The Molecular Orbitals in NOFT - UPV/EHU · PNOF5 Molecular Orbitals Outline 1 Introduction to the...

25

Transcript of The Molecular Orbitals in NOFT - UPV/EHU · PNOF5 Molecular Orbitals Outline 1 Introduction to the...

The Molecular Orbitals in NOFTWorkshop on ab initio valence bond theory

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga,G. Merino, J. M. Mercero, E. Matito, J. M. Ugalde

Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU),

Donostia International Physics Center (DIPC), 20080 Donostia.

IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.

July 18, 2012

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Outline

1 Introduction to the NOFT

2 PNOF5 Results

- examples of systems, whereDFT yields pathological failures

- potentiality of the NOF theory.

3 PNOF5 Molecular Orbitals

ISSN 1463-9076

Physical Chemistry Chemical Physics

www.rsc.org/pccp Volume 13 | Number 45 | 7 December 2011 | Pages 20023–20482

COVER ARTICLE

Matxain et al.Homolytic molecular dissociation in natural orbital functional theory

HOT ARTICLE

De Kepper et al.Sustained self-organizing pH patterns in hydrogen peroxide driven aqueous redox systems

Dow

nloa

ded

by U

NIV

ER

SID

AD

DE

L P

AIS

VA

SCO

on

15 N

ovem

ber

2011

Publ

ishe

d on

09

Sept

embe

r 20

11 o

n ht

tp://

pubs

.rsc

.org

| do

i:10.

1039

/C1C

P216

96A

View Online / Journal Homepage / Table of Contents for this issue

−0.3552 (1.838)−0.3324 (1.811)

−0.2486 (1.397)

−0.2010 (1.875)

−0.1326 (0.603)

−0.0608 (0.189)

−0.0196 (0.125)

−0.0551 (0.162)

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

The electronic energy E for N-electron systems

E =∑ik

HikΓki +∑ijkl

< ij |kl > Dkl ,ij

Γki : 1-RDM

Dkl ,ij : 2-RDM

Hik : core-Hamiltonian

< ij |kl >: Coulomb integrals

E [N, Γ,D] is an explicitly known functional of the 1- and 2-RDMs!

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

1-RDM Functional

Last term in the Energy: U [N,D] =∑ijkl

< ij |kl > Dkl ,ij can be

replaced by an unknown functional of the 1-RDM:

Vee [N, Γ] = minD∈D(Γ)

U [N,D]

D (Γ): family of N-representable 2-RDMs which contract to the Γ

E [N, Γ,D]⇒ E [N, Γ] =∑ik

HikΓki + Vee [N, Γ]

T. L. Gilbert, Phys. Rev. B 12, 2111 (1975); M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979)

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

Natural Orbital Functional

The 1-RDM can be diagonalized by a unitary transformation of thespin-orbitals φi (x):

Γki = niδki , Γ(x′1|x1

)=∑i

niφi(x′1

)φ∗i (x1)

φi (x) is the natural spin-orbital with the corresponding

occupation number ni

E [N, Γ]⇒ E [N, ni , φi] =∑i

niHii + Vee [N, ni , φi]

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

Ansatz for singlet states |S = 0〉 Int. J. Quantum Chem. 106, 1093 (2006)

Spin-blocks of the 2-RDM:

Dσσ,σσpq,rt = 1

2 (npnq −∆pq) (δprδqt − δptδqr ) (σ = α, β)

Dαβ,αβpq,rt = 1

2 (npnq −∆pq) δprδqt +Πpr

2 δpqδrt

∆ np , Π np : real symmetric matrices

Sum Rule:Pq

′∆pq = np (1− np)

Conserving rule for S2 ⇒ diagonal elements

N-representabilty ⇒ inequalities for o-diagonal elements

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

PNOF5: ∆- and Π-matrices for singlet states |S = 0〉

∆pq = n2pδpq + npnp δpq

Πpq = npδpq −√npnpδpq

np + np = 1

E = 2N∑

p=1npHpp +

N∑p,q=1

′′ nqnp (2Jpq − Kpq)

+N∑

p=1

[npJpp −

√npnpKpp

](p = N − p + 1 ;

P ′′ : q 6= p, p)

