Trabajo de Dstribucion.final.2

56
 República Bolivariana de Venezuela Ministerio de Educación Superior Universidad del Zulia Facultad de Ingeniería Escuela de Eléctrica Departamento de Potencia Cátedra: Sistemas de Distribución  Proyecto de Sistemas de Distribución Circuito Castillo Plaza (24 KV) de la Sub-Estación Paraíso (ENELVEN). Tramo Facultad de Ingeniería- Sub-Estación Paraíso (ENELVEN Profesor:

Transcript of Trabajo de Dstribucion.final.2

Page 1: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 1/56

 

República Bolivariana de VenezuelaMinisterio de Educación Superior 

Universidad del ZuliaFacultad de Ingeniería

Escuela de EléctricaDepartamento de PotenciaCátedra: Sistemas de Distribución

 Proyecto de Sistemas de Distribución

Circuito Castillo Plaza (24 KV) de la Sub-Estación Paraíso (ENELVEN).

Tramo Facultad de Ingeniería- Sub-Estación Paraíso (ENELVEN 

Profesor:

Page 2: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 2/56

 

Maracaibo, Septiembre de 2010ÍNDICE GENERAL

Página.

INTRODUCCIÓN…………………………………………………………….. 3OBJETIVOS…………………………………………………………………… 41.- Reseña Histórica de ENELVEN………………………………………….. 52.- Sistema Eléctrico de ENELVEN…………………………………………… 6

3.- Describir detalladamente los elementos que componen el alimentador  primario del sistema de distribución seleccionado……………………………..

7

a.- Describir en sus aspectos básicos la S/E de distribución: Tensión deentrada, tensión de salida, transformadores, esquema, otros circuitos quealimenta, cualquier otra información pertinente………………………….

7

b.- El alimentador es monofásico o trifásico…………………………….. 8c.- Tensión………………………………………………………………. 8d.- Recorrido y longitud………………………………............................. 9e.- Cargas conectadas importantes…………………................................. 10f.- Transformadores de distribución (kVA), si es trifásico describir la

conexión……………………………………………………………………….12

g.- Tipo de poste………………………….................................................. 12h.- Configuración (posición del cableado)................................................... 13i.- Crucetas………………………………………………………………... 15j.- Aisladores………………....................................................................... 16k.- Conectores.…………………………………………………………… 19l.- Herrajes……………………………………………………………….. 21m.- Vientos………………………………………………………………. 22n.- Compensadores……………….……………………………………… 22o.- Indicar y describir si los laterales son aéreos o subterráneos. ……….. 27p.- Equipos de seccionamiento y protección…………………………….. 27q.- Indicar si alimentan alumbrado público……………………………… 36r.- Comentar las situaciones irregulares observadas…………………….. 36s.- Otros aspectos………………………………………………………... 37

CONCLUSIONES…………………………………………………………….. 38RECOMENDACIONES……………………………………………………..... 40

BIBLIOGRÁFIA……….…………………………………… 41ANEXOS……………………………………………………………………..... 42INTRODUCCIÓN

El sistema de energía eléctrica consta de varios elementos que lo conforman desde su

generación hasta el consumidor final. El comienzo de esta cadena lo conforman las

 plantas generadoras de energía (plantas hidroeléctricas, termoeléctricas, eólicas, entre

otras). Después se transporta la energía a los centros de consumo, elevando el nivel de

voltaje para reducir las pérdidas. Luego la energía llega a los centros de distribución

Page 3: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 3/56

 

disminuyendo los niveles de tensión según sea el caso (residencial, industrial, entre

otros).

Esta última etapa (Distribución) es una parte importante del sistema de potencia, ya que

al estar relacionado directamente al consumidor final, se deben mantener en grandes

niveles la confiabilidad en el suministro y en la calidad de la energía eléctrica.

Como estudiantes de Ingeniera Eléctrica, es importante conocer todas las etapas del

sistema de potencia, en especial la etapa de distribución por lo antes mencionado.

Es por ello el fin de este trabajo, de conocer en profundidad los aspectos básicos del

sistema de distribución como lo son las subestaciones, circuitos y todos los elementos

que la componen: tensiones, alimentadores, postes, protecciones, herrajes, entre otros.

Dicho trabajo consta de los objetivos, memoria descriptiva, planos y todos los

elementos relacionados con un sistema de distribución, en especial del Circuito Castillo

Plaza (24 kV) de la Sub-Estación Paraíso, desde la Facultad de Ingeniería hasta su

llegada a dicha Sub-Estación.

OBJETIVOS

• Describir todos los elementos que conforman un sistema de distribución como lo

son: alimentador, transformador, postes, aisladores, entre otros.

.

Page 4: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 4/56

 

• Especificar los elementos que conforman el Circuito Castillo Plaza (24 kV) de la

Sub-Estación Paraíso, desde la Facultad de Ingeniería hasta su llegada a dicha

Sub-Estación.

Proyecto de Sistemas de DistribuciónCircuito Castillo Plaza (24 KV) de la Sub-Estación Paraíso.

Tramo Facultad de Ingeniería- Sub-Estación Paraíso (ENELVEN)

1.- Reseña histórica de ENELVEN

Page 5: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 5/56

 

En el año de 1889 es fundada ENELVEN bajo el nombre de “The Maracaibo Electric

Light Co" con el objeto de proveer de electricidad a la ciudad de Maracaibo. Luego en

el año 1924 La compañía es adquirida por la Venezuelan Power Company y su

denominación legal es cambiada por "Venezuelan Power Company Ltd". Bajo esta

denominación en el año 1926 es inaugurada la Planta Arreaga en el sector Los Haticos,

con dos (2) unidades de vapor de 1.500 Kilovatios.

En el año de 1940 la compañía adopta su actual denominación "C.A. Energía Eléctrica

de Venezuela". En los años sucesivos se inicia la construcción de la red de transmisión

de 138 mil voltios y se instalan dos nuevas unidades para alcanzar una capacidad

instalada de 100.000 kilovatios.

En el año de 1973 se inaugura la Central Rafael Urdaneta con tres unidades de 30 MW

c/u. Es en esta década cuando la República de Venezuela, a través del Fondo de

Inversiones de Venezuela (FIV), adquiere la mayoría accionaria de la empresa como

consecuencia de la firma del "Acuerdo de Cartagena" como miembro del Pacto Andino,

que limita el capital extranjero en empresas del Estado a 20%.

