Profesores: José M. Ferreiros Domínguez & María de … · ... la ciencia reivindica su lugar,...

13
Historia de las ciencias Profesores: José M. Ferreiros Domínguez & María de Ponte Azcárate 2º de Filosofía / Turno de tarde III Cuatrimestre / septiembre 2012 - enero 2013 Pitágoras

Transcript of Profesores: José M. Ferreiros Domínguez & María de … · ... la ciencia reivindica su lugar,...

Historia de las cienciasProfesores:! José M. Ferreiros Domínguez & María de Ponte Azcárate

2º de Filosofía / Turno de tardeIII Cuatrimestre / septiembre 2012 - enero 2013

Pitágoras

índice

Lección de anatomía, de Rembrandt

Tema 0! 2

Introducción 2

Tema 1! 6

Primer bloque 6

¿Puede considerarse la revolución científica como una revolución al uso? 6

http://filosevilla2011.wordpress.com 1

Tema 0Notas previas a la asignatura

INTRODUCCIÓN

Bibligrafía recomendada

26/09/2012

La primera mitad la da la María Pontes, y José M. Ferreirós dará la segunda a partir de

noviembre. Quizás se pueda hacer un trabajo único para poder evaluarse, aunque no es una

posibilidad segura.

La primera parte se dedicará a la revolución científica. La metodología con la profesora

Pontes se desarrollará a partir de textos originales que se conseguirán en copistería. Hay dos

libros especialmente recomendables, Making the modern science y La revolución científica:

una interpretación alternativa de Steven Shapin. Este último libro habrá que leerlo sí o sí.

Otro libro importante es Panorama general de la ciencia moderna, de P. J. Bowler y I. R.

Morus, que usaremos como guía general para el total de la asignatura. Thomas Kuhn tiene

otra obra, La revolución científica, que también será de gran utilidad.

El interés de esta primera parte está en que fue en la revolución del XVII donde se sientan las

bases de una sociedad que se fundamenta en la mentalidad científica moderna.

Si hablamos de Historia de las Ciencias pensamos en conceptos y autores básicos, como

Einstein, Newton, la gravedad, la relatividad, Galileo, etc. Esta interpretación sería la de Whig

History, o Historia de la Peluca, una visión basada en el tópico de científico-genio, aislado y

casi disociado de la sociedad, y donde los hitos científicos se analizan simplemente por pasos

nodales. Esto, por un lado, les gusta a los científicos, aunque, por otro, los caricaturiza.

Cuando se empezó a hacer Historia de las Ciencias más allá de la caricatura, aplicando un

método más sociológico, se llegó a lo que se conoce como las science wars o guerra de las

ciencias. Hubo historiadores que sacaron a relucir consecuencias no deseables de las

ciencias, como la mezcla de valores (sociales, políticos y culturales) que se mezclan con los

hechos. Es un tipo de análisis que considera la complejidad de separar el grano de la paja, de

2

los acontecimientos que suponen hitos del momento y el contexto en que se dan los propios

hechos.

Hasta la Ilustración no se preocupa nadie de desarrollar una Historia de las Ciencias. Lo

primero que podemos entender como tal, sin ser aún Historia de las Ciencias, llega en el

XVIII. No es de extrañar: fue entonces cuando se adquiere la perspectiva necesaria para

analizar la revolución científica del XVII. Los ilustrados veían a los científicos del XVII como

los grandes héroes frente a los oscurantistas irracionales del pensamiento no racional. Galileo

será uno de los grandes en ese sentido. Newton también lo fue, incluso eliminando de su

biografía algunas de sus vocaciones esotéricas y próximas a sectas del catolicismo. Para los

ilustrados el XVII fue un punto de inflexión, por lo que dedican mucho tiempo a poder

desarrollar los primeros bocetos de una Historia de las Ciencias.

En el siglo XIX empiezan a cambiar las cosas. Se enfría el entusiasmo ilustrado. William

Whewell escribe Historia de las ciencias inductivas, acuñando el término científico en 1837.

Antes de Kant, el conocimiento científico era de carácter pasivo (un ejemplo es la manzana de

Newton). Whewell apunta que los científicos no sólo observan, sino que también modifican la

realidad con su observación racional, una noción que debe mucho al kantismo. No obstante,

lo científico para Whewell no acapara el sentido actual. Darwin, por ejemplo, no será un

científico por hereje.