J. Chem. Phys. 134, 164162, 2011

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

Minimization of the functional E [N, np, ϕp]

Constraints:

1 Löwdin's normalization: 2∑

p np = N (np + np = 1)

2 N representability of the 1-RDM: 0 ≤ np ≤ 1

=⇒ np = cos2 γp, np = sin2γp : Conjugate Gradient Method

3 Orthonormality of natural orbitals: 〈ϕp|ϕq〉 = δpq

=⇒ Method of Lagrangian multipliers

Ω = E − 2∑pq

εqp [< ϕp|ϕq > −δpq]

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Density Matrix and Natural Orbital FunctionalsSinglet states: 2-RDM, Spin, N-representability, PNOF5Minimization of the energy functional and Euler equations

Euler equations for the natural orbitals ϕp (r)

npVp |ϕp〉 =∑q

εqp |ϕq〉, εqp = np 〈ϕq| Vp |ϕp〉

Vp (1) = H (1) + Jp (1)−√

npnpKp (1) +

N∑q=1

′′ nq

[2Jq (1)− Kq (1)

]

[Λ, Γ] 6= 0⇒ solution cannot be reduced to diagonalization of Λ

Λ = εqp, Γ = npδpq

Self-consistent iterative diagonalization procedure

J. Comp. Chem. 30, 2078 (2009)

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Diradicals and Diradicaloids. Ethylene TorsionHomolytic Dissociations. N2 and 14-e− seriesDissociation of transition metal dimers

Planar trimethylenemethane

HOMO LUMO

Relative energy to its cyclic isomer (kcal/mol)

TMM IMA OXA

CAS(12,12) 34.4 34.0 26.2

PNOF5 40.8 37.2 26.5

CASPT2(12,12) 43.3 39.7 32.6

Occupation numbers of (quasi)degenerate orbitals

TMM IMA OXA

PNOF4 1.07/0.97 1.36/0.71 1.57/0.50

PNOF5 1.00/1.00 1.26/0.74 1.46/0.54

CAS(12,12) 1.01/0.99 1.25/0.75 1.45/0.55

ChemPhysChem 12, 1673, 2011

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Diradicals and Diradicaloids. Ethylene TorsionHomolytic Dissociations. N2 and 14-e− seriesDissociation of transition metal dimers

Ethylene Torsion J. Chem. Phys 134, 164102, 2011

90120150180γ

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

Occ

upat

ion

E (Hartrees) ∆E(kcal/mol)

Min(D2h)† TS (D2d )

CASPT2(12,12) -78.342567 -78.238122 65.5

PNOF5 -78.136524 -78.032063 65.6

B3LYP‡ -78.591976 -78.490308 63.8

PBE0‡ -78.485589 -78.388529 60.9

M06-2X‡ -78.543689 -78.437072 66.9

† cc-pVDZ Basis Set, ‡ Broken symmetry energies for TS.DS2

E= 1.01

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Diradicals and Diradicaloids. Ethylene TorsionHomolytic Dissociations. N2 and 14-e− seriesDissociation of transition metal dimers

cc-pVTZ dissociation curves for diatomic molecules

0.5 1 1.5 2 2.5 3 3.5 4 4.5R (A)

-250

-200

-150

-100

-50

0

Energies (kcal/mol)

H2LiHBHFHN2CO

BONDS

covalent with dierentpolarity H2, FH, BH

multiple bond CO, N2

electrostatic LiH

In all cases, dissociation limit implies an homolytic cleavage of thebond, high degree of near-degeneracy at the dissociation asymptote

J. Chem. Phys. 134, 164102, 2011

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Diradicals and Diradicaloids. Ethylene TorsionHomolytic Dissociations. N2 and 14-e− seriesDissociation of transition metal dimers

