REGULACION AUTOMATICA

41
 UNIVERSIDAD DE ATACAMA INSTITUTO TECNOLOGICO REGUL CION UTOM TIC Carrera : Instrumentación y Automatización Industrial Asignatura : Instrumentación II Profesor : Jorge Torres Fritis

Transcript of REGULACION AUTOMATICA

Page 1: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 1/41

 

UNIVERSIDAD DE ATACAMAINSTITUTO TECNOLOGICO

REGULACION AUTOMATICA

Carrera : Instrumentación yAutomatización Industrial

Asignatura : Instrumentación IIProfesor : Jorge Torres Fritis

Page 2: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 2/41

 

Regulación Automática

CONTENIDO 1: Regulación Automática1.1 Introducción 1.2 Cambios de Carga 1.3 Capacitancia 1.4 Resistencias 1.5 Tiempo de Transporte 1.6 Banda Proporcional 1.7 Offset CONTENIDO 2: Selección de un Sistema de Control2.1 Elementos Básicos de Teoría de Control.

2.1.1 Variable de Proceso2.1.2 Set Point2.1.3 Error2.1.4 Control en Lazo Abierto y en Lazo Cerrado

2.2 El Control On/Off2.2.1 Control On/Off Con Histéresis

2.3 Pwm Y Tiempo de Ciclo.2.4 Control Proporcional2.5 Control Proporcional Derivativo PD2.6 Control Proporcional Integral PI2.7 Control Proporcional Integral Derivativo PID

2.8 Algoritmo de Control PID CONTENIDO 3: Criterios de estabilidad en el control3.1 Estabilidad3.2 Razón de Amortiguamiento3.3 Criterio de Amplitud Mínima3.4 Métodos De Ajuste De Controladores

3.4.1 El método analítico3.4.2 Método Experimental

3.4.2.1 Método de tanteo3.4.2.2 Método de ganancia límite

3.4.2.3 Método de curva de reacción3.4.2.4 Métodos de ajuste automático 

Page 3: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 3/41

 

CONTENIDO 1: Regulación Automática

1.1 INTRODUCCIÓN

En los inicios de la era industrial, el control de los procesos se llevó a cabo mediante

tanteos basados en la intuición y en la experiencia acumulada. Un caso típico fue el controlde acabado de un producto en el horno. El operario era realmente el “instrumento de

control” que juzgaba la marcha del proceso por el color de la llama, por el tipo de humo, el

tiempo transcurrido y el aspecto del producto y decidía así el momento de retirar la pieza;

en esta decisión influía muchas veces la suerte, de tal modo que no siempre la pieza seretiraba en las mejores condiciones de fabricación. Más tarde, el mercado exigió mayor 

calidad en las piezas fabricadas lo que condujo al desarrollo de teorías para explicar el

funcionamiento del proceso, de las que derivaron estudios analíticos que a su vez permitieron realizar el control de la mayor parte de las variables de interés en los procesos.

1.2 CAMBIOS DE CARGA 

La carga del proceso es la cantidad total del fluido o agente de control que el procesorequiere en cualquier momento para mantener unas condiciones de trabajo equilibradas. En

la figura 1.1, cuando el agua fría circula con un determinado caudal y la salida de agua

caliente debe estar a una temperatura dada, es necesaria una determinada cantidad de vapor.En estas condiciones, un aumento en el caudal de agua da lugar al consumo de más

cantidad de vapor y constituye por tanto un cambio en la carga del proceso. Por otro lado,

un aumento en la temperatura de entrada del agua fría, precisa una menor cantidad de vapor y es también un cambio de carga.

Figura 1.1: Intercambiador de Calor.

Page 4: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 4/41

 

En general, los cambios de carga del proceso son debidos a las siguientes causas:

1. Mayor o menor demanda del fluido de control por el medio controlado. En el ejemplo del

intercambiador de calor de la figura 1.1, un aumento en el caudal de agua o unadisminución en su temperatura de lugar a un cambio de carga porque requiere el consumo

de más cantidad de vapor.

2. Variaciones en la calidad del fluido de control. Una disminución de presión en el vapor del ejemplo de la figura 1.1 da lugar a un aumento del caudal en volumen del vapor para

mantener la misma temperatura controlada, ya que las calorías cedidas por el vapor al

condensarse disminuyen al bajar la presión.

3. Cambios en las condiciones ambientales.-Son muy claros en el caso de instalaciones al

aire libre donde las pérdidas de calor por radiación varían mucho según la estación del año,la hora del día y el tiempo.

4. Calor generado o absorbido por la reacción química del proceso (proceso exotérmico oendotérmico respectivamente). Se presenta un cambio de carga porque el proceso necesita

una menor o una mayor cantidad del agente de control.

Los cambios de carga en el proceso pueden producir perturbaciones en la alimentación y en

la demanda.

Las perturbaciones en la alimentación consisten en un cambio en la energía o en los

materiales de entrada en el proceso. Por ejemplo, las variaciones en la presión de vapor o en

la apertura de la válvula de vapor son perturbaciones en la alimentación del proceso.Las perturbaciones en la demanda consisten en un cambio en la salida de energía o de

material del proceso. Los cambios en la temperatura del agua fría y las variaciones en elcaudal de agua pertenecen a este tipo.

1.3 CAPACITANCIA

La capacitancia de un proceso es un factor muy importante en el control automático. Es una

medida de las características propias del proceso para mantener o transferir una cantidad deenergía o de material con relación a una cantidad unitaria de alguna variable de referencia.

  No debe confundirse con capacidad del proceso que representa simplemente las

características propias de almacenar energía o material.

Por ejemplo, los dos depósitos de la figura 1.2a tienen la misma capacidad de 100 m3, pero

tienen distinta capacitancia por unidad de nivel: 12,5 m3/m, nivel el más alto y 25 m3/m,nivel el más bajo.

En un proceso, una capacitancia relativamente grande es favorable para mantener constante

la variable controlada a pesar de los cambios de carga que puedan presentarse. Sinembargo, esta misma característica hace que sea más difícil cambiar la variable a un nuevo

Page 5: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 5/41

 

valor, e introduce un retardo importante entre una variación del fluido de control y el nuevovalor que toma la variable controlada. En las figuras 1.2b y c pueden verse dos procesos

con dos tipos de capacitancias térmicas, una grande y la otra limitada, respectivamente.

En la figura 1.2b el tanque contiene una gran cantidad de líquido de tal modo que esta masa

considerable del líquido estabiliza y resiste los cambios que puedan causarse a latemperatura por variaciones en el caudal del líquido, en la presión del vapor o en la

temperatura ambiente. Estas mismas perturbaciones aplicadas al intercambiador de la figura1.2c influyen poderosamente en la temperatura al ser pequeña la masa del líquido. Si este

último proceso se controlara manualmente, el operador debería estar muy atento y le sería

casi imposible mantener la temperatura en un valor constante.

Figura 1.2: Capacitancia

1.4 RESISTENCIAS 

La resistencia es la oposición total o parcial de la transferencia de energía o de material

entre las capacitancias.

Page 6: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 6/41

 

1.5 TIEMPO DE TRANSPORTE

Valor del tiempo de retardo que depende a la vez de la velocidad de transporte y de la

distancia de transporte.

En la figura 1.3 por ejemplo, si el agua circula con una velocidad de un metro por segundo,con el bulbo a tres metros del tanque, el tiempo de transporte es de 3 s. Si el bulbo está en

el punto B, a 10 m del tanque, el tiempo será de 10 s. Pero si la velocidad del agua es de 0,5m/s el tiempo es de 6 y 20 s, respectivamente.

