Short BM Presentation

35
Ballistic Manufacturing: The effect of speed and incidence angle MS in Mechanical Engineering Thesis Defense Daniel Cavero 1

Transcript of Short BM Presentation

Page 1: Short BM Presentation

1

Ballistic Manufacturing:The effect of speed and incidence angleMS in Mechanical Engineering Thesis DefenseDaniel Cavero

Page 2: Short BM Presentation

2Acknowledgments

Daniel and Iraida Cavero Dr. Khaled Morsi Dr. Sam Kassegene and Dr. Fred Harris Dr. Steve Barlow Mike Lester Greg Morris Kyle Stewart

Page 3: Short BM Presentation

3Introduction

Miniaturization of machines

Amorphous materials

Ballistic Manufacturing concept: Mold puncturing through molten metal curtain, forming a film .

Miniaturization of machines

Amorphous materials

AMPL - Ballistic Manufacturing (BM)

Page 4: Short BM Presentation

4Ballistic Manufacturing High speed

Melt processing

Additive manufacturing

Thin and thick films

a

b

c

d

e

f

Figure 28. Carrier, substrate puncturing through molten metal

curtain during BM.

Page 5: Short BM Presentation

5Thin Film Tech

Flexible stretchable temperature sensor made in the SDSU MEMS Lab. A possibility for BM.

Page 6: Short BM Presentation

6Sn-Cu Phase Diagram

Off-eutectic Sn-0.7Cu

227 C°

Eutectic = 0.9Cu

β – Sn Cu6Sn5

Figure 20. Close-up diagram of phase diagram of the Sn-Cu system near CE and TE adapted from

Machida et al [80].

Page 7: Short BM Presentation

7Off-Eutectic Solidification

Co = Off-eutectic

Solidification process1. Liquid 2. Liquid + Primary–β3. Eutectic Structure +

Primary–βFigure 18. Silver-Copper phase diagram adapted from Callister et al [79].

Page 8: Short BM Presentation

8Eutectic Composition Solidification

Figure 16. Modes of solidification of eutectic precipitate phases: (top) matrix and rods solidification (bottom) alternating lamellar solidification [48].

Page 9: Short BM Presentation

9Dendrite Arm Spacing (DAS)

DAS (or cell size) vs. Cooling rate

Perpendicular distance between branches

Random intercept method [Flemings] Figure 25. Primary dendrite spacing

[81].

Page 10: Short BM Presentation

10BM Prototype schematic

Figure 27. Diagram of BM process

Page 11: Short BM Presentation

11Carriers

Figure 45. On the left, a carrier with the wax substrate. On the right, a carrier

without the wax.

Figure 46. Carriers with

different incidence angles.

Page 12: Short BM Presentation

12Velocity Measurements

𝑣=𝑙

( 𝑛𝑓 𝑟 )𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦=𝑣𝑁𝑜 .𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠=𝑛

h𝐿𝑒𝑛𝑔𝑡 =𝑙𝐹𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒= 𝑓 𝑟

Figure 62. Sample first frame (a), where the carriers back end is entering the marked area, and last frame (b), where the carriers back

end is leaving the marked area, used to for the frame count.

Page 13: Short BM Presentation

13Video analysis & illumination Velocity

measurements 5.4Kfps

200psi 700psi

40kfps 1000psi 1500psi

Filament light

Casting 90kfps Filament + Optic fiber

Page 14: Short BM Presentation

14

FESEM

Microtome 3µm slices Used for biological

tissue

Figure 61. Sample after being sliced in the

microtome.

Cross-Sectioning

Velocity and Incidence angle Thickness Microstructure

Page 15: Short BM Presentation

15Velocity vs. Pressure

Projection based on isothermal gas expansion model

v @4.5Kpsi << Supersonic

Page 16: Short BM Presentation

16Molten curtain thickness

Only the top (back) sections of the samples completely comparable

Page 17: Short BM Presentation

17Temperature and viscosity

325°C at furnace exit

Melting temp ~ 227° C

Page 18: Short BM Presentation

18DSC results Bulk (Tm = 226°C)

Film @ 25.2m/s (Tm = 225°C)

Film @ 37.1m/s (Tm = 222°C)

Tm & melting period decrease with increasing velocity

Page 19: Short BM Presentation

19

15m/s

25m/s

37m/s

Splash and velocity Film on substrate

Page 20: Short BM Presentation

20Thickness Base Sample 15° - 25 m/s

Page 21: Short BM Presentation

21Thickness vs. velocity

2 samples 9 measurements each

Max = 12.8μm

Min =6.0μm

Thin film – 80m/s

0 10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

12

14f(x) = 21.7605199277765 exp( − 0.0316962462038899 x )R² = 0.912709584509049

Casting velocity (m/s)

Aver

age

Thick

ness

(μm

)

Figure 73. Casting velocity vs. resulting average casting thickness for the 15° carriers shot at increasing velocity.

