Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente...

45
CONTENIDO CURSOS OFRECIDOS POR LA OPCION DE DISEÑO ELECTRONICO Primer Cuatrimestre. Clave del Curso: EED302-1 Diseño de Circuitos Analógicos I INSTRUCTOR: Dr. Federico Sandoval-Ibarra CINVESTAV, Unidad Guadalajara SESIONES: Lunes-Viernes, 9:00-13:00 Hrs, 1er. Cuatrimestre. Sep-Dic 2007 Unidad Guadalajara DESCRIPCIÓN: El análisis de circuitos en el dominio del tiempo, de la frecuencia, y a nivel DC es la base para el diseño de circuitos analógicos. Este curso, orientado al diseño de circuitos y sistemas en tecnología CMOS, presenta los principios fundamentales de la operación del transistor MOS a nivel física de semiconductores. Este tratamiento permite entender la importancia que tienen los diversos parámetros tecnológicos en la rapidez de respuesta de los circuitos, en la localización de polos y ceros parásitos, y fundamentalmente las limitaciones que la tecnología intrínsecamente impone al cumplimiento de diversas especificaciones de diseño. Por tal razón, una evaluación de las capacidades diversas que presentan las tecnologías modernas es ampliamente revisada. A la par de la revisión del estado del arte se realizan diversos ejercicios en el que el modelado del transistor, su análisis y simulación a nivel eléctrico permiten incursionar en el diseño de circuitos integrados analógicos. OBJETIVO GENERAL: Desarrollar habilidades para diseñar circuitos integrados analógicos usando modelos analíticos y herramientas de software como apoyo al análisis y diseño de

Transcript of Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente...

Page 1: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

CONTENIDO CURSOS OFRECIDOS POR LA OPCION DE DISEÑO ELECTRONICO

Primer Cuatrimestre.

Clave del Curso: EED302-1

Diseño de Circuitos Analógicos I

INSTRUCTOR: Dr. Federico Sandoval-IbarraCINVESTAV, Unidad Guadalajara

SESIONES: Lunes-Viernes, 9:00-13:00 Hrs, 1er. Cuatrimestre. Sep-Dic 2007 Unidad Guadalajara

DESCRIPCIÓN: El análisis de circuitos en el dominio del tiempo, de la frecuencia, y a nivel DC es la base para el diseño de circuitos analógicos. Este curso, orientado al diseño de circuitos y sistemas en tecnología CMOS, presenta los principios fundamentales de la operación del transistor MOS a nivel física de semiconductores. Este tratamiento permite entender la importancia que tienen los diversos parámetros tecnológicos en la rapidez de respuesta de los circuitos, en la localización de polos y ceros parásitos, y fundamentalmente las limitaciones que la tecnología intrínsecamente impone al cumplimiento de diversas especificaciones de diseño. Por tal razón, una evaluación de las capacidades diversas que presentan las tecnologías modernas es ampliamente revisada. A la par de la revisión del estado del arte se realizan diversos ejercicios en el que el modelado del transistor, su análisis y simulación a nivel eléctrico permiten incursionar en el diseño de circuitos integrados analógicos.

OBJETIVO GENERAL: Desarrollar habilidades para diseñar circuitos integrados analógicos usando modelos analíticos y herramientas de software como apoyo al análisis y diseño de circuitos analógicos a nivel transistor y su implicación a nivel layout.

CONTENIDO:

1. Introducción (4 Hrs.)

1.1 Flujo de Diseño1.2 Control de Procesos1.3 Tecnología CMOS1.4 Circuitos Digitales, Analógicos y de Señal Mezclada

2. Modelado del transistor MOS (8 Hrs)

2.1 Modelos de primer orden2.2 Características corriente-voltaje y simulación spice2.3 Obtención de parámetros del transistor MOS: Tecnología 1.5m (Lab. 1)

Page 2: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

2.4 Modelos de segundo orden

3. Análisis en DC (8 Hrs)

3.1 El Resistor y Circuitos Resistivos3.2 Divisores de voltaje MOS y CMOS3.3 Consumo de Potencia: Longitud de canal (Lab. 2)3.4 Cargas Activas y Espejos de Corriente

4. Análisis en el Dominio de la Frecuencia (12 Hrs)

4.1 Modelo Equivalente de Pequeña Señal del Transistor MOS4.2 Etapas de Ganancia y Cálculo de f-3dB

4.3 Análisis de Polos y Ceros: Definición de Estabilidad (Lab. 3)4.4 El Par Diferencial

5. Respuesta en el Dominio del Tiempo (8 Hrs)

5.1 Transformada Inversa de Laplace5.2 Respuesta al Escalón del Par Diferencial5.3 El OpAmp de dos Etapas: Margen de Fase (Lab. 4)5.4 El Capacitor y Compensación de Fase

6. Aproximaciones de Diseño (9 Hrs)

6.1 Modo Voltaje y Modo Corriente6.2 Tiempo Continuo y Tiempo Discreto6.3 Definición de Impedancia de Entrada e Impedancia de Salida6.4 El Amplificador Operacional de Transconductancia, OTA

Referencias:

[1] Analog MOS Integrated Circuits, Paul R. Gray, IEEE Press[2] Modeling of the MOS transistor, Y. P. Tsividis, McGraw-Hill[3] IEEE Journal of Solid-State Circuits: Selected Papers

----------------------------------------------------------

Page 3: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Señales y Sistemas Determinísticos.

Clave del curso: EES301-1

INSTRUCTOR: Dr. Jose Luis Naredo

SESION: Por definir

PERIODO: 1er. Cuatrimestre. Septiembre-Diciembre

GENERACIÓN:

Objetivos del Curso: Que el alumno comprenda los principios básicos de la descripción matemática de las señales y sistemas digitales, su análisis y su relación con las señales y sistemas de tiempo continuo. Que conozca también los principios de diseño de filtros digitales FIR e IIR.Horario: Por definir.Esquema de Trabajo: Sesenta horas de clase. Por cada hora de clase el alumno debe dedicar al menos dos horas efectivas para estudio y para la realización de ejercicios relacionados con los temas presentados. Para algunas tareas se requerirá usar computadora. Se recomienda familiarizarse y utilizar el sistema MATLAB.Evaluación:Tareas 20 %4 exámenes 80 %

Temario:

1.- INTRODUCCION (4 hrs, Cap. 1, ver libro de texto después del temario)Clasificación de las señales.Frecuencia en señales continuas y de tiempo discreto.Conversión A/D y D/A.

2.-SEÑALES Y SISTEMAS EN TIEMPO DISCRETO (12 hrs., Cap. 2)Señales en tiempo discreto (TD)Sistemas en TD.Análisis de sistemas en TD y lineales e invariantes en tiempo (LIT).Sistemas discretos y ecuaciones en diferencias.Implementación de sistemas discretos.Correlación de señales discretas

3.- TRANSFORMADA Z (10 hrs. Cap. 3)Transformada Z directa e inversa.Propiedades de la Tr. ZTransformada Z de funciones racionales.Inversión de la Tr. ZTr. Z unilateral.Análisis de sistemas LIT en el dominio de z

Page 4: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

4.- ANÁLISIS DE SEÑALES Y SISTEMAS EN EL DOMINIO DE LA FRECUENCIA. (10 hrs. Cap. 4)Análisis del DF de señales en tiempo continuo.Análisis del DF de señales en tiempo discretoPropiedades de la Transformada de Fourier de señales en TD.Características de las señales en el DF

5.- LA TRANSFORMADA DISCRETA DE FOURIER (DFT). (12 hrs, Cap. 5 pags. 401a 431, Cap. 6 pags. 457 a 494)Muestreo en el dominio del tiempo y la DFT.Propiedades de la DFT.Algoritmos FFT para el cálculo eficiente de la DFT.Aplicaciones de la FFT.Cálculo de la DFT mediante filtrado lineal.