La situación de una válvula de control puede contribuir también al tiempo muerto detransporte, en particular en el caso de un horno tubular empleado en la industria

 petroquímica en el que el fuel debe pasar a través de varios cientos de metros de tubería

 para atravesar totalmente el horno. El tiempo de transporte retarda la reacción del proceso,existiendo un tiempo muerto durante el cual el controlador no actúa ya que para iniciar una

acción de corrección debe presentársele primero una desviación

Figura 1.3: Tiempo de Transporte.

Page 7: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 7/41

 

1.6 BANDA PROPORCIONAL

Es el porcentaje de variación de la variable controlada necesaria para provocar una carrera

completa del elemento final de control. El valor de la banda proporcional de un instrumento  particular, se expresa usualmente en tanto por ciento de su campo de medida total. Por 

ejemplo, si la escala del instrumento es 200° C, y se necesitan 50° C de cambio para  provocar una carrera total de la válvula, el tanto por ciento de la banda proporcional es

50/200, o sea, 25 %. En los controladores prácticos, la banda proporcional puede variar desde 1 hasta 500 % aproximadamente. En la figura 1.4 se explica claramente el concepto

de banda proporcional en tanto por ciento. Nótese que la banda proporcional superior a 100

% no puede causar una carrera total incluso para un cambio completo en la variablecontrolada.

Figura 1.4: Banda Proporcional

1.7 OFFSET

Desviación permanente que existe en régimen de control proporcional. Es una característica

indeseable del control proporcional. En la figura 1.5 se indican los regímenes de carga,

temperatura y la posición de la válvula de control para un intercambiador de calor.

Inicialmente, el punto de consigna está en el valor deseado de 100ºC. Al cabo de un tiempo

se presenta un cambio de carga, originado, por ejemplo, por un aumento en el consumo deagua caliente, por apertura simultánea de mayor número de válvulas de consumo. Nótese

que la temperatura no vuelve al valor de consigna, sino que la misma se estabiliza a los 90°

C. Es obvio que la temperatura final difiere de la primitiva, puesto que si así no fuera, por 

las características del control proporcional, la posición de la válvula sería la inicial, lo cuales imposible, ya que en esta posición se ha presentado la disminución de temperatura inicial

Page 8: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 8/41

 

y existiría el absurdo de mantener la misma temperatura de salida con la válvula de controlen la misma posición dando el mismo paso de caudal de vapor, tanto para el consumo de

agua caliente en el régimen inicial como para el aumento de este consumo.

La desviación puede eliminarse reajustando manualmente el punto de consigna. Hay que

hacer notar que el control proporcional es un sistema de estabilización potente, capaz deajuste y aplicación amplísima, pero tiene la característica indeseable del error de offset.

Figura 1.5: Offset

Page 9: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 9/41

 

CONTENIDO 2: Selección de un Sistema deControl 

2.1 ELEMENTOS BÁSICOS DE TEORÍA DE CONTROL.

2.1.1 Variable de proceso 

La variable medida que se desea estabilizar (controlar) recibe el nombre de variable de proceso ("process value") y se abrevia PV.

Un buen ejemplo de variable de proceso es la temperatura, la cual mide el instrumentocontrolador mediante una termocupla o una Pt100.

Otro ejemplo de una PV puede ser un caudal (litros/minuto), este se mide mediante algúnsensor y su transductor adecuado que entreguen una señal de 4 a 20 mA proporcional al

caudal. La corriente 4 a 20 mA entra al controlador en donde se reescala a las unidades

originales de la PV.

Ejemplos adicionales de PV pueden ser velocidad, presión, humedad, etc. cada una de las

cuales se mide con el sensor apropiado y se convierten comúnmente a 4...20mA para

ingresar al control.

En adelante durante todo este apartado se usará la temperatura como ejemplo de PV por ser 

lo más intuitivo. Esto no hace perder generalidad, pues todo lo que se hable sobretemperatura y hornos es perfectamente análogo a sistemas de control de velocidad, presión,

etc.

2.1.2 Set Point

El valor prefijado (Set Point, SP) es el valor deseado de la variable de proceso, es el valor al

cual el control se debe encargar de mantener la PV.

Por ejemplo en un horno la temperatura actual es 155 °C y el controlador esta programadode modo de llevar la temperatura a 200°C. Luego PV=155 y SP=200.

Page 10: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 10/41

 

2.1.3 Error

Se define error como la diferencia entre la variable de proceso PV y el set point SP,

E = SP – PV

En el ejemplo anterior E = (SP - PV) = (200°C - 155°C) = 45 °C. Recuerde que el error será

 positivo cuando la temperatura sea menor que el set point, PV < SP.

2.1.4 Control en lazo abierto y en lazo cerrado

En la figura 2.1 se muestra un proceso cuyo objetivo es conseguir que el nivel de líquidodentro del depósito, señal de salida y(t), se mantenga en un valor especificado por la señal

de referencia r(t). Para que esto ocurra el caudal de líquido que entra en el depósito Qe(t)

debe ser igual al caudal de líquido que sale de él Qs(t) y el valor de éstos debe ser tal quey(t)=r(t).

Una posibilidad para llevar el nivel a un valor determinado es crear una tabla que relacione

dicho nivel con la señal de control u(t) del actuador. Para ello se pueden realizar 

experiencias consistentes en aplicar señales de control u(t) constantes hasta que el nivel de

líquido se estabilice. Anotando los pares de valores (u(t),y(t)) para los que se alcanzanestacionarios se construye la tabla. Por último, para conseguir que el nivel se sitúe en un

determinado valor de referencia r(t) se aplica a la servoválvula la señal de control u(t) que

corresponda a y(t)=r(t) en la tabla. El procedimiento descrito corresponde a un control enlazo abierto.

Figura 2.1: Control de Nivel

Page 11: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 11/41

 

En la figura 2.2 se representa el diagrama de bloques de un sistema de control en lazoabierto donde la señal de referencia r(t) se aplica al controlador quien (mediante una

función u(t)=fc(r(t)) o tabla) genera la señal de control u(t) que aplicada al proceso

(conjunto actuador y depósito) lleva la salida y(t) al valor de r(t).

Figura 2.2: Lazo Abierto

Como quiera que las variaciones en el comportamiento de los distintos elementos del

sistema de control o en la dinámica del líquido o la presencia de otros tipos de

  perturbaciones producen variaciones en el nivel apartándolo del valor de referencia, esteesquema no es útil y por ello que se recurre al control en lazo cerrado.

En la figura 2.3 se muestra el diagrama de bloques de un sistema de control en lazo cerradodonde la señal de referencia r(t) se compara con la señal de salida y(t) y su diferencia, señal

de error e(t)=r(t)-y(t), se aplica al controlador quien genera la señal de control u(t) que

 permite llevar la salida y(t) al valor de referencia r(t). El sistema de control en lazo cerradoes capaz de actuar ante perturbaciones modificando la señal de control u(t) de tal forma que

la señal de salida y(t) consiga el valor de referencia r(t). Por otra parte, ante cambios en laseñal de referencia r(t) un sistema en lazo cerrado presenta mejores características de

respuesta temporal (llega antes al valor de referencia).

Figura 2.3: Lazo Cerrado

Para realizar un control en lazo cerrado del nivel de líquido dentro del depósito indicado en

la figura 2.1, es preciso disponer de un sensor que mida dicho nivel. En tal caso, la señal deerror se obtiene como la diferencia entre la señal de referencia y la medida realizada por el

sensor en cada instante de tiempo.

Las características de respuesta temporal del proceso y del sistema de control se suelenreferir a una entrada de tipo escalón (señal que toma un valor constante hasta un instante de

tiempo en que varía a otro valor en el que permanece constante).