Page 22: Short BM Presentation

22Thin film measurements

Page 23: Short BM Presentation

23Thickness vs. incidence angle [sample zones]

Page 24: Short BM Presentation

24Microstructure

Hypoeutectic cells

Cell core (β-Sn)

Cell boundary (β-Sn + Cu6Sn5)

Page 25: Short BM Presentation

25Eutectic Structure

Page 26: Short BM Presentation

26Bottom Microstructure

Page 27: Short BM Presentation

27Cooling Rate Calculation

……(2)

….…(3)

[63] M. C. Flemings, “Solidification processing,” Metall. Trans., vol. 5, no. 10, pp. 2121–2134, 1974.

Page 28: Short BM Presentation

28DAS vs. Relative cooling rate

Equation (3) into (2) …….(4) Relative cooling rate base sample (14.7m/s)

ds = reference DAS Qs = reference DAS

……..(5) [75] C. J. Byrne, A. M. Kueck, S. P. Baker, and P. H. Steen, “In situ manipulation of cooling rates during planar-flow melt spinning processing,” Mater. Sci. Eng. A, vol. 459, no. 1–2, pp. 172–181, 2007.

Page 29: Short BM Presentation

29Velocity vs. relative cooling rate

Increasing cooling rate

Up to 5.6:1 relative cooling ratio

10 15 20 25 30 35 400

1

2

3

4

5

6f(x) = 0.00938668850008546 x^1.74054285894487R² = 0.979016573350212

Velocity m/s

Q/Q

S

Figure 92. The relative cooling rate variation with the increase in casting velocities using

the average PDAS of the film manufactured at 14.7m/s as reference, ds.

Page 30: Short BM Presentation

30Thickness and cooling

Cooling rate competes with velocity

10 15 20 25 30 35 400

2

4

6

8

10

12

14

0

1

2

3

4

5

6

ThicknessExpo-nential (Thick-ness)

Velocity (m/s)

Aver

age

Thic

knes

s (μm

)

Q/Q

s

Figure 93. The average casting thickness and the calculated relative cooling rate in relation to

processing velocitySimplified model of solidification in BM

Page 31: Short BM Presentation

31Incidence angle vs. relative cooling rate

0 5 10 15 20 25 30 35 400

0.5

1

1.5

2

2.5

3

Incidence angle (°)

Q/Q

S

Figure 94. Variance of the relative cooling rate calculations against the incidence angle using the average DAS of the film with 30° incidence

angle as reference, ds.

Decreasing cooling rate

Larger angle = more immediate thermal mass

30° as base sample

Up to 2.5:1 relative cooling ratio

Page 32: Short BM Presentation

32Incidence angle and cooling

Similarity to thickness and cooling

Shear forces Convective heat transfer Mass removal

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

18

20

0

0.5

1

1.5

2

2.5

Thickn...

Incidence angle

Aver

age

Thick

ness

(μm

)

Q/Q

s

Figure 95. The average casting thickness and the calculated relative cooling rate in relation to incidence

angle.

Page 33: Short BM Presentation

33Conclusions

Increasing velocity Decreases thickness Increases cooling rate

Decreases microstructure size

Increasing incidence angle Increases thickness Decreases cooling rate

Increases microstructure size

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

18

20

0

0.5

1

1.5

2

2.5

Thickness

Incidence angle

Aver

age

Thick

ness

(μm

)

Q/Q

s

10 15 20 25 30 35 400

2

4

6

8

10

12

14

0

1

2

3

4

5

6

ThicknessExpo-nential (Thickness)

Velocity (m/s)

Aver

age

Thic

knes

s (μm

)

