Trabajo Final Geofísica

31
Perfil geológico del depósito de basura municipal de la Ciudad de Oaxaca mediante métodos potenciales de prospección geofísica, México. Hernández-Sánchez 1 , R.I. y López-Yllescas 1 , M. 1 Estudiante de la maestría en conservación y aprovechamiento de recursos naturales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional de Oaxaca. Instituto Politécnico Nacional Resumen Este trabajo tiene como objetivo modelar de forma conjunta datos magnéticos y gravimétricos para obtener un perfil geológico hasta 50 m del depósito de basura de la Ciudad de Oaxaca. Se obtuvieron datos puntuales del valor relativo de la gravedad terrestre en metros, con sus correspondientes coordenadas en formato UTM, la elevación y hora de lectura; los datos magnéticos se obtuvieron de la carta aeromagnética E14-D57 y se llevaron a cabo las correcciones correspondientes para el tipo de dato. Se obtuvieron mapas de anomalías residuales y tres perfiles para cada método, gravimétrico y magnético. Se realizó el modelado conjunto de los datos para determinar la geología estructural y regional del área de estudio. Palabras clave: Gravimetría, Magnetometría, Villa de Zaachila, Programa GM-SYS, Modelado Conjunto, Datos Aeromagnéticos. Introducción El estudio físico de la tierra mediante la prospección geofísica es la aplicación de las ciencias físicas al estudio de la parte más superficial de la corteza terrestre. Actualmente, esta ciencia es aplicada no sólo en la exploración petrolera y minera sino también a la prospección en general, a las aguas subterráneas y a otros problemas de ingeniería civil (Cantos-Figueroa, 1974). Con los métodos geofísicos se puede delimitar la configuración estructural y estratigráfica del suelo y

Transcript of Trabajo Final Geofísica

Page 1: Trabajo Final Geofísica

Perfil geológico del depósito de basura municipal de la Ciudad de Oaxaca mediante métodos potenciales de prospección geofísica,

México.

Hernández-Sánchez1, R.I. y López-Yllescas1, M.

1Estudiante de la maestría en conservación y aprovechamiento de recursos naturales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional de Oaxaca. Instituto Politécnico

Nacional

Resumen

Este trabajo tiene como objetivo modelar de forma conjunta datos magnéticos y gravimétricos para obtener un perfil geológico hasta 50 m del depósito de basura de la Ciudad de Oaxaca. Se obtuvieron datos puntuales del valor relativo de la gravedad terrestre en metros, con sus correspondientes coordenadas en formato UTM, la elevación y hora de lectura; los datos magnéticos se obtuvieron de la carta aeromagnética E14-D57 y se llevaron a cabo las correcciones correspondientes para el tipo de dato. Se obtuvieron mapas de anomalías residuales y tres perfiles para cada método, gravimétrico y magnético. Se realizó el modelado conjunto de los datos para determinar la geología estructural y regional del área de estudio.

Palabras clave: Gravimetría, Magnetometría, Villa de Zaachila, Programa GM-SYS, Modelado Conjunto, Datos Aeromagnéticos.

Introducción

El estudio físico de la tierra mediante la prospección geofísica es la aplicación de

las ciencias físicas al estudio de la parte más superficial de la corteza terrestre.

Actualmente, esta ciencia es aplicada no sólo en la exploración petrolera y minera

sino también a la prospección en general, a las aguas subterráneas y a otros

problemas de ingeniería civil (Cantos-Figueroa, 1974).

Con los métodos geofísicos se puede delimitar la configuración estructural y

estratigráfica del suelo y subsuelo. Por ello los métodos de prospección geofísica

se clasifican de acuerdo a la propiedad fisicoquímica de las capas del subsuelo o

de alguna característica relacionada con dichas propiedades sobre la zona a

explorar (Cantos-Figueroa, 1974; Kearey et al., 2002; Telford et al., 2004).

Los métodos de interés para la caracterización geológica del área de estudio son

el método gravimétrico y magnético. El método gravimétrico está basado en el

campo natural de la gravedad y estudia el componente vertical del campo

gravitatorio terrestre y el método magnético se basa en pequeñas variaciones del

campo magnético ya que puede indicar la presencia en profundidad de materiales

Page 2: Trabajo Final Geofísica

magnéticos o minerales que van asociados a las rocas ígneas proporcionando

información sobre el basamento y su profundidad, siendo este una herramienta al

estudiar la geología estructural y regional (Cantos-Figueroa, 1974; Kearey et al.,

2002; Telford et al., 2004).