Homolytic Dissociations: 14-electron isoelectronic series

N2 CN−

Re De BO µe qN Re De BO µe qN

PNOF5 1.099 229.9 2.87 0.000 7 1.180 247.6 2.89 0.900 7

CAS(10,8) 1.117 205.0 2.85 0.000 7 1.200 220.0 2.86 2.241 7

CAS(14,14) 1.115 210.4 2.85 0.000 7 1.196 235.4 2.86 2.360 7

Exptl. 1.098 225.1 - 0.000 7 1.177 - - 0.630 7

NO+ CO

Re De BO µe qN Re De BO µe qC

PNOF5 1.059 228.2 2.87 0.337 6/7 1.130 221.0 2.92 0.209 6

CAS(10,8) 1.077 229.0 2.84 2.368 7 1.143 249.9 2.88 -0.259 6

CAS(14,14) 1.076 261.7 2.83 2.260 6 1.145 247.0 2.86 -0.059 6

Exptl. 1.066 - - - 7 1.128 256.2 - 0.112 6

Re in Å, De in kcal/mol and µe in Debyes Phys. Chem. Chem. Phys. 13, 20129, 2011

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Diradicals and Diradicaloids. Ethylene TorsionHomolytic Dissociations. N2 and 14-e− seriesDissociation of transition metal dimers

Dissociation of transition metal dimers (ECP, 6s5p3d)

Cr2 W2

1 2 3 4 5 6R in Å

-1

-0.8

-0.6

-0.4

-0.2

0

Rel

ativ

e E

nerg

y (e

V)

CASSCF (ecp)CASPT2 (ecp)PNOF5 (ecp)PNOF5 (all-electron)CASPT2 (all-electron)

2 3 4 5 6 7 8 9R in Å

-4

-3

-2

-1

0

1

2

Rel

ativ

e E

nerg

y (e

V)

CASSCFCASPT2PNOF5

Mo2 PNOF5: Cr2, CrMo, Mo2, W2

2 3 4 5 6 7 8 9R in Å

-4

-3

-2

-1

0

1

2

Rel

ativ

e E

nerg

y (e

V)

CASSCFCASPT2PNOF5

2 3 4 5 6 7R (Å)

-4

-3

-2

-1

0

1

2

De (

eV)

Cr2

CrMoMo

2

W2

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Molecular orbital representations

Natural Orbitals ϕp (r)

Orthonormality: 〈ϕp|ϕq〉 = δpq

Ω = E − 2Ppq

εqp [< ϕp|ϕq > −δpq]

Euler Eqs.:

npVp |ϕp〉 =Pq

εqp |ϕq〉

εqp = np 〈ϕq| Vp |ϕp〉

Λ = εqp, Γ = npδpq

[Λ, Γ] 6= 0⇒ solution cannot be reduced

to diagonalization of Λ

Self-consistent iterative diagonalizationprocedure: JCC 30, 2078 (2009)

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Molecular orbital representations

Natural Orbitals ϕp (r)

Orthonormality: 〈ϕp|ϕq〉 = δpq

Ω = E − 2Ppq

εqp [< ϕp|ϕq > −δpq]

Euler Eqs.:

npVp |ϕp〉 =Pq

εqp |ϕq〉

εqp = np 〈ϕq| Vp |ϕp〉

Λ = εqp, Γ = npδpq

[Λ, Γ] 6= 0⇒ solution cannot be reduced

to diagonalization of Λ

Self-consistent iterative diagonalizationprocedure: JCC 30, 2078 (2009)

Canonical Orbitals χp (r)

E =Pp

[npHpp + εpp]

εpp = np 〈ϕp| Vp |ϕp〉 6= IPs

EKT: νqp = − εqp√nqnp

E = Tr (HΓ + Λ) , Λ = εqp

U : X ′ = U†XU, U† = U

−1

Tr (HΓ + Λ) = Tr (H′Γ′ + Λ′)

A Λ′ = U†ΛU, Γ′ = U

†ΓU

Λ′ =˘ε′pδqp

¯, Γ′ =

˘n′qp¯

⇒ Λ′ |χp〉 = ε′p |χp〉

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

PNOF5 valence orbitals of methane (CH4)

−0.0126 (0.0160)

−0.6517 (1.9840)

E

Natural Orbital Representation

−0.9458 (1.9840)

−0.5521 (1.9840)

−0.0141 (0.0160)

−0.0120 (0.0160)

