Tarea de Cinetica Quimica

14
U U NIVERSIDAD NIVERSIDAD N N ACIONAL ACIONAL M M AYOR AYOR DE DE S S AN AN M M ARCOS ARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE QUÍMICA, INGENIERÍA QUÍMICA E INGENIERIA AGROINDUSTRIAL E.A.P. INGENIERÍA QUÍMICA Tarea Nº 01 Problema de Cinética Química CURSO : DISEÑO DE REACTORES PROFESOR : ING. ERAZO ALUMNO : VERA CHAVEZ LUZ ANGELICA CÓDIGO : 09070044 HORARIO : MARTES 8-12 PM FECHA DE ENTREGA : Martes 04 de Setiembre de 2012

description

Diseño de Reactores

Transcript of Tarea de Cinetica Quimica

Page 1: Tarea de Cinetica Quimica

UUNIVERSIDADNIVERSIDAD N NACIONALACIONAL

MMAYORAYOR DEDE S SANAN M MARCOSARCOS(Universidad del Perú, DECANA DE AMÉRICA)

FACULTAD DE QUÍMICA, INGENIERÍA QUÍMICA E INGENIERIA

AGROINDUSTRIAL

E.A.P. INGENIERÍA QUÍMICA

Tarea Nº 01

Problema de Cinética Química

CURSO : DISEÑO DE REACTORES

PROFESOR : ING. ERAZO

ALUMNO : VERA CHAVEZ LUZ ANGELICA

CÓDIGO : 09070044

HORARIO : MARTES 8-12 PM

FECHA DE ENTREGA : Martes 04 de Setiembre de 2012

Ciudad Universitaria, Setiembre 2012

SOLUCIÓN DE PROBLEMAS DE CINETICA QUIMICA CAPITULO 2

Page 2: Tarea de Cinetica Quimica

PROBLEMA 2.18

Demostrar q el siguiente esquema

N2O5

K 2←

K 1→ N O2+¿NO¿

3¿

N O¿3 K3

N O¿+O2

N O¿+ N O¿3 K 4

2 NO 2

Propuesto por R.Ogg.J.Chem.Phys.,15,337 es consistente con, y puede explicar, la descomposición de primer orden observada para el N2O5

SOLUCIÓN

rN 2O5

−2=rN2

4=rO2

1…….(1)

rN2O5=−K1 [N2O5 ]+K2 [N O2 ]¿

rNO3=K1 [N2O5 ]−K2 [N O2 ] ¿

rNO∗¿=K3 [NO3 ]−K4¿ ¿

Despejando la ecuación (4):

[ NO ]=K 3

K 4[N O2 ]…… (5)

De las ecuaciones (2) y (3) :

K1 [N 2O5 ]=K 2 [N O2 ]∗[N O¿3 ]+2 K3 [N O2 ]∗[N O¿

3 ]

Page 3: Tarea de Cinetica Quimica

rN2O5=−2K3 [N O2 ]∗[N O¿

3 ]

[NO¿3 ]=

K1 [N2O5 ](K1+2K3 )∗[NO2 ]

rN 2O2

−2=K3 [NO2 ]+K 1 [N2O5 ]

(K1+2K 3 )∗[NO2 ]

PROBLEMA 2.19

La descomposición de un reactivo A a 400 °C para presiones comprendidas entre 1 y 10 atmosferas sigue una ecuación cinética de primer orden

A) Demostrar que un mecanismo similar al de la descomposición azometano, p.21,

2 A→←

A¿+A

A¿→←

R +S

Es consistente con la cinética observada

Para explicar la cinética de primer orden es posible proponer varios mecanismos. Para afirmar q este mecanismo es correcto a pesar de las otras posibilidades, es necesario aportar otras pruebas o argumentos

SOLUCION:

Considerar el mecanismo

2 A→←

A ¿+A

rN 2O2

−2=K1∗K3∗[N2O5 ]

( K1+2K3 )

Page 4: Tarea de Cinetica Quimica

A¿→←

R +S

Para la reacción A

-ra = k1[A]2 – k2 [A*]*[A] ………………………………I

Para el intermedio

-rA* = k1[A]2-k2[A*]*[A]-k3*[A*] = 0 Aproximando al estado estacionario

De donde:

[A*]= k 1[A ]2

k 2 [ A ]+k3 ……………………………..II

Remplazando II en I con el fin de eliminar la [A*]

-rA = k 1∗k2∗[ A]2

k 2∗[ A ]+k 3 …………………………….III

Y donde k2*[A] >>k3

-rA = k 1∗k3k 2

[A] Reacción de primer orden

B) Para este propósito q experimentos adicionales sugieres realizar el lector y que resultado esperaría?

La [A] es suficiente mente pequeña pudiendo llegar a condiciones donde la k2 [A] << k3

en tal caso la ecuación III se reduce a:

-r1 = k1*[A]2 Ecuación cinética de 2do orden

Page 5: Tarea de Cinetica Quimica

Por lo tanto baja más la [A]. Este mecanismo predice q llegue a un punto donde el orden de las reacción empiece a subir de uno y q eventualmente se convierta en 2

PROBLEMA 2.20

La experimentación muestra que la descomposición homogénea del ozono transcurre de acuerdo con la ecuación:

−rO3=K [O3 ]2 [O2 ]−1

a) ¿Cuál es el orden global de la reacción?b) Sugerir un mecanismo en dos etapas para explicar esta cinética e indicar como

podría comprobarse el mecanismo sugerido.