Por lo anterior en este trabajo se analizan datos gravimétricos y magnéticos del

área de estudio para determinar el espesor del depósito de basura de la Ciudad de

Oaxaca situado con el objetivo de conocer a que profundidad del subsuelo se

localiza. Cabe destacar que en la zona no saturada, la sub-zona de humedad

aumenta sólo cuando llueve o por irrigación, y cuando se satura acontece el

escurrimiento superficial y la infiltración más profunda, lo cual puede resultar en la

contaminación del agua subterránea de esta zona.

Antecedentes

La zona de estudio ha sido evaluada usando métodos convencionales: DRASTIC,

AVI y GOD, para obtener la vulnerabilidad de contaminación del acuífero de

Zaachila, para ello Belmonte-Jiménez et al. (2005) monitorearon la profundidad al

nivel freático y la determinaron a partir de un sistema de pozos, así como la

dirección preferencial del agua subterránea la cual es de N a S. Así mismo,

mencionan que el acuífero está constituido principalmente por arena, grava y

diferentes contenidos de arcilla; el espesor del suelo es en algunos sitios hasta de

1.5 m y está constituido por limos, arcilla y material arenoso (Belmonte-Jiménez et

al., 2005). Observaron, también, que los valores más altos de vulnerabilidad se

sitúan en las zonas meridionales y centrales del área, de la ciudad de Oaxaca

hacia el sur incluyendo San Bartolo Coyotepec, así como la población de Zaachila

y el aeropuerto (Belmonte-Jiménez et al., 2005). Respecto al análisis de

sensibilidad, indican que la profundidad al nivel freático es el principal parámetro

que influye en la determinación de la vulnerabilidad, seguida por el impacto a la

zona vadosa y el tipo del suelo (Belmonte-Jiménez et al., 2005).

También, Belmonte-Jiménez et al. (2012) caracterizaron la laguna de lixiviados del

relleno sanitario de la ciudad de Oaxaca, integrando datos geofísicos y

Page 3: Trabajo Final Geofísica

geohidrológicos con lo cual propusieron un modelo hidrogeológico. Determinaron

la estructura del subsuelo y características del mismo, obtuvieron valores de baja

resistividad (1.5-2.5 Ohmm) los cuales los relacionaron con un suelo contaminado

subyaciendo a la laguna de lixiviados y al medio fracturado, y detectaron un

desplazamiento de la pluma contaminante hacia el SW de la laguna (Belmonte-

Jiménez et al., 2012).

Existen reportes técnicos elaborados para el área de estudio, respecto a aspectos

fisicoquímicos que influyen sobre la aptitud del área de estudio para la disposición

de los residuos municipales (Navarro-Mendoza et al., NR) y respecto al método

ERIS para determinar el riesgo de contaminación del sistema acuífero Valle de

Zaachila (Belmonte-Jiménez, NR).

De acuerdo a los antecedentes, se observa que no existen trabajos dentro del

área de estudio que utilicen herramientas de prospección geofísica conjunta para

determinar es espesor hasta profundidades mayores a 100 m, por ello en este

trabajo se propone la utilización del método gravimétrico y magnético para

elaborar el modelado directo de los mismos para la determinación del espesor del

depósito de basura y su influencia hasta 50 m.

Área de estudio

El depósito de basura de la Ciudad de Oaxaca se localiza dentro del área de

estudio al sureste de la ciudad, en el kilómetro 15 de la carretera Oaxaca-Puerto

Ángel, entre las coordenadas geográficas 16° 55’ 11.24’’ y 16° 55’ 29.91’’ latitud

norte y 96° 41’ 18.74’’ y 96°41’ 1.04’’ longitud oeste, en la zona intermedia

localizada entre la altimetría 1500-1640 m.s.n.m dentro de la jurisdicción del

Distrito de Villa de Zaachila.

Page 4: Trabajo Final Geofísica

Figura. Localización del área de estudio.

El área total del depósito municipal es de 16 Ha, se estima que se recolectan de

600 a 800 tondía-1 de desechos sólidos. La precipitación media anual del área es

de 750 mm con clima cálido semi-seco con temperaturas medias anuales entre

16-20°C.

Los escurrimientos son en su mayoría de tipo intermitente siendo la velocidad de

escurrimiento favorecida por la topografía del sitio, y confluyen a uno principal que

se considera de escurrimiento permanente gracias a las aportaciones de lixiviados

del basurero, el cual desemboca al Río Atoyac.

La vegetación de la zona es escasa y de régimen caducifolio, dominando los

pastizales y matorrales; así mismo, existen en menor número cactáceas, agaves y

sabinos, en lugares donde se localiza agua en abundancia relativa en época de

secas. La fauna en el área adyacente así como en la laguna de lixiviados es muy

variada, abundante y en estado semisalvaje como doméstica.

Se pueden encontrar zonas de cultivo adyacentes al área del depósito de basura,

aunque estas son escazas.

Geología regional

Page 5: Trabajo Final Geofísica

La historia geológica del territorio oaxaqueño se remonta a los 1200 m. a. Esta

edad corresponde a la que se ha calculado para las rocas metamórficas de la

región de Nochixtlán, las cuales son agrupadas dentro del llamado Complejo

Oaxaqueño. Se estima que estas rocas fueron derivadas de los depósitos

sedimentarios producidos en una cuenca marina que se originó a partir del

rompimiento de la antigua corteza continental y la distensión de placas con

posteriores desarrollos de arcos insulares y zonas de márgenes continentales con

subducción, lo cual trajo como consecuencia, además de actividad ígnea, que

emergiera el conjunto sedimentario a partir del plegamiento y cabalgamiento de

estratos producidos por el choque de placas (Morán-Zenteno, D. J. 1984; Torales-

Iniesta, 1998).

De acuerdo con lo anterior, se estima que en esa época prevalecían formaciones

montañosas de rocas sedimentarias asociadas a rocas ígneas, las cuales fueron

expuestas al intemperismo durante periodos prolongados. Esto se pone de

manifiesto si consideramos que las rocas que constituyen y sobreyacen a las

rocas metamórficas, no tienen una continuidad cronológica, sino por el contrario,

las rocas calcáreas y arcillosas que se presentan enseguida de las rocas

metamórficas tienen edades del Paleozoico (Cámbrico-Ordovícico) (Morán-

Zenteno, D. J. 1984; Torales-Iniesta, 1998).

Este ordenamiento implica una transgresión marina (invasión del mar hacia el

continente) sobre las rocas metamórficas precámbricas, que sirvieron como base

de una cuenca en las que se depositaron los sedimentos que originaron las rocas

calcáreas y arcillosas e incluso las rocas metamórficas del Paleozoico (Morán-

Zenteno, D. J. 1984; Torales-Iniesta, 1998).

Esto hace suponer la existencia de eventos orogénicos que afectaron a una

secuencia sedimentaria, durante y posiblemente antes del Paleozoico, y que

posteriormente fueron expuestas por efectos de denudación de las capas que las

sobreyacían (Morán-Zenteno, D. J. 1984; Torales-Iniesta, 1998).

Page 6: Trabajo Final Geofísica

La ausencia de continuidad de los depósitos sedimentarios en el periodo Devónico

pone de manifiesto que las rocas calcáreas y arcillosas del Cámbrico-Ordovícico,

fueron expuestas al intemperismo como efecto de una regresión marina

(levantamiento de la superficie marina o retirada del nivel del mar) durante

aproximadamente 60 m.a (Morán-Zenteno, D. J. 1984; Torales-Iniesta, 1998).

Estos fenómenos de transgresión y regresión marinas, además de ser atribuidos a

disturbios tectónicos, también indican la gran actividad de la dinámica terrestre,

pues están asociados a fenómenos de rompimiento y expansión de la corteza,

acompañada de convergencia y subsidencia de las placas existentes en aquella

época y que se repitieron a finales del Paleozoico y principios del Mesozoico, en

donde se ubican la existencia de un solo gran continente conocido como Pangea,

que 20 m. a. de años después, a finales del Triásico, iniciara la separación de su

parte septentrional de la meridional y posteriormente, 65 m. a. después, a finales

del Jurásico, se desarrolló la parte norte del Océano Atlántico y se inició la

apertura en su parte sur. Para fines del Cretácico, hace 65 m. a., se ensanchó

formalmente el Océano Atlántico (Morán-Zenteno, D. J. 1984; Torales-Iniesta,

1998).

En el estado de Oaxaca, durante el Triásico, se llevó a cabo una emersión parcial

del territorio en forma de islas o península, que después quedó emergida en parte

durante la invasión marina de la porción central del país en el Triásico Superior,

hace 200 m. a. En esta época la región de la Mixteca Oaxaqueña tenía la

presencia de un área continental aparentemente sin sufrir invasiones marinas, de

tal manera que el proceso erosivo llega a ser dominante durante

aproximadamente 30 m. a., en el Jurásico Inferior (Morán-Zenteno, D. J. 1984;

Torales-Iniesta, 1998).

Posteriormente se registran evidencias de la existencia de un ambiente mixto de

depositación representando por alternancias de rocas de origen continentales con

rocas de origen marino. Las rocas carbonosas de la porción de Mixtepec indican

condiciones semi-continentales o lagunares (Morán-Zenteno, D. J. 1984; Torales-

Iniesta, 1998).

Page 7: Trabajo Final Geofísica

Así mismo, tal parece que la estabilización de los ambientes de depósito se

presentan como consecuencia de eventos orogénicos ocurridos en el Jurásico

Superior, lo cual provocó que las rocas emergieran y quedaran expuestas a

francos de continuidad cronológica al carecer de formaciones de rocas de esta

edad y del Cretácico Inferior; es decir, las rocas del Jurásico Medio subyacen a las

del Cretácico Medio (Morán-Zenteno, D. J. 1984; Torales-Iniesta, 1998).

Durante el Cretácico Inferior, aproximadamente hace 100 m. a., el mar invadió de

nuevo la tierra firme llegando a afectar gran parte de la región central del Estado

de Oaxaca, tal y como muestra la presencia de calizas cretáceas en las zonas

cercanas a Puerto Ángel (Morán-Zenteno, D. J. 1984; Torales-Iniesta, 1998).

Al respecto, se ha considerado que en esta época los océanos Atlántico y Pacífico

llegaron a estar unidos. Este fenómeno se presentó hasta finales del Cretácico, ya

que para inicios del terciario, hace 70 m. a., el territorio mexicano se vio afectado

por otro evento tectónico que provocó una emersión del continente separando

definitivamente ambos océanos (Morán-Zenteno, D. J. 1984; Torales-Iniesta,

1998).

En el periodo Terciario, el territorio de Oaxaca se caracterizó por la presencia de

intensa erosión y actividad ígnea, que trajo como consecuencia los depósitos

sedimentarios continentales clásticos, asociados a rocas volcánicas, tales como se

presentan en las regiones de Huajuapan y Yanhuitlán (Morán-Zenteno, D. J. 1984;

Torales-Iniesta, 1998).

Finalmente, en el periodo Cuaternario que tienen de referencia un millón de años,

predomina la erosión produciendo depósitos sedimentarios escasamente

consolidados. En el periodo actual el proceso erosivo continúa, sin embargo,

interviene un factor adicional que altera el ambiente y que acelera la dinámica

terrestre, que es el factor humano (Morán-Zenteno, D. J. 1984; Torales-Iniesta,

1998).

Geología local

Page 8: Trabajo Final Geofísica

La zona de estudio se encuentra ubicada dentro del Terreno Zapoteco el cual está

formado por un basamento de rocas metamórficas en facies granulita y por

anortosita, sobre estas rocas hay una cubierta de sedimentos paleozoicos

(Dávalos-Álvarez, 2006). Se extiende a la porción meridional de la Sierra Madre

del Sur, desde las intermediaciones de Tehuacán, Puebla, hacia la Ciudad de

Oaxaca, en este punto se distribuye alrededor de la ciudad ampliándose hacia el

sureste (SE) del Estado de Oaxaca, donde en basamento de este terreno es

formado por el Complejo Oaxaqueño (Dávalos-Álvarez, 2006).

Afloramientos del Complejo Oaxaqueño se pueden ver al sur y sureste de

Tehuacán, su afloramiento más extenso es una franja norte-sur, que va desde 40

km al noreste de la Ciudad de Oaxaca y se prolonga hasta la región entre

Suchixtepec y Totoltepec, al sur de Miahuatlán de Porfirio Díaz; al norte y hacia la

parte poniente de la Ciudad de Oaxaca, también afloran estas rocas precámbricas.

Y específicamente, la zona de estudio tiene una geología local del Terciario

volcano-sedimentario continental y Cretácico Temprano marino (Dávalos-Álvarez,

2006).

El Complejo Oaxaqueño está compuesto principalmente por ortogneis cuarzo

feldespático, charnokita, metasedimentos (calco-silicatos), metagabro y mármol

intrusionado por anortosita. Las edades del protolito para rocas del basamento

cristalino son del Proterozoico (Dávalos-Álvarez, 2006).

La secuencia paleozoica que cubre de forma discordante al basamento cristalino

comienza con intercalaciones de lutita negra y caliza plegada de la Formación

Tiñú, estas rocas son del Cámbrico-Ordovícivo; continua con rocas misisípicas de

la Formación Santiago que son arenisca calcárea y conglomerado, sobreyacidas

por caliza marina, limolita calcárea y lutita; le sigue la Formación Ixcaltepec que

son intercalaciones de arenisca, limolita, lutita y caliza, esta formación contiene

fauna abundante del Pensilvánico; las unidades que coronan la secuencia

paleozoica son, la Formación Matzitzi: alternancia de arenisca cuarzo-feldespática

y arenisca conglomerática con lutitas del Carbonífero-Pérmico, y la Formación

Page 9: Trabajo Final Geofísica

Yododeñe: conglomerado, arenisca, limolita y lutita escasa (Dávalos-Álvarez,

2006).

Fracturas

Además, la zona de estudio presenta zonas de fractura donde la propagación de

las fracturas parece ser de Modo II o de cizalla, fractura con movimiento paralelo a

la dirección de propagación de la misma, con un enlace de fracturas (Dávalos-

Álvarez, 2006).

Las zonas de cizalla pueden ser frágiles, dúctiles o una combinación de ambas

tienden a ser de forma tubular, su longitud es mayor que su ancho (Dávalos-

Álvarez, 2006). Para que se forme una zona de cizalla frágil, los mecanismos de

deformación están bajo condiciones de temperatura y presión relativamente bajas,

hay una alta distorsión y una alta presión de fluidos (Dávalos-Álvarez, 2006).

Las fracturas tipo Riedel (R), se forman con ángulos de 12°-18° respecto a la

orientación preferente de la zona de deformación y tienen el mismo sentido de

movimiento de esta y las de Riedel conjugadas (R´), se deforman a 72°-78° y

tienen una cinemática contraria a la R (Dávalos-Álvarez, 2006).

Este par de fracturas se desarrollan con un ángulo de 27°-30° del esfuerzo

máximo principal (1(Dávalos-Álvarez, 2006)). Otras estructuras que se asocian

con este tipo de sistema de fracturamiento son: fracturas de tensión (T), se forman

paralelas al esfuerzo máximo principal; y tres fracturas de cizalla, X que tienen

cizalla derecha y se forman a 110°, P con cizalla sintética a la cizalla general y se

forman a 165°, y Y que son paralelas a la zona de cizalla y con igual sentido de

desplazamiento (Fig. ) (Dávalos-Álvarez, 2006).

Page 10: Trabajo Final Geofísica

Figura . Configuración del sistema de fracturas tipo Riedel. Fuente: .

Falla de Oaxaca

Dadas las características morfológicas, su orientación preferente, la litología en

sus bloques y el estilo deformación, por reactivación o rompimiento, la falla de

Oaxaca se puede separar en tres sectores: sur, centro y norte: el sector sur queda

dentro de la Hoja Zaachila y consituye un lineamiento que va desde Miahuatlán

hasta la Ciudad de Oaxaca, donde es limitado por la falla de Donají; el sector

meridional se caracteriza por un valle discontinuo cortado por depresiones

ortogonales al escarpe; los desnivele de este sector son menos pronunciados que

en los otros dos sectores; el rumbo preferente del sector sur es N-S y tanto en el

bloque del piso, como en el techo, afloran rocas terciarias (Dávalos-Álvarez,

2006).

El sector centro corresponde a los afloramientos ubicados al norte de la falla

Donají, entre la Ciudad de Oaxaca y la población de Teotitlán, este sector está

dentro de la Hoja de Oaxaca y corresponde con el frente poniente de la Sierra de

Juárez formando la parte septentrional del valle de Oaxaca y se prolonga a la

cañada Oaxaqueña; tiene una orientación preferente NNW, en el bloque del bajo

de este sector afloran milonitas y en el del alto rocas del Complejo Oaxaqueño y

de su cubierta mesozoica, así como depósitos continentales cenozoicos (Dávalos-

Álvarez, 2006). En esta zona el fallamiento fue producto de reactivación de planos

heredados de la deformación milonítica que caracteriza a la Sierra Juárez

(Dávalos-Álvarez, 2006).

Page 11: Trabajo Final Geofísica

El sector norte corresponde a la parte de la traza ubicada dentro de la Hoja

Orizaba, comienza aproximadamente 15 km al sur de Teotitlán y se prolonga

hasta el norte de Tehuacán; forma un contraste topográfico fuerte entre la Sierra

Mazateca y el Valle de Tehuacán; en este sector se da un marcado cambio en la

orientación de la traza, siendo NNW entre Teotitlán y Calipan, y cambiando a NW

de Zinacatepec hasta Tehuacán (Dávalos-Álvarez, 2006). En este sector afloran

en el bloque de piso rocas precámbricas y del Jurásico Tardío-Cretácico, y en el

de techo sedimentos terciarios; el estilo de deformación ha sido influenciado por la

reactivación de estructuras preexistentes, originadas por la orogenia Laramide

(Dávalos-Álvarez, 2006).

Tipos de rocas

Rocas Sedimentarias

En términos generales los fenómenos que intervienen para dar origen a las rocas

sedimentarias comprenden el intemperismo, la erosión, transporte, depositación y

diagénesis de materiales derivados de la disgregación clástica, orgánica y química

existentes en las áreas continentales, es decir, arriba del nivel del mar. El destino

de estos materiales son las cuencas marinas o las cuencas continentales, como

lagos, adquiriendo características asociadas a los propios ambientes de la zona de

depósito, las cuales prevalecen en las rocas a las que dan origen, tal como se

deduce de la observación de fenómenos, lo que permite reproducir espacial y

temporalmente su historia (Torales-Iniesta, 1998).

En el Estado de Oaxaca, las rocas sedimentarias existentes no tienen la misma

extensión ni las mismas posibilidades de contener hidrocarburos como las de los

Estados que limitan con el Golfo de México; en cambio, han mostrado tener un

importante potencial como productoras de materia prima para un gran número de

industrias que utilizan en sus procesos minerales no metálicos, tal es el caso de

los yacimientos de yeso, cal, arena sílica y materiales arcillosos (Torales-Iniesta,

1998).

Rocas Ígneas

Page 12: Trabajo Final Geofísica

La ocurrencia de las rocas ígneas está relacionada a soluciones provenientes del

manto en forma de emanaciones volcánicas o de rocas cristalizadas a

profundidad. Además, se ha establecido que el emplazamiento de las rocas

ígneas tiene que ver con zonas de debilidad en la corteza y fenómenos de

movilidad tectónica. El interés que revisten los fenómenos ígneos es que dan

origen a vetas y diseminaciones minerales a partir del emplazamiento de

soluciones que tienen origen en zonas profundas de la corteza y en la parte

superior del manto (Torales-Iniesta, 1998).

En el caso de eventos volcánicos, las rocas ígneas extrusivas continentales,

también existen en los fondos marinos, resultantes imprimen nuevas característica

a los relieves superficiales de las zonas en donde ocurren y constituyen desde ese

momento una reserva de materiales para la formación de rocas sedimentarias a

partir de su intemperismo, erosión, transporte, depositación y diagénesis (Torales-

Iniesta, 1998).

En Oaxaca, las rocas ígneas de origen volcánico cubren grandes extensiones y

tienen diversos colores y características que las hacen muy peculiares con

respecto a otras localidades, por lo que son aprovechadas como una fuente

importante de material de cantera para la construcción y obras ornamentales. En

asociación con estas rocas, se encuentra una gran cantidad de yacimientos

minerales, principalmente no metálicos (Torales-Iniesta, 1998).

Rocas Metamórficas

Debido a que algunos procesos metamórficos como el regional se desarrollan con

mayor influencia de presión que de temperatura, su origen se ubica en las zonas

profundas de la corteza, sin embargo, pueden ser observadas superficialmente en

algunos lugares. Esto implica la consideración de prolongadas etapas geológicas

de intemperismo acompañadas de levantamientos tectónicos, lo cual propició el

desgaste y eliminación de las rocas que las sobreyacían (Torales-Iniesta, 1998).

En la República Mexicana las regiones más significativas, por su antigüedad y

extensión, con afloramientos de rocas metamórficas se localizan en Oaxaca. En

Page 13: Trabajo Final Geofísica

ellas, se encuentran yacimientos minerales como el talco, mica y grafito (Torales-

Iniesta, 1998).

Como afloran los tipo de rocas

En la región central de Oaxaca y las áreas adyacentes del sur de Puebla, y este

de Guerrero, aflora una importante secuencia mesozoica sedimentaria que

atestigua el desarrollo de una cuenca a partir del Jurásico Inferior (Morán-Zenteno,

D. J. 1984).

Esta región de afloramiento mesozoico se encuentra limitada por varios complejos

metamórficos que afloran en esta porción del país: al noroeste se localizan las

rocas metamórficas del Complejo Acatlán, Paleozoico Inferior, que son el

resultado del metamorfismo de depósitos marinos de augeosinclinal; sobre este

complejo descansan las rocas sedimentarias del Jurásico y Cretásico, y algunas

unidades no metamorfizadas del Paleozoico. Al oeste y sur, los afloramientos no

sedimentarios mesozoicos están limitados por el Complejo Xolapa, constituido por

gneises, migmatitas y esquistos de biotita con metamorfismo de fascies anfibolita

(Morán-Zenteno, D. J. 1984).

La edad de este complejo es aparentemente mesozoica pero se han reportado

eventos termales del Paleozoico, Jurásico y Terciario. Al sureste, el límite de la

cuenca lo forma el Complejo Oaxaqueño, formado de gneises bandeados y

metamorfizados y facies que varían de granulita a transición granulita antibiotita,

incluyendo charnockitas, anortositas y pegmatitas (Morán-Zenteno, 1984). Las

pegmatitas y la última etapa de metamorfismo ue afectó las rocas encajonadas

son equivalentes a la provincia metamórfica grenvilliana del oriente de Estados

Unidos y Canadá (Morán-Zenteno, 1984).

Los afloramientos de este complejo forman una parte considerable de la zona

montañosa que está ubicada al poniente de la ciudad de la ciudad de Oaxaca,

señalando que al noroeste la cuenca se encuentra limitada por los afloramientos

metamórficos del flanco occidental de la Sierra de Juárez, en un contacto

marcadamente rectilíneo que forma la Cañada Oaxaqueña y que puede

Page 14: Trabajo Final Geofísica

corresponder a un rasgo tectónico de dimensiones regionales (Morán-Zenteno,

1984).

Estas rocas metamórficas han sido tradicionalmente asignadas al Precámbrico

(Ortogneis) y Paleozoico (filitas y arcosas metamorfizadas incipientemente), sin

embargo, se ha reportado la existencia de un amplio complejo metamórfico,

derivado de depósitos eugeosinclinales de areniscas, lutitas y derrames volcánicos

del Cretácico; y estudios radiométricos en estas rocas dieron como resultado

edades, para el metamorfismo, correspondientes al Cretácico Superior y Terciario

Inferior, dando como resultado bloques alóctonos provenientes del oeste y

cabalgados sobre los sedimentos miogeosinclinales del Jurásico y Cretácico

durante la Orogenia Laramide (Morán-Zenteno, 1984).

La región de Puebla, Oaxaca, Guerrero y Morelos, subyacida por los complejos

Acatlán y Oaxaqueño, presentan afloramientos extensos de unidades

sedimentarias del Mesozoico que se encuentran dispuestas en pliegues de

orientación nor-noroeste (Morán-Zenteno, 1984). Debajo de éstas secuencias

mesozoicas se han reportado, en afloramientos aislados, algunas unidades

sedimentarias paleozoicas descansando en discordancia sobre el basamento

metamórfico (Morán-Zenteno, 1984).

La complejidad estructural y estratigráfica de la porción centro meridional de

México hace difícil una reconstrucción paleogeográfica y tectónica que permita

una explicación clara sobre el origen de los rasgos de esta porción de México

(Morán-Zenteno, 1984).

Recientemente la estructura de la región ha sido interpretada en términos de un

mosaico de terrenos tectonoestratigráficos que fueron acrecionados en diferentes

episodios de la evolución tectónica de esta parte de México. Cada terreno cuenta

con un basamento distinto y sus límites han sido interpretados generalmente como

límites tectónicos (Morán-Zenteno, 1984).

El terreno con el basamento más antiguo es el terreno Oaxaca que ocupa la parte

central del estado homónimo y cuenta con secuencias cámbrico-ordovicícas y

Page 15: Trabajo Final Geofísica

misisipicopensivlánicas sin metamorfismo (Morán-Zenteno, 1984). La base

metamórfica, formada por el Complejo Oaxaqueño del Precámbrico, 900-1100

m.a., ha sido interpretada como el resultado de la evolución de un rift con

sedimentación en corteza continental antigua y posterior metamorfismo a facies

granulita en una evolución ensiálica o por colisión continental (Morán-Zenteno,

1984).

Este complejo es considerado como una continuación hacia el sur de la faja

Grenvilliana, sin embargo, la fauna de trilobites de su cubierta cámbrico-ordovícica

muestra más afinidad con la fauna de Europa y Sudamérica que con la de

Norteamérica(Morán-Zenteno, 1984).

Materiales y métodos

Los datos puntuales del valor relativo de la gravedad terrestre en metros, con sus

correspondientes coordenadas en formato UTM (Universal Transverse Mercator),

y la elevación de cada punto en metros fueron proporcionados (Tabla ).

La gravedad (G) medida corresponde al valor relativo de la gravedad terrestre, las

cuales están en unidades gravimétricas no en miligales (mgal). Así mismo, se

registró la hora (h) en que se tomó la lectura.

a) Gravimetría

Para poder llevar a cabo el análisis gravimétrico de convirtieron las coordenadas

UTM a geográficas de la zona Q-14. A partir de las coordenadas geográficas

obtenidas se identificó el área de estudio sobreponiéndolas en el programa libre

Google Earth.

Se realizaron las correcciones gravimétricas, excepto por topografía y mareas,

correspondientes usando la densidad de 2.67 gcm-3 para obtener la anomalía de

Bouguer.

Se graficó el mapa de anomalía de Bouguer y se obtuvo la anomalía regional,

usando un polinomio de primer grado, y residual en el programa Surfer 10. Ya

Page 16: Trabajo Final Geofísica

obtenido el mapa de anomalía residual se trazaron tres perfiles sobre el mapa

gravimétrico, considerando que la dirección de éstos fuera perpendicular a rasgos

o tendencias geológicas registradas (cita) en el área correspondiente, y se

graficaron en el programa Surfer 10.

b) Magnetometría

Se georreferenció el área de estudio que se analizó en el método gravimétrico con

el programa Arc Gis 10.1, usando la carta aeromagnética Villa de Zaachila E14-

D57 del Sistema Geológico Mexicano, la cual fue procesada digitalmente y

contiene compensación magnética, corrección por variación diurna, corrección

IGRF (International Geomagnetic Reference Field), nivelada y micronivelada

usando líneas de control por la misma dependencia.

Con la extracción de las líneas de datos magnéticos se realizó un mapa de

contornos en el cual se trazaron tres perfiles, en los mismos sitios donde se

trazaron los gravimétricos, y se graficaron en el programa Surfer 10.

c) Modelado Conjunto de Datos

Una vez procesada, corregida y graficada la información de datos gravimétricos y

magnéticos se realizó el modelado conjunto de los tres perfiles obtenidos de cada

método geofísico para determinar la geología estructural y regional del área de

estudio con el programa GM-SYS 4.6.

Resultados

Gravimetría

Page 17: Trabajo Final Geofísica

746200 746300 746400 746500 746600 746700

1872500

1872600

1872700

1872800

1872900

-2.2-2-1.8-1.6-1.4-1.2-1-0.8-0.6-0.4-0.200.20.40.60.811.21.41.61.822.22.42.6

0 100 200 300 400 500 600 700

0

1

2

0 100 200 300 400 500 600-1

-0.5

0

0.5

0 100 200 300 400 500 600

-0.5

0

0.5

1

Figura . Gravedad específica graficada con valores residuales dentro área de

estudio.

Page 18: Trabajo Final Geofísica

746200 746300 746400 746500 746600 746700

1872500

1872600

1872700

1872800

1872900

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700

-0.5

0

0.5

0 100 200 300 400 500 600

0

1

0 100 200 300 400 500 600

-5

0

Figura . Intensidad magnética residual graficada en el área de estudio.

Page 19: Trabajo Final Geofísica

Magnetometría

Modelado Conjunