Richard feynman (5partes)

20
¿SE PUEDEN VER LOS ÁTOMOS? Ángela María García Peinado Laura Gallego González Sara Barea Sandoval

description

 

Transcript of Richard feynman (5partes)

Page 1: Richard feynman (5partes)

¿SE PUEDEN VER LOS ÁTOMOS?

Ángela María García PeinadoLaura Gallego González

Sara Barea Sandoval

Page 2: Richard feynman (5partes)

RICHARD FEYNMAN

Estuvo influido por su padre, Melville Arthur Feynman; su madre le transmitió su profundo sentido

del humor, que mantuvo durante toda su vida.

De niño disfrutaba reparando radios, tenía talento para la ingeniería, experimentaba y redescubría temas

matemáticos utilizando su propia notación. Su modo de pensar era único, su manera de hablar era

clara aunque siempre con un marcado discurso informal.

La primera esposa de Feynman, Arline Greenbaum (Putzie), murió de tuberculosis. Se casó una segunda vez, con Mary Louise Bell, de Neodesha, Kansas, en junio de 1952; el matrimonio fue breve y fracasado. Se casó más tarde con Gweneth Howarth. Además de su hogar en Altadena, California,

tenían una casa en la playa en Baja California. Permanecieron casados el resto de sus vidas y tuvieron un hijo propio, Carl, y una hija adoptiva, Michelle.

Nació el 11 de mayo de 1918 en Nueva York; sus padres eran judíos, aunque no practicantes.

Page 3: Richard feynman (5partes)

RICHARD FEYNMAN

Feynman viajó mucho, especialmente a Brasil, y cerca del final de su vida planeó visitar la oscura tierra rusa de Tuvá , un sueño que, debido a problemas burocráticos de la Guerra Fría, nunca realizó. En esa época se le descubrió un cáncer

que, gracias a una extensa cirugía, le fue extirpado. El cáncer se reprodujo en 1987, y Feynman ingresó en el

hospital un año después. Feynman Decidió no aceptar más tratamientos. Murió el 15 de Febrero de 1988 en Los

Ángeles, California.

La primera esposa de Feynman, Arline Greenbaum (Putzie), murió de tuberculosis. Se casó una segunda vez, con Mary

Louise Bell, de Neodesha, Kansas, en junio de 1952; el matrimonio fue breve y fracasado. Se casó más tarde con

Gweneth Howarth. Además de su hogar en Altadena, California, tenían una casa en la playa en Baja California. Permanecieron casados el resto de sus vidas y tuvieron un

hijo propio, Carl, y una hija adoptiva, Michelle.

Page 4: Richard feynman (5partes)

RICHARD FEYNMANEn 1945 se desplazó a la universidad de Cornell como profesor de física teórica.

Colaboró en el Proyecto Manhattan en un laboratorio secreto en Los Álamos, saltándose la disciplina militar con una serie de actuaciones que ponían en evidencia la seguridad del lugar donde EEUU desarrollaba la bomba atómica.

Posteriormente fue invitado como profesor visitante por la universidad de Río de Janeiro. Seguidamente fue profesor de física teórica en el Californian Institute of Technology, centrando sus investigaciones

en la electrodinámica cuántica, disciplina en la que desarrolló la teoría del campo cuántico. Inventó una representación sencilla y ampliamente usada, los llamados diagramas de Feynman.

Por sus contribuciones, en especial la ‘renormalización’, en electrodinámica cuántica, en 1965 fue galardonado con el Premio Nobel de Física, junto con Shin-Ichio Tomonaga y Julian Schwinger.

Feynman también colaboró con el físico Murray Gel-Mann en la teoría de la interacción nuclear.

Page 5: Richard feynman (5partes)

NANOTECNOLOGÍA La nanotecnología es el estudio, diseño,

creación, síntesis, manipulación y aplicación de materiales, aparatos y

sistemas funcionales a través del control de la materia a nano escala, y la explotación de fenómenos y propiedades de la materia

a nano escala. Cuando se manipula la materia a la escala tan minúscula de

átomos y moléculas, demuestra fenómenos y propiedades totalmente nuevas.

Los científicos utilizan la nanotecnología para crear materiales, aparatos y sistemas novedosos y poco

costosos con propiedades únicas.

