proyecto de acero

5
La estructura cristalina: Es la forma sólida de cómo se ordenan y empaquetan los átomos , moléculas , o iones . Estos son empaquetados de manera ordenada y con patrones de repetición que se extienden en las tres dimensiones del espacio. La cristalografía es el estudio científico de los cristales y su formación. El acero presenta distintas estructuras cristalinas dependiendo básicamente de a que temperatura se encuentre y que porcentaje de carbono contenga. Todas las estructuras que puede presentar el acero están especificadas en el diagrama de hierro carbono, el cual en el eje horizontal tiene el contenido de carbono y en el eje vertical la temperatura. Para complicar aún más las cosas, el acero también puede presentar estructuras metaestables dependiendo de qué tan rápido o lento haya sido el proceso de enfriamiento. Algunas de las estructuras estables son: perlita, ferrita alfa, ferrita gamma, ledeburita y cementita. Algunas de las estructuras metaestables son: martensita (es la estructura del acero templado), bainita, troostita. La diferencia entre estas estructuras es la forma en la que se solubiliza, combina y precipita el carbono . El acero sirve comúnmente para denominar, en ingeniería metalúrgica , a una mezcla de hierro con una cantidad de carbono variable entre el 0,03 % y el 2,14 % en masa de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,14 % se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas . La diferencia principal entre el hierro y el acero se halla en el porcentaje del carbono: el acero es hierro con un porcentaje de carbono de entre el 0,03 % y el 1,075 %, a partir de este porcentaje se consideran otras aleaciones con hierro.

description

ESTRUCTURA CRISTALINA

Transcript of proyecto de acero

Page 1: proyecto de acero

La estructura cristalina:

 Es la forma sólida de cómo se ordenan y empaquetan los átomos, moléculas, o iones. Estos son empaquetados de manera ordenada y con patrones de repetición que se extienden en las tres dimensiones del espacio. La cristalografía es el estudio científico de los cristales y su formación.

El acero presenta distintas estructuras cristalinas dependiendo básicamente de a que temperatura se encuentre y que porcentaje de carbono contenga. Todas las estructuras que puede presentar el acero están especificadas en el diagrama de hierro carbono, el cual en el eje horizontal tiene el contenido de carbono y en el eje vertical la temperatura. 

Para complicar aún más las cosas, el acero también puede presentar estructuras metaestables dependiendo de qué tan rápido o lento haya sido el proceso de enfriamiento. Algunas de las estructuras estables son: perlita, ferrita alfa, ferrita gamma, ledeburita y cementita. Algunas de las estructuras metaestables son: martensita (es la estructura del acero templado), bainita, troostita. 

La diferencia entre estas estructuras es la forma en la que se solubiliza, combina y precipita el carbono.

El acero

 sirve comúnmente para denominar, en ingeniería metalúrgica, a una mezcla de hierro con una cantidad de carbono variable entre el 0,03 % y el 2,14 % en masa de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,14 % se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas.

La diferencia principal entre el hierro y el acero se halla en el porcentaje del carbono: el acero es hierro con un porcentaje de carbono de entre el 0,03 % y el 1,075 %, a partir de este porcentaje se consideran otras aleaciones con hierro.

Cabe destacar que el acero posee diferentes constituyentes según su temperatura, concretamente, de mayor a menor dureza, perlita, cementita y ferrita; además de la austenita (para mayor información consultar el artículo Diagrama Hierro-Carbono).

El acero conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos como no metálicos mejora sus propiedades físico-químicas.

Propiedades mecánicas: Resistencia: es la oposición al cambio de forma y a la fuerzas externas que pueden presentarse como cargas son traccion, compresion, cizalle, flexión y torsión. Elasticidad: corresponde a la capacidad de un cuerpo para recobrar su forma al dejar de actuar la fuerza que lo ha deformado 