Para caso de la planta de control de nivel, la respuesta del proceso (conjunto actuador,

depósito y sensor) a una entrada escalón se puede obtener aplicando una señal constante

u(t)=ui en el actuador y esperando a que la medida del sensor alcance un valor  prácticamente constante y(t)=yi (estacionario inicial). Una vez alcanzado el estacionario se

Page 12: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 12/41

 

modifica el valor de la señal de control y se mantiene constante u(t)=uf hasta alcanzar unnuevo estacionario y(t)=yi (estacionario final).

Para realizar la experiencia anterior se puede utilizar un generador de señal para aplicar laentrada y un osciloscopio para registrar las señales de entrada y salida. Otra posibilidad es

utilizar un computador, con la interfaz adecuada, para aplicar la señal de entrada y registrar la señal de salida del proceso.

En la figura 2.4 se muestra una entrada escalón creciente aplicada a un proceso que da

como resultado la respuesta monótona creciente indicada en dicha figura. Este tipo de

respuesta es la que se obtiene con la experiencia descrita en el párrafo anterior.

Figura 2.4: Respuesta del Proceso a una entrada escalón.

En la figura 2.5 se muestran las respuestas típicas de procesos industriales a entradas de

tipo escalón creciente (valor final del escalón mayor que su valor inicial) donde el valor del

escalón cambia en el instante de tiempo t=t0. Las respuestas a) y b) son estables ya que

 parten de un estacionario yi para u(t)=ui y llegan a otro estacionario yf para u(t)=uf. En lasrespuestas c) y d) se parte de condiciones iniciales nulas y al aplicar el escalón la respuesta

c) crece de forma monótona y la respuesta d) oscila con amplitud creciente; debido a que en

ambos casos no se alcanza un estacionario estas dos respuestas son inestables.

Figura 2.5: Respuestas típicas para una entrada escalón creciente.

Page 13: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 13/41

 

Para obtener la respuesta y(t) del sistema de control a una entrada escalón se parte de laestructura indicada en la figura 2.3 y se aplica dicha entrada en la señal de referencia r(t).

La primera característica de respuesta temporal que se exige a un sistema de control es quesea estable. Para ello se diseña el controlador de tal forma que la salida del sistema y(t) se

de la forma indicada en la figura 2.5-a o b. Además de la estabilidad, se pueden especificar otras características de respuesta temporal para diseñar el controlador. Dichas

características están relacionadas con el instante en que se alcanza el estacionario o se entraen una banda en torno al estacionario (velocidad de respuesta) y con la amplitud de las

oscilaciones para respuestas de tipo b) (estabilidad relativa).

2.2 El CONTROL ON/OFF.

Tomemos por ejemplo, el caso de un horno eléctrico. La temperatura aumenta al activar las

resistencias calentadoras mediante un contactor, gobernado a su vez por un relé dentro delcontrolador.

El modo de control ON/OFF es lo más elemental y consiste en activar el mando de

calentamiento cuando la temperatura está por debajo de la temperatura deseada SP y luego

desactivarlo cuando la temperatura esté por arriba.

Figura 2.6: Control On-Off 

Inevitablemente debido a la inercia térmica del horno la temperatura estará continuamente

fluctuando alrededor del SP. La inercia térmica es consecuencia del retardo en la  propagación del calor en el interior del horno desde la resistencia calentadora hasta el

sensor de temperatura.

Page 14: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 14/41

 

  No es difícil imaginar que las fluctuaciones aumentarán cuanto mayor sea la inerciatérmica del horno (retardo).  Evidentemente este algoritmo de control no es el más

adecuado cuando se desea una temperatura constante y uniforme Pero sí ofrece  la ventaja

de provocar poco desgaste en los contactores electromecánicos,   pues estos se activan ydesactivan lo mínimo necesario. 

2.2.1 CONTROL ON/OFF CON HISTÉRESIS Incluso para reducir aún más el desgaste a veces se efectúa un control ON/OFF conhistéresis, es decir que el mando de calentamiento se activa unos pocos grados por arriba

del SP y se desactiva unos grados por abajo del SP, provocando por supuesto una mayor 

fluctuación de la temperatura pero menor funcionamiento de los contactores.

El control ON/OFF con histéresis se usa generalmente en cámaras frigoríficas donde la

temperatura debe estar dentro de un rango y se desea activar y desactivar lo menos posiblelos motores del sistema de refrigeración.

2.3 PWM Y TIEMPO DE CICLO. 

Para poder controlar la temperatura con menos fluctuaciones, se debe poder entregar al

horno una potencia gradual, en la medida requerida para mantenerlo a la temperatura

deseada .

En el ejemplo anterior del control On/Off, el relé del mando de calentamiento estaráactivado 100%, entregando el máximo de potencia al horno o bien desactivado sin entregar  potencia. El controlador proporcional entrega una potencia que varía en forma gradual entre

0 y 100% según se requiera y en forma proporcional al error (SP-PV).

Lo más natural para entregar una potencia que varia de 0% a 100% en forma continua seria

usar un horno a petróleo o gas y que el control module la potencia mediante la llave de paso

del combustible.

La llave cerrada seria 0% de potencia y la llave totalmente abierta seria 100%. El problema

es que una válvula motorizada (gobernada mediante una señal 4-20mA) es costosa y solo

se amerita en aplicaciones que así lo requieran.

Afortunadamente es posible modular de 0% a 100% la potencia que recibe un horno

eléctrico mediante el mismo contactor que se usaría para un control on/off.

La idea es modular el tiempo de activación del contactor durante un lapso de tiempo fijo tc,

llamado tiempo de ciclo, menor al tiempo característico de respuesta del horno de modo

que el horno reciba finalmente un promedio de la potencia.

Page 15: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 15/41

 

Para ilustrar esta técnica conocida como modulación por ancho de pulso (PWM pulsewidth modulation) recurrimos al siguiente ejemplo:

Suponiendo que un horno posee un tiempo de respuesta de 1 minuto. Al aplicarle pulsos decalentamiento periódicos de 4 segundos, modulados en duración, el horno experimentará un

calentamiento proporcional al promedio de tiempo que ha estado activado, sin que sutemperatura siga las fluctuaciones de 4 segundos con que se aplica la potencia.

Supongamos que nuestro horno funciona con un calefactor de 1000W, si se requiere una

 potencia de 500W, equivalente a 50% de la total, entonces se activa 2 segundos el relé y se

desactiva otros 2, para luego empezar otro ciclo. El efecto neto será que el horno recibe50% de la potencia pero la temperatura no fluctúa al ritmo del tiempo de ciclo pues este es

menor al tiempo de respuesta del horno.

Siguiendo con el ejemplo, si hace falta 250W, es decir 25% de la potencia basta con tener 1

segundo activado el relé y 3 segundos desactivado. Para sistemas típicos el tiempo de ciclo

se ajusta entre 1 y 200 segundos según sea el caso.

A mayor tiempo de ciclo, menos desgaste de los contactores, pero siempre tiene que ser inferior al tiempo característico del sistema. La práctica recomendada es usar un tiempo de

ciclo igual a la mitad del tiempo característico del sistema.

Figura 2.7: PWM y Tiempo de Ciclo.

Page 16: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 16/41

 

2.4 CONTROL PROPORCIONAL.

Ya se menciono que el controlador proporcional entrega una potencia que varía en forma proporcional al error (SP-PV). Para poner en marcha un controlador proporcional se deben

fijar los siguientes parámetros:

- la temperatura deseada SP, por ej. SP = 200 °C- la banda proporcional Pb, por ej. Pb = 10 %.

- el tiempo de ciclo tc, por ej. tc = 4 seg.

Por supuesto no hace falta definir el tiempo de ciclo si se va a usar una válvula motorizada

como mecanismo de control. La banda proporcional Pb se programa en el controlador como

un porcentaje del SP.