SOLUCIÓN

a) El orden de la reacción es: 1

b) Planteando las ecuaciones:

x+O3

K1→

K 2

←O2+X+O

O+O3K 3→

2O2(Rxn. Lenta)

−rO3=K3 [O ] [O3 ]…… ..(a)

∂ [O ]∂ t

=K1 [ X ] [O3 ]−K 2 [O2 ] [ X ] [O ]

K1 [ X ] [O3 ]−K 2 [O2 ] [ X ] [O ]

[O ]=K1 [ X ] [O3 ]K2 [O2 ] [ X ]

[O ]=K1 [O3 ]K2 [O2 ]

……. (b)

Reemplazando la ecuación (a) en (b),

Page 6: Tarea de Cinetica Quimica

−rO3=K 1K3

K2[O3 ]2 [O 2 ]−1

PROBLEMA 2.21

Por la influencia de agentes oxidantes, el acido hipofosforoso se transforma en ácido fosforoso

H 3PO2+( A .O )=¿=¿=¿H 3PO3

La cinética de esta trasformación presenta las siguientes características.

A concentraciones bajas del agente oxidante

rH 3PO3=k [agente oxidante ] [H 3PO2 ]

A concentraciones elevadas del agente oxidante

rH 3PO3=k ¿

Para explicar los datos cinéticos, se ha sugerido que con los iones hidrogeno actuando como catalizador, y el H3PO2 que normalmente no es reactivo, se transforma reversible en una forma activa, cuya naturaleza se desconoce. Este producto intermedio reacciona luego con el agente oxidante para dar H3PO3, Demostrar que este esquema explica la cinética observada

SOLUCION:

Mecanismo de reacción.

H 3PO2+H+¿=¿

K1

K−1

=¿>(H 3PO3 )¿+H +¿¿ ¿

(H 3 PO2 )¿+(A .O )=¿K2=¿>H 3PO3

Velocidad de reacción para el H 3PO3

Page 7: Tarea de Cinetica Quimica

rH 3PO3=K2 x C(H 3PO 2)¿ x C(A .O )(1)

Velocidad de reacción para el (H 3 PO2 )¿

r (H 3P O2)¿=K1 xCH +¿ xC H3 PO 2−K−1 xC¿ xC (H 3P O2)¿ x C( A .O)(2)¿¿

CASO 1

Si C(A.O) es pequeña C(A.O)≅ 0 la reacción alcanza el equilibrio

C (H3 PO2 )¿=( K1

K−1)CH 3PO2

(3)

Remplazando (3) en (1)

rH 3PO3=K2( K1

K−1)C H3 PO2

x C(A.O)(4)

Se obtiene la expresión d la siguiente forma:

K=K 2( K1

K−1)

rH 3PO3=KxCH 3PO2

xC( A.O)

CASO 2

Si C( A.O) es elevado C (H3 PO2 )¿ se consume rápidamente, esto es:

K−1≅ 0

Velocidad de reacción para el (H 3 PO2 )¿

r (H 3P O2)¿=K1 xCH +¿ xC H3 PO 2−K−1 xC¿ xC (H 3P O2)¿ x C( A .O)¿

¿

Eliminado la K-1

r (H 3P O2)¿=K1 xC ¿ xC (H3 PO2 )¿ xC(A.O)(5)¿

r (H 3P O2)¿≅ 0(6)

De (5) y (6)

Page 8: Tarea de Cinetica Quimica

C (H3 PO2 )¿=( K1

K2)C H3 PO2

xCH +¿

C(A .O )

(7)¿

Reemplazando en (1)

Velocidad de reacción para el H 3PO3

rH 3PO3=K2 x C(H 3PO 2)¿ x C(A .O )

Se obtiene

rH 3PO3=K x CH 3PO2

xCH +¿¿

PROBLEMA 2.22

Encontrar un mecanismo (sugerirlo y luego verificarlo ) que sea consistente con la expresión de velocidad encontrada experimentalmente para la siguiente reacción :

2 A + B → A2B con rA2B = k [A][B] ……………(i)

SOLUCIÓN

Si se tratara de una reacción elemental, la velocidad estaría dada por :

R A2B = k [A]2[B] ………………….(ii)

Como las ecuaciones (i) y (ii) no son del mismo tipo, es evidente que se trata de una reacción no elemental. Por consiguiente, se prueban varios mecanismos para ver cual da una expresión de la velocidad similar a la determinada experimentalmente. Se empieza con modelos simples y si no resultan satisfactorios, se probaran modelos más complicados de tres, cuatro o cinco etapas.