Q/Q

s

Page 34: Short BM Presentation

34Conclusions 2D hypoeutectic

Sn-0.7Cu cellular structures high aspect ratios

Thin films are possible with BM

Page 35: Short BM Presentation

35REFERENCES [1] V. Go, “Copper interconnect advances to meet Moore ’ s Law milestones,” 2009. [2] S. Ando, Y. Mine, K. Takashima, S. Itoh, and H. Tonda, “Explosive compaction of Nd-Fe-B powder,” J. Mater. Process. Technol., vol. 85, no. 1–3, pp. 142–147, 1999. [3] W. Kurz and R. Trivedi, “Rapid solidification processing and microstructure formation,” Mater. Sci. Eng. A, vol. 179–80, no. pt 1, pp. 46–51, 1994. [4] V. Y. Podvigalkin, “Possibilities of thick films of microelectronics in the development of the circuitry of radio engineering systems (Review),” Russ. Microelectron., vol. 42, no. 5, pp. 276–287, 2013. [5] F. D. I. Barlow and A. Elshabini, Ceramic Interconnect Technology Handbook . Boca Raton: Taylor & Francis Group, LLC., 2007. [6] T. K. Gupta, Handbook of Thick- and Thin-Film Hybrid Microelectronics . Hoboken: John Wiley & Sons, Inc., 2003. [7] W. Songping, J. Li, N. Jing, Z. Zhenou, and L. Song, “Preparation of ultra fine copper-nickel bimetallic powders for conductive thick film,” Intermetallics, vol. 15, no. 10, pp. 1316–1321, 2007. [8] T. Yamamoto and D. Numakura, “Advanced Fine-Line Thick-Film Conductors with High Conductivity and Soldering Capability Built by Screen-Printing,” vol. 2, no. 1, pp. 40–45, 2009. [9] Z. Liu and D. D. L. Chung, “Comparative study of electrically conductive thick films with and without glass,” J. Electron. Mater., vol. 33, no. 3, pp. 194–202, 2004. [10] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Thick-film sensors : past , present and future,” vol. 1. [11] M. Prudenziati and B. Morten, “Thick-film sensors: an overview,” Sensors and Actuators, vol. 10, no. 1–2, pp. 65–82, 1986. [12] K. R. Bube and C. Fisher, “The Influence of Fast Infrared Firing on Thick pilm Materials,” vol. C, no. 4, pp. 436–442, 1984. [13] M. Prudenziati and J. Hormadaly, Eds., Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics . Elsevier Science, 2012. [14] S. B. Rane, G. J. Phatai, and D. P. Amalnerkar, “Effect of inorganic binders on the properties of silver thick films,” vol. 17, no. 4, pp. 103–106, 2004. [15] S. Wu, “Preparation of ultra-fine copper powder and its lead-free conductive thick film,” Mater. Lett., vol. 61, no. 16, pp. 3526–3530, 2007. [16] K. Iizuka, M. Kambara, and T. Yoshida, “Growth of tin oxide thick films by plasma spray physical vapor deposition,” Sensors Actuators, B Chem., vol. 155, no. 2, pp. 551–556, 2011. [17] T. Mineta, K. Kasai, Y. Sasaki, E. Makino, T. Kawashima, and T. Shibata, “Flash-evaporated TiNiCu thick film for shape memory alloy micro actuator,” Microelectron. Eng. , vol. 86, no. 4–6, pp. 1274–1277, 2009. [18] Y. Xiang, L. Yang, W. Cheng-Biao, L. Xin-Chun, and Y. De-Yang, “Investigation on preparation and properties of thick DLC film in medium-frequency dual-magnetron sputtering,” Vacuum, vol. 80, no. 4, pp. 324–331, 2005. [19] M. M. Rahman, M. Sone, H. Uchiyama, M. Sakurai, S. Miyata, T. Nagai, Y. Higo, and H. Kameyama, “Novel porous film by electroplating with an emulsion of supercritical CO2,” Surf. Coatings Technol., vol. 201, no. 16–17, pp. 7513–7518, 2007. [20] A. Rockett, The materials science of semiconductors. 2008. [21] K. S. Sree Harsha, Principles of Vapor Deposition of Thin Films . 