Corresponde a una banda de temperatura situada por debajo del SP a lo largo de la cual, la

 potencia de salida variará proporcionalmente al error (SP-PV), disminuyendo cuanto máscercana sea la temperatura al SP.

Internamente el controlador realizará el cálculo del porcentaje de salida "Out" mediante la

siguiente fórmula:

Out = [ 100% * E / banda ] banda = Pb*SP/100%

E = (SP - PV)

El paréntesis [ ] se usa para indicar saturación, es decir que si al evaluar el interior, resulta

mayor de 100%, se deja en 100% y si resulta 0 o negativo, se deja en 0%.

Para los valores del ejemplo SP=200°C y Pb=10%, la potencia determinada por el control

variará a lo largo 20°C abajo del SP.

 banda = Pb*SP/100% = 10% * 200 °C / 100% = 20°C

Es decir que la banda a lo largo de la cual variará gradualmente la potencia será:

180°C...200°C.

Por ejemplo si la temperatura del horno es igual o menor de 180°C,

la salida de control (potencia) será 100%.

Cuando la temperatura esté en la mitad de la banda, es decir en 190°C la salida será 50% :

Out% = [100% * E / banda] = 100%*(200-190)/20 = 50%

Al llegar la temperatura a 200 °C la salida será 0% :

Out% = [100%*(200-200)/20] = 0%

Page 17: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 17/41

 

 

En la tabla N1 se observa la potencia de salida ( Out%) suministrada por el controlador a

distintas temperaturas para este ejemplo.

En el siguiente gráfico de temperatura vs. tiempo se observa el comportamiento típico de

un control proporcional.

Figura 2.8: Control Proporcional.

 No es difícil imaginar un control On/Off como uno proporcional con Pb=0%, pues cuandola temperatura esta arriba del SP ( E < 0 ) la salida es 0% y cuando la temperatura esta

abajo del SP ( E > 0 ) es 100%.

Page 18: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 18/41

 

Por lo tanto es importante tener presente que mientras menor sea la banda proporcional, elcontrol proporcional se comportará más parecido al On/Off, es decir tenderá a presentar 

oscilaciones alrededor del SP.

El control proporcional presenta el problema que la temperatura jamás se estabilizará justo

en el valor del SP. En la práctica se estaciona siempre en un punto dentro de la banda proporcional, produciendo así el "error estacionario".

La razón es fácil de entender recurriendo a nuestro ejemplo. Supongamos que la

temperatura se estacionará en 200 °C en forma estable y permanente, entonces la salida

sería 0%. Pero siempre es necesario suministrarle al horno algo de potencia, por lo menoscómo para compensar las pérdidas de calor al medio ambiente o calor contenido en el

material que sale del horno.

Es evidentemente imposible que el horno se mantenga a 200°C con los calefactores

  permanentemente apagados. Luego la temperatura tiene que descender un poco, lo

suficiente para que la potencia de suministrada por los calefactores sea igual a las pérdidasde energía del horno (energía que sale del horno).

Supongamos que para nuestro horno las pérdidas son tales que hace falta 25% de la

  potencia de los calefactores para mantener la temperatura alrededor del SP. Luego la

temperatura se estacionará establemente a 195°C, pues para esa temperatura la salida es

25% (ver tabla N1). Al valor del error en este punto, 5°C, se le llama error estacionario.

El error estacionario se puede reducir disminuyendo la banda proporcional. Dejamos como

tarea al lector, el analizar la razón.

Para ello puede usar nuestro ejemplo del horno pero con Pb = 5% y calcular a quetemperatura el control entregará 25% de potencia.

Pero reducir mucho la banda proporcional volverá oscilatorio nuestro sistema (más

  parecido a un On/Off), luego existe un límite inferior y siempre habrá algo de error estacionario.

En particular en los hornos que poseen mucha inercia térmica (mucho tiempo de retardo) se

  pueden presentar oscilaciones de la temperatura que solamente se podrán eliminar aumentando la banda proporcional y con ella aumentará el error estacionario.

Otro problema generado al aumentar la banda proporcional para eliminar las oscilaciones,es que el control pierde efectividad para responder rápidamente a perturbaciones externas

(variaciones de la carga del horno, apertura de una puerta, etc.)

Para mejorar la respuesta a transcientes del control se utiliza un control proporcional

derivativo.

Page 19: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 19/41

 

 

Internamente el controlador realiza el cálculo del porcentaje de salida "Out" mediante lasiguiente fórmula:

Out = [ 100% * E / banda ]

 banda = Pb*SP/100%E = (SP - PV)

El paréntesis [ ] se usa para indicar saturación, es decir que si al evaluar el interior, resultamayor de 100%, se deja en 100% y si resulta negativo, se deja en 0%.

La misma fórmula se puede reescribir también en términos de la ganancia proporcionalcomo:

Out = [ Kp * E ]

Kp = 100% / (Pb*SP/100%)

Donde la constante Kp se conoce como ganancia proporcional del control y es

inversamente proporcional a Pb.

En el control On/Off, Kp es muy grande, tiende a infinito.

Ejercicios:

1) Un control proporcional tiene programado: SP=500 y Pb=5%.

Si PV=490 cual será el valor de la salida de control.?Respuesta: Out=40%.

2) Un control proporcional de temperatura tiene programado: SP=300°C y Pb=20%.

A que temperatura la salida de control será 50%.?Respuesta: PV=270°C.

3) Un horno con control proporcional de temperatura tiene programado: SP=800°Cy Pb=10%. El sistema está estable con una temperatura pareja de 760°C.

a) Cual es el error estacionario.? b) Al colocar Pb= 5%, cual sera la temperatura aproximada a la que estabilizará

el horno. ?

Respuesta: a) 40°C , b) 780°C

Page 20: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 20/41

 

2.5 CONTROL PROPORCIONAL DERIVATIVO PD.

Un control PD es uno proporcional al que se le agrega la capacidad de considerar también

la velocidad de la temperatura en el tiempo. De esta forma se puede "adelantar" la acciónde control del mando de salida para obtener así una temperatura más estable.

Si la temperatura esta por debajo del SP, pero subiendo muy rápidamente y se va a pasar de

largo el SP, entonces el control se adelanta y disminuye la potencia de los calefactores.

Al revés si la temperatura es mayor que el SP, la salida debería ser 0% pero si el control

estima que la temperatura baja muy rápido y se va pasar para abajo del SP, entonces lecoloca algo de potencia a la salida para ir frenando el descenso brusco.

La acción derivativa es llamada a veces "rate action" por algunos fabricantes de controles porque considera la "razón de cambio" de la temperatura.

Para entender a fondo el control PD usaremos el mismo ejemplo anterior del horno peroagregamos ahora un nuevo parámetro llamado constante derivativa D, medido en segundos.

Internamente el controlador realizará ahora el cálculo:

Out = [ 100% * ( E - D * Vel) / ( banda ) ]

 banda = Pb*SP/100%

Donde "Vel" es la velocidad de la temperatura medida por el controlador, en °C/seg.

Para este ejemplo fijamos D = 5 seg. y como antes SP=200 °C y Pb=10%. Supongamos queen un momento dado, la temperatura del horno es de 185°C y está subiendo a una velocidad

Vel= 2 °C/Seg.

En un control proporcional la salida debería ser de 75%.

Out = [ 100% *E / banda ] = 100%*15°C/20°C = 75%

Pero en este caso el control PD toma en cuenta la velocidad de ascenso de la temperatura y

la multiplica por la constante derivativa D y obtiene :

Out = [ 100% * ( E - D * Vel) / ( banda ) ]

= [ 100% * (15°C - 5 Seg * 2 °C/Seg.) / banda ]

= [ 100% * (5°C) / 20°C ] = 25%

entonces a pesar que la temperatura actual es 185 °C, la salida es 25% en vez de 75%, al

considerar la velocidad de ascenso de la temperatura.