Modelo I

Se supone un esquema de tres etapas , dos de las cuales reversibles que incluye la formación de una sustancia intermedia AB* , cuya presencia no puede observarse realmente , por lo que se piensa que esta presente solo en cantidades muy pequeñas . Así,

A + B ↔ AB*

AB* ↔ AB

AB + A → A2B

Que realmente implica cinco reacciones elementales:

Page 9: Tarea de Cinetica Quimica

A + B → AB*

AB* → A + B

AB* → AB

AB → AB *

AB + A → A2B

Page 10: Tarea de Cinetica Quimica

Se escribe ahora la expresión para la velocidad de formación de A2B. Como este componente está presente en la última de reacción elemental propuesta, su velocidad global de cambio es:

r A2B = k5 [AB] [A] ……..(iii)

Puesto que la concentración del producto intermedio AB* es tan pequeña y no es medible, se podría suponer que su velocidad de cambio es cero.

rAB* = k1[A][B] – k2[AB*] –k3[AB*]+ k4[AB] = 0

[AB*] = k1 [A][B] + k4[AB] …. (iv)k2 +k3

Puesto que el producto AB no aparece y no es muy medible, también se suponer que su velocidad de cambio es cero :

rAB= k3[AB*] - k4[AB]-k5[AB][A] = 0

[AB] = k3 [AB*] ……….(v)k4 + k5[A]

Reemplazando (iv) en (v) :

[AB] = k3 k1 [A][B] + k4[AB] …. (vi)k4+k5[A] k2 + k3

Remplazando ( vi) en (iii) :

rA2B = k5 [A] x k3 x k1[A][B] + k4 [AB] …….(vii)k4 + k5 [A] k2 + k3

Si k4 es muy pequeña, la ecuación (vii) se reduce a :

rA2B = k1k3k5 [A][B] = K [A] [B]k2+ k3

Entonces el mecanismo que se ajusta a la ecuación cinética de segundo orden es: A + B → AB*AB* → A + B

AB* → ABAB + A → A2B

Page 11: Tarea de Cinetica Quimica

PROBLEMA 2.23

Mecanismo para las reacciones catalizadas enzimáticamente. Para explicar la cinética de las reacciones entre una enzima y el sustrato, Michaelis y Menten (1913) sugirieron mecanismo, que implica un supuesto de equilibrio.

A + E

K1→

K2

← X

X K3→

R + E

Y donde [E0 ] representa la cantidad total del enzima y [ E ] representa la cantidad de

enzima libre no enlazada.

Por otra parte, G. E. Bridges y J. B. S Haldane, Biochem J., 19,338 emplearon un supuesto de estado estacionario, en lugar del equilibrio

A + E

K1→

K2

← X

X K3→

R + E

¿Cuál es la forma de la ecuación de velocidad −r A en términos de [ A ] , [E0 ] , K1 , K2, K3, según:

a) El mecanismo sugerido por Michaelis-Menten?b) El mecanismo sugerido por Briggs-Haldane?

SOLUCIÓN

Con: A + E

K1→

K2

← X ……(1)

X K3→

R + E ……(2)

[E0 ]=[E ]+ [ X ]…..(3)

De Michaelis-Menten se supone que las reacciones inversas de equilibrio enfoque 1 :

K = [ X ]

[ A ] [ E ]=

K1

K2 …….(4)

Con K = [ X ]

[ A ] [ E ] , y con [E0 ]=[E ]+ [ X ]

Con d [X ]dt

=0 , y [E0 ]=[E ]+ [ X ]

Page 12: Tarea de Cinetica Quimica

De Briggs-Haldane se asume:

d [X ]dt

=0 ……(5)

Page 13: Tarea de Cinetica Quimica

Para Michaelis-Menten

De la ecuación (2) :

r R=K3 . [ X ]….(6)

De la ecuación (5) :

[ X ]=K1

K2

[ A ] [E ]…..(a)

Se elimina E con la ecuación (3) en (a) :

[ X ]=K1

K2

[ A ] [E0−X ]Ó

[ X ]=

K1

K2

[ A ] [E0 ]

1+K1

K2

[ A ]….(7)

Reemplazando la ec. (7) en la ec. (6) :

Donde por equilibrio se tiene :

DE ec (2)r R=−rX

DE ec. (1):−r A=rX

Entonces : r R=r A

Para Briggs-Haldane

De la ecuación (2) :

r R=K3 . [ X ]….(8)

De la ecuación (5) :

d [X ]dt

=0=K1 [ A ] [ E ]−(K2+K3)[ X ]

Se elimina E con la ecuación (3) en (a) :

K1 [ A ] ( [E0 ]−[ X ])−(K2+K3 ) [ X ]=0

Ó

[ X ]=K1 [ A ] [E ]

K1 [ A ]+K 2+K3

… .. ( 9 )

Reemplazamos la Ec (9) en Ec. (8)

r R=K3 [ A ] [E0 ]K2

K1

+A

r R=K3 [ A ] [E0 ]K 2+K 3

K1

+A

Donde por equilibrio se tiene :

DE ec (2)

r R=−rX

DE ec. (1):

−r A=rX

Entonces :

r R=r A

Donde: K2+K3

K1

=CM (constante deMichaelis)

r A=K3 [ A ] [E0 ]K2

K1

+A

Page 14: Tarea de Cinetica Quimica