2006. [22] S. Shahidi, B. Moazzenchi, and M. Ghoranneviss, “A review-application of physical vapor deposition (PVD) and related methods in the textile industry,” Eur. Phys. J. Appl. Phys., vol. 71, no. 3, p. 31302, 2015. [23] N. Selvakumar and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells, vol. 98, pp. 1–23, 2012. [24] K. Kishor Kumar and S. Mukherjee, “Physical vapor deposition of copper over Lexan,” Thin Solid Films, vol. 516, no. 14, pp. 4535–4540, 2008. [25] W. Ensinger, “An apparatus for sputter coating the inner walls of tubes,” Rev. Sci. Instrum., vol. 67, no. 1, p. 318, 1996. [26] A. C. Jones and M. L. Hitchman, “Overview of Chemical Vapour Deposition,” Chem. Vap. Depos. Precursors, Process. Appl. , pp. 1–36, 2009. [27] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Selective Tungsten Chemical Vapor Deposition with High Deposition Rate for ULSI Application,” vol. 451. [28] P. VanZant, Microchip Fabrication, 6th ed. New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto: McGraw-Hill Education, 2014. [29] M. Baklanov, P. S. Ho, and E. Zschech, Advanced Interconnects for ULSI Technology. John Wiley & Sons, Inc., 2012. [30] P. A. Mathews, S. R. C. Kalidindi, S. Bhardwaj, and R. Subasri, “Sol-gel functional coatings for solar thermal applications: A review of recent patent literature,” Recent Patents Mater. Sci., 2013. [31] A. Amri, Z. T. Jiang, T. Pryor, C. Y. Yin, and S. Djordjevic, “Developments in the synthesis of flat plate solar selective absorber materials via sol-gel methods: A review,” Renew. Sustain. Energy Rev., vol. 36, pp. 316–328, 2014. [32] D. Chen, “Anti-reflection (AR) coatings made by sol-gel processes: A review,” Sol. Energy Mater. Sol. Cells, vol. 68, no. 3–4, pp. 313–336, 2001. [33] D. P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” J. Mater. Sci., vol. 46, pp. 3669–3686, 2011. [34] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, and C. Rullyani, “Thin film metallic glasses : Unique properties and potential applications,” vol. 520, pp. 5097–5122, 2012. [35] A. Takeuchi and A. Inoue, “Calculations of Crystallization Temperature of Multicomponent Metallic Glasses,” Mater. Trans., vol. 43, no. 9, pp. 2275–2284, 2002. [36] H. Futterer, R. Wernhardt, J. Pelzl, and M. Rosenberg, “Splat cooling device for the preparation of metallic glasses in inert gases,” J. Non. Cryst. Solids, vol. 56, no. 1–3, pp. 435–438, 1983. [37] R. Seshadri, R. V. Krishna Rao, R. V. Krishnan, and R. M. Mallya, “Electron-beam melting and centrifugal splat-quenching technique for rapid solidification of titanium alloys,” J. Mater. Sci. , vol. 23, no. 5, pp. 1637–1642, 1988. [38] P. Pergande, D. Collins, Z. Matthew J., and J. Armando, “Multilayer thermal spray circuit boards,” in Proceedings of the 1997 1st Annual International Systems Packaging Symposium , 1997. [39] C. J. Li, G. J. Yang, and C. X. Li, “Development of particle interface bonding in thermal spray coatings: A review,” J. Therm. Spray Technol. , vol. 22, no. 2–3, pp. 192–206, 2013. [40] D. Culliton, A. Betts, S. Carvalho, and D. Kennedy, “Improving tribological properties of cast Al-Si alloys through application of wear-resistant thermal spray coatings,” J. Therm. Spray Technol., vol. 22, no. 4, pp. 491–501, 2013. [41] E. Sadeghimeresht, N. Markocsan, P. Nylén, and S. Björklund, “Corrosion performance of bi-layer Ni/Cr2C3–NiCr HVAF thermal spray coating,” Appl. Surf. Sci., vol. 369, pp. 470–481, 2016. [42] S. Saber-Samandari and C. C. Berndt, “IFTHSE Global 21: heat treatment and surface engineering in the twenty-first century<BR> Part 10 – Thermal spray coatings: a technology review,” Int. Heat Treat. Surf. Eng., vol. 4, no. 1, pp. 7–13, 2010. [43] T. Praisner, J. Chen, and A. Tseng, “An experimental study of process behavior in planar flow melt spinning,” Metall. Mater. …, vol. 26, no. 1, pp. 1199–1208, 1995. [44] W. Löser and R. Sellger, “Effect of ribbon-wheel contact on the microstructure of melt-spun AI-Cu eutectic alloy ribbons,” vol. 20, pp. 3141–3149, 1985. [45] Y.