Relaciones binarias

11

Transcript of Relaciones binarias

Page 1: Relaciones binarias
Page 2: Relaciones binarias

¿Que son relaciones binarias?

Page 3: Relaciones binarias

Sean X e Y dos conjuntos. Una relación de X en Y es un subconjunto R del producto cartesiano X x Y. El conjunto X es llamado conjunto de partida de la relación R; e Y es el conjunto de llegada.

En el caso de que Y = X, en lugar de decir que R es una relación de X en X, diremos que R es una relación en X.

Los elementos de R son pares ordenados. Si (x, y) es un elemento de R, en lugar de escribir (x, y) Î R, escribiremos X R Y y leeremos: "X está relacionado con Y", según la relación R".

Page 4: Relaciones binarias

Ejemplo: 1. Si X = {a, b, c, d} e Y = {1, 2, 3, 4, 5}, una relación de

X en Y es R = {(a, 2), (b, 1), (b, 4), (c, 5)}

2. La siguiente relación S de R en R S = { (X, Y) Î R x R

/ X £ Y } es la relación "menor o igual" en R. En este

caso X S Y Û X £ Y

3. Sea U el conjunto referencial. La relación de

inclusión en P(U) es la relación

R = { (A, B) Î P(U) x P(U) / A Ì B }

Page 5: Relaciones binarias

Definición: Sea R una relación de X en Y

El Dominio de R es el conjunto

Dom(R) = { xÎ X / (x,y) Î R, para algún y Î Y}

El Rango o imagen de R es el conjunto

Rang(R) = { y Î Y / (x, y) Î R, para algún x Î X }

En otros términos, el dominio y la imagen de una relación están

constituidos por los primeros y segundos componentes

respectivamente de los pares ordenados que constituyen la

relación.

Page 6: Relaciones binarias

Ejemplo: La relación R= { (a, 2) , (b, 1) , (b, 4) , (c, 5) } tiene como dominio el conjunto Dom (R) = { a, b, c} y rango a rang (R) = { 1, 2, 4, 5 }, ya que a,b y c están en el primer componente de los pares ordenados y 1,2,4,5 están en el segundcomponente de cada par.

Page 7: Relaciones binarias

Para obtener una representación cartesiana de una relación, se toman como abscisas los elementos del conjunto de partida; y como ordenadas, el conjunto de llegada. En el plano se marcan los pares ordenados que conforma la relación. Esta representación alcanza su mayor importancia cuando el conjunto de partida y el de llegada son subconjuntos de R.

Ejemplo:

si X={ a, b, c, d} e Y={ 1, 2, 3, 4, 5} una relación de X en Y

R={ (a, 2), (b, 1), (b, 4), (c, 5) }

La representación cartesiana es el diagrama adjunto.

Page 8: Relaciones binarias

La representación sagital es la más popular de las representaciones. Ésta, igual que la matricial, se usa cuando los conjuntos de partida y llegada son finitos. La representación sagital se obtiene representando mediante diagramas de Ven el conjunto de partida y el de llegada; uniendo luego, con flechas, los elementos relacionados. Así, la representación sagital de la relación del ejemplo 1 es el siguiente diagrama:

Si el conjunto de partida y el de llegada coinciden, se usa un solo diagrama de Ven y las flechas se representan interiormente. Así, el diagrama siguiente representa a la siguiente relación en X={ a, b, c, d }

S= { (a, b), (b, b), (a, d), (b, c), ( d, d) }

Page 9: Relaciones binarias

La representación matricial se usa cuando los conjuntos de partida y de llegada de la relación son conjuntos finitos con pocos elementos. Para obtener tal representación, se asigna a cada elemento del conjunto de llegada una columna; y a cada elemento del conjunto de partida, una fila.

Si (x, y) está en la relación, en la intersección de la fila que corresponde a x con la columna que corresponde a Y, escribimos 1; y escribiremos 0 en caso contrario. La configuración rectangular de ceros y unos que se obtiene se llama matrizbinaria de la relación.

Así, la matriz de la relación. R={(a, 2), (b, 1), (b, 4), (c, 5)}

Page 10: Relaciones binarias

Sea R una relación de X en Y. Se llama relación inversa de R a la relación R-1 de Y en X dada por: R-1

= { (y, x) Î Y x X / (x, y) Î R}

O sea, Y R-1 X Û X R Y

Es evidente que se verifica que:

dom(R-1)= rang(R) 2. Rang( R-1)= dom( R)

Ejemplo:

Si X= { a, b, c } Y= { 1, 2, 3, 4 } y R Ì X x Y es dado por

R= { (a, 3) , (a, 1) , (b, 1) , (c, 4) } R-1= { (3, a) , ( 1, a) , (1, b) , (4, c) } Además domR-1= { 1, 3, 4 } = rang( R)

Rang(R-1)= { a, b, c } = dom( R)

Page 11: Relaciones binarias

Sea R una relación de X a Y y S una relación de Y en Z. Se llama composición de R con S a la siguiente relación de X en Z:

X(S o R) Z Û $ YÎ Y, X R Y Ù Y S Z

En la composición de R con S, es necesario que el conjunto de llegada de R sea igual al conjunto de partida de S. Este requisito puede ser aligerado exigiendo solamente que el conjunto de llegada de R esté contenido en el conjunto de partida de S.

Observar también que el orden en que se escriben R y S en la composición S o R es inverso al orden en que se dan R y S.

Ejemplo:

Sean X={ 2, 3, 5 } , Y= { a, b, c, d } y Z= { 1, 4, 9 }

Si R y S son las relaciones de X en Y y de Y en Z respectivamente, dadas por R= { (2, a) , (2, d) , (3, c) , (5, a) } , S= { (a, 9) , (b, 1) , (d, 4) } Entonces: SoR = { (2, 9) , (2, 4) , (5, 9) }