Los materiales a nivel nano se comportan de manera distinta que a

nivel macro.A medida que los objetos se hacen más pequeños, se van convirtiendo más “en superficies”, donde los átomos tienen

menos vecinos, tienen la posibilidad de escapar antes del material, pueden

“sentir” mejor la presencia de otros átomos externos y reaccionar con ellos. Estas modificaciones en las propiedades

se conocen como efectos de tamaño finito.Desarrollo de una pintura con propiedades

de auto-limpieza y protección anti-grafiti. Fabricación de aceros y hormigones más

resistentes.

Page 6: Richard feynman (5partes)

NANOTECNOLOGÍAEl padre de la "nanociencia", es considerado Richard Feynman, premio Nóbel de Física, quién en 1959 propuso fabricar productos en base a un reordenamiento de

átomos y moléculas. En 1959, el gran físico escribió un artículo que analizaba cómo los ordenadores trabajando con átomos individuales podrían consumir poquísima

energía y conseguir velocidades asombrosas.

Campos de aplicación que pueden estar

involucrados: Agua, invernaderos, energía

solar, dispositivos nano informáticos, agricultura,

medicina. En este enlace están

explicados: http://www.oni.escuelas.edu.ar/2005/SAN_LUIS/1042/usos_aplica.htm

Page 7: Richard feynman (5partes)

EN ESPAÑA

¿Se hace nanociencia en España?

NanoSpain, la Red Española de Nanotecnología, tiene como objetivo prioritario promover el intercambio de conocimiento entre grupos españoles que trabajan en los diferentes

campos relacionados con la Nanotecnología y la Nanociencia fomentando la colaboración entre universidades, instituciones de investigación públicas y privadas, e industria.

Proporciona a los grupos españoles que trabajan en Nanotecnología un medio donde presentar los resultados de sus investigaciones a través del sitio web de la red y de

reuniones multidisciplinares.

¿Se trabaja individualmente?

Integrado por 356 grupos de investigación y mas de 2000 investigadores.

http://www.nanospain.org/nanospain.php?p=h

Page 8: Richard feynman (5partes)

EN ESPAÑA

¿Qué líneas de investigación se llevan a cabo?

Algunas son Nanobiotecnología (nanomedicina), nanoelectrónica, nanofrabricación, nanoquímica,

nanoóptica, nanophotónica, nanotoxicología.

¿Es solamente cosa de físicos?

No, además también trabajan médicos,

ingenieros, químicos, biólogos, etc.

Page 9: Richard feynman (5partes)

MICROSCOPIO DE EFECTO TÚNEL (STM)

El microscopio de efecto túnel es un instrumento que se utiliza para obtener imágenes de la materia a escala nanométrica de los átomos y el mundo subatómico. Además permite manipular

los átomos individualmente, lo que lo transforma en una herramienta imprescindible de la nanotecnología.

Page 10: Richard feynman (5partes)

Se considera que una buena resolución es 0.1 nm de resolución lateral y 0.01 nm de

resolución de profundidad. Con esta resolución, los átomos individuales dentro

de los materiales son rutinariamente visualizados y manipulados. El STM puede ser usado no solo en ultra alto vacío, sino que también en aire, agua, y varios otros

líquidos o gases del ambiente, y a temperaturas que abarcan un rango desde

casi cero Kelvin hasta unos pocos cientos de grados Celsius.

La microscopía de efecto túnel requiere superficies extremadamente limpias y

estables, puntas afiladas, excelente control de vibraciones, y electrónica sofisticada.

CONDICIONES EN LAS QUE TRABAJA

Page 11: Richard feynman (5partes)

APLICACIONES

La MET es ampliamente utilizada tanto en investigaciones

industriales como teóricas. El estudio de superficies es una

parte importante de la física, con aplicaciones particulares en la física de semiconductores y

microelectrónica. En química, reacciones superficiales también cumplen un rol importante, por

ejemplo, catálisis. Esta técnica ha sido usada en el estudio de

moléculas de ADN. Dio lugar a grandes avances en la llamada

Nanoingeniería.