-G. Su, F. Chen, C.-M. Chang, C.-Y. Wu, M.-H. Chang, and C. A. Chung, “Tuning the Planar-Flow Melt-Spinning Process Subject to Operability Conditions,” Jom, vol. 66, no. 7, pp. 1277–1286, 2014. [46] P. H. Steen and C. Karcher, “Fluid Mechanics of Spin Casting of Metals,” Annu. Rev. Fluid Mech., vol. 29, no. 1, pp. 373–397, 1997. [47] V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, and S. G. Rassolov, “The effect of the melt-spinning processing parameters on the rate of cooling,” Mater. Sci. Eng. A, vol. 323, pp. 91–96, 2002. [48] M. a. Ivanov and a. Y. Naumuk, “Kinetics of eutectic solidification,” Phys. Met. Metallogr., vol. 115, no. 5, pp. 471–480, 2014. [49] T. A. Siewert, D. R. Smith, S. Liu, and J. C. Madeni, “Database on lead-free solders,” Components, pp. 0–2, 2001. [50] J. Shen, Æ. Y. Liu, and Æ. Y. Han, “Microstructure and mechanical properties of Lead-free Sn – Cu solder composites prepared by rapid directional solidification,” pp. 1235–1238, 2007. [51] I. T. L. Moura, C. L. M. Silva, N. Cheung, P. R. Goulart, A. Garcia, and J. E. Spinelli, “Cellular to dendritic transition during transient solidification of a eutectic Sn-0.7 wt%Cu solder alloy,” Mater. Chem. Phys., vol. 132, no. 1, pp. 203–209, 2012. [52] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. a. Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys,” J. Electron. Mater., vol. 29, no. 10, pp. 1122–1136, 2000. [53] I. Panchenko, M. Mueller, S. Wiese, S. Schindler, and K. J. Wolter, “Solidification processes in the Sn-rich part of the SnCu system,” Proc. - Electron. Components Technol. Conf. , pp. 90–99, 2011. [54] J.-H. SHIM, C.-S. OH, B.-J. LEE, and D. N. LEE, “Thermodynamic assessment of the Cu-Sn system,” Zeitschrift für Met., vol. 87, no. 3, pp. 205–212, 1996. [55] A.-A. Bogno, J. E. Spinelli, C. R. M. Afonso, and H. Henein, “Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy,” J. Mater. Res. Technol., vol. 4, no. 1, pp. 84–92, 2015. [56] M. Kamal and E. Gouda, “Effect of Rapid Solidification on Structure and Properties of Some Lead-Free Solder Alloys,” pp. 736–740, 2006. [57] K. Peters, Y. Chung, and J. Cohen, “Surface melting on small particles,” Appl. Phys. Lett., vol. 71, no. 16, pp. 2391–2393, 1997. [58] W. J. Boettinger, U. R. Kattner, K.-W. Moon, and J. H. Perepezko, Methods for Phase Diagram Determination. 2007. [59] D. Korn, W. Mürer, and G. Zibold, “TEMPERATURE DEPENDENCE OF THE ELECTRICAL RESISTIVITY OF AMORPHOUS Ge , Sn AND Bi ALLOYS AND ITS RELATION TO Electrical Resistivity,” J. Phys. Colloq., vol. 35, no. C4, pp. 257–260, 1974. [60] T. Ventura, S. Terzi, M. Rappaz, and A. K. Dahle, “Effects of solidification kinetics on microstructure formation in binary Sn-Cu solder alloys,” Acta Mater., vol. 59, no. 4, pp. 1651–1658, 2011. [61] N. Zhao, X. M. Pan, D. Q. Yu, H. T. Ma, and L. Wang, “Viscosity and surface tension of liquid sn-cu lead-free solders,” J. Electron. Mater., vol. 38, no. 6, pp. 828–833, 2009. [62] B. L. Silva, N. Cheung, A. Garcia, and J. E. Spinelli, “Thermal parameters, microstructure, and mechanical properties of directionally solidified Sn-0.7 wt.