En el año de 1988, ENELVEN firma junto con las empresas hermanas CADAFE, 

EDELCA y Electricidad de Caracas el contrato de interconexión. Es la primera vez que

ENELVEN participa en decisiones del Sistema de Interconectado Nacional.

En el año 2000, la Ley del Servicio Eléctrico establece en los artículos 6 y 108 la

obligación de separar las empresas por actividades de Generación, distribución y

Transmisión. En noviembre del mismo año fueron creadas las empresas C.A

ENELVEN Distribuidora (ENELDIS) y C.A ENELVEN Generadora (ENELGEN) para

adaptar la empresa a la separación de actividades indicada en la Ley del Servicio

Eléctrico.

El 24 de octubre del año 2003 entra en funcionamiento Termozulia, una moderna planta

construida por ENELVEN  con aportes del Gobierno Nacional, que consta de dos

turbogeneradores de 150 mil kilovatios cada uno.

En el año 2007 se publica en Gaceta Oficial el Decreto N° 5.330 de Reorganización delSector Eléctrico con Rango, Valor y Fuerza de Ley Orgánica. Mediante este decreto se

Page 6: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 6/56

 

ordena la creación de la Corporación Eléctrica Nacional S.A.  (CORPOELEC) adscrita

al Ministerio del Poder Popular para la Energía y Petróleo, como una empresa

operadora estatal encargada de la realización de las actividades de generación,

distribución y comercialización de potencia y energía eléctrica.

2.- Sistema Eléctrico de ENELVEN

La C.A. Energía Eléctrica de Venezuela (ENELVEN), está ubicada en el occidente del

 país, es una empresa encargada de la Generación, Transmisión y Distribución de energía

eléctrica. Operacionalmente el Sistema Eléctrico de ENELVEN está constituido por tres

sistemas fundamentales:

• Sistema de Generación:

El sistema de generación cuenta con seis centrales generadoras: Ramón Laguna, Rafael

Urdaneta, Concepción, Santa Bárbara, Casigua y Termozulia, todas estas plantas

generadoras son del tipo térmica. Este sistema tiene una capacidad de generación

instalada de 1475 MW.

Sistema de Transmisión:

Contempla las líneas de transmisión y las Sub-Estaciones reductoras primarias. El

Sistema de Transmisión presenta niveles de tensión a 400 kV, 230 kV y 138 kV.

• Sistema de Distribución:

Constituido por las líneas de distribución, las subestaciones reductoras secundarias y las

cargas conectadas al sistema. Este sistema está conformado básicamente por circuitos

aéreos y radiales en 8,3 y 24 kV. El nivel de 8,3 kV actualmente cubre solo el 31 % de

la demanda total del sistema (46 circuitos) y el resto es asumido por la red de 24 kV

(102 circuitos) esto hace un total de 148 alimentadores de distribución.

3.- Describir detalladamente los elementos que componen el alimentador primario

del sistema de distribución seleccionado

Page 7: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 7/56

 

a.- Describir en sus aspectos básicos la S/E de distribución: Tensión de entrada,

tensión de salida, transformadores, esquema, otros circuitos que alimenta,

cualquier otra información pertinente

Se sabe que las S/E de Distribución son las encargadas de transformar la energía que

llega desde el sistema de transmisión en alta tensión para luego distribuirla a un nuevo

nivel de voltaje (menor) y de esta forma alimentar una carga “x”. Nuestro caso de

estudio, la S/E Paraíso, cuenta con las siguientes características:

Tensión de Entrada 138 kVTensión de Salida 24/8 kVTransformadores 4

Esquema deAlimentación

Anillo

Capacidad Instalada 84 MVATipo de construcción Al aire libre

Tabla 1. Parámetros de la S/E Paraíso

• Sectores que sirve: entre los sectores servidos por esta subestación tenemos: Urb. Las Lomas Barrio Amparo Residencias Universitarias Conj. Res. Los Satélites Conj. Res. Vista Bella Barrio Alberto Carnevalli Urb. El Caujil Barrio Ana María Campos Urb. El Jazmín Barrio Shell Facultad de Ingeniería y Arquitectura.

• La S/E Paraíso cuenta con 4 TX´s denominados T1, T2, T3 y T4.

T1 y T2 poseen una capacidad de 42 MVA c/u con unos niveles detensión de 138/24 kV.

T3 y T4 poseen una capacidad de 13.3 MVA c/u con unos niveles detensión de 24/8 KV.

T1 abastece los circuitos de 24 kV: Valle Claro, San José y T3. T2 abastece los circuitos de 24 kV: Calle 70, Castillo Plaza y T4. T3 abastece los circuitos de 8 kV: Spicer, Polideportivo y 1ero. Mayo T4 abastece los circuitos de 8kV: Quirúrgico, Colombia, Sucre y Sta.

María.

Page 8: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 8/56

 

A continuacion se presentan algunas imágenes de la Sub-Estación Paraíso.

Figura 1. Sub-Estación Paraíso

b.- El alimentador es monofásico o trifásico

Se conoce que el alimentador primario que parte de la S/E Paraíso es trifásico

constituido por 3 hilos.

c.- Tensión

Se conoce que el alimentador primario que parte de la S/E Paraíso alimenta circuitos a

valores de tensión de 24 kV y 8 kV, siendo el circuito Castillo Plaza a 24 kV el

estudiado en este trabajo.

d.- Recorrido y longitud

El recorrido desde la Facultad de Ingeniería hasta la S/E Paraíso comienza detrás de la

Facultad de Ingeniera, partiendo del poste MBOD-EO7E26, se sigue la ruta en la Av.

15b hasta interceptar la Av. 15a, luego a la izquierda seguimos hasta cruzar con la calle

Page 9: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 9/56

 

67 para luego girar a la izquierda y seguir derecho hasta interceptar la Av. 16a,

cruzamos nuevamente a la izquierda y antes de llegar al 1er. semáforo que está en la vía

se cruza a la derecha para tomar la calle 66 y luego se recorre toda la calle hasta llegar 

al final de la misma, el cual se encuentra a unas 10 cuadras más adelante siguiendo una

trayectoria recta. Al llegar al final de la calle 66 se cruza a la derecha y luego de pasar 

media cuadra aproximadamente se encuentra la S/E Paraíso. El recorrido es de

aproximadamente 2.8 km.