La acción derivativa ocurre también fuera de la banda proporcional, en la tabla se puede ver 

que para esta misma velocidad de ascenso de 2 °C/seg, la salida deja de ser 100% a partir 

de 170°C.

Page 21: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 21/41

 

Out = [ 100% * ( E - D * Vel) / banda ]= [ 100% * ( (200-170)°C - 5 Seg * 2 °C/Seg.) / 20°C ]

= [ 100% * (30°C-10°C) / 20°C ]

= [ 100% * (20°C) / 20°C ] = 100%

De la misma forma si la temperatura está sobre 200 °C pero descendiendo rápidamente,(velocidad negativa) por ejemplo -1°C/seg, entonces el control activará antes y con mayor 

 potencia la salida intentando que no baje de 200 °C.

En la tabla 2 se observan las potencias a distintas temperaturas para 3 casos: control

 proporcional, control PD con velocidad positiva y el mismo control PD con una velocidadnegativa.

El control PD permite obtener una temperatura muy estable, sin oscilaciones y sinnecesidad de sacrificar la respuesta ante perturbaciones aumentando la banda proporcional.

Dado que el error es E=SP-T, entonces la velocidad del error es:

dE/dt = d(SP-T)/dt = -dT/dt = - (velocidad de la temperatura)

Luego el cálculo para el control PD se puede escribir:

Page 22: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 22/41

 

 Out = [ 100% * ( E + D*dE/dt) / (Pb*SP/100% ) ]

La forma alternativa de la fórmula, en términos de ganancias es:

Out = Kp * E + Kd * dE/dt

Kp = 100% / (Pb*SP/100%)Kd = 100% * D / (Pb*SP/100%)

Se omitió el paréntesis [ ] para aliviar la fórmula, pero se entiende que puede ocurrir la

saturación en el cálculo y debe considerarse.

La constante Kd es la ganancia derivativa.

Ejercicios:

1) Un control PD tiene programado: SP=500, Pb=5% y D=10 seg..

Si PV va en aumento de forma que incrementa 30 unidades cada minuto.

En el instante que PV pase por 490, cual será el valor de la salida de control.?Respuesta: Out=20%.

2) Un control PD tiene programado: SP=500, Pb=5% y D=10 seg..Si PV es superior a SP y va en descenso 90 unidades cada minuto.

En el instante que PV sea 505, cual será el valor de la salida de control.?

Respuesta: Out=40%.

2.6 CONTROL PROPORCIONAL INTEGRAL PI

Retomaremos ahora el problema inconcluso del "error estacionario" tratado en la seccióndedicada al control proporcional. Para ello continuaremos utilizando el mismo ejemplo de

nuestro horno a 200°C con Pb=10%, estacionado a 195°C para entregar 25% de potencia.

Una forma de eliminar el error estacionario podría ser aumentando, mediante algún ajuste

manual, un 25% la salida del control de modo que se estacione en 200°C. Algunos

controles antiguos permitían este ajuste y era llamado "Manual reset" o "Ajuste manual",

el problema con este ajuste es que  será efectivo mientras el horno esté con las mismascaracterísticas que cuando se realizó.

Por ejemplo, si por alguna razón las pérdidas del horno disminuyen a 20%, la temperaturasubirá por arriba de 200°C creando un error por arriba del SP.

La forma efectiva de solucionar el problema del error estacionario es agregando al control  proporcional el termino "Integral" llamado también a veces "automatic reset" o "resetaction", nosotros lo llamaremos "acción integral".

Page 23: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 23/41

 

El control será el mismo proporcional, pero a la salida se le suma la acción integral, que lacorrige tomando en cuenta la magnitud del error y el tiempo que este ha permanecido. Para

ello se le programa al control una constante I, que es formalmente "la cantidad de veces que

aumenta la acción proporcional por segundo". La salida se corrige en una cantidadequivalente a la integral del error multiplicada por I.

Si parece complicado, es porque en realidad lo es un poco. Recurriendo a una analogía de

un "saco" se podrá entender cómo opera la acción integral. La integral del error essimplemente la suma acumulada de los errores medidos por el control cada segundo. Es

como un saco al cual se le va metiendo cada segundo una cantidad equivalente al error 

medido en ese segundo. Si existe un error de 5°C, entonces el saco va creciendo,aumentando su tamaño cada segundo en una cantidad de 5. Si el error es 0°C, entonces

nada se le agrega al saco y este permanece en el mismo tamaño. Pero si existe un error 

negativo, por ejemplo T=202 °C , entonces se le sacará 2 al saco cada segundo que permanezca este error y el tamaño del saco irá disminuyendo.

La idea es que la salida del control será la misma que en un control proporcional mas lamagnitud del saco multiplicada por la constante I.

Internamente el control PI realiza el cálculo con la siguiente fórmula:

Out = [ 100% * ( E + I*Saco ) / banda ]

= [ (100%*E/banda) + (100%* I *Saco/banda) ] banda = ( Pb*SP/100% )

Veamos que pasa a nuestro horno al colocarle una acción integral

I=0.04/seg. y con SP=200°C, Pb=10%. (ver la tabla 3)

Con la temperatura estacionada en 195°C (por efecto de las pérdidas estimadas en 25%) a

 partir del tiempo 1, se activa la acción integral, desde ese momento cada segundo el saco

aumenta en 5°C.

Page 24: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 24/41

 

 

La potencia de salida irá aumentando cada segundo, mientras el error sea 5°C, en la

cantidad:

(100%* I * 5 /banda) = 100%*0.04*5/20 = 1%

En el segundo 6 el aumento de potencia de salida ha forzado el alza de la temperatura y asíla reducción del error a 4°C. El alza de la potencia de salida continua pero más lenta,

incrementándose cada segundo en la cantidad:

(100%* I * 4 /banda) = 100%*0.04*4/20 = 0.8%

El proceso continua de la misma forma aumentando el tamaño del saco hasta que en algúnmomento el error sea definitivamente eliminado, pues solo en ese momento se detendrá el

incremento de la potencia de salida. Entonces será el saco (la integral) quien supla el

"ajuste" de la potencia necesaria para mantener el horno a 200°C.

Por muy pequeño que sea el valor programado de I, siempre corregirá el error estacionario,

 pero tardará más tiempo en hacerlo.

Page 25: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 25/41

 

Al revés, si se programa un valor excesivo de I , entonces la acción integral tendrá muchafuerza en la salida y el sistema alcanzará rápidamente el SP, pero lo más probable es que

siga de largo por efectos de la inercia térmica. Entonces la acción integral (con error 

negativo) será en sentido contrario, el saco irá disminuyendo rápidamente con la magnituddel error.

Como consecuencia habrá una excesiva disminución de la potencia de salida y la

temperatura probablemente baje del SP, entrando así el sistema en un ciclo oscilatorio.

En la práctica normalmente I deberá ser grande solo en sistemas que reaccionanrápidamente, (por ejemplo controles de velocidad de motores ) y pequeño para sistemaslentos con mucha inercia. (Por ejemplo hornos). 

En general los valores de la constante I son relativamente pequeños, para la mayoría de lossistemas el valor adecuado de I varia entre 0 y 0.08 1/seg..

Por ese motivo en la mayoría de los controladores la cantidad I se programa multiplicada  por 10000. Es decir que para tener una acción integral de 0.01/seg, se programa

I'=0.01*10000=100.