Canonical Orbital Representation

ChemPhysChem 13, 2297, 2012, Phys. Chem. Chem. Phys. 2012

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Valence vertical ionization energies, in eV, for methane

cc-pVDZ

T2 A1

B3LYP 10.57 18.79

BLYP 9.13 16.66

BP86 9.33 16.93

M06-2X 12.22 21.20

M06L 9.56 17.76

M06 10.74 18.98

MPWPW91 9.27 16.87

O3LYP 9.98 18.06

Experiment 14.40 23.00

cc-pVDZ

T2 A1

OLYP 9.17 16.88

PBEPBE 9.22 16.83

PBEHPBE 9.23 16.82

PW91PW91 9.29 16.88

HF 14.76 25.62

−εCanOrbpp 15.02 25.74

EKT-PNOF5 15.14 25.89

OVGF 14.21 23.47

Experiment 14.40 23.00

Chem. Phys. Lett. 531, 272, 2012.

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

PNOF5 valence orbitals of water (H2O)

−0.8538 (1.9818)

−0.7238 (1.9931)

−0.0179 (0.0182)−0.0084 (0.0069)

E

Natural Orbital Representation Canonical Orbital Representation

−1.3458 (1.9868)

−0.7167 (1.9816)

−0.5821 (1.9869)−0.5057 (1.9915)

−0.0186 (0.0184)−0.017 (0.184)−0.0085 (0.0085)−0.0075 (0.0079)

ChemPhysChem 13, 2297, 2012, Phys. Chem. Chem. Phys. 2012

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Valence orbitals of carbon dioxide (CO2). Banana Orbitals.

E

−0.9679 (1.9880)

−0.0137 (0.0120)−0.0086 (0.0071)

−0.8090 (1.9929)

Natural Orbital Representation Canonical Orbital Representation

−0.0168 (0.0120)−0.0155 (0.0111)−0.0109 (0.0119)

−0.5472 (1.9895)

−0.7169 (1.9898)−0.7469 (1.9907)−0.8035 (1.9911)

−1.4806 (1.9895)

−1.5333 (1.9892)

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Aromaticity: PNOF5 valence orbitals of benzene (C6H6)

Natural Orbital Representation

−0.3938 (1.9587)

−0.0155 (0.0413)

−0.3403 (1.9573)

E

−0.5012 (1.9587)

−0.0169 (0.0427)−0.0122 (0.0413)

Canonical Orbital Representation

ChemPhysChem 13, 2297, 2012, Phys. Chem. Chem. Phys. 2012

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Valence orbitals of carbon dimer (C2)

E

−1.0218 (1.9975)

−0.4563 (1.8420)

−0.0594 (0.1580)−0.0033 (0.0025)

−1.0136 (1.9956)

−0.5164 (1.8420)

−0.4261 (1.8420)

−0.0730 (0.1600)−0.0521 (0.1581)−0.0034 (0.0024)

Natural Orbital Representation Canonical Orbital Representation

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Valence orbitals of silicon dimer (Si2)

E

−0.4270 (1.9320)

−0.6121 (1.9942)

−0.2895 (1.9100)

−0.0043 (0.0058)−0.0216 (0.0900)−0.0234 (0.0680)

−0.2895 (1.9100)−0.3004 (1.9467)

−0.4567 (1.9319)

−0.7067 (1.9794)

−0.0223 (0.0681) −0.0241 (0.0680)−0.0226 (0.0900)−0.0043 (0.0059)

Natural Orbital Representation Canonical Orbita Representationl

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Closing Remarks

Two orbital pictures are possible: NOs and COs.

The COs can be obtained only after solving the problem in theNO representation.

PNOF5 NOs are localized orbitals that nicely agree with thechemical intuition of chemical bonding, VB and VSEPRbonding pictures.

PNOF5 COs are symmetry-adapted delocalized orbitals similarto those obtained by molecular orbital theories.

NO and CO representations are unique one-particle pictures ofthe same solution ergo complement each other in thedescription of the electronic structure.

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT

Introduction to NOFTPNOF5 Results

PNOF5 Molecular Orbitals

Two orbital pictures in NOFT. Methane. WaterDelocalization eectsCarbon dimers vs Silicon dimers

Acknowledgement

Financial support comes from the Basque Government and theSpanish Oce for Scientic Research.

The SGI/IZO-SGIker UPV/EHU is greatfully acknowledged forgenerous allocation of computational resources.

Thank you for your attention !!!

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. UgaldeThe Molecular Orbitals in NOFT