6.-DISEÑO DE FILTROS DIGITALES. (12 hrs, Cap. 7 pags. 509 a 546, Cap. 8 pags. 623 a 673)Estructuras para sistemas FIR (Finite Impulse Response).Estructuras para sistemas IIR (Infinite Impulse Response).Consideraciones generales de diseño de filtros digitales.Diseño de filtros FIR.

Texto:

John Proakis, Dimitris G. Manolakis, "Tratamiento Digital de Señales", Tercera Edición, Prentice Hall.

Referencias:

Alan V. Oppenheim, Ronald W. Shafer, John R. Buck, "Tratamiento de Señales en Tiempo Discreto ", Segunda Edición, Prentice Hall, 2000.Oran Brigham, "The Fast Fourier Transform and its Applications", Prentice Hall, 1988.Leland B. Jackson, "Digital Filters and Signal Processing", Kluwer Academic Publishers, 1989.Monson H. Hayes, “Digital Signal Processing”, Schaum’s Outlines, McGraw-Hill, 1999.Hwei P. Hsu, "Análisis de Fourier", Fondo Educativo Interamericano, S. A., 1973.

--------------------------------------------------------------------------------------------------------------

Diseño de Circuitos Digitales I

Clave del Curso: EED303-1

INSTRUCTOR: Dr. Mariano Aguirre Intel, Tlaquepaque Jal.

SESION: Martes y Jueves, 18:00-20:00 Hrs

Page 5: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Unidad Guadalajara

PERIODO: 1er Cuatrimestre. Sep-Dic

GENERACIÓN: 2007-2008

DESCRIPCIÓN: En este curso se estudia el diseño de circuitos integrados digitales VLSI. Se revisan los fundamentos físicos del diseño a nivel transistor y del diseño geométrico (layout) de las celdas básicas de construcción de circuitos integrados digitales; se analizan las consideraciones de diseño de módulos funcionales y de subsistemas, y se estudia la síntesis lógica de sistemas digitales complejos haciendo uso de bibliotecas de tecnologías VLSI.

OBJETIVO GENERAL: Desarrollar los conocimientos y habilidades necesarias para diseñar un circuito integrado digital usando herramientas de diseño asistido por computadora (CAD), para apoyar la simulación a nivel transistor, el diseño de los patrones geométricos y la síntesis lógica del circuito.

TEMARIO:

Tema 1. Fundamentos del diseño físico de circuitos integrados1.1. Tecnología de fabricación CMOS.1.2. Estimación de parásitos (resistencia, capacitancia, inductancia).1.3. Reglas de diseño físico.1.4. Diseño físico de CI con herramientas CAD.

Tema 2. Caracterización del desempeño de estructuras CMOS.2.1. Circuito inversor CMOS.2.2. Estimación de retardo.2.3. Margen de ruido.2.4. Consumo de potencia.2.5. Compuerta de transmisión CMOS.2.6 Simulación SPICE.2.7 Efectos no ideales.

Tema 3. Circuitos combinacionales CMOS.3.1. Estilos lógicos estáticos.3.2. Estilos lógicos dinámicos.3.3. Técnicas de dimensionamiento.3.4. pitfalls

Tema 4. Circuitos secuenciales CMOS.4.1. Diseño de latches y flip-flops.4.2. Metodologías de sincronización.4.3. Wave-pipelining.4.4. Arreglos sistólicos.

Tema 5. Diseño de subsistemas.5.1. Ruta de datos.5.2. Circuitos de control.

Page 6: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

5.3. Distribución de alimentación.5.4. Distribución de reloj.5.5. Terminales de E/S.

Tema 6. Diseño de Memorias.6.1. Memorias seriales.6.2. Memorias de sólo lectura (ROM).6.3. Memorias de acceso aleatorio (SRAM, DRAM).6.4. Memorias direccionadas por contenido.

Tema 7. Diseño de baja potencia.7.1. Consumo de potencia en circuitos CMOS.7.2. Técnicas de optimización de baja potencia.7.3. Enfoques alternativos para el diseño de baja potencia.

Tema 8. Síntesis de sistemas digitales en ASIC’s.8.1. Herramientas de síntesis lógica.8.2. Herramientas de optimización (temporización y potencia).8.3. Herramientas de síntesis física.

BIBLIOGRAFIA

[1] CMOS VLSI Design: A Circuits and Systems Perspective Weste Neil H. E., David Harris, Addison Wesley

[2] Digital Integrated Circuits Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, Pearson Education

[3] CMOS IC Layout: Concepts, Methodologies, and Tools Dan Chelín,Elsevier Science & Technology Books

[4] Low Power Design Methodologies Jan M. Rabaey, Springer-Verlag New Cork

[5] Synopsys’ tools User GuidesSynopsys Inc.

----------------------------------------------------------------------------------------------------------

Física de dispositivos con semiconductores

Page 7: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Clave del curso: EED301-1

INSTRUCTOR: Dr. Juan Luis del Valle

SESION: Martes y Viernes, 9:00-11:00 HrsUnidad Guadalajara

PERIODO: 1er Cuatrimestre. Sept-Dic 2008

GENERACIÓN: 2008-2009

Descripción.

La educación en ingeniería eléctrica en el siglo veintiuno debe proporcionar estudiantes con las habilidades de resolver nuevos y retadores problemas de ingeniería. En el campo de la microelectrónica, la dimensión mínima ha decrecido de 5 um, de los años de 1980 a menos de 50 nm (500 Angstroms, del orden de magnitud de los virus), la frecuencia de conmutación se ha incrementado a mas de 10 GHz, con un numero de transistores por chip que se aproxima a 1000 millones de transistores. La distinción entre circuitos digitales y circuitos analógicos se ha vuelto borrosa, así como entre los circuitos analógicos y los de radio frecuencia. Así, un buen diseñador de circuitos analógicos o digitales necesita entender los temas de propagación de radio frecuencia y la física de los dispositivos.

El enlace entre la física de los semiconductores y la simulación de circuitos exitosa .por medio de computadoras, CAD, depende de los modelos de los dispositivos electrónicos involucrados. Este curso esta orientado en esta dirección, esto es, en la descripción de modelos matemáticos basados en la física de los dispositivos, considerando tanto los dispositivos bipolares como los unipolares, cubriendo los casos de los transistores bipolares a homo unión (BJT), a heterounion (HBT, III-V y Si-Ge), los MESFETS, dispositivos de semiconductores compuestos III-V, con compuerta Schottky. Así como los MOSFETS, Metal-Oxido-Semiconductor, los dispositivos de mayor utilización.

Objetivo General.

Desarrollar los conocimientos y habilidades necesarias para el diseño y la utilización de dispositivos en circuitos electrónicos, así como sentar las bases físicas para la comprensión de dispositivos mas sofisticados.

Objetivos Específicos.

Examinar los principios físicos que gobiernan la operación de los dispositivos con semiconductores modernos, las consideraciones y aproximaciones que se hacen en el análisis de estos, así como, aprender a resolver problemas utilizando herramientas de simulación computarizadas, tanto a nivel de circuitos empleando modelos basados en la física de los dispositivos (SPICE) como a nivel físico empleando DESIS un simulador de dispositivos a 2D y 3D.

Page 8: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

CONTENIDO

1. Transistores Bipolares de unión. BJT1.1 Introducción. Transistores en CI. Análisis cualitativo.

1.2 Análisis cuantitativo modelo simplificado.

1.3 Limitaciones del modelo ideal. Limitaciones del tiempo en el transistor. Resistencia serie. Modulación del ancho de la base (efecto Early).

1.4 Limitaciones del modelo ideal. Limitaciones de voltaje, frecuencia y transitorios.

1.5 Limitaciones de diseño. Efectos de alta inyección. Transistores Bipolares a Heterounion.

1.6 Sesiones de laboratorio. Modelado circuí tal (AIM SPICE). Simulación física en 2D (Dessis-ISE).

2. Dispositivos Unipolares.

2.1 Introduccion. Diodos Schottky.

2.2 Contactos Ohmicos.

2.3 Transistores Fets de union.

2.4 Transistores MESFETS a heterounion.

2.5 Sesiones de laboratorio. Modelado circuí tal y simulación física.

3. Transistores MOSFETS.

3.1 Estructura MOS ideal. Modos de operación. Electrostática. Voltaje de umbral. Capacitancia voltaje.

3.2 Estructura MOS Real: modificación del voltaje de umbral por diferencias de funciones de trabajo, carga en el oxido. Modelo de control de carga simplificado. Modelo unificado de control de carga.

3.3 Transistores MOSFET I. Introducción. Teoría de operación y características I-V modelo de canal largo. Circuito equivalente a pequeñas señales y respuesta en frecuencia. Región del subumbral. Tipos de Mosfets.

3.4 Transistores MOSFET II. Métodos de control del voltaje de umbral: control del dopado del substrato, implantación iónica, polarizacion del substrato. Escalamiento de los Mosfets. Efectos de canal corto: reducción de la movilidad, corriente de saturación. DIBL. Reducción del voltaje de umbral. Efectos en la corriente de fuga.

Page 9: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Bibliografía:

1. Introduction to Electronic Devices. Michael Shur. Jonh Wiley & Sons. 19962. Semiconductor devices. Jasprit Singh. Macgraw Hill. 2d. Ed. 2002.3. Device Electronics for Integrated Circuit. R.S. Muller and T. Kamins with

Mansun Chan. 3er. Ed. John Wiley & Sons 2003.4. Semiconductor Devices: Physics and Technology. S.M. SZE. 2d. Ed. John

Wiley & Sons. 20025. IEEE Transactions on Electron devices. Artículos de interés.

----------------------------------------------------------------------------------------------------------Segundo Cuatrimestre (Enero-Abril)

Diseño de Circuitos Analógicos II

INSTRUCTOR: Dr. Federico Sandoval-IbarraCINVESTAV, Unidad Guadalajara

SESION: Miércoles-Jueves, 9:00-11:00 Hrs, Mayo-Agosto 2007Unidad Guadalajara

DESCRIPCIÓN: Incorporar los fundamentos del análisis de circuitos en el dominio del tiempo, de la frecuencia, y a nivel DC es la base para el diseño de circuitos analógicos de mayor complejidad. Este curso, orientado al diseño de circuitos y sistemas de señal mezclada en tecnología CMOS, presenta los principios básicos de operación de convertidores analógico-digital (ADC). Simulación a nivel transistor, desarrollo de layout, y simulación post-layout constituyen aspectos básicos de todo flujo de diseño. Por lo anterior, este curso usa la plataforma de diseño Tanner-Tools, del cual Tspice y Ledit serán ampliamente utilizados.

OBJETIVO GENERAL: Desarrollar habilidades para diseñar circuitos integrados de señal mezclada a partir de la descripción de especificaciones.

CONTENIDO:

7. Introducción

7.1 Flujo de Diseño7.2 Conversión analógico-digital7.3 Diseño en tiempo continuo y en tiempo discreto7.4 Operación en modo voltaje y en modo corriente

8. Técnicas de Conversión Analógico-Digital

8.1 Algorítmico8.2 Doble Rampa8.3 Diseño R-2R8.4 Sigma-Delta

Page 10: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

9. ADC Algorítmico

9.1 Celda básica: Espejo de corriente9.2 Multiplicador de corriente9.3 Comparador de corriente9.4 Aproximación Pipeline9.5 Circuitos digitales9.6 Simulación, layout y simulación post-layout

10. ADC de Doble Rampa

10.1 Diseño con Capacitores Conmutados10.2 El integrador ideal10.3 Interruptores MOS y capacitares integrados10.4 Comparadores de voltaje10.5 Circuitos digitales10.6 Simulación, layout y simulación post-layout

11. ADC R-2R

11.1 El Resistor y descripción de no idealidades11.2 Resistores integrados en silicio11.3 Circuitos sumadores de voltaje11.4 Convertidores digital-analógico (DAC)11.5 Circuitos digitales11.6 Simulación, layout y simulación post-layout

12. ADC Sigma-Delta

12.1 Técnicas de modulación12.2 Sobremuestreo de señales12.3 Diseño con corriente conmutada12.4 Circuito z-½, z-1 e integrador de corriente12.5 Convertidor digital-analógico de 1 bit12.6 Circuito cuantizador 12.7 Simulación spice

Referencias y Literatura recomendada:

[1] Switched-Capacitor Circuits, IEEE Press[2] Modeling of the MOS transistor, Y. P. Tsividis, McGraw-Hill[3] IEEE Journal of Solid-State Circuits: Selected Papers[4] Jacob Baker, CMOS Design, Layout and Simulation, Ed. Wiley[5] Kang and Leblebici, CMOS Integrated Circuits, McGraw Hill

----------------------------------------------------------------------

Page 11: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

DISEÑO DIGITAL II

Clave del Curso: EED307-2

PROFESOR: Dr. J.L. Leyva – Dr. Ramon Parra.

PERIODO: 2o. Cuatrimestre. Enero-Abril

Objetivo general del cursoImplementar un diseño digital en un dispositivo programable y verificar su

funcionamiento de acuerdo a las especificaciones del proyecto

Objetivos específicos del curso1.- El alumno conozca el flujo de diseño de un producto electrónico.2.- El alumno sea capaz de implementar algoritmos en hardware3.- El alumno realice un diseño digital funcional y lo implemente en un dispositivo programable.4.- El alumno adquiera experiencia en algunas de las herramientas CAD utilizadas en el diseño digital industrial.

CONTENIDO

1. Introducción.1.1. Objetivos Generales1.2. Contexto del curso1.3. Expectativas generales

2. Conceptos básicos.2.1. Sistemas numéricos

Page 12: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

2.2. Algebra de Boole

3. Circuitos combinacionales.3.1. Lógica de circuitos combinacionales3.2. Compuertas lógicas digitales3.3. Diseño de circuitos combinacionales3.4. Unidades básicas de combinacionales para RTL3.5. Familias lógicas3.6. Tecnologías VLSI3.7. Compromiso Hardware-velocidad3.8. Eficiencia en temporización en el diseño de circuitos

combinacionales.

4. Circuitos secuenciales.4.1. Registros4.2. Modelado de máquinas de estado finito4.3. Diseño de circuitos secuenciales4.4. Unidades básicas secuenciales para RTL4.3. Optimización y temporización

5. Implementación de algoritmos en hardware.5.1. Diseño a nivel RTL5.2. Concepto de FSMD5.3. Caminos de datos5.4. Diseño de la unidad de control5.5. Metodología de diseño5.6. Síntesis a partir de cartas ASM5.7. Eficiencia en el diseño: Compartimiento de los registros, unidad

funcional y bus5.8. Pipeline en la unidad funcional, Datapaths y unidad de control5.9. Planificación.5.10. Otros

6. Proyecto: Diseño e implementación de un circuito lógico.6.1. Introducción.6.2. Asignación de proyectos.6.3. Flujo de diseño de un circuito lógico6.4. Responsabilidades del ingeniero de diseño6.5. Requerimientos de diseño6.6. Propuesta de diseño6.7. Especificación técnica6.8. Plan de pruebas

7. Diseño global de un proyecto en ASICS7.1. Historia de las metodologías de diseño: historia del ingeniero7.2. Herramientas CAD-EDA7.3. Flujo de diseño de un circuito lógico7.4. Diseño Bottom-Up

Page 13: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

7.5. Diseño Top-Down7.6. Descripción del diseño7.7. Conclusiones

8. VHDL8.1. Introducción8.2. Importancia de VHDL8.3. Estructura de diseño de un circuito lógico.8.4. Unidades de diseño en VHDL8.5. Metodologías de diseño en VHDL8.6. Elementos sintácticos

8.6.1. Operadores y expresiones8.6.2. Tipos de datos8.6.3. Declaraciones de objetos8.6.4. Sentencias8.6.5. Otros

8.7. Lógica programable8.8. Entendiendo al compilador

9. Diseñando con VHDL9.1. Memorias.9.2. Multiplexores.9.3. Decodificadores.9.4. Registros.9.5. Buses.9.6. Unidades de control9.7. Optimización de área, velocidad y recursos.9.8. Interfaz entre circuitos

9.8.1. ASIC como “master”9.8.2. ASIC como “esclavo”

9.9. Camas de pruebas9.10. Proyecto integrador

10. Diseño de Sistemas incrustados9.1. Codiseño Hardware/Software9.2. Integración de sistema incrustado: Microprocesador más periféricos9.3. Manejo de Herramienta CAD-EDA9.4. Proyecto Integrador

BIBLIOGRAFIA1 “Principles of Digital Design”. Daniel D. Gajski. Prentice Hall.2 “The art of digital design”. David Winkel Prentice Hall 1980.3 “The Designer’s Guide to VHDL”. Peter J. Ashenden. Morgan Kaufmann

Publishers. 19964 “Tecnología Informática”. Fernando Pardo Carpio. Universidad de Valencia

1996.5. “VHDL for programmable logic”. Kevin Skahill. Addison-Wesley.6. “VHDL”. Douglas L. Perry. Mc. Graw Hill Inc.7. “Max+Plus II Getting Started”. Altera.

Page 14: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Descripción del curso:

Los capítulos 1ro al 5to tienen por objeto hacer notar los elementos y tópicos que el estudiante debería conocer y dominar para poder realizar el proyecto.

El desarrollo del curso sería de la siguiente manera: Las primeras 3 semanas del curso se llevarán únicamente con el libro de Gajski. A partir de la 4ta semana se asignarán los proyectos que se deben desarrollar durante el curso, a partir de entonces las clases se dividirán de la siguiente manera, por una parte continuarán llevando las clases de los capítulos 1ro al 5to apoyándose en el libro de texto, y por otra parte se comenzará a partir del capítulo 6, el desarrollo del proyecto.

Durante el curso se tendrán sesiones de Revisión de Diseño con el objetivo de encaminar el desarrollo de los proyectos en la materia. Paralelamente a las clases a partir del capítulo 8 se llevarán prácticas de laboratorio.

Terminando los cursos mencionados, todo el tiempo se le dedicará al desarrollo del proyecto.

De ser necesarias se llevarán a cabo Revisiones de Diseño extras fuera del horario del curso.

Todos los proyectos deben de ser terminados, la calificación será preponderantemente proporcional al grado de desarrollo del proyecto. Es imperativo entregar al menos el proyecto en simulación con su TDS y metodología de diseño para poder aprobar el curso

Los proyectos terminados serán expuestos a la comunidad estudiantil del CINVESTAV, recibiendo un distintivo al mejor realizado

Prácticas:1. Manejo de una herramienta CAD (Maxplus2 tentativamente) Esta práctica consiste en utilizar una herramienta CAD para capturar y compilar un diseño, como escoger arquitecturas para síntesis y verificación de los reportes.2. Simulación.Esta práctica se hace lo mismo que la práctica uno pero con un proyecto propuesto, se simula el sistema y se verifica como responde a vectores de pruebas.3. Prácticas con la herramienta.Consiste en realizar modificaciones a varios programas, completar ejercicios y realizar las pruebas de simulación que se indiquen. El objetivo es denotar problemas que se tendrán a la hora de especificar hardware con un lenguaje de alto nivel. ¿Qué es lo que entiende el sintetizador?.-Señales contra variables.-Concatenar y separar buses.-Conversion de tipos.-etc.4. Síntesis.Esta práctica consiste en sintetizar un circuito en el módulo de desarrollo de alguna herramienta.

Proyectos.Ver anexo

Evaluación.

Page 15: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Proyecto 60%Prácticas y tareas 20% (ponderadas)Exámenes 20%

----------------------------------------------------------------------------------------------------------

Comunicaciones digitales I

Clave del Curso: EET305-2Profesor: Dr. Ramón Parra.1.- Descripción general del curso

1.1 Contexto del curso El curso de “Comunicaciones Digitales I” es un curso de especialidad

obligatorio para la maestría en ciencias, especialidad Telecomunicaciones en CINVESTAV Unidad Guadalajara; tiene un valor de 8 créditos, y se imparte en el segundo cuatrimestre de la maestría. Las materias con que se relacionan son “Señales y Sistemas Deterministas” y “Probabilidad y Procesos Estocásticos”, del primer cuatrimestre, “Procesamiento Digital de Señales” del segundo cuatrimestre, y “Comunicaciones Digitales II” del tercer cuatrimestre. La materia se imparte en dos sesiones de dos horas por semana, más tiempo de asesorías fuera de clase.

1.2 Datos generales del curso:Nombre del curso: Comunicaciones Digitales I.Instructor: Dr. Ramón Parra Michel.Créditos: 8. Horas de Curso: 60.Objetivos general del Curso:

Que el alumno comprenda las características principales de un sistema digital de comunicaciones.

Que el alumno comprenda los criterios teóricos de recepción óptima de señales en presencia de ruido aditivo gaussiano.

Que el alumno comprenda el problema de recepción de señales en canales de banda amplia.

Que el alumno realice simulaciones de un sistema de comunicaciones que se desempeñe de acuerdo al especificado por la teoría.

Page 16: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Horario: Lunes y Miércoles de 11:00 a 13:00 horas, en el Salón S4.