Figura 2. Inicio desde la Facultad de Ingeniería (izquierda) hasta el Sub-EstaciónParaíso (derecha)

A continuación se presenta, gracias a la herramienta del Google Map, la ubicación

geográfica del tramo estudiado. En los anexos se presenta otros planos del circuito con

la identificación de postes, transformadores y demás elementos de interés.

Figura 3. Mapa del recorrido

e.- Cargas conectadas importantes

Page 10: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 10/56

 

El Circuito Castillo Plaza (24 kV) perteneciente a la Sub-Estación Paraíso alimenta

varias cargas de las cuales se pueden nombrar:

• Centro Medico Santa Lucia• Centro Medico Quirurgico• Colegio La Epifania• Colegio La Presentación• Hospital Universitario de Maracaibo• Facultad de Ingeniería• Banco de Sangre de la Facultad de Medicina• Cuartel Libertador • Proveeduría IPFA• Entre otras

A continuación se presenta algunas fotos de las cargas que alimenta dicho circuito.

Figura 4. Instituto Regional de Investigación y Estudios de EnfermedadesCardiovasculares de LUZ

Page 11: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 11/56

 

Figura 5. Cuartel Libertador

Figura 6. Hospital Universitario de Maracaibof.- KVA de Transformadores de Distribución y si son trifásicos describir la

conexión

Los TX’s de distribución encontrados a lo largo del trayecto poseen una capacidad de

37.5 kVA, 50 kVA y 75 kVA. Cuando el TX alimenta cargas monofásicas, este se

conecta de alguna de las fases del sistema por uno de los extremos de la bobina

 primaria, y por el otro extremo se conecta al neutro corrido de ellos. El secundario tiene2 bobinas y un puente para el neutro; de los extremos de las bobinas se sacan los 240

voltios que alimentan las cargas monofásicas, mientras que entre uno de los extremos y

el neutro se obtiene los 120 volts.

Cuando es alimentación trifásica, por lo general se conecta en estrella el primario y

delta el secundario y se usa una configuración de 1 TX grande y 2 más pequeños de la

misma capacidad. Del TX grande sacan la alimentación monofásica a varias cargas.Para cargas trifásicas se dispone de niveles de tensión de 120/240 V, 240/480 V y

240/416 V. Esto se logra colocando las conexiones estrella – delta para el primer caso y

estrella – estrella para el segundo.

g.- Tipos de Poste

Durante el recorrido a lo largo del circuito en estudio se observaron 2 clases de postes:

los postes de concreto y los postes de hierro.

Page 12: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 12/56

 

Los postes de concreto son postes fabricados en concreto armado, los cuales se han

utilizado en circuitos de distribución aérea, en zonas céntricas de la ciudad. También se

utilizan para redes de transmisión urbana de 138 kV.

Los postes de hierro en forma tubular, están formados de varias secciones de tubos de

diferentes diámetros y en forma telescópica. La altura de estos es de aprox. 30 pies o

9.14 mts.

El vano promedio entre estructura y estructura para zonas urbanas dependerá de la

localización topográfica del plantillado urbanístico.

  Figura 7. Poste de Concreto

Page 13: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 13/56

 

Figura 8. Poste de Hierro.

h.- Configuración (Posición del cableado)

La configuración usada en la distribución será trifásica horizontal, soportada por crucetas metálicas (en su mayoría) ó crucetas de maderas. También se puede observar 

en varios postes del recorrido que el cableado está soportado directamente por los

aisladores. A continuación se presentan, las diferentes disposiciones encontradas de

crucetas y aisladores para la configuración del cableado.

Figura 9. Configuración con crucetas

Figura 10. Otras configuraciones

Page 14: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 14/56

 

Figura 11. Configuración de varias crucetas de madera y hierro

Figura 12. Configuración con aisladores

i.- Crucetas

Se sabe que las crucetas tienen como función soportar los aisladores y conductores de

una línea aérea. En el trayecto de estudio se observa el uso de crucetas de hierro y

madera las cuales pueden tener distintos tamaños tal como se observa en las siguientes

imágenes. Los tamaños usados por ENELVEN son:

Page 15: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 15/56

 

Cruceta de MaderaTamaño

Cruceta de HierroTamaño

8` (2.4 mts.) 8` (2.4 mts.)

12` (3.65 mts.)10.5` (3.20 mts.)12` (3.65 mts.)

16` (4.88 mts.)Tabla 2. Dimensiones de las crucetas usados por ENELVEN

Figura 13. Crucetas de Hierro

Figura 14. Crucetas de Hierro y Madera

 j.- Aisladores

Page 16: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 16/56

 

La función de los aisladores es mantener alejado a una distancia minima los conductores

energizados de los postes y crucetas. Pueden ser de porcelana, vidrio y de fibra sintética

(Epoxil). El tamaño y tipo depende del voltaje del circuito eléctrico. Los tipos de

aisladores utilizados son:

• Pin: Los aisladores tipo PIN se llaman así, debido a que están fijados en la

cruceta a través de un Pin.

• Espiga: Tienen mayor esfuerzo mecánico y se fijan también a través de un Pin,

siendo la rosca más pequeña en la cruceta.

• Tipo Campana o Suspensión: Son para suspender los conductores a través de

las crucetas o para fijarlos en una terminación. Fueron desarrollados cuando los

voltajes de transmisión se incrementaron por arriba de los 44 kV, ya que en este

voltaje los aisladores tipo Pin, tendrían que ser demasiado grandes, lo que los

haría muy pesados y muy difícil de obtener suficiente esfuerzo mecánico en el

Pin para soportar el aislador. La versatilidad del aislador tipo Campana, es que

se puede mejorar el nivel de aislamiento, con solo agregar aisladores a la cadena

hasta completar el aislamiento deseado (Voltaje de línea a tierra). El número de

aisladores tipo campana en la cadena a 23.9 kV es de 2 ó 3.

Page 17: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 17/56

 

Figura 15. Aisladores tipo Pin, Espiga y Campana

En baja tensión se utiliza el aislador de porcelana tipo Carrete, para fijar los conductoresen las perchas o iguanas.