Los ilustrados tenían una idea materialista de la ciencia: el conocimiento científico garantiza

el conocimiento absoluto de la naturaleza, que se rige por unas leyes absolutas que lo dictan

todos, más allá de cualquier superstición o pensamiento no racional. Whewell tendrá una

postura que señala que hay un límite para la explicación racional: no todo se puede

fundamental en el conocimiento científico, no todo está basado en leyes a las que se acomode

la realidad. Whitehead también será de esta línea, aunque algo más moderado en la

imposición de límites.

En el siglo XX, Bernal traslada los presupuestos marxistas a criterios para entender la Historia

de las Ciencias. Opina éste que las ciencias deben ser empresas para el bien común. No es

algo que buque el conocimiento absoluto, sino que sus conclusiones deben estar al servicio de

la sociedad. En el sistema capitalista, el militarismo y la industria han asumido las aplicaciones

de la técnica científica y de los afanes de dominio de la naturaleza: el dominio de la técnica es

el dominio de la aplicación.

Durante la II Guerra Mundial aparece un momento de inflexión para todo, y no menos para la

Historia de las Ciencias. Fue entonces cuando, por primera vez, los resultados de las ciencias

fueron palpables en su lado más oscuros: ya no se centra en curar y beneficiar al ser humano,

3

sino en buscar la máxima eficiencia en la destrucción. La ingenuidad ilustrada se va al garete.

A partir de aquí, se extremizan los polos que venían representándose en la visión materialista

de la ciencia, por un lado, y en el criterio que considera necesario colocar límites a la ciencia,

estableciendo que esa frontera está en el pensamiento religioso.

Tras esto es cuando se inauguran los departamentos de las ciencias. Aparecen revistas

especializadas, congresos, etc. Tras la II Guerra Mundial, la ciencia reivindica su lugar, para

bien o para mal, planteándose multitud de preguntas.

La Guerra Fría también impone matices al estudio de la Historia de las Ciencias. Sigue

habiendo gente que represente la corriente marxista, aunque se descarta la opción de que de

la ciencia está corrompida por el capitalismo como una perspectiva apropiada, al menos en el

mundo occidental. La Historia de las Ciencias que surge, sobre todo en el mundo anglosajón,

sugiere lo contrario: la técnica es un subproducto de la ciencia, no al contrario, como se

sostenía hasta entonces, retornando al planteamiento ilustrado en cierta forma.

En este contexto, aparece la visión de Koyré, un historiador ruso que emigró primero a

Francia y luego a EEUU. Esta visión se centraba en las ideas que Galileo tenía sobre Platón,

siendo el primero que aporta esta perspectiva. También fue el primero que hizo un tratado

serio entre Newton y la religión, volviendo a la revolución científica, pero de un modo más

centrado y claro.

Estamos en el contexto de los positivistas lógicos de autores como Karl Popper. Surge con los

positivistas lógicos una perspectiva interesante: se desarrolla una Historia Interna de las

Ciencias frente a una Historia Externa de las Ciencias. Estamos en los años 50 del siglo XX.

La Historia Interna de las Ciencias se centraba en estudiar los factores intelectuales que

participaban en los descubrimientos científicos. Koyré señala que en Newton está Galileo,

Copérnico o Platón e incluso briznas de religión. La Historia Externa de las Ciencias se

centra en los criterios contexturales: política, sociedad, economía, etc. Para entender las

ciencias, dirán, basta con la visión interna. Es ahora cuando se empieza a hablar del método

hipotético-deductivo y el sistema de verificación. Popper dirá que los científicos tienen

hipótesis, haciendo que este conocimiento se distinga de otros porque ahora se pueden falsar

las hipótesis. El marxismo, así, no es una teoría científica, como tampoco lo sería el

psicoanálisis, según Popper.

Kuhn dirá que un científico no abandonará su hipótesis hasta que no tenga una explicación

mejor, sino que se acomodarán en una serie de contextos y casos que reivindiquen la utilidad

de la hipótesis sobre la que se apoya una ley. Kuhn dirá que los científicos forman una

comunidad que, como todas, serán conservadoras y salvaguardarán sus hipótesis para que las

4

excepciones de sus reglas no rompa el edificio de sus fundamentos. Cuando se acumulan

muchas anomalías o surgen anomalías especialmente importantes, para Kuhn un paradigma

(como la ley de la gravedad) entra en crisis, que es cuando aparece un momento de especial

creatividad que tratan de suplantar las teorías anteriores, lo que deviene en una revolución

que genera un cambio de paradigma. Eso es lo que ocurre, por ejemplo, en el siglo XVII.