Esquema de Trabajo: Sesenta horas de clase. Por cada hora de clase se supone que el alumno dedica tres horas para estudio y para la realización de ejercicios relacionados con los temas presentados. La herramienta de software que se utilizará para los programas de simulación será MATLAB.Evaluación:Tareas 20 %4 exámenes 80 %

2.- Descripción detallada del curso 2.1. Objetivos del curso

2.1.1Objetivo específico del curso.Entender el concepto de un sistema de comunicaciones, y los elementos que lo

componen cuando el sistema se desea implementar sobre canales con ruido aditivo gaussiano de banda angosta y banda amplia. Además, determinar para el sistema considerado, el compromiso existente entre diversos parámetros que intervienen en el desempeño e inmunidad al ruido de las principales técnicas de transmisión y recepción de señales digitales, y las métricas que se utilizan para especificar el desempeño del mismo.

2.1.2 Objetivo académico del curso.Que el alumno comprenda el contexto en que se implementa un sistema de

comunicaciones digital al nivel de capa física, y entienda los principales elementos que lo conforman, de manera conceptual, práctica, y con conozca su desempeño teórico. Los conceptos y temas fundamentales que el alumno deberá entender al finalizar este curso son los siguientes:

El concepto de señal, mensaje e información. Bloques principales de un sistema de comunicaciones. El concepto del canal de comunicaciones. Los principales mecanismos de propagación en principales utilizados por

sistemas de comunicación. Las principales métricas que se utilizan para determinar el desempeño de un

sistema de comunicaciones. El concepto de modulación digital de onda senoidal continua y su relación con la

modulación analógica. Las técnicas para hacer eficiente el ancho de banda de las señales transmitidas. La representación pasabandas y pasabajas de las señales. La representación de las señales moduladas en el espacio de señales. El concepto de constelación de señales. La caracterización estocástica de las señales y canales de comunicación. Los criterios de recepción óptima en presencia de ruido gaussiano aditivo. La inmunidad al ruido de los esquemas de recepción coherentes. La inmunidad al ruido de los esquemas de recepción no coherentes. El problema de sincronización de portadora para sistemas coherentes. El concepto de sincronización de símbolo. Las principales técnicas de multiplexaje. El problema de recepción en canales gaussianos de banda limitada. La capacidad de realizar simulaciones de los sistemas de comunicación

estudiados.

Page 17: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

El diagrama a bloques de un sistema de comunicación digital para canales conformados por ruido gaussiano aditivo y propiedad de limitación en banda.

2.2 Técnica didáctica utilizada Este curso es impartido mediante diversas técnicas didácticas, en partes se

utilizará Aprendizaje Basado en Casos, y en partes se utilizará Aprendizaje basado en problemas.

2.3.- Forma de trabajo El curso se llevará a cabo con la presentación del profesor de los temas que

contiene el curso, así como el desarrollo de problemas demostrativos. Se dejarán ejercicios en clase para reforzar los conceptos aprendidos. Se realizarán tareas para reforzar los conceptos aprendidos en clase, las cuales

podrán ser de corte analítico o programas en el ambiente de desarrollo Matlab. Se realizarán trabajos de investigación para contrastar las diferentes

aproximaciones que diferentes autores dan al mismo tema. Se realizarán exposiciones de temas particulares.

2.4.- Esquema de calificaciones.80% en 4 Exámenes parciales de 10% cada uno.20% en tareas, y proyectos de investigación. Cuenta en las tareas y reportes: que incluyan el nombre del estudiante, del profesor y la materia, que estén las tareas en limpio, que el problema esté bien definido, la solución estructurada y el resultado bien establecido.Entrada hasta los 10 minutos después de inicio de horario de clase. No se

considerará la asistencia.Correos para enviar los trabajos y tareas: [email protected].

2.5.- RECOMENDACIONESLas tareas suelen ser consideradas en el diseño de los exámenes.Tipo de aprendizaje que implica que debemos tomar cartas en el asunto en la

manera de aprender: Realizando implementaciones y discutiendo con nuestros compañeros.

3. TEMARIO

3.1 INTRODUCION A LOS SISTEMAS DE COMUNICACIONES (14 horas)

Introducción Información, mensajes y señales Bloques que integran el sistema de comunicaciones Enfoque del diseño en comunicaciones y medidas de desempeño Mecanismos de propagación de ondas de radio Modelos de pérdidas por propagación de ondas de radio y Link-Budget Modulación de amplitud (2 horas) Modulación de frecuencia y fase (2 horas) El ruido y la RSR en sistemas de modulación analógica Inmunidad al ruido de los sistemas de modulación analógicos

Page 18: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Conversión de señal analógica a digital (2 horas) PROCESAMIENTO DIGITAL DE SEÑALES MEDIANTE MATLAB

3.2 SISTEMAS DE MODULACIÓN DIGITALES (8 horas)

Concepto de modulación digital de onda continua Técnicas para hacer eficiente el ancho de banda de señales transmitidas

Simulación de un sistema de comunicaciones digital de banda angosta y desmodulación mediante detector de envolvente y receptor en cuadratura

Técnicas de modulación digital de onda pulsante

Propiedades de las técnicas de modulación por pulsos

3.3.- CARACTERIZACIÓN DE SEÑALES Y SISTEMAS (4 horas)

REPRESENTACIÓN ESTADÍSTICA DE SEÑALES Y SISTEMAS Aplicación al cálculo de correlación de señales filtradas

Aplicación al cálculo de la densidad espectral de potencia de señales codificadas

Aplicación al cálculo del receptor digital en presencia de ruido

Representación pasabanda y compleja pasabajas.

3.4 ESPACIO DE SEÑALES (4 horas)

Espacios métricos Espacios lineales

Representación de señal por funciones ortogonales

Representación espacial de señales

Espacio de señales de energía finita

3.5 CANALES DE COMUNICACIÓN (6 hrs)

Clasificación de sistemas de comunicaciones Medios de propagación utilizados por diferentes sistemas de comunicación

Los fenómenos de propagación del canal de radiocomunicaciones

Transformación de señales en canales analógicos

Multitrayectoria y desvanecimientos

Modelos matemáticos de canales continuos

Page 19: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Modelos estadísticos

Canales de banda angosta

Canales de banda amplia

Canales de sistemas MIMO

3.6.- ESQUEMAS DE RECEPCIÓN ÓPTIMA DE SEÑALES DIGITALES EN CANALES DE BANDA ANGOSTA (10 horas)

Criterios de recepción Algoritmos para detección coherente Filtros acoplados Inmunidad al ruido de la detección coherente Receptores no coherentes Inmunidad al ruido de la detección no coherente Canales con desvanecimiento temporal Diversidad en la recepción

3.7.- SINCRONIZACION DE PORTADORA Y SÍMBOLO (4 horas)

El problema de sincronización de portadora Técnicas para resolver el problema de estimación de portadora Sincronización de símbolo Algoritmo ELG

3.8.- ESQUEMAS DE MULTIPLEXAJE (4 horas)

Teoría de multiplexaje Acceso múltiple por división de código Acceso múltiple por división de tiempo Acceso múltiple por división de frecuencia y OFDM Acceso múltiple por división de espacio

3.9.- ESQUEMAS DE RECEPCIÓN ÓPTIMA DE SEÑALES DIGITALES EN CANALES DE BANDA AMPLIA (6 horas)

El problema de estimación de canal Detección mediante Igualación de Canal

o Igualador Zero-Forcing o Igualador Lineal MSEo Igualador de decisión retroalimentada

Detección mediante MLSE y el VA

4.- Bibliografía4.1. Libros de Texto

[1] Bernard Sklar, “Digital Communications”, 2nd Edition, Prentice Hall 2001.