Foto 16. Aislador Tipo Carrete

Page 18: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 18/56

 

También se tiene el aislador Base y se utiliza para separar el nivel de aisladores a los

equipos de distribución (Cortacorriente y Cuchillas).

Figura 17. Aisladores Base para Cuchillas

Figura 18. Aisladores Base para Cortacorrientes 

k.- Conectores

Page 19: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 19/56

 

ENELVEN hace uso de varios tipos de conectores dependiendo del uso que se les vaya

a dar a los mismos y dependiendo del tipo de unión que se quiera realizar.

Para situaciones donde se requiera hacer conexiones de conductores en líneas aéreas o

subterráneas, subestaciones y equipos de aterramiento, de forma temporal, se utilizan

los conectores apernados (mecánicos), con el fin de que se pueda retirar y utilizarlo en

otras conexiones, consiguiendo con ello la economía y ahorro de material.

Si en cambio se requiere una conexión que sea permanente, entonces lo más

recomendable seria utilizar conectores a compresión. El éxito de un conector a presión,

se debe en gran parte a la presión de contacto muy elevada, desarrollada por laherramienta de instalación; estas aplican la presión entre los conductores, comprimiendo

el conector alrededor de los conductores.

Con ello se logra establecer y mantener un contacto de baja resistencia eléctrica entre

las superficies de contacto de los conductores, para conducir la corriente sin

sobrecalentamiento de los conductores. También presentan mayor resistencia a la

corrosión que el tipo apernado.

Para conectar los extremos de los cables a las barras, cuchillas, cortacorrientes, cables

de potencia y TX´s, se requiere el uso de los conectores terminales. Estos proporcionan

una máxima seguridad en sus conexiones eléctricas, garantizando una excelente

conductividad y resistencia mecánica.

Page 20: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 20/56

 

Figura 19. Conectores Terminales en CT´s

ENELVEN también hace uso de los conectores tubulares los cuales son conectores

diseñados para hacer empalmes de conductores, ejerciendo una continuidad y un agarre

mecánico, proporcionando un contacto de baja resistencia eléctrica, como losobservados en la Figura 20.

Los conectores de derivación permiten hacer conexiones de acometidas, puentes y

empalmes tanto a nivel secundario como en primario. Proporciona la unión de dos o

más conductores ejerciendo una presión en los puntos de conexión con baja resistencia

eléctrica de contacto.

Page 21: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 21/56

 

Figura 20. Algunos tipos de conectores

l.- Herrajes

Se entiende por herrajes todo el conjunto de piezas o elementos metálicos que seutilizan para adaptar y fijar mecánicamente los accesorios y equipos en los sistemas

eléctricos aéreos y subterráneos.

Todo el material debe ser galvanizado en caliente, según Norma ASTM-123. Se

clasifican en:

Pines o Palillos: La función principal es la de soportar los aisladores que están

montados en una posición vertical (Tipo Espiga y Tipo Pedestal 56-3).

Los mismos son fabricados en hierro y en acero y son diseñados de acuerdo al voltaje

donde serán utilizados y a la tensión (esfuerzo mecánico) que soporten. Su tamaño

depende si son utilizados en crucetas de hierro o de madera.

Algunos dependen del tipo de aislador que soportaran, ya que tienen una cubierta de

 plomo en la punta. En ENELVEN existen pines cortos y largos, para 8 y 24 kV.

Page 22: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 22/56

 

m.- Vientos

Se utilizan para mantener los postes o estructuras en posición vertical, contrarrestando

fuerzas opositoras debido a la tensión mecánica de los conductores. En algunos casos

esta tensión tiende a sacar los postes de su sitio de fijación. Este material es utilizado en

ENELVEN, con guaya de 5/16 (7 hilos) Clase B.

Figura 21. Vientos

Se fija al poste a través de una fuerza de una tuerca de ojo en la abrazadera. Para ello se

utiliza una malla preformada 5/16 en la tierra con los denominados muertos (Conos de

Concreto) y la varilla para viento 5/8”x 6´.

n.- Compensadores

Estos bancos son más empleado en redes de distribución aéreas, son fáciles de instalar,

requieren un mínimo de mantenimiento y su montaje en altura evita que no tomen

contacto con personal no calificado.

Los bancos fijos de MT (media tensión) pueden armarse por agrupamiento, en

disposición estrella con neutro flotante, de capacitores monofásicos de MT diseñados

 para la tensión de fase del sistema, y con potencias unitarias normalizadas de 33.3, 50,

Page 23: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 23/56

 

83.3, 100, 167, 200, 250, 300 y 400 KVAr, lo que permite construir bancos trifásicos de

100, 150, 250, 300, 500, 600, 750, 900 y 1200 KVAr, o múltiplos de estas potencias.

Disponiendo estos bancos a aproximadamente las 2/3 partes de la longitud del

alimentador, se logra una importante reducción de las pérdidas y de las caídas de

tensión, y una consecuente mejora de la calidad del servicio prestado a los clientes.

De acuerdo a si poseen o no maniobra se clasifican en fijos y automáticos.

Bancos fijos

Figura 22. Bancos Fijos

Se emplean cuando se desea solucionar rápidamente un problema de penalidades por 

 bajo factor de potencia, y también cuando implementar una compensación en BT (baja

tensión) resulta laboriosa o inconveniente en función de la gran cantidad de unidades y

del fraccionamiento excesivo de la potencia a instalar.

Su empleo siempre debe tomarse como alternativa de la compensación fija en BT, y su

función es suministrar la potencia reactiva de base de la carga (valle nocturno) más la

  potencia que aportan los elementos reactivos del sistema para ese estado de carga

(principalmente la potencia reactiva de vacío de los transformadores de distribución).

Los bancos para poste en MT permiten una gran concentración de potencia, lográndose

equipos trifásicos de bajo costo por kVAr.

Page 24: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 24/56

 

Su mantenimiento es prácticamente nulo. Se limita a una periódica revisión del estado

de los capacitores y fusibles, y a la verificación de pérdidas de impregnante o de

aisladores dañados.

Puesto que los equipos son de bajo costo se obtiene un corto período de repago de la

inversión, evitándose las importantes penalizaciones por bajo factor de potencia y por 

deficiente calidad de servicio.

 No se logra ningún mejoramiento en los transformadores de distribución. Estos seguirán

funcionando con el mismo factor de potencia que lo hacía anteriormente, no pudiéndose

liberar de ellos ninguna potencia aparente ni mejorar su caída de tensión interna.

Existen limitaciones en cuanto a la potencia reactiva a incorporar. Si ésta es excesiva, en

el periodo del valle nocturno pueden aparecer sobretensiones y/o efectos armónicos

indeseables por sobre compensación, pues la potencia reactiva incorporada es invariante

a lo largo del día. Dado que estos equipos no poseen ninguna maniobra bajo carga, no

es aplicable ningún dispositivo de regulación. El seccionador fusible de tipo kearney

solo debe usarse como elemento de seccionamiento sin tensión y de protección contra

cortocircuitos.

Como los equipos son de una potencia respetable, la salida fuera de servicio de uno de

ellos puede alterar el buen factor de potencia de la instalación. Se recomienda entonces

disponer de repuestos para atender a estas emergencias.

Bancos automáticos

El propósito de los bancos automáticos es el de suministrar distintos niveles de potencia

reactiva al sistema, en función de una variable de control que puede ser la demanda

reactiva, el nivel de tensión en ese punto del sistema, la hora del día, etc., o bien por una

combinación de dichas variables.

El control más sencillo y económico es el basado en la hora del día. Esto requiere que se

conozcan las características de la curva de carga del sistema en ese punto, y que dichacurva sea repetitiva. Los controles por tiempo disponibles hoy en día permiten asignar 

Page 25: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 25/56

 

distintas bandas horarias de accionamiento de los bancos para días laborables y fines de

semana, así como también prever un funcionamiento diferencial para los días feriados.

Un ejemplo habitual de control por variables combinadas es el control temporizado con

sobre mando por tensión, es decir que el banco se conectará a la hora programada,

siempre y cuando la tensión del sistema no supere un valor máximo aceptable. De la

misma forma el control puede inhibir la desconexión del banco a la hora programada si

la tensión en ese momento fuera demasiado baja. Es claro que, de acuerdo con el tipo de

control elegido, se deberá disponer de los elementos primarios de medición, como TI

y/o TV, según corresponda.

Figura 23. Bancos automáticos en el circuito

Los controladores basados en microprocesador, por ejemplo, no sólo proveen de las

señales necesarias a las llaves de maniobra, sino que poseen capacidad de medición y de

registro de eventos, lo que es de gran utilidad para que el operador del sistema conozca

en detalles el funcionamiento de los alimentadores. Por otra parte, las llaves de vacío, de

larga vida útil sin necesidad de mantenimiento, se están difundiendo muy ampliamente

en la operación de bancos de capacitores de MT.

Page 26: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 26/56

 

Se emplean en los casos en que se desea solucionar en forma sencilla y eficiente un

 problema de penalidades por bajo factor de potencia cuando existen restricciones de

inyección de reactivo capacitivo de acuerdo a la banda horaria; también se aplican para

reducir las pérdidas y las caídas de tensión excesivas en alimentadores de MT, o cuando

implementar una compensación automática en BT resulte laboriosa, onerosa, o

inconveniente en función de la gran cantidad de bancos a instalar y mantener, y al

consiguiente fraccionamiento de la potencia a instalar .

Su empleo siempre debe tomarse como solución principal de la compensación variable

necesaria, y su función es suministrar la potencia reactiva de meseta y pico de la carga,

más la potencia que aportan los elementos reactivos serie del sistema para esos estados

de carga.

Los bancos de MT permiten una gran concentración de potencia para compensar las

zonas de meseta o eventualmente los picos de la curva de carga, permaneciendo

desconectados en los valles nocturnos y eventualmente diurnos, pues pueden

maniobrarse dos veces en el día sin inconvenientes. Están constituidos por tres

capacitores conectados en estrella, un juego de tres llaves monopolares de maniobra de

corte en aceite  (o vacío) con su caja de interconexión, y un controlador programable,todo montado en un bastidor metálico.

Son de sencilla instalación y programación. El mantenimiento se limita a una periódica

revisión del estado de los capacitores y fusibles, la existencia de pérdidas de

impregnante en los capacitores y/o aisladores dañados. En caso de utilizarse llaves en

aceite, se debe recambiar el aceite aislante de las llaves una vez al año, siendo

innecesaria esta tarea en el caso de llaves de vacío, las cuales no requieren de ningúntipo de mantenimiento.

Disponiéndolos aproximadamente a las 2/3 partes de la longitud del alimentador, se

logra una reducción a cero de las pérdidas causadas por el flujo de potencia reactiva. Si

se elige como premisa la reducción de caídas de tensión, se deberá ubicar el banco en el

extremo del distribuidor troncal.

Page 27: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 27/56

 

Se logra un período de repago aceptable evitando, además de las importantes

  penalizaciones por bajo factor de potencia, excelentes resultados de reducción de

 pérdidas y mejoramiento del nivel de tensión en el alimentador. En este sentido, los

  bancos automáticos de capacitores constituyen un método insustituible para el

mejoramiento de la calidad de servicio en cualquier momento del día, dado que no

incorporan potencia reactiva capacitiva en los períodos de valle, atendiendo de este

modo las estrictas reglamentaciones de los entes reguladores.

 No se logra ningún mejoramiento en los transformadores de distribución. Estos seguirán

funcionando con el mismo factor de potencia que lo hacía anteriormente, no pudiéndose

liberar de ellos ninguna potencia aparente ni mejorar su caída de tensión interna.

Al costo del banco fijo, se deberá agregar el de las llaves de maniobra y el controlador.

Sin embargo las ventajas de los bancos automáticos compensan con creces esta mayor 

inversión inicial.

o.- Indicar y describir si los laterales son aéreos o subterráneos

Los laterales monofásicos o trifásicos están conectados a través de seccionadores o

fusibles. Estos se derivan del troncal principal y en su mayoría son monofásicos. En el

circuito Castillo Plaza se observó que los laterales son aéreos.

p.- Equipos de seccionamiento y protección

1.- Cuchillas desconectadoras

Las cuchillas desconectadoras (llamados también Seccionadores) son interruptores de

una  subestación o circuitos eléctricos que protegen a una subestación de cargas

eléctricas demasiado elevadas. Son muy utilizadas en las centrales de transformación de

energía eléctrica de cada ciudad. Consta de las siguientes partes:

• Contacto fijo. Diseñado para trabajo rudo, con recubrimiento de plata.