%Cu solder alloys containing 0 ppm to 1000 ppm Ni,” J. Electron. Mater., vol. 42, no. 1, pp. 179–191, 2013. [63] M. C. Flemings, “Solidification processing,” Metall. Trans., vol. 5, no. 10, pp. 2121–2134, 1974. [64] “Photron High Velocity Cameras,” 2016. [Online]. Available: http://www.photron.com/?cmd=product_general&product_id=4. [65] L. Duchemin, “Self-focusing of thin liquid jets,” Proc. R. Soc. A Math. Phys. Eng. Sci. , vol. 464, no. 2089, pp. 197–206, 2008. [66] “Microscopes 4 You,” 2015. [Online]. Available: http://microscopes4you.com/dolan-jenner-fiber-lite/dolan-jenner-fiber-lite-002818100001-series-180.html. [67] A.-A. Bogno, J. E. Spinelli, C. R. M. Afonso, and H. Henein, “Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy,” J. Mater. Res. Technol., vol. 4, no. 1, pp. 84–92, 2015. [68] Z. J. Rohrbach, T. R. Buresh, and M. J. Madsen, “Modeling the exit velocity of a compressed air cannon,” Am. J. Phys., vol. 80, no. 1, pp. 24–26, 2012. [69] R. Courchinoux, N. B. Chanh, Y. Haget, E. Tauler, and M. A. Cuevas-Diarte, “Use of the ‘shape factors’ as an empirical method to determine the actual characteristic temperatures of binary phase diagrams by differential scanning calorimetry,” Thermochim. Acta, vol. 128, no. C, pp. 45–53, 1988. [70] S.-W. Chen, C.-C. Lin, and C. Chen, “Determination of the melting and solidification characteristics of solders using differential scanning calorimetry,” Metall. Mater. Trans. A, vol. 29, no. 7, pp. 1965–1972, 1998. [71] M. Kamal and E.-S. Gouda, “Effect of Rapid Solidification on Structure and Properties of Some Lead-Free Solder Alloys,” Materials and Manufacturing Processes, vol. 21, no. 8. pp. 736–740, 2006. [72] H. T. Ma, J. Wang, L. Qu, L. L. An, L. Y. Gu, and M. L. Huang, “The study on the rapidly-solidified Sn-0.7Cu lead-free solders and the interface reactions with Cu substrate,” in 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging , 2012, pp. 361–365. [73] N. Zhao, X. M. Pan, D. Q. Yu, H. T. Ma, and L. Wang, “Viscosity and surface tension of liquid sn-cu lead-free solders,” J. Electron. Mater., vol. 38, no. 6, pp. 828–833, 2009. [74] J. M. Zhang, K. W. Xu, and V. Ji, “Experiment and simulation of grain growth in a bidimensional polycrystalline film,” Appl. Surf. Sci., vol. 218, no. 1–4, pp. 267–274, 2003. [75] “Clear Metals Inc.” [Online]. Available: http://clearmetalsinc.com/technology/. [Accessed: 04-Dec-2016]. [76] M. Sebastiani, G. Bolelli, L. Lusvarghi, P. P. Bandyopadhyay, and E. Bemporad, “High resolution residual stress measurement on amorphous and crystalline plasma-sprayed single-splats,” Surf. Coatings Technol., vol. 206, no. 23, pp. 4872–4880, 2012. [77] C. J. Byrne, S. J. Weinstein, and P. H. Steen, “Capillary stability limits for liquid metal in melt spinning,” Chem. Eng. Sci. , vol. 61, no. 24, pp. 8004–8009, 2006. [78] J. K. Carpenter and P. H. Steen, “Heat transfer and solidification in planar-flow melt-spinning: high wheelvelocities,” Int. J. Heat Mass Transf., vol. 40, no. 9, pp. 1993–2007, 1997. [79] W. D. Callister and D. G. Rethwisch, “Materials Science and Engineering: An Introduction, 8th Edition,” Quimica, p. 992, 2AD. [80] J. Machida, H. Esaka, M. Tamura, and K. Shinozuka, “Characterization of coupled-zone in Sn-Cu binary eutectic alloys using unidirectional solidification,” Nippon Kinzoku Gakkaishi/Journal Japan Inst. Met. , vol. 70, no. 1, pp. 73–79, 2006. [81] X. W. Hu, S. M. Li, W. J. Chen, S. F. Gao, L. Liu, and H. Z. Fu, “Primary dendrite arm spacing during unidirectional solidification of Pb-Bi peritectic alloys,” J. Alloys Compd., vol. 484, no. 1–2, pp. 631–636, 2009. [82] “Kester Ultrapure K100LD data sheet.” [Online]. Available: file:///C:/Users/Daniel Cavero/Downloads/Ultrapure K100LD Bar Solder Data Sheet.pdf.