Page 20: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

[2] John G. Proakis, “Digital Communications”, 3rd Edition, McGraw-Hill 1995.

4.2. Libros de apoyo[1] Simon Haykin, “An introduction to analog & digital communications”, Wiley.[2] Louis Frenzel, “Sistemas Electrónicos de Comunicaciones”, Editorial

Alfaomega, 2003. [3] B. P. Lathi, “Modern Digital and Analog Communication Systems”, 3th Edition,

Edit. Oxford University Press, 1998. O bien su traducción al español.[4] Louis E. Frenzel, “Electrónica para Communicaciones”, Edit. McGraw-Hill, 3ra

edición, 2001.[5] Bruce Carlson, Paul B. Crilly, Janet C. Rutledge, “Communication Systems”,

4th Edition, McGraw-Hill 2002.[6] Leon Couch II, “Digital and Analog Communication Systems”, 5th Edition,

Prentice Hall 1997.[7] Athanasios Papoulis, “Probability, Random Variables and Stochastic Processes”,

3th Edition, Mc Graw-Hill, 1991.[8] J. D. Parsons, “The Mobile Radio Propagation Channel”, John Wiley & Sons,

1992.[9] Theodore S. Rappaport, “Wireless Communications”, Prentice Hall PTR (IEEE

Press), 1996.[10] William C. Jakes, “Microwave Mobile Communications”, AT&T, 1974, IEEE

Press. (Reimpresión) 1994.[11] K. Sam Shanmugan, Michel C. Jeruchim, Phillip babalan, “Simulation of

Communications Systems”, Plenum Press 1992.[12] Heinrich Meyr, Marc moeneclaey, Stefan A. Fechtel, “Digital Communications

Receivers”, John Wiley & Sons, 1998.[13] Harry Van Trees, “Detection, Estimation and Modulation Theory, Part I”, John

Wiley & Sons, 1968.[14] David Middleton, “An Introduction to Statistical Communication Theory,”Mc

Graw-Hill, 1960.[15] John G. Proakis, Masoud Salehi, “Contemporary Communication Systems

using Matlab”, Thompson Learning, 2000.[16] Raymond Steele, “Mobile Radio Communications”, IEEE Press, New York

1992.[17] L. E. Frankes, “Signal Theory”, Prentice Hall 1969.[18] Carl W. Helstrom, “Statistical Theory of Signal Detection”, Pergamon Press

1968, 2nd Edition.[19] Marvin K. Simon, Sami H. Hinedi, William C. Lindsey, “Digital

Communication Techniques”, Prentice Hall 1995.

Circuitos de RF I: Principios Básicos. (Tópicos Avanzados de Ingeniería Eléctrica)

Page 21: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Clave Curso: EE305-2

Profesor: Dr. J. R. Loo Yau

Objetivo: el objetivo del curso es el de proporcionar al alumno las herramientas básicas y necesarias para el análisis de circuitos de RF. Por otro lado, el curso también tiene el firme propósito de instruir al alumno en las diferentes técnicas de calibración de los analizadores de redes vectorial. Temas:

1.- Teoría de Redes para Circuitos en Bajas Frecuencia (6 horas).1.1.- Parámetros Z.1.2.- Parámetros Y.1.3- Parámetros ABCD.1.4.- Transformación entre parámetros Z, Y y ABCD.

2.- Teoría de Redes para Circuitos en Altas Frecuencias (6 horas).2.1.- Parámetros S.2.2.- Parámetros T.2.3.- Transformación entre parámetros S a Z, Y, ABCD y T.

3.- Aplicación de Teoría de Redes para Analizar Circuitos de RF (7 horas).3.1.- Análisis de circuitos de RF.3.2.- De-embbeding.

4.- Línea de Transmisión (7 horas).4.1.- Circuito equivalente eléctrico de una línea de transmisión.4.2.- Onda de propagación en una línea de transmisión.4.3.- La línea de transmisión sin pérdidas.4.4.- La línea de transmisión terminada con una impedancia diferente de Z0.

5.- Carta de Smith (7 horas).5.1.- Introducción.5.2.- Construcción de la carta de Smith5.2.- Manejo de la carta de Smith.5.3- Determinación del VSWR utilizando la carta de Smith.

6.- Técnicas de Calibración para analizadores de redes vectoriales (7 horas)6.1.- Short-Open-Load-Thru.6.2.- Thru-Reflect-Line..6.3.- Thru-Attenuator-Reflect.6.4.- Line-Reflect-Match.6.5.- Line-Reflect-Line.

Tercer Cuatrimestre (Junio-Agosto)

Page 22: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Circuitos de RF II: (Tópicos Avanzados de Ingeniería Eléctrica II)

Clave del curso: EED308-3

Profesor: Dr. J. R. Loo Yau

Objetivo: el objetivo del curso es el de proporcionar al alumno las herramientas básicas para el diseño de amplificadores de RF en pequeña señal. Así mismo este curso explora los circuitos no lineales como osciladores, mezcladores y amplificadores de potencia, todos bloques de un sistema de comunicación de RF. Se busca que en este curso los estudiantes tengan la capacidad de manejar los simuladores de circuitos de RF como Adavance Design System (ADS) y Eagleware.

1.- Síntesis de línea de transmisión.1.1.- Ecuaciones para el diseño de líneas de transmisión.

2.- Acoplamiento de impedancia2.1.- Acoplamiento con elementos concentrados.2.2.- Acoplamiento con elementos distribuidos.

2.2.1.- Redes con un solo stub.2.2.2.- Redes con dos stub.

3.- Filtros pasivos con elementos distribuidos y concentrados.3.1.- Filtros pasa bajas.3.2.- Filtros pasa altas.3.3.- Filtros pasa banda.

4.- Amplificadores de propósito general.4.1.- Círculos de estabilidad.4.2.- Círculos de ganancia.4.3.- Amplificador de alta ganancia.4.4.- Círculos de ruido.4.5.- Amplificador de bajo ruido.4.6.- Amplificador multi-etapas.

5.- Osciladores de RF.5.1.- Principio de oscilación.5.2.- Diseño de osciladores con parámetros de dispersión.5.3.- Pruebas para osciladores.

6.- Mezcladores.6.1.- Mezcladores con diodos6.2.- Mezcladores con transistores.6.3.- Pruebas para mezcladores.

7.- Amplificadores de potencia.7.1.- Clase A.7.2.- Clase B.7.3.- Clase F7.4.- Clase E.7.5.- Pruebas para los amplificadores de potencia.

Page 23: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

-------------------------------------------------------------------------------

Tecnología de fabricación en VLSIClave del curso: EED307-3 (Opcional como curso relacionado con el proyecto de Maestría).