• Multicontacto móvil. Localizado en el extremo de las cuchillas, con

recubrimiento de plata y muelles de respaldo que proporcionan cuatro puntos de

contacto independientes para óptimo comportamiento y presión de contacto.

Page 28: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 28/56

 

• Cámara interruptiva. Asegura la interrupción sin arco externo. Las levas de las

cuchillas y de la cámara interruptiva están diseñadas para eliminar cualquier 

 posibilidad de flameo externo.

Cuchillas. Fabricadas con doble solera de cobre. La forma de su ensamble  proporciona una mayor rigidez y alineación permanente, para asegurar una

operación confiable.

• Contacto de bisagra. Sus botones de contacto troquelado y plateados en la cara

interna de las cuchillas, en unión con un gozne plateado giratorio y un resorte de

  presión de acero inoxidable, conforman un diseño que permite combinar 

óptimamente la presión de contacto, evitando puntos calientes pero facilitando la

operación y estabilidad de las cuchillas.

• Aisladores tipo estación. De porcelana, dependiendo del tipo de seccionador 

varía el número de campanas.

• Base acanalada. De acero galvanizado de longitud variable, con varios agujeros

y ranuras para instalarse en cualquier estructura.

• Cojinete. De acero, con buje de bronce que proporciona una operación suave.

 No requiere mantenimiento y resiste la corrosión.

Mecanismo de operación. Permite una amplia selección de arreglos de montaje para diferentes estructuras.

La maniobra de operación con estas cuchillas implica abrir antes los interruptores que

las cuchillas en el caso de desconexión. Y cerrar antes las cuchillas y después los

interruptores en el caso de conexión.

Esto es debido a que los seccionadores son un tipo de aparamenta eléctrica más de

seguridad, que de corte propiamente dicho, pues su objetivo es proporcionar unaseguridad visual de desconexión real ante operaciones que requieren desconexión. De

esta forma, un operario trabajando puede ver visualmente que la desconexión se ha

llevado a cabo, y que no sufrirá ninguna clase de daños, aunque exista un fallo en los

interruptores, y que las cuchillas pueden tener peligro de arco eléctrico mientras que los

interruptores, no.

Page 29: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 29/56

 

2.- Pararrayos

Es un dispositivo que limita las sobretensiones que ocurren cuando las líneas son

alcanzadas por descargas eléctricas o como el resultado de maniobras en líneas de

transmisión de muy alta tensión, evitando que descarguen sobre los aisladores,

transformadores y otros equipos, ocasionando la interrupción del servicio eléctrico.

Clasificación

Clase estación. Proveen el mayor grado de protección a equipos de transmisión.

Clase intermedio. Estos pararrayos proveen un grado intermedio de protección a

equipos de distribución y transmisión, hasta 150 KV.

Clase distribución. Son utilizados en circuitos de distribución, en voltajes de 48kV

hasta 37 KV.

Clase secundario. Diseñados para proteger circuitos secundarios, usualmente 1000V o

menos.

Tipos

En la actualidad existen en el mercado dos tipos de pararrayos: el tipo Válvula y el tipoOxido de zinc. Ambos tienen las características diferentes.

Principios de aplicación

Todos los dispositivos aislados, incluyendo transformadores, breakers, entre otros,

tienen características de aislamiento similares. Donde el aislamiento puede soportar 

muy alto voltaje por un corto periodo de tiempo. Luego el voltaje debe ser reducido

rápidamente o el aislamiento fallará.

Los pararrayos tienen características que cuando una sobretensión los alcanza, el voltaje

a través de sus terminales se eleva muy rápidamente hasta producir la descarga a

tierra. Cuando el pararrayo esta descargando, su resistencia es relativamente baja,

sin embargo, aun unos pocos Ohmios pueden causar una significativa caída del

voltaje IR, cuando la corriente de descarga esta en el orden de varios miles de

amperios. Usualmente se asume a 10 kA o 20kA. Esta caída de voltaje a través del

 pararrayo, corresponde a la característica de descarga.

Page 30: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 30/56

 

Luego es solamente necesario seleccionar un pararrayo con características de descarga

tal, que todo el tiempo el voltaje a través del pararrayo sea inferior a las

características de aislamiento del equipo protegido usualmente, al menos un 20%

del margen por debajo.

Criterios de aplicación (sistema de distribución de ENELVEN)

Para el sistema de 24kV los pararrayos de cualquier tipo, deben tener una distancia de

fuga de 22”.

El pararrayo de oxido de zinc no debe usarse en bancos de transformadores estrella

restante delta, por cuanto pueden presentarse sobretensiones cuando se abre una

fase, lo cual originaria la falla del pararrayo.En el sistema de distribución de 8kV, se utilizaran pararrayos de 6kV del tipo válvula o

del tipo oxido.

En el caso de cruces subterráneos, se colocara un pararrayo por fase en cada extremo del

cable. Si se trata de instalaciones subterráneas radiales o en anillos abierto, se

colocara un pararrayo por fase, solo en el bajante subterráneo.

Las instalaciones aéreas en 24kV, en zonas de baja contaminación, se protegerán con

 pararrayos de 18kV del tipo válvula o del tipo oxido de zinc.

Las instalaciones aéreas en 24kV en zonas de alta contaminación, se protegerán con

 pararrayos de 21kV del tipo de oxido de zinc.

En los cruces subterráneos en 24kV se instalara un pararrayo de 18kV por fase, en cada

extremo del cable.

En las instalaciones subterráneas en 24kV radiales serán protegidas con pararrayos de

18kV. Si se utiliza del tipo válvula se colocara en el bajante subterráneo y otro en el

equipo de transformadores (por fase). En caso de ser del tipo oxido de zinc, se

 podrá colocar solo un pararrayo por fase en el bajante subterráneo, si la distancia

del cable es inferior a 150mts. En caso contrario aplica la misma regla que para el

tipo válvula.

En las instalaciones subterráneas en 24kV que utilicen switches PAD-MOUNTED, se

instalara un pararrayo de 18kV en el bajante subterráneo y en el punto de apertura

del círculo (por fase).