Page 12: Richard feynman (5partes)

APLICACIONES

Se ha impuesto como herramienta indiscutible de caracterización de materiales y superficies; y en superior en el desarrollo de las “nanotecnologías”, así como en la comprensión de los

fenómenos relacionados con lo infinitamente pequeño. Entre los distintos campos en que se aplican se pueden citar: Microelectrónica , Nanolitografía y Capas finas.

Page 13: Richard feynman (5partes)

Berd Binnig y Heinrich Rohres

Gerd Binning. (20 de julio de 1947, 66 años;

Alemania, Fráncfort del Meno)Físico alemán. Doctor en Física por la Universidad de Frankfurt

en 1978.

Heinrich Rohrer. (6 de junio de 1933San Galo, Suiza-Fallecimiento16 de

mayo de 2013, 79 años, Suiza) Científico suizo. Estudió y se doctoró en el Instituto Suizo de Tecnología, en

Zurich.

Page 14: Richard feynman (5partes)

Juntos diseñaron el microscopio electrónico de efecto túnel; con él se consigue una nítida reproducción de los átomos que componen las superficies de

materiales conductores o semiconductores. Utilizándose en los campos tan diversos como la ciencia del semiconductor, la metalurgia, la electroquímica, y

la biología molecular.Por sus trabajos, Binnig y Robrer compartieron con E. Ruska el premio Nobel de Física en 1986.

Page 15: Richard feynman (5partes)

FULLENEROS

El fullenero es la tercera forma molecular más estable del carbono, tras el grafito y el diamante.

Su nombre se debe a que el arquitecto Richard Buckminster Fuller que empleó la configuración de hexágonos y pentágonos en domos

geodésicos.

Page 16: Richard feynman (5partes)

Descubrimiento por azar “serendipity”

Harold W. Kroto;  Richard E. Smalley y Robert F. Curl. En 1996 fueron galardonados con el Premio Nobel de Química por el descubrimiento

de los fulerenos.

Page 17: Richard feynman (5partes)

APLICACIONES

Tienen aplicación en recubrimiento de superficies, dispositivos conductores y en la creación de nuevas redes moleculares. También son de aplicación en el campo de

la medicina, gracias a sus propiedades biológicas.

Page 18: Richard feynman (5partes)

PROBLEMASConsiderando la reactividad de los fullerenos, éstos se tornan

potencialmente tóxicos sobre todo si se toma en cuenta que son materiales lipofílicos que tienden a ser almacenados por los organismos en zonas de

tejidos grasos. 

Demostración por hecho: Un experimento llevado a cabo por Eva Oberdörster en la Southern Methodist University, en el que

introdujo fullerenos en agua en concentraciones de 0,5 partes por millón, mostró que un pez sufrió un daño celular en el tejido cerebral 17 veces superior, 48

horas después.

Page 19: Richard feynman (5partes)

NANOTUBOS DE CARBONO

Representan probablemente hasta el momento el más importante producto derivado de la investigación en fullerenos. Los nanotubos de carbono forman un material que resulta ser 100 veces más fuerte que el acero y seis veces más ligero. Hay estudios que pretenden utilizar

estos materiales en aviones, automóviles y otros medios de locomoción, pues supondría una pérdida de peso y un aumento de su

resistencia mecánica.

Page 20: Richard feynman (5partes)

GRAFENOEl grafeno es una sustancia formada por carbono puro, con átomos

dispuestos en un patrón regular hexagonal similar al grafito, pero en una hoja de un átomo de espesor. Es muy ligero, una lámina de 1 metro

cuadrado pesa tan sólo 0,77 miligramos.

El grafeno perfecto se constituye exclusivamente de celdas hexagonales; las

celdas pentagonales o heptagonales son defectos. Ante la presencia de una celda pentagonal aislada, el plano se arruga en

forma cónica; la presencia de 12 pentágonos crearía un fulereno.

Procesadores a gran frecuencia; pantallas táctiles flexibles; cables de alta velocidad; súper-baterías; audífonos y parlantes más que profesionales; pintura para casas que absorbe energía; cámaras fotográficas mil

veces más sensibles.

La empresa “Avanzare Innovación Tecnológica, S.L“, con domicilio

social en La Rioja, se ha convertido la primera firma española con

mayor capacidad de fabricación de grafeno y nanografeno de Europa.