INSTRUCTOR: Dr. Juan Luis del Valle

SESION: Martes y Viernes, 9:00-11:00 HrsUnidad Guadalajara

PERIODO: 3º. Cuatrimestre. Septiembre-Diciembre

GENERACIÓN: 2007-2008

La innovación tecnológica podría definirse como la velocidad con que una idea, un sistema o un producto pueden llegar al mercado para satisfacer una necesidad de la sociedad en los términos más ventajosos. La industria de los semiconductores es una organización de industrias relacionadas cuya principal motivación es la innovación tecnológica. Es por esto que esta industria es una de las industrias más importantes en la economía mundial. El desarrollo tecnológico no es una actividad aislada, es parte de una actividad global, de una organización orientada a la innovación tecnológica, en la cual la investigación científica, la ingeniería, el mercadeo y los negocios juegan un papel primordial.

El curso revisa en detalle los más importantes procesos de fabricación de circuitos integrados en la tecnología CMOS, en la que los óxidos y los metales juegan un papel de la misma importancia que los materiales semiconductores. Los óxidos junto con los semiconductores definen las regiones activas del dispositivo, sirven como mascaras para la definición de procesos selectivos, aíslan eléctricamente los dispositivos y aíslan diferentes capas de metalización. Los metales aseguran la formación de contactos ohmicos a los dispositivos, la interconexión entre dispositivos y bloques del sistema y juegan el importante papel de medio de comunicación con el mundo exterior. En el curso se describen los principios básicos de los procesos, el equipo y los modelos de los procesos de fotolitografia, la implantación de impurezas, la difusión de impurezas, los procesos de oxidación térmica y a baja temperatura, los procesos de grabado así como los de metalización y nivelado de las superficies. Durante el curso se introducen los programas de T-CAD que permiten la simulación de los procesos así como la simulación de dispositivos en 2 y 3 dimensiones.

Tesis de Maestría.

Como parte de su grado de Maestría en Ingeniería Eléctrica, se requiere a los estudiantes a preparar una Tesis. Las tesis son diseñadas para medir la habilidad de los estudiantes en el desarrollo de un tópico particular de investigación, analizar sus resultados de su investigación y su habilidad de comunicación escrita y oral.

Page 24: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Contenido:

6. Introducción a la Tecnología de VLSI

7. Procesos básicos de manufactura

Fotolitografia Difusión térmica de impurezas Implantación iónica de impurezas Oxidación Deposición Grabado

8. Introducción a la simulación de procesos y dispositivos usando herramientas de diseño asistido por computadora, T-CAD ISE.

9. Simulación de dispositivos básicos: Diodos, BJT y CMOS.

10. Proyecto de simulación.

Referencias:

11. Silicon VLSI Technology. Fundamentals, Practice and Modeling. J.D. Plummer, M.D. Deal, P:B. Griffin. Prentice Hall, 2000.

12. Manuales de ISE.

13. IEEE Transactions on Electron devices. Artículos de interés.

----------------------------------------------------------------------------------------------------------

Teoría Electromagnética. Antenas

Clave del curso: EES301-3

Pendiente -------------------------------------------------------------------------------

Procesamiento digital de señales para telecomunicaciones

Clave del curso: EET306-3

Page 25: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Pendiente

-------------------------------------------------------------------------------

DISEÑO DIGITAL III

Clave del Curso: EED308-3INSTRUCTOR: Dr. Mariano Aguirre

Intel, Tlaquepaque Jal.

SESION: Martes y Jueves, 18:00-20:00 HrsUnidad Guadalajara

PERIODO: 2do. Cuatrimestre. Mayo-Agosto

GENERACIÓN: 2007-2008

DISEÑO DIGITAL III

DESCRIPCIÓN:

Este curso se dirige al estudio de los subsistemas que conforman la arquitectura

de un sistema digital complejo (Ps, DSPs y ASICs) y su interacción con los elementos

periféricos. Los temas que se revisan abarcan la descripción de su funcionamiento, la

cuantificación de su desempeño y las técnicas de diseño para su optimización. Así

mismo, se estudian los conceptos de desarrollo de software para explotar sus

características principales. Se estimula el desarrollo de modelos HDL, y la síntesis

lógica y física en un flujo de diseño basado en celdas estándar.

OBJETIVO GENERAL:

Desarrollar los conocimientos y habilidades necesarias para diseñar un sistema

digital complejo, tomando como base el análisis y diseño de un sistema de

procesamiento digital moderno, desde la especificación de su arquitectura hasta su

implementación en un circuito integrado, usando un flujo de diseño con celdas estándar.

OBJETIVOS PARTICULARES:

- Desarrollar la habilidad de utilizar un enfoque jerárquico para analizar un sistema

complejo.

Page 26: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

- Entender el funcionamiento de los subsistemas que integran un sistema de cómputo.

- Comprender las interacciones principales de la interfase hardware/software.

- Aprender a determinar las características del desempeño de un sistema de cómputo, y

entender las técnicas de diseño que permiten mejorarlo.

- Ejercitar las herramientas de diseño asistido por computadora para realizar la síntesis

lógica y física de un sistema digital, enfocando su realización en un circuito integrado.

TEMARIO:

Tema 1. Introducción a la arquitectura de computadoras.

1.1. Conceptos y convenciones.

1.2. Componentes de un sistema de cómputo.

1.3. Interfase Hardware/Software.

Tema 2. Cuantificación del desempeño de un sistema de cómputo.

2.1. Métricas de desempeño.

2.2. Comparación de arquitecturas de procesadores modernos.

Tema 3. Definición de la arquitectura del conjunto de instrucciones.

3.1. Elementos de una instrucción.

3.2. Tipos de instrucciones.

3.3. Soporte para las instrucciones en el hardware.

Tema 4. Aritmética de computadoras.

4.1. Representación de números.

4.2. Operaciones aritméticas y lógicas.

4.3. Diseño de una Unidad Aritmética Lógica.

4.4. Operaciones complejas.

4.5. Operaciones en punto flotante.

Tema 5. Ruta de datos y Ruta de control.

5.1. Diseño de la ruta de datos.

5.2. Realización multi-ciclos.

5.3. Diseño de la ruta de control.

Tema 6. Optimizando el desempeño del sistema de procesamiento.

Page 27: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

6.1. Realización en Pipeline

6.2. Problemas en un Pipeline.

6.3. Pipeline superescalar y dinámico

6.4. Diseño del sistema de memoria.

6.5. Memoria virtual.

Tema 7. Interconectando dispositivos periféricos.

7.1. Estimando el desempeño de los dispositivos de Entrada/Salida.

7.2. Tipos y características de los dispositivos de Entrada/Salida.

7.3. Buses de interconexión.

Tema 8. Sistemas multi-procesadores.

8.1. Programación de multi-procesadores.

8.2. Interconexión de multi-procesadores

BIBLIOGRAFIA

VHDL

Digital Design and Modeling with VHDL and Synthesis

K. C. Chang

IEEE Computer Society Press

The designer's guide to VHDL

P. J. Ashenden

Morgan Kaufmann

Circuit Design with VHDL

Volnei A. Pedroni

MIT Press

VERILOG

The Verilog Hardware Description Language

D. E. Thomas and P. R. Moorby

Kluwer Academic Publishers

Page 28: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

Advanced Digital Logic Design: Using Verilog, FSM and Synthesis for FPGAs

Sunggu Lee

Thomson-Engineering

Designing Digital Computer Systems with VERILOG

David J. Lilja, Sachin Sapatnekar

Cambridge University Press

DISEÑO DIGITAL

Digital Design: Principles and Practices

John F. Wakerly

Pearson Education

Digital Design

M. Morris Mano

Pearson Education

Application-Specific Integrated Circuits

M. J. S. Smith

Addison Wesley

ARQUITECTURA DE COMPUTADORAS

Computer Organization and Design

J.L. Hennessy, D.A. Patterson

Morgan Kaufmann

Computer Architecture and Organization

J.P. Hayes.