Internamente los controladores realizan el cálculo con la siguiente fórmula:

Out = [ 100% / banda * ( E + D*dE/dt + (I/ 10000) * Intg( E ) ) ] banda = ( Pb*SP/100% )

Donde Intg ( E ) es la integral del error en el tiempo ( lo mismo que el saco de nuestraanalogía ) y SP, Pb, D, I son los números introducidos por el teclado del instrumento.

En términos de ganancias:

Out = Kp * E + Kd * dE/dt + Ki * Intg( E )

Kp = 100% / (Pb*SP/100%)Kd = 100% * D / (Pb*SP/100%)

Ki = 100% * I / (Pb*SP/100%) / 10000

Esta vez la constante Ki es la ganancia integral .

El efecto del término integral es más beneficioso que un simple “reset automático”, pues el

sistema de control se convierte en uno de segundo orden en vez de primer orden. Estoimplica una mejor respuesta a transcientes y mejor rendimiento en general que un control

 proporcional con potencia de salida ajustada manualmente.

Page 26: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 26/41

 

Para los familiarizados con teoría de control, las cosas se están volviendo más claras pues laecuación anterior se acostumbra a escribir aplicada la transformada de Laplace a ambos

lados.

U = L(Out) = Kp*Le + s* Kd*Le + Ki/s * Le En la práctica al valor LE (transformada de

Laplace del Error) se le aplicó previamente un operador "filtro pasa bajo" de modo de ir filtrando el ruido en el PV medido.

Le = LE / (1+s*tf)

Donde tf es el tiempo de filtro en segundos. Este se programa en el "menú deconfiguración" del instrumento.

Existe otro filtro pasa bajo aplicado solamente al termino derivativo ( * ) pues el esespecialmente sensible al ruido cuando Kd es grande y cuyo tiempo de filtro es

 proporcional a la misma Kd.

Además el termino integral esta también restringido a un rango de valores (saturación de la

integral) de modo que su aporte en la salida esté limitado al que podría realizar el error deuna banda proporcional.

Intg( E ) = integral del error E, saturada al rango -Pb*10000/I ... +Pb*10000/I

Estos detalles no se desarrollan mucho por 2 razones:

1) Porque el operador no tiene control sobre ellos y saber de estos lo confundiría otro pocomás.

2) En segundo lugar porque cada empresa fabricante de controles los resuelve como mejor le parece y al final son estos los que hacen que un control PID tenga mejor rendimiento que

otro aun que las constantes programadas sean las mismas.

Ejercicios:

1) Revisar los cálculos presentados en la tabla 3.

2) Hacer una nueva tabla con los mismos valores de la tabla 3 pero I = 0.01 1/seg.

Page 27: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 27/41

 

2.7 CONTROL PROPORCIONAL INTEGRAL DERIVATIVO PID

A estas alturas el lector ya debe intuir que un control PID es un controlador proporcional

con acción derivativa y acción integral simultáneamente superpuestas. Así mismo el lector ya debe estarse preguntando cómo elegir los valores de los parámetros Pb, D, I, tc que debe

introducir en su flamante controlador PID.

Si el lector quiere una respuesta sencilla a esta pregunta, le tenemos no muy buenasnoticias. Existe un solo conjunto de valores Pb, D, I que darán el rendimiento óptimo y

encontrarlos requiere: conocimientos teóricos, habilidad obtenida mediante la experiencia y

suerte.

Pero no hay porque desalentarse, en realidad cualquier conjunto de valores cercano al

óptimo brindará un rendimiento aceptable y probablemente casi igual al óptimo. Ademásafortunadamente existen un par de métodos experimentales para encontrar una

aproximación de estos parámetros. Pero antes de entrar en detalle de cómo encontrarlos,

definiremos algunos conceptos útiles.

Se dice que un sistema y su controlador tienen un comportamiento inestable cuandodespués de un tiempo razonable de funcionamiento y sin ocurrir perturbaciones externas, la

temperatura permanece fluctuando en forma oscilatoria ya sea con un período regular o

errático.

Este sería por ejemplo el caso de un control On/Off o uno proporcional

con Pb muy chico.

Por otra parte un comportamiento estable es tal que la temperatura se mantiene en un valor 

constante mientras no ocurran perturbaciones externas.

Siempre se busca que el sistema de control sea estable, pero además, dentro de las

condiciones de estabilidad existen 3 tipos de comportamiento bien definidos: control sub-

amortiguado, control con amortiguamiento crítico y control sobreamortiguado.

En las figura 2.9 se muestran ejemplos de estos comportamientos. En cada uno de estos

casos varía la velocidad de respuesta del sistema ante perturbaciones y a la vez la

 propensión a tener comportamiento inestable u oscilatorio.

Page 28: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 28/41

 

 

Figura 2.9: Comportamientos de Procesos.

El sistema sobreamortiguado tiene una velocidad de respuesta lenta, después que ocurrauna perturbación, el sistema puede tardar en volver al SP, pero la ventaja es que el sistema

es muy estable y no adquiere comportamientos oscilatorios indeseables. Esta condición

tiende a ocurrir cuando la banda proporcional Pb es más grande de lo necesario. También  puede deberse a una constante derivativa D muy grandes, basta acordarse que la acción

derivativa tiende a frenar la temperatura.

En el otro extremo, cuando un sistema se comporta de modo sub-amortiguado lavelocidad de respuesta es muy buena pero pueden  ocurrir varias oscilaciones de cierta

amplitud antes que la temperatura  llegue a un valor estable. Suele ocurrir esta condición

cuando la banda proporcional Pb es pequeña (se parece a un On/Off), la constantederivativa D chica y la constate de integración I grande.

Page 29: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 29/41

 

El punto medio entre las condiciones anteriores es el amortiguamiento crítico. A estacondición corresponde los valores óptimos de los   parámetros Pb, D, I.  En este caso el

sistema es bastante estable y la velocidad de respuesta es la mejor que se puede lograr. 

Existe una guía general para seleccionar un sistema de control.

2.8 ALGORITMO DE CONTROL PID

Una estructura clásica para el control de procesos industriales es la mostrada en la figura

2.3 (sistema de control en lazo cerrado). Se han puesto de manifiesto las ventajas que

  presenta esta estructura (rechazo de perturbaciones y mejora de las características derespuesta temporal) y las características de respuesta temporal que se pueden utilizar para el

diseño del controlador (estabilidad, velocidad de respuesta y estabilidad relativa).

En la presente sección se describe el algoritmo de control PID que realiza el controlador  para obtener la señal de control u(t) a partir de la señal de error e(t). Se ha seleccionado este

algoritmo por ser tradicionalmente el más utilizado en control de procesos industriales.

La forma clásica del algoritmo de control PID es la indicada en la siguiente expresión:

En la ecuación anterior se distinguen tres términos:

· Acción proporcional P: up(t) = Kc e(t)· Acción integral I: ui(t) = Kc/Ti ∫e(t)dt = Ki ∫e(t)dt

· Acción derivativa D: ud(t) = KcTd de(t)/dt = Kd de(t)/dt

Siendo la señal de control la suma de dichas acciones: u(t) = up(t) + ui(t) + ud (t).

Page 30: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 30/41

 

 La acción proporcional P produce una señal up(t) proporcional al error e(t), siendo Kc la

constante de proporcionalidad que se denomina ganancia proporcional. Si en el algoritmo

de control sólo se considera esta acción generalmente se produce error estacionario (lasalida del sistema, para una entrada escalón, alcanza un estacionario pero no corresponde al

indicado en la señal de referencia).

Por otra parte, la acción integral I produce una señal ui(t) proporcional a la integral delerror e(t) desde 0 hasta t, siendo la constante de proporcionalidad Ki=Kc/Ti que se

denomina ganancia integral (Ti constante de tiempo integral). Esta acción se introduce en el

algoritmo de control para eliminar el error estacionario.