Page 31: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 31/56

 

3.- Fusible

Es un dispositivo, constituido por un soporte adecuado, un filamento o lámina de un

metal o aleación de bajo punto de fusión que se intercala en un punto determinado de

una instalación eléctrica para que se funda, por  Efecto Joule, cuando la intensidad de

corriente supere, por un cortocircuito o un exceso de carga, un determinado valor que

  pudiera hacer peligrar la integridad de los conductores de la instalación con el

consiguiente riesgo de incendio o destrucción de otros elementos.

Funciones

• Proteger las líneas y equipos de daños, durante fallas.

• Reducir el número de suscriptores sin servicio.

• Ahorrar el tiempo en la localización de las fallas.

Para cumplir con esto, se deben instalar fusibles en el inicio de los ramales y en cada

 punto donde se conecten transformadores y capacitores. Los fusibles son instalados en

cortadores abiertos, los cuales son diseñados para abrir el circuito cuando el fusible se

funde.

Las característica de fundido del fusible, depende de la cantidad de corriente y del

tiempo que esta permanezca, la cual se representa con curvas tiempo-corriente.

La coordinación de fusibles en un sistema de distribución, las curvas de tiempo de inicio

de fundido y tiempo de despeje, son necesarios. La coordinación consiste en la

selección de dispositivos de protección y su ubicación en el circuito con respecto a sus

curvas tiempo-corriente, de manera tal que garanticen el despeje selectivo de fallas.

Clasificación: criterios de utilización

Los fusibles se califican, según la norma NEMA en tipo K (rapido) y tipo T (lento).

• En ENELVEN se ha normalizado el uso de fusible tipo K para la protección de

ramales, transformadores y capacitores.

• Los fusibles para la protección de ramales, se seleccionaran con una capacidad

de por lo menos 1.35 veces la máxima corriente de carga. Con el fin de mantener 

Page 32: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 32/56

 

un adecuado margen de coordinación con los fusibles para transformadores y

evitar el cambio de los fusibles cuando se incrementa la carga del ramal. Se

recomienda utilizar como mínimo, fusibles de 25k en los ramales que son de

varios tramos y en los canales de uno o dos tramos, se instalara la capacidad

superior del fusible instalado para el Tx.

• Los fusibles de capacidad normalizada (NEMA) coordinan entre si y ellos son:

6k, 10k, 15k, 25k, 40k y 65k.

• Los ajustes de los relés de sobrecorriente de los interruptores, están

normalizados en el sistema de ENELVEN y coordinan con los fusibles hasta

65k, por lo tanto, es el mayor fusible que se utilizara en ramales o equipos.

• La aplicación de fusibles para la protección de transformadores se realiza de

modo que la corriente mínima a la cual empieza fundirse el fusible a 300seg.,

sea por lo menos 1.5 veces la corriente a plena carga del transformador. La

Tabla 3 muestra la capacidad adecuada de fusibles para transformadores Tipo

Poste.

Tabla 3. Capacidad adecuada de fusibles para transformadores Tipo Poste.

• Los bancos de capacitores serán protegidos con fusibles cuya capacidad mínima

sea 135% de la corriente nominal del banco. En la Tabla 4, se muestran los

fusibles recomendados para la protección de capacitores.

Page 33: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 33/56

 

Tabla 4. Fusibles recomendados para la protección de capacitores

• Se recomienda la utilización de fusibles limitadores de corriente para la

 protección de equipos en zonas con altos niveles de cortocircuitos.

La función de los fusibles limitadores de corriente es interrumpir altas corrientes de

falla, en forma muy rápida. De esta manera, limita la cantidad de energía que se

suministra a la falla.

Se estima que la utilización de fusibles limitadores es conveniente de 24 kV para

niveles de cortocircuito superiores a los 5000amp. La selección de ingeniería de

distribución, deberá orientar esta aplicación. Adicionalmente, se deberán instalar 

fusibles limitadores a aquellos transformadores instalados en caseta, con la finalidad de

disminuir los efectos de una eventual falla que allí se produzca. La Tabla 5 indica los

fusibles limitadores tipo K-MATE (AB Chance) adecuados para la protección de

transformadores Tipo Poste.

Tabla 5. Fusibles limitadores tipo K-MATE para la protección de transformadores

Tipo Poste.

Page 34: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 34/56

 

4.- Cortacorrientes

Es un tipo de interruptor de forma automática de accionamiento eléctrico diseñado para

 proteger un circuito eléctrico de daños causados por  sobrecarga o corto circuito. Su

función básica es la detección de una anomalía, y mediante la interrupción del flujo

eléctrico. Un interruptor de circuito se puede restablecer (ya sea manualmente o

automáticamente) para reanudar el funcionamiento normal.

Las partes de un cortacorriente pueden ser observadas en la siguiente Figura:

Figura 24. Partes de un cortacorriente

Algunas imágenes de los equipos de protección se presentan a continuación:

Page 35: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 35/56

 

Figura 25. Protecciones (Cuchillas y Cortacorriente)

Figura 26. Protecciones (Fusibles, Pararrayos y Cortacorriente)

q.- Indicar si alimentan alumbrado público

Page 36: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 36/56

 

 

En el circuito Castillo Plaza se observó que la gran mayoría de los postes alimentan

alumbrado público.

Figura 27. Alumbrado público en postes

r.- Situaciones irregulares observadas

A continuación se describen una serie de irregularidades observadas al momento de

realizar el recorrido del circuito, desde la Facultad de Ingeniería hasta la Sub-Estación

Paraíso:

• Varios postes no cuentan con la identificación adecuada (UBT), dificultando su

ubicación a la hora de hacer un estudio y/o mantenimiento por parte de la

empresa y cualquier ente.

• Existen conexiones ilegales que atentan contra el funcionamiento estable del

sistema y los elementos que lo conforman, a la vez que ponen en peligro a las

 personas que realizan dicha instalación. Dichas conexiones pueden producir 

cortes del servicio eléctrico a causa de fallas, las cuales generan un descontento

en la comunidad en general.

• Varios elementos se encuentran en mal estado como: aisladores (rotos), postes

de hierro (oxidados), cableado viejo, y similares

Page 37: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 37/56

 

s.- Otros aspectos

A continuación se presentan algunas características observadas de algunos postes del

recorrido.

