escuela prepara una excursión para 400 alumnos. La empresa de transporte tiene 8 autobuses de 40 plazas y 10 de 50 plazas, pero sólo dispone de 9 conductores. El alquiler de un autocar grande cuesta 800 $ y el de uno pequeño 600 $. Calcular cuántos autobuses de cada tipo hay que utilizar para que la excursión resulte lo más económica posible para la escuela.

Page 2: Problemas propuestos de programación lineal

Dr. Denis González

Problemas PropuestosP R OBL E M A #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

P R OBL E M A #2 Un herrero con 80 kgs. de acero y 120 kgs. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a20.000 y 15.000 Bolívares cada una para sacar el máximo beneficio. Para la de paseo empleará 1 kg. De acero y 3 kgs de aluminio, y para la de montaña 2kgs. de ambos metales. ¿Cuántas bicicletas de paseo y de montaña venderá?P R OBL E M A #3 Un autobús Managua-Rivas ofrece plazas para fumadores al precio de 10.000 chelines y a no fumadores al precio de 6.000 chelines. Al no fumador se le deja llevar 50 kgs. de peso y al fumador 20 kgs. Si el autobús tiene 90 plazas y admite un equipaje de hasta 3.000 kg. ¿Cuál ha de ser la oferta de plazas de la compañía para cada tipo de pasajeros, con la finalidadde optimizara el beneficio?P R OBL E M A #4 A una persona le tocan 10 millones de dolares en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio del 10 %. Las de tipo B son más seguras, pero producen sólo el 7% anual. Después de varias deliberaciones decide invertir como máximo 6 millones en la compra de acciones A y por lo menos, 2 millones en la compra de acciones B. Además, decide que loinvertido en A sea, por lo menos, igual a lo invertido en B. ¿Cómo deberá invertir 10 millones para que le beneficio anual sea máximo?P R OBL E M A #5 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 $.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 $. por impreso. El estudiante lleva dos bolsas: una para los impresos A, en la que caben 120 y otra para los impresos B, en la que caben 100. Ha calculado que cada día es capaz de repartir 150 impresos como máximo. Lo que se pregunta el estudiante es: ¿Cuántos impresos habrá que repartir de cada clase para que su beneficio diario sea máximo?

Page 3: Problemas propuestos de programación lineal

Dr. Denis González

Page 4: Problemas propuestos de programación lineal

Dr. Denis González

Problemas resueltos de programación lineal

1

Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que éstos consigan una venta máxima?

1Elección de las incógnitas.

x = número de pantalones

y = número de chaquetas

2Función objetivo

f(x,y)= 50x + 40y

3Restricciones

Para escribir las restricciones vamos a ayudarnos de una tabla:

pantalones chaquetas disponible

algodón 1 1,5 750

poliéster 2 1 1000

x + 1.5y ≤ 750 2x+3y≤1500

2x + y ≤ 1000

Como el número de pantalones y chaquetas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Page 5: Problemas propuestos de programación lineal

Dr. Denis González

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 2x +3y ≤ 1500, para ello tomamos un punto del plano, por ejemplo el (0,0).

2·0 + 3·0 ≤ 1 500

Como 0 ≤ 1 500 entonces el punto (0,0) se encuentra en el semiplano donde se cumple la desigualdad.

De modo análogo resolvemos 2x + y ≤ 1000.

2·0 + 0 ≤ 1 00

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

Page 6: Problemas propuestos de programación lineal

Dr. Denis González

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima, si es única, se encuentra en un vértice del recinto. éstos son las soluciones a los sistemas:

2x + 3y = 1500; x = 0 (0, 500)

2x + y = 1000; y = 0 (500, 0)

2x + 3y =1500; 2x + y = 1000 (375, 250)

6 Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

Page 7: Problemas propuestos de programación lineal

Dr. Denis González

f(x, y) = 50x + 40y

f(0, 500) = 50·0 + 40·500 = 20000 €

f(500, 0) = 50·500 + 40·0 = 25000 €

f(375, 250) = 50·375 + 40·250 = 28750 €    Máximo

La solución óptima es fabricar 375 pantalones y 250 chaquetas para obtener un beneficio de 28750 €.

Problemas resueltos de programación lineal

2

Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

1Elección de las incógnitas.

x = nº de lámparas L1

y = nº de lámparas L2

2Función objetivo

f(x, y) = 15x + 10y

3Restricciones

Pasamos los tiempos a horas

20 min = 1/3 h

30 min = 1/2 h

10 min = 1/6 h

Para escribir las restricciones vamos a ayudarnos de una tabla:

L1 L2 Tiempo

Manual 1/3 1/2 100

Page 8: Problemas propuestos de programación lineal

Dr. Denis González

Máquina 1/3 1/6 80

1/3x + 1/2y ≤ 100

1/3x + 1/6y ≤ 80

Como el número de lámparas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).

1/3·0 + 1/2·0 ≤ 100

1/3·0 + 1/6·0 ≤ 80

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

Page 9: Problemas propuestos de programación lineal

Dr. Denis González

La solución óptima si es única se encuentra en un vértice del recinto. éstos son las soluciones a los sistemas:

1/3x + 1/2y = 100; x = 0 (0, 200)

1/3x + 1/6y = 80; y = 0(240, 0) 

1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60) 

6 Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 15x + 10y

f(0, 200) = 15·0 + 10·200 = 2 000 €

f(240, 0 ) = 15·240 + 10·0 = 3 600 €

f(210, 60) = 15·210 + 10·60 = 3 750 €    Máximo

La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 € .

Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m3 y un espacio no refrigerado de 40 m3. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m3 de producto que necesita refrigeración y 4 000 m3 de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo?

1Elección de las incógnitas.

Page 10: Problemas propuestos de programación lineal

Dr. Denis González

x = camiones de tipo A

y = camiones de tipo B

2Función objetivo

f(x,y) = 30x + 40y

3Restricciones

  A BTotal

Refrigerado

20

30

3 000

No refrigera

do

40

30

4 000

20x + 30y ≥ 3 000

40x + 30y ≥ 4 000

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Page 11: Problemas propuestos de programación lineal

Dr. Denis González

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(0, 400/3) = 30 · 0 + 40 · 400/3 = 5 333.332

f(150, 0) = 30 · 150 + 40 · 0 = 4 500

Como x e y han de ser números naturales redondeamos el valor de y.

f(50, 67) = 30 · 50 + 40 ·67 = 4180   Mínimo

El coste mínimo son 4 180 € para A = 50 yz B = 67.

Page 12: Problemas propuestos de programación lineal

Dr. Denis González

En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

1Elección de las incógnitas.

x = X

y = Y

2Función objetivo

f(x,y) = 10x + 30y

3Restricciones

  X Y Mínimo

A 1 5 15

B 5 1 15

x + 5y ≥ 15

5x + y ≥ 15

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Page 13: Problemas propuestos de programación lineal

Dr. Denis González

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(0, 15) = 10 · 0 + 30 · 15 = 450

f(15, 0) = 10 · 15 + 30 · 0 = 150

f(5/2, 5/2) = 10 · 5/2 + 30 · 5/2 = 100   Mínimo

El coste mínimo son 100 € para X = 5/2 e Y = 5/2.

Page 14: Problemas propuestos de programación lineal

Dr. Denis González

Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?

1Elección de las incógnitas.

x = P1

y = P2

2Función objetivo

f(x, y) = 6.5x + 7y

3Restricciones

  P1 P2 Disponibles

Cuadernos 2 3 600

Carpetas 1 1 500

Bolígrafos 2 1 400

2x + 3y ≤ 600

x + y ≤ 500

2x + y ≤ 400

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Page 15: Problemas propuestos de programación lineal

Dr. Denis González

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x,y)= 6.5 · 200 + 7 · 0 = 1300 €

f(x,y)= 6.5 · 0 + 7 · 200 = 1 400 €

f(x,y)= 6.5 · 150 + 7 · 100 = 1 675 €    Máximo

La solución óptima son 150 P1 y 100 P2 con la que se obtienen 1 675 €

Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres

Page 16: Problemas propuestos de programación lineal

Dr. Denis González

camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

1Elección de las incógnitas.

x = nº de lotes de A

y = nº de lotes de B

2Función objetivo

f(x, y) = 30x + 50y

3Restricciones

  A B Mínimo

Camisas 1 3 200

Pantalones 1 1 100

x + 3y ≤ 200

x + y ≤ 100

x ≥ 20

 y ≥ 10

4 Hallar el conjunto de soluciones factibles

Page 17: Problemas propuestos de programación lineal

Dr. Denis González

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x, y) = 30 · 20 + 50 · 10 = 1100 €

f(x, y) = 30 · 90 + 50 · 10 = 3200 €

f(x, y) = 30 · 20 + 50 · 60 = 3600 €

f(x, y) = 30 · 50 + 50 · 50 = 4000 €    Máximo

Con 50 lotes de cada tipo se obtiene una ganancia máxima de 4000 €.

Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

1Elección de las incógnitas.

x = Pastillas grandes

y = Pastillas pequeñas

2Función objetivo

f(x, y) = 2x + y

Page 18: Problemas propuestos de programación lineal

Dr. Denis González

3Restricciones

40x + 30y ≤ 600

x ≥ 3

y ≥ 2x

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

Page 19: Problemas propuestos de programación lineal

Dr. Denis González

6 Calcular el valor de la función objetivo

f(x, y)= 2 · 3 + 16 = 22 €

f(x, y)= 2 · 3 + 6 = 12 €

f(x, y)= 2 · 6 + 12 = 24 €    Máximo

El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas .

Una escuela prepara una excursión para 400 alumnos. La empresa de transporte tiene 8 autobuses de 40 plazas y 10 de 50 plazas, pero sólo dispone de 9 conductores. El alquiler de un autocar grande cuesta 800 € y el de uno pequeño 600 €. Calcular cuántos autobuses de cada tipo hay que utilizar para que la excursión resulte lo más económica posible para la escuela.

1Elección de las incógnitas.

x = autobuses pequeños

y = autobuses grandes

2Función objetivo

f(x, y) = 600x + 800y

3Restricciones

Page 20: Problemas propuestos de programación lineal

Dr. Denis González

40x + 50y ≥ 400

x + y ≤ 9

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

Page 21: Problemas propuestos de programación lineal

Dr. Denis González

f(0, 8) = 600 · 0 + 800 · 8 = 6 400 €

f(0, 9) = 600 · 0 + 800 · 9 = 7 200 €

f(5, 4) = 6 00 · 5 + 800 · 4 = 6 200 €    Mínimo

El coste mínimo es de 6 200 € , y se consigue 4 autobuses grandes y 5 pequeños .