Por último, la acción derivativa D produce una señal ud(t) proporcional a la derivada del

error e(t), siendo la constante de proporcionalidad Kd=KcTd que se denomina gananciaderivativa (Td constante de tiempo derivativa). Esta acción se introduce para aumentar la

velocidad de respuesta.

Fig. 2.10: Referencia r(t) y respuestas del sistema y(t) para distintos valores de Kc

En la figura 2.10 se representa una señal escalón que pasa de 0 a 1 en el instante t=0.5. Si seaplica dicha señal como referencia r(t) de un sistema de control en lazo cerrado donde elalgoritmo de control sólo contempla la acción proporcional P la respuesta del sistema y(t),

 para un determinado proceso y partiendo de condiciones iniciales nulas, es la indicada en

dicha figura 2.10 para distintos valores de Kc. Como quiera que el objetivo es pasar la

salida y(t) de 0 a 1 se observa como en ningún caso se alcanza este último valor (se produceerror estacionario). En la figura 2.10 se ve también como al aumentar Kc se reduce el error 

estacionario y la respuesta y(t) se hace más oscilatoria.

Page 31: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 31/41

 

Por otra parte, en la figura 2.11 se observa como al añadir en el algoritmo de control laacción integral I se elimina el error estacionario (respuesta marcada con PI donde los

  parámetros del controlador son Kc=3 y Ki=3) y al incluir en dicho algoritmo la acción

derivativa D aumenta la velocidad de respuesta (respuesta marcada con PID donde los parámetros del controlador son Kc=6, Ki=8 y Kd=0.7).

Hasta ahora se ha considerado el algoritmo de control PID continuo implementado en un

sistema de control en lazo cerrado también continuo.

Fig. 2.11: Referencia r(t) y respuestas del sistema y(t) para control PI y PID

En un sistema de control continuo todas las señales que interviene r(t), e(t), u(t) e y(t) son

continuas y por lo tanto tiene sentido hablar de su valor en cualquier instante de tiempo.

En la figura 2.12 se representa el diagrama de bloques de un sistema de control por 

computador. En cada período de muestreo T la interfaz analógica digital A/D toma una

muestra de la medida de la salida del proceso y se ejecuta en el computador el algoritmo de

control para calcular el valor de la señal de control que se aplica a la interfaz digitalanalógica D/A quien reconstruye la señal continua de entrada del actuador.

Page 32: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 32/41

 

 

Figura 2.12: Sistema de control por computador

Page 33: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 33/41

 

CONTENIDO 3: Criterios de estabilidad enel control

3.1 ESTABILIDAD

Es la característica que el sistema hace que la variable de salida vuelva al SP después de

una perturbación.

3.2 RAZÓN DE AMORTIGUAMIENTO

La amortiguación de la respuesta es tal que la relación de amplitudes entre las crestas de los  primeros ciclos sucesivos es 0.25, es decir cada sobreimpulso es la cuarta del siguiente.

Este criterio es un compromiso de estabilidad y rapidez de retorno al SP.

Una razón mayor a ¼ dará mayor estabilidad, pero mayor demora en normalización de la

variable, una relación menor a ¼ devolverá mas rápidamente la variable al SP, pero

  perjudicara la estabilidad del sistema. Este criterio es el más importante y se aplica en  procesos donde la duración de la desviación es tan importante como el valor de la

desviación.

Figura 3.1: Razón de Amortiguamiento.

3.3 CRITERIO DE AMPLITUD MÍNIMA

La desviación de la amplitud debe ser mínima ya que en caso contrario puede afectar al

 producto final. En estos casos se considera la desviación más importante que la duración.

Page 34: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 34/41

 

 Cuando se pone en marcha una planta se realiza un primer ajuste, es decir fijar los valores

de las acciones PID (parámetros). Como la puesta en marcha es limitada, y por la

experiencia los instrumentistas, ellos prefijan esos valores de acuerdo a la siguiente tabla ylos ajustan mas adelante en forma definitiva.

3.4 MÉTODOS DE AJUSTE DE CONTROLADORES

Existen varios sistemas para ajustar los controladores al proceso, es decir, para que la banda

 proporcional (ganancia), el tiempo de acción integral (minutos/repetición) y el tiempo deacción derivada (minutos de anticipo) del controlador, caso de que posea las tres acciones,

se acoplen adecuadamente con el resto de los elementos del bucle de control - proceso +

transmisor + válvula de control.

Este acoplamiento debe ser tal que, ante una perturbación, se obtenga una curva de

recuperación que satisfaga cualquiera de los criterios mencionados para que el control sea

estable, en particular, el de área mínima con una relación de amortiguación de 0,25 entrecrestas sucesivas de la onda.

Para que este acoplamiento entre el controlador y el proceso sea posible es necesario unconocimiento inicial de las características estáticas y dinámicas del sistema controlado.

Existen dos métodos fundamentales para determinar estas características, el métodoanalítico y el experimental.

3.4.1 El método analítico

Se basa en determinar el modelo o ecuación relativa a la dinámica del sistema, es decir, su

evolución en función del tiempo. Este método es generalmente difícil de aplicar por lacomplejidad de los procesos industriales y se incorpora a los controladores digitales y al

control distribuido, que disponen de la potencia de cálculo en la determinación de la

identificación del proceso y de los parámetros del modelo.

Page 35: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 35/41

 

3.4.2 Método Experimental

Las características estáticas y dinámicas del proceso se obtienen a partir de una medida o de

una serie de medidas realizadas en el proceso real. Estas respuestas del proceso puedenefectuarse de tres formas principales.

1. Método de tanteo (lazo cerrado)

2. Método de ganancia límite (lazo cerrado)3. Método de curva de reacción (lazo abierto)

Otros métodos de ajuste que se pueden ejecutar automáticamente, son el de Nishikawa yotros, el de Chindambara y el de Kraus y Myron, existiendo una búsqueda constante de

nuevos métodos gracias al uso amplio del ordenador que permite el análisis del proceso y el

ensayo en as acciones de control.

3.4.2.1 Método de tanteo

Este método requiere que el controlador y el proceso estén instalados completamente y

trabajando en su forma normal. El procedimiento general se basa en poner en marcha el

  proceso con bandas anchas en todas las acciones, y estrecharlas después poco a poco

individualmente, hasta obtener la estabilidad deseada.

Para provocar cambios de carga en el proceso, y observar sus reacciones, se mueve el punto

de consigna arriba y abajo en ambas direcciones, lo suficiente para lograr una perturbaciónconsiderable, pero no demasiado grande que pueda dañar el producto, perjudicar la marcha

de la planta o bien crear perturbaciones Intolerables en los procesos asociados.

Es necesario que pase un tiempo suficiente después de cada desplazamiento del punto de

consigna, para observar el efecto total del último ajuste obteniendo algunos ciclos de la

respuesta ante la perturbación creada. En procesos muy lentos ello puede requerir hasta 2 o3 horas.

Para ajustar los controladores proporcionales, se empieza con una banda proporcional

ancha y se estrecha gradualmente observando el comportamiento del sistema hasta obtener la estabilidad deseada. Hay que hacer notar que al estrechar la banda proporcional, aumenta

la inestabilidad y que al ampliarla se incremento el error de offset, tal como se ve en la

figura.

Page 36: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 36/41

 

 

Figura 3.2: Método de Tanteo para controladores Proporcionales.

Para ajustar los controladores con banda P + I, se procede del siguiente modo:

Con la banda integral 0, o en su valor más bajo, se sigue el procedimiento descrito,

anteriormente para obtener el ajuste de la banda proporcional hasta una relación de

amortiguamiento aproximado de 0,25. Como la acción integral empeora el control y al poseerla el instrumento, su banda proporcional debe ser un poco más alta (menor ganancia

del controlador), se aumenta ligeramente la banda proporcional v a continuación se

incrementa por pasos la banda integral, creando al mismo tiempo perturbaciones en formade desplazamientos del punto de consigna, hasta que empiecen a aumentar los ciclos. La

última banda ensayada se reduce ligeramente, En la figura pueden verse unas curvas

características de recuperación.