.

Poste Material TransformadorAlumbrado

públicoF07K15 Concreto No SIF07K14 Hierro No SIF07K10 Hierro No SIF07K03 Hierro 150/75kVA SIF07K08 Concreto No SI

F07K10 Hierro No NOF07N05 Hierro 25kVA 1φ SIF07N01 Hierro No NOF07N02 Hierro No NOF07N03 Concreto No SiF07N04 Hierro No SiF07N06 Hierro No SiF07N07 Hierro 50Kva 1φ Si

5A13 Hierro No No5A28 Concreto 2X37.5Kva 1φ Si

G05H14 Hierro No Si

G05H13 Hierro 50Kva 1ф Si

G05H12 Hierro2x25Kva 1ф1x50Kva 1ф

Si

G05G08 Hierro 3X37.5kVA 1ф SiG05G07 Hierro 3X37.5kVA 1ф SiG05G15 Hierro 75KVA 1ф SiG05K96 Hierro 2X50Kva 1ф Si

G05K11 Concreto1X100KVA 1ф2X37.5KVA 1ф

Si

G05K23 Hierro NO Si

G05K24 75kVA1фG05K25 Hierro 2X25KVA 1ф1X50KVA 1ф

 No

G05023 N.A PAD MOUNTED500kVA

 N.A

G05C20 Hierro 50kVA 1ф NoG05C21 Hierro No SiG05006 Hierro No Si

Page 38: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 38/56

 

 

Tabla 6.- Características de algunos postes del recorrido

CONCLUSIONES

Al finalizar el presente trabajo se pudo detallar y conocer en su gran mayoría los

elementos que componen un sistema de distribución, con los cuales se obtienen las

siguientes conclusiones:

El sistema de distribución correspondiente al Circuito Castillo Plaza está alimentado por 

líneas de 24kV y 8Kv, siendo nuestro objeto de estudio el circuito de 24 kV; la cual es

alimentada por el transformador número 2 de la Sub-Estación Paraíso y cuya capacidadinstalada es de 42MVA en 138/24 kV.

Page 39: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 39/56

 

En el circuito se logró observar transformadores de 37.5 kVA, 50 kVA, 75 kVA y

100kVA los cuales alimentan varias cargas. Se observaron dos tipos de materiales de

construcción de los postes, los cuales son de hierro o concreto, de los cuales la gran

mayoría alimenta alumbrado público en el circuito. También se pudo observar que los

 postes dependiendo de su configuración presentaban crucetas de hierro (en su mayoría)

y de madera o solo presentaba diferentes tipos de aisladores.

Por otra parte, los conectores que se observaron en la subestación Paraíso son los

llamados conectores terminales, específicamente en los CT de la misma. Estos

 proporcionan una máxima seguridad en sus conexiones eléctricas, garantizando una

excelente conductividad y resistencia mecánica. También se presentaron conectores en

los conductores en el circuito, con el fin de empalmar dos conductores del tramo.

En el circuito se observaron vientos, los cuales se utilizan para mantener los postes o

estructuras en posición vertical, contrarrestando fuerzas opositoras debido a la tensión

mecánica de los conductores.

En cuanto a la compensación, se observaron en algunos postes bancos de capacitores en

su mayoría automáticos de 200kVAR, los cuales suministran distintos niveles de

 potencia reactiva al sistema.

En cuando a los equipos de protecciones en los postes, se observaron fusibles (los

cuales poseen una lámina que se funde en caso de haber una falla); los pararrayos, los

cuales atraen un rayo ionizando del aire para llamar y conducir la descarga hacia tierra;

las cuchillas, que protegen a una subestación de cargas eléctricas demasiado elevadas; y

los cortacorriente, que de forma automática de accionamiento protegen un circuito 

eléctrico de daños causados por sobrecarga o corto circuito.

Se observaron irregularidades como conexiones ilegales las cuales atentan contra el

funcionamiento estable del sistema y los elementos que lo componen. También algunos

 postes no contaron con su indicación adecuada.

Page 40: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 40/56

 

Después de haber revisado y estudiado los componentes de un sistema de distribución,

el estudiante se aprendido su configuración y los distintos elementos que la constituyen.

RECOMENDACIONES

• Seguir realizando este tipo de trabajos y de visitas guiadas, para conocer más a

fondo el sistema eléctrico, en nuestro caso el sistema de distribución.

• Coordinar con distintas empresas charlas relacionadas a su labor y a los equipos

que manejan, para que el estudiante conozcan acerca de las distintas actividades

que se realizan en dichas empresas.

Page 41: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 41/56

 

 

BIBLIOGRAFIA

• ENELVEN.CA. [On-line]. Maracaibo, Venezuela. Disponible en:http://www.enelven.gob.ve/

• Rivera, Ender y colaboradores. Guía de ENELVEN. Herramientas yConexiones. ENELVEN. Maracaibo, Venezuela.

• Varios. Guía de ENELVEN. Materiales de distribuciones y normas deconstrucción. ENELVEN. Maracaibo, Venezuela.

• Wikipedia. [On-line]. Fusibles. Disponible en:http://es.wikipedia.org/wiki/Fusible  

Page 42: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 42/56

Page 43: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 43/56

 

Anexo 1.- Sub-Estación Paraíso

Page 44: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 44/56

Page 45: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 45/56

 

Anexo 2.- Recorrido desde Facultad de Ingeniería hasta Sub-Estación Paraíso

Page 46: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 46/56

Page 47: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 47/56

Page 48: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 48/56

Page 49: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 49/56

Page 50: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 50/56

Page 51: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 51/56

 

Símbolo Significado

Sub-Estación Paraíso

Transformador 

Poste de Concreto

Poste de Hierro Tubular 

Línea Primaria

Línea de Transmisión y Subtransmisión

Page 52: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 52/56

 

Anexo 3.- Postes

Page 53: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 53/56

Page 54: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 54/56

Page 55: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 55/56

 

Anexo 4.- Circuito Castillo Plaza 24 kV

Page 56: Trabajo de Dstribucion.final.2

5/9/2018 Trabajo de Dstribucion.final.2 - slidepdf.com

http://slidepdf.com/reader/full/trabajo-de-dstribucionfinal2 56/56