Ocurrió también con la alquimia cuando fue sustituida por la química. En este sentido, Kuhn

le da una especial relevancia a los factores que intervienen en la Historia Externa de las

Ciencias. Kuhn también fue el primero que dijo que cuando se cambia una teoría por otra

significa cambiar muchas cosas en el contexto: libros de texto, libros de historia,

departamentos, métodos... cambia todo. Llega a decir que dos paradigmas, dos simultáneos,

son inconmensurables: dos científicos de distintas épocas distanciadas no se podrían

entender.

Feyerabent o los postmodernos dirán que la ciencia es un tipo más de conocimiento, ni mejor

ni peor, no más ni menos, que cualquier otro tipo de conocimiento que se da en el ámbito

humano. Es la reacción a una serie de corrientes que reivindican una especificidad del

cientifismo.

27/09/2012

5

Tema 1La revolución científica

PRIMER BLOQUE

Bibliografía

¿Puede considerarse la revolución científica como una revolución al uso?

La revolución científica de Shapin establece que no se puede hablar de revolución científica

como tal. En contraposición está Thomas Kuhn, quien habla de ciencia normal, paradigma y

revolución científica en La revolución copernicana, centrándose en astronomía y defendiendo

que la revolución de Copérnico supone una revolución no sólo científica, sino también

cultural. Según Kuhn, una simple teoría astronómica genera un cambio absoluto en la forma

de ver el mundo.

Hoy conoceremos las tesis principales de Shapin acerca de porqué no se puede hablar de

revolución científica.

La revolución científica, si nos ceñimos a los descubrimientos, ocurrieron en dos campos:

astronomía, con Galileo, Kepler y Copérnico, y en la mecánica, con Newton y Leibniz.

También hay grandes avances en medicina, pero los pilares de la revolución científica se basan

en astronomía y mecánica. En adelante, hablaremos de revolución química y revolución

eléctrica.

La historia tradicional equipara la revolución científica con Copérnico o Galileo. A finales del

XVI y principios del XVII llegan una serie de cambios fundamentales en el ámbito científico

que generan un vuelco en la visión del mundo. Sucede un tránsito de la antigüedad a la

modernidad. Muchos de los protagonistas de la llamada revolución científica, como Bacon, se

autodenominaban modernos y despreciaban al conocimiento clásico y antiguo. La

consideración de la revolución de Darwin o la de la química llegó como crítica a la revolución

científica. No obstante, los cambios del periodo citado fueron especialmente relevantes, hasta

el punto de considerar que hablamos de la revolución, cuando comienza la ciencia tal y como

la entendemos:

•La historia tradicional, que procede de la Ilustración, señala que, por un lado, hubo grandes

descubrimientos y avances. Bacon hablaba de la filosofía griega como un tipo de

conocimiento perjudicial en la búsqueda de la verdad, enfatizando en el método

experimental y señalando que el conocimiento debe perseguirse desde la luz de la

naturaleza y no desde la oscuridad de la antigüedad.

•Se considera que es la revolución no sólo por esos grandes descubrimientos, sino sobre

todo por la inauguración del método, que nos proporciona conocimiento válido, fiable y

certero.

La historia tradicional de las ciencias tiene su propia historia, ellos mismos se autodenominan

modernos, aunque no revolucionarios. Sabían que hacían algo nuevo, pero la idea de

revolución científica como tal es del siglo XX. En el libro de Shapin se alude al término bajo la

autoría de Alexander Koyré en 1943 (cita en la página 17). Herbert Butterfield también

menciona esta denominación en 1949, añadiendo que lo que supuso la revolución industrial

se entiende como si la humanidad se hubiese curado la miopía poniéndose gafas.

Kuhn llega a decir que la revolución copernicana fue una revolución en el campo de las ideas y

en la concepción de la noción del universo, así como del lugar del hombre en el mismo.

La revolución copernicana tuvo tres etapas:

•Astronomía: la composición del universo cambia en su concepción, donde la Tierra pasa a

un lugar que no es el centro. No es un dato baladí: la astronomía se consideraba una ciencia

muy menor, y sin embargo, encabeza el inicio de la revolución.

•Ciencia: los cambios en astronomía llevaron a la comunidad de científicos a reconstruir

todos los principios del resto de disciplinas.