McGraw-Hill

Computer System Architecture

Morris Mano

Prentice Hall

Page 29: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,
Page 30: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

TEMA HRS FECHATema 1. Introducción a la arquitectura de computadoras.    1.1. Conceptos y convenciones. 11.2. Componentes de un sistema de cómputo. 11.3. Interfase Hardware/Software. 2

Tema 2. Cuantificación del desempeño de un sistema de cómputo.2.1. Métricas de desempeño. 12.2. Comparación de arquitecturas de procesadores modernos. 2

Tema 3. Definición de la arquitectura del conjunto de instrucciones.3.1. Elementos de una instrucción.  13.2. Tipos de instrucciones.  23.3. Soporte para las instrucciones en el hardware. 2

Examen 1 2

Tema 4. Aritmética de computadoras.4.1. Representación de números. 24.2. Operaciones aritméticas y lógicas.  24.3. Diseño de una Unidad Aritmética Lógica. 44.4. Operaciones complejas. 24.5. Operaciones en punto flotante. 4

Tema 5. Ruta de datos y Ruta de control.5.1. Diseño de la ruta de datos. 45.2. Realización multi-ciclos. 25.3. Diseño de la ruta de control.  4

Tema 6. Optimizando el desempeño del sistema de procesamiento.6.1. Realización en Pipeline 26.2. Problemas en un Pipeline. 16.3. Pipeline superescalar y dinámico 16.4. Diseño del sistema de memoria.  46.5. Memoria virtual.  1

Tema 7. Interconectando dispositivos periféricos.7.1. Estimando el desempeño de los dispositivos de Entrada/Salida. 17.2. Tipos y características de los dispositivos de Entrada/Salida. 27.3. Buses de interconexión. 2

Examen 2 2

Tema 8. Sistemas multi-procesadores.8.1. Programación de multi-procesadores. 28.2. Interconexión de multi-procesadores 2

Seminario 2

TOTAL 60EVALUACION

Page 31: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

3 Exámenes parciales

Examen 1 (Temas 1, 2 y 3) 20%

Examen 2 (Temas 4, 5, 6 y 7) 20%

1 Proyecto (3 Reportes de avance)

Definición de la Arquitectura 10%

Simulación del Modelo HDL 20%

Reporte final: 20%

Resultados de síntesis

Simulación post-síntesis

Exposición 10%

Cursos Opcionales.

Física de Semiconductores.

INSTRUCTOR: Dr. Juan Luis del Valle

SESION: Lunes a Viernes, 9:00-13:00 HrsUnidad Guadalajara

PERIODO: Propedeutico. Junio 2007

Page 32: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

GENERACIÓN: 2006-2007

Descripcion.

Los materiales semiconductores son la base de los dispositivos electrónicos modernos que han producido un salto cuantitativo en la sociedad de nuestros días. En este curso se revisan las principales propiedades de estos materiales sobre la base de conceptos elementales de física moderna, mecánica quántica y física del estado sólido. Se introducen las propiedades de transporte electrónico como resultado de la propagación de ondas electrónicas dentro de un cristal que conducen a los diagramas de bandas de energía y a los conceptos de ancho de banda prohibida y masa efectiva de los electrones. Se describen los conceptos de huecos y electrones como partículas portadoras de carga y se explica como pueden cambiarse a voluntad estas concentraciones de portadores en bases estadísticas, asimismo se introducen las tecnologías de crecimiento de cristales semiconductores y de su dopado. Se describen los fenómenos de dispersión que determinan la movilidad de los portadores de carga y la resistividad de los semiconductores. Se cubren los tópicos de interacción de estos materiales con la radiación que dan lugar a los efectos de fotoconductividad y emisión de luz. Finalmente se desarrollan las ecuaciones básicas de transporte, electrostáticas y de continuidad de carga que se aplican formalmente a la descripción de las propiedades de las uniones p-n, un bloque básico de construcción de los dispositivos con semiconductores.

Objetivos Instruccionales. Los estudiantes deberán: ser capaces de explicar la diferencia entre metales, aislantes y semiconductores, sobre la base del comportamiento de los electrones en los sólidos. Explicar las propiedades elementales de los semiconductores sobre la base de sus diagramas de bandas de energía, así mismo, distinguir entre semiconductores elementales y semiconductores compuestos. Entender las relaciones entre la resistividad de los semiconductores y la movilidad de los portadores de carga y su concentración en equilibrio térmico. Entender las propiedades de los semiconductores fuera de equilibrio térmico, tales como la inyección de portadores en exceso, su tiempo de vida y los mecanismos de generación-recombinación. Finalmente deberán poder explicar las propiedades eléctricas y electro-ópticas de las uniones p-n en función de la solución de las ecuaciones básicas de electrostática, continuidad, y dinámicas de los portadores fuera de equilibrio.

CONTENIDO:

1. Electrones en los sólidos

1.1 Resistores, conductividad. Modelo de Drude1.2 Estructura de los semiconductores. Orden y cristales.1.3 Conceptos de mecánica quántica. El átomo de Hidrogeno.1.4. Ecuación de Schrodinger. El problema del electrón libre, concepto de densidad de estados. El pozo de potencial.1.5. Estadistica de los electrones.1.6. De los niveles atómicos a las bandas de energía.1.7. Metales, semiconductores, aislantes.

2. Electrones y huecos en los semiconductores. Equilibrio Termico

Page 33: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,

2.1 El concepto de masa efectiva en los semiconductores.2.2 El concepto de hueco.2.3 Estructuras de bandas de algunos semiconductores.2.4 Semiconductores Intrínsecos. Densidad de portadores. Nivel de Fermi.2.5 Semiconductores Extrínsecos. Dopamiento y densidad de portadores. 2.6 Nivel de Fermi extrínseco.

3. Dinámica de los portadores de carga en los semiconductores. Fuera de equilibrio

3.1 Dispersión de los portadores libres en semiconductores.3.2 Relación entre la velocidad de arrastre y el campo aplicado.3.3 Efectos de campos elevados. Ruptura por avalancha.3.4 Transporte de los portadores libres por difusión.3.5 Efectos de difusión y arrastre.3.6 Inyección de carga y casi-equilibrio.3.7 Generación y recombinación de electrones y huecos.3.8 Longitud de difusión y ecuaciones de continuidad.3.9 Las cinco ecuaciones en análisis de semiconductores.

4. La Unión P-N

4.1 Introducción. 4.2 Electrostática de las uniones P-N4.3 Union P-N ideal. Características Corriente-Voltaje.4.4 Union P-N real. Voltaje de Ruptura.4.5 Union P-N real. Corrientes de recombinación-generación. 4.6 Union P-N real. Efectos de alto nivel de inyección. Resistencia serie.4.7 Unión P-N real. Modelos a pequeña señal.

Bibliografia:1.Introduction to Electronic Devices. Michael Shur. Jonh Wiley & Sons. 19962. Notas del curso

Page 34: Tópicos Avanzados de Ingeniería: Circuitos de RF cursos... · Web viewMultiplicador de corriente Comparador de corriente Aproximación Pipeline Circuitos digitales Simulación,