Page 2: proyecto de acero

Plasticidad: es la capacidad de deformación de un metal sin que llegue a romperse si la deformación se produce por alargamiento se llama ductilidad y por compresión maleabilidad. Fragilidad: es la propiedad que expresa falta de plasticidad y por lo tanto tenacidad los metales frágiles se rompen en el límite elástico su rotura se produce cuando sobrepasa la carga del límite elástico. Tenacidad: se define como la resistencia a la rotura por esfuerzos que deforman el metal; por lo tanto un metal es tenaz si posee cierta capacidad de dilatación. Dureza: Es la propiedad que expresa el grado de deformación permanente que sufre un metal bajo la acción directa de una fuerza determinada. Existen dos Dureza física y dureza técnica. Ductilidad: es la capacidad que tienen los materiales para sufrir deformaciones a tracción relativamente alta, hasta llegar al punto de fractura. Resilencia: Es la capacidad que presentan los materiales para absorber energía por unidad de volumen en la zona elástica. 

Propiedades Físicas Propiedades de los cuerpos: encontramos entre otras Materia,Cuerpo,Estado de agregacion,Peso,Masa,Volumen,Densidad,pe... especifico(m/v) Propiedades Térmicas: están referidas a los mecanismos de calor existen tres mecanismos: Conducciones produce cuando la fuente emisora está en contacto directo con el que se desea aumenta Tº Convección: para que ocurra transferencia de calor por convección es necesario que exista un fluido quien sea el encargado de transmitir el calor de la fuente emisora hacia el cuerpo o ambiente Radiación: Se produce porque la fuente de calor se encuentra en contacto en forma directa con el ambiente. Esta fuente emisora genera rayos infrarrojos que sirven de medio de transferencia de calor. Propiedades Eléctricas: Están relacionadas con la capacidad de conducir la corriente eléctrica. Propiedades Ópticas: están referidos a la capacidad que poseen los materiales para reflejar o absorber el calor de acuerdo a las siguientes características: Color-Brillo-Pulido. Propiedades Magnéticas: Están referidas a la capacidad que poseen los materiales metálicos para inducir o ser inducidos por un campo electromagnético, es decir actuar como imán o ser atraídos por un imán.

DIAGRAMA DE HIERRO CARBONO

Page 3: proyecto de acero

La existencia del eutectoide permite distinguir dos tipos de aleaciones de acero:

Aceros hipoeutectoides (menor a 0,80% C). Al enfriarse por debajo de la temperatura crítica A3 comienza a precipitar la ferrita entre los granos de austenita y al alcanzar la temperatura crítica A1 la austenita restante se transforma en perlita. Se obtiene por tanto a temperatura ambiente una estructura de cristales de perlita embebidos en una matriz de ferrita.

Aceros hipereutectoides (mayor a 0,80% C). Al enfriarse por debajo de la temperatura crítica se precipita el carburo de hierro resultando a temperatura ambiente cristales de perlita embebidos en una matriz de cementita.

Pues ya que este es un tratamiento térmico y su temperatura se eleva hasta dicha temperatura.

Las texturas básicas descritas (perlíticas) son las obtenidas enfriando lentamente aceros al carbono, sin embargo modificando las condiciones de enfriamiento (base de los tratamientos térmicos) es posible obtener estructuras cristalinas diferentes:

La martensita es el constituyente típico de los aceros templados y se obtiene de forma casi instantánea al enfriar rápidamente la austenita. Es una solución sobresaturada de carbono en hierro alfa con tendencia, cuanto mayor es el carbono, a la sustitución de la estructura cúbica centrada en el cuerpo por tetragonal centrada en el cuerpo. Tras la cementita (y los carburos de otros metales) es el constituyente más duro de los aceros.

Velocidades intermedias de enfriamiento dan lugar a la bainita, estructura similar a la perlita formada por agujas de ferrita y cementita pero de mayor ductilidad y resistencia que aquélla.

También se puede obtener austenita por enfriamiento rápido de aleaciones con elementos gammágenos (que favorecen la estabilidad del hierro γ) como el níquel y el manganeso, tal es el caso por ejemplo de los aceros inoxidables austeníticos.

Antaño se identificaron también la sorbita y la troostita que han resultado ser en realidad perlitas de muy pequeña distancia interlaminar por lo que dichas denominaciones han caído en desuso.

Zona de los aceros (hasta 2% de carbono) del diagrama de equilibrio metaestable hierro-carbono. 

Page 4: proyecto de acero