•Filosofía/Religión/Cultura: como consecuencia, cambia la mentalidad, ya que la afirmación

de que el hombre no es el centro del universo, sino parte de un cosmos del que formamos

una parte no primordial lleva a los pensadores a replantearse el lugar de la existencia desde

distintas perspectivas.

Galileo construyó un telescopio, y antes de estar convencido de las ideas de Copérnico

descubrió unas manchas en el Sol. Lo que se creía era que esas manchas eran cosas que

flotaban alrededor del Sol, pero Galileo contradijo esto: las manchas están en el Sol. Tras

probar su teoría, rompió con una tradición basada en el orden aristotélico del mundo, donde

se distingue el ámbito de lo corruptible del ámbito de lo celestial. Pero si esto fuera cierto,

¿cómo es posible que el gran astro incorpore muestras de corrupción si no es propio del

mundo celeste?

Algo tan nimio arrastra a otros ámbitos de la vida humana. Imaginemos el alcance de la

revolución copernicana. Para Kuhn, esto sí que supone una revolución.

Shapin, decimos, afirma que no hay tal revolución científica. Pero antes, planteemonos algo.

¿Qué es revolución? ¿Qué es ciencia?

1. Koyré habla de revolución científica en el 43 en un sentido distinto al que podría tener

ahora. Revolución no era sinónimo de cambio, sino de ciclo. Pensemos en las

revoluciones de un motor. Dice Koyré que la palabra revolución aparece en la Ilustración

con una idea que surge en paralelo a una idea de tiempo lineal y unidireccional, una idea

que no existía antes. ¿Podemos hablar de revolución científica como un momento

rupturista entre periodos? Sabemos que la dicha revolución empezó con Copérnico y

terminó con Newton, pero ¿hay un único movimiento que represente la idea de revolución

en conjunto a través de dos siglos?

2. Por otro lado, Shapin rechaza la idea común de la historia tradicional que entiende la

ciencia como un bloque de conocimiento: no hay una disciplina única que entendamos

como ciencia. Al no haber una entidad delimitada y única, no se puede hablar de una

revolución que afecte a ese ámbito. Cada una de las prácticas científicas experimentaron

métodos y evoluciones muy distintos: la alquimia permaneció impertérrita hasta el XVIII,

y la biología tampoco fue especialmente mutable. Shapin hablará de prácticas, no tanto de

ciencias.

3. Otro punto que también pone en duda Shapin es que se desarrolle el método científico

como tal. Y es que si no hay una ciencia, no puede haber un método único y válido para

todas las prácticas.

4. Seguimos. La historia tradicional presentaba el siglo XVI y XVII como un momento de

ruptura con el conocimiento anterior, algo que no sólo Shapin cuestiona hoy día. La

Historia de las Ciencias es una disciplina relativamente nueva, y tras un poco de

indagación, se ha levantado el velo de la duda acerca de la certeza de ese pilar rupturista.

Y es que los modernos están tan próximos de un momento que se puede leer como parte

de un continuismo que procede de la Edad Media, que difícilmente se les puede acercar

más a nuestro momento. Copérnico, por ejemplo, está más cerca de Okham que de

Darwin, por ejemplo. Así, se han reivindicado otras revolución en otros ramos de la

ciencia, como el paso de la alquimia a la química, algo que es relativamente reciente. Ese

paso viene a subrayar el carácter continuista de una revolución científica, entendida como

una revolución de las ciencias que suceden en distintos momentos.

5. La historia tradicional no consideraba factores externos de los descubrimientos, sino que

invitaba a pensar en la noción de que las ideas son algo que flota que el genio del científico

descubre en un momento de lucidez. Pero desde la perspectiva de Shapin, se consideran

elementos que contradicen esto, contextualizando el descubrimiento en un momento y

una situación que, de no darse, habría bloqueado el descubrimiento en sí.

6. Todo esto conecta con la idea de que la Historia de las Ciencias no es un conjunto de

teoremas y descubrimientos, sino que inciden las prácticas humanas. Esto quiere decir

que si se quiere estudiar la relevancia de los descubrimientos hay que hacerlo dentro de

una comunidad que no puede disociar esos hallazgos de otros y de las repercusiones que

tiene en el conjunto.

7. Cierra Shapin esta revisión diciendo que para entender si esto es una revolución científica

o no esto toca preguntarse de quién hablamos cuando se habla de revolución científica y

quiénes fueron sus actores. Dice esta autor que se habla de minorías involucradas en esta

revolución, con lo que es arriesgado acuñar este término en honestidad.

Aunque Shapin niega la etiqueta de la revolución científica, no comete la negligencia de

hablar de una serie de cambios profundos entre los siglos XVI y XVII. Afirma que fue un

periodo muy importante, afirmando que es un periodo muy relevante y excitante, aunque de

su análisis no se desprende la idea de revolución.

Además de la cuestión meramente semántica sobre qué es una revolución, Shapin tiene

interés en decir qué es ciencia ahora y qué era ciencia entonces o cuándo surge el método

científico y qué es exactamente. Le da una gran importancia a los cambios en la sociedad de la

época, pero reflexiona acerca de quiénes fueron los que notaron las novedades que trajeron

los avances en ciencia.

Shapin plantea cuatro cuestiones que considera esenciales en la manera de hacer historia:

1. Asegura que la ciencia es una actividad social que está históricamente situada. Da por

sentado que se requiere de contexto para poder hacer una Historia de las Ciencias. La

idea del contexto es relativamente nueva en la historiografía de este campo.

2. Habla además de factores intelectuales y de factores sociales como actores que interceden

en el estudio de la ciencia. Dice que durante una época se dio un debate que distanciaban

a quienes se centraban en los aspecto puramente conceptuales y metódicos de la ciencia

de quienes optaban por plantar el foco de análisis en las formas de organización y las

influencias políticoeconómicas. Pero Shapin dice que la distinción entre estos factores es

errónea, ya que son indivisibles: uno incluye sobre el otro de forma recíproca. Dice que

los factores sociales están presentes en la misma medida dentro y fuera del laboratorio.

3. Recalca los factores externos como imprescindibles para el planteamiento de la teoría

histórica. Hay un punto en el que se habla de la verdad científica separada del contexto

social y político. Shapin dice que esta distinción es un producto de la revolución

científica. Fue entonces cuando los filósofos naturales pasan a ser científicos, acotando

sus descubrimientos más allá de cualquier otro tipo de conocimiento. Pero tal frontera no

es real.

4. No hay una ciencia. Ahí es nada. Shapin asegura que no hay nada parecido a algo que

podamos llamar la esencia de la ciencia. La ciencia no es una práctica unívoca y coherente,

sino una multiplicidad de prácticas donde se pueden compartir concomitancias, pero no

una faceta común a todas.

Así, Shapin dice que no hay una Historia de la Ciencia, sino una Historia de las Ciencias o

acaso muchas Historias de las Ciencias.

Podríamos hablar de un quinto punto, aludiendo a que cuando hablamos de ciencia el propio

historiador, el propio observador, tiene que considerar que terminológicamente no comparte

los mismos conceptos que su objeto de estudio. Es fácil caer en anacronismos, y es preciso

tenerlo en cuenta para no caer en ello.

03/10/2012 y 04/10/2012

Apuntes de Carlos García Claros. Graciasss

Medio Cultural de la Revolución Científica.

Aplicaciones de la ciencia:

· Renacimiento: Algunas aplicaciones de la ciencia toman relevancia.

· Nuevos problemas, auge mercantil y comercial asociado a la expansión europea.

· Decadencia de super-instituciones medievales (Imperio y Papado) contrasta con el auge de la burguesía: Nuevos intereses y valores.

Podemos hablar en este sentido de que hubo un Nuevo Orden, el comercio de dos tecnologías como la navegación oceánica (matemáticas, astronomía, mecánica) y los cañones (relacionado con las matemáticas y química), estas son necesidades de los nuevos retos a nivel militar. Otros elementos básicos de esta época fue la educación y el progreso de la imprenta, surgieron academias de la ciencia y se colaron en las universidades apreciaciones técnicas en relación con las ciencias de la época. La ciencia se convirtió en una actividad social, aparecieron artefactos y el hombre

empieza a depender de ella. Lo relevante de lo nuevo fue su llegada a América, el desarrollo de las Artes, el desarrollo de la Alquimia y la Medicina.

El Humanismo iba ligado al espíritu burgués con su individualidad, la autonomía moral y el enfrentamiento solitario a un mundo desconocido. También destaca la necesidad de otra filosofía (frente a la Medieval).En el S. XVI la corriente más divulgada era el Neo-platonismo, pero a la hora de hacer ciencia la corriente que destaca es la aristotélica. Tenemos los ejemplos de Kepler y Newton y antes que él Galileo eran neoplatonistas que unieron con el aristotelismo y matematizaron el mundo; esto nos llevó a la mecánica y a explicar el mundo que nos rodea en términos matemáticos que antes de ellos era impensable, el neoplatonismo se entiende como la teología pura, sin corromper; el alma del cosmos es Dios recorrido por fuerzas inmateriales que actuaban a distancia por influencias del tipo simbólico y matemático.

Nace una cultura técnica con la cotidianidad de los productos artesanales, ya no adultera la naturaleza sino que forma parte de ella; los procesos naturales y técnicos se tratan como continuos, la geometría y la mecánica explican las bombas hidráulicas o los relojes y también adaptan esto a una explicación del mundo natural y las estrellas. Se desarrolla una filosofía social acerca de la ciencia (Bacon, utilidad de la ciencia).

En referencia a Aristóteles, la esencia de la naturaleza no era de orden matemático, alentó la observación y no rechazó los experimentos, pero sin embargo, no existía la idea de experimentación sistemática. Para Aristóteles existía una materia prima universal susceptible de adoptar distintas formas.Se habla también de los cuatro elementos que se componen agrupando (y eliminando contrarios) del tipo seco-húmedo.El universo aristotélico se compone de una Simetría esférica en cuyo centro está la Tierra, encima de la tierra están las esferas concéntricas; la esfera de la luna separa dos regiones, las orbes celestes (inmutabilidad) y por otro lado la región terrestre (cambio). Añadió un quinto elemento en la región supralunar, el llamado Éter. Para Aristóteles todo movimiento tiene una causa, el motor externo al móvil, pero eso no resulta evidente en el caso del movimiento natural, dicho motor tenía que estar en contacto constante con el móvil. En el caso de la Caída de los Graves fue una teoría que no se resolvió hasta el Renacimiento.

1.- Astronomía.

Pasaron a ser “especialistas” los que construyen la visión del mundo. Prima la explicación de la observación frente a la búsqueda de explicaciones psicológicamente satisfactoria, ahora son los astrónomos los que construyen esas visiones del universo y a veces, destruyen visiones del mundo que tenían sentido para todos los miembros de la civilización como la Tierra como centro del universo.

¿Qué podemos ver en el cielo?

Estrellas fijas (se mueven pero no cambian sus posiciones relativas) pertenecientes al conjunto que gira de Este a Oeste. Astros “errabundos” (planetas) se mueven también pero de forma diferente, tienen un movimiento propio que dura un “año”. El Sol recorre el Zodiaco en sentido contrario diario hacía occidente de todos los astros (casi un grado al día), su movimiento anual de la tierra es proyectado sobre él.

La Astronomía Ptolemaica acepta un modelo por 1400 años, la tierra mora en el centro y el sol, las estrellas y los planetas en sus esferas giran alrededor de la tierra en un movimiento circular, aunque los planetas giren en “epiciclos”; encaja con el modelo aristotélico.

Ante esto Copérnico dijo que el Sol era el centro (Heliocéntrico), el movimiento era uniforme y circular sin epiciclos, la luna orbita la tierra y los planetas y las estrellas aún están en esferas fijas y su movimiento es el resultado del giro de la Tierra sobre sí misma.

Geocentrismo Vs. Heliocentrismo

Ambos modelos explican la observación de movimiento aparente. Las teorías son modelos, un modelo es un mapa, una representación de algo concreto. La relación entre un mapa y lo real es esencial, ya que podemos hacer de un mapa distinto a lo real y en ello surgiría un problema. Podemos distinguir distintos problemas como el metafísico, el epistemológico y el semántico. Si el modelo es exacto a la realidad no es un modelo, un modelo de algo en concreto exactamente igual a ese algo se convierte en otro del mismo. Aunque algunos autores hablan de que el modelo tiene que ser similar estructuralmente, no igual en apariencia pero si similar en estructura. La hipótesis teórica es la afirmación de por qué tu modelo se asemeja a la realidad. Una teoría puede ser un conjunto de modelos de la realidad y una serie de hipótesis (datos y predicciones), los modelos nos permiten conocer lo conceptual y las hipótesis a ver a que se aplica y de qué forma. Del objeto real sacamos datos, estos tienen que avalar la predicción que está sacada de un modelo; si los datos no avalan la predicción la hipótesis (modelo) es falsa. Si hay evidencia de que es correcto entonces pasamos a la pregunta ¿hay modelos alternativos?, si es una evidencia positiva, esta hipótesis es provisionalmente correcta.

Objeto HipótesisReal Modelo

Datos Predicción