Un controlador PI bien ajustado lleva la variable al punto de consigna rápidamente y con

 pocos ciclos sin que éstos rebasen o bajen del punto de consigna según haya sido el signo

de la perturbación.

Page 37: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 37/41

 

 

Figura 3.3: Método de Tanteo para controladores PI.

Al ajustar los controladores P + I + D, se procede del siguiente modo:

Con la banda derivada e integral a 0, o al mínimo, se estrecha la banda proporcional hasta

obtener una relación de amortiguamiento de 0,25. Se aumenta lentamente la banda integralen la forma indicada anteriormente hasta acercarse al punto de inestabilidad. Se aumenta la,

 banda derivativa en pequeños incrementos, creando al mismo tiempo desplazamientos del

  punto de consigna hasta obtener en el proceso un comportamiento cíclico, reduciendo

ligeramente la última banda derivada. Después de estos ajustes, puede estrecharsenormalmente la banda proporcional con mejores resultados en el control.

Hay que señalar que una acción derivada óptima después de una perturbación lleva lavariable a la estabilización en muy pocos ciclos. En la figura, se representan unas curvas

características de recuperación.

Page 38: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 38/41

 

 

Figura 3.4: Método de Tanteo para controladores PD.

En otra forma de ajuste, para obtener una óptima banda derivada se trabaja primero con una  banda proporcional que da lugar a una ligera oscilación (varios ciclos) ante una

  perturbación, con la acción integral reducida al mínimo. Se aumenta a continuación la

acción derivada hasta, eliminar el ciclo de la proporcional. Se estrecha nuevo la acción proporcional hasta que los, ciclos se inician, y se aumenta todavía más la banda derivada

hasta eliminarlos, continuando con estos pasos hasta que el aumento de la acción derivada

no mejore la eliminación de los ciclos Producidos. Finalmente se ajusta la acción integral

en la forma descrita anteriormente para eliminar el offset.

Si los ajustes efectuados son excesivos, pueden obtenerse las oscilaciones:

- Oscilación proporcional.

- Oscilación integral.

- Oscilación derivada.

Para distinguirlas, se observan las siguientes reglas:

a) La oscilación integral tiene un período relativamente largo. b) La oscilación proporcional tiene un período relativamente moderado.

c) La oscilación derivada tiene un período muy largo y la variable tarda bastante tiempo enestabilizarse.

Pueden emplearse también otros criterios de ajuste. Estos criterios están basados la

respuesta del lazo de control (abierto o cerrado) a las entradas en escalón, o a las propias perturbaciones del proceso.

Page 39: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 39/41

 

3.4.2.2 Método de ganancia límite.

Este método de lazo cerrado fue desarrollado por Ziegler y Nichols, en 1941y permite

calcular los tres términos de ajuste del controlador a partir de los datos obtenidos en una prueba rápida de características del bucle cerrado de control. El método se basa en estrechar 

gradualmente la banda proporcional con los ajustes de integral v derivada en su valor más bajo, mientras se crean pequeños cambios en el punto de consigna, hasta que el proceso

empieza a oscilar de modo continuo.

Figura 3.5: Método de Ganancia Límite.

Esta banda proporcional se denomina «banda proporcional límite» (PBU). Se anota el

 período del ciclo de las oscilaciones Pu en minutos, y la última banda proporcional PBu.Los ajustes de control que producirán aproximadamente una respuesta con una relación de

amplitudes 0,25, se calculan como sigue:

Controladores de banda proporcional:

Controladores con banda P+I:

Controladores con banda P + I + D:

3.4.2.3 Método de curva de reacción.

En este método de lazo abierto, el procedimiento general consiste en abrir el bucle cerrado deregulación antes de la válvula, es decir, operar directamente la válvula con el controlador enmanual y crear un pequeño y rápido cambio en escalón en el proceso de entrada. La respuesta

Page 40: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 40/41

 

obtenida se introduce en un registrador de gráfico de banda de precisión con el mayor tamañoposible del gráfico para obtener la mayor exactitud.

En el punto de inflexión de la curva obtenida se traza una tangente lo más aproximada posible y se

miden los valores tm y .

Figura 3.6: Método de Curva de Reacción.

donde:∆Y=Yu-Yo Cambio en la variable

∆U=Uu-Uo Cambio en la señal de entrada

tm=To=DT Tiempo de retardo

τ Constante de Tiempo

0.632*∆Y 63% del valor final de la variable

K=∆Y/∆U Ganancia del sistema

El retardo tm es el tiempo en minutos que transcurre entre el instante del cambio en escalóny el punto en que la tangente anterior cruza el valor inicial de la variable controlada. ∆U es

el % de variación de posición de la válvula de control o Elemento final de control que

introduce el escalón en el proceso.

Las fórmulas a aplicar son las siguientes:

Page 41: REGULACION AUTOMATICA

5/11/2018 REGULACION AUTOMATICA - slidepdf.com

http://slidepdf.com/reader/full/regulacion-automatica-55a231c3959af 41/41

 

Podemos obtener una funcion de transferencia del proceso aplicando los parámetros delgrafico lo que resulta en una aproximación de un sistema de primer orden con retardo:

Hay que señalar que los procedimientos de ganancia límite y de curva de reacción fueron

deducidos empíricamente después de analizar muchos tipos de procesos industriales y

ambos se basan en la respuesta del proceso ante una perturbación. Como esta perturbaciónes provocada, se corre el riesgo de abandonar las condiciones normales de trabajo del lazo

de control. Por otro lado, es evidente que las características del proceso no permanecen

constantes en todo momento, por lo cual puede ocurrir que los valores de las accionesdeterminados en unas condiciones de carga dadas se aparten de las bandas convenientes

 para otras condiciones de carga distintas. De aquí, que es preferible realizar los ensayos en

las peores condiciones de carga del proceso para que, de este modo, los ajustes delcontrolador sean válidos en todas las condiciones de servicio.

Observaciones análogas pueden aplicarse a las bandas determinadas con el método de

tanteo debiendo señalar que para afinar los ajustes determinados con los otros dos métodoses conveniente realizar un procedimiento de tanteo adicional.

3.4.2.4 Métodos de ajuste automático.

El instrumento controlador dispone de un algoritmo de autoajuste de las acciones de controlque le permite sintonizar con una amplia gama de procesos industriales. Existen varias

formas de realizar el autoajuste:

a) La aplicación de una señal de prueba al proceso, y el análisis de su respuesta con laobtención de un modelo matemático y el diseño analítico del controlador (método de

  Nishikawa, Sannomiya, Ohta y Tanaka), o bien el uso de las formas del método de

ganancia límite de Ziegler y Nichols (método de Chindambara y método de Kraus yMyron)).

 b) El análisis continuo u ocasional (ante una perturbación o una modificación del S.P.) del  proceso sin aplicar señales de prueba, sin perturbar pues, el proceso, pero con el

inconveniente de no detectar los cambios lentos del mismo. Se trata de controladores

adaptivos.

A señalar que en los controladores analógicos neumáticos o electrónicos, el ajuste de los

valores de las acciones se realiza en diales de pequeño diámetro con graduaciones muy

separadas, con lo cual la precisión del ajuste no supera ±15% del valor seleccionado. Por contra, los controladores digitales permiten ajustes exactos y repetitivos, lo que es

indudablemente una ventaja, si cualquier aparato es sustituido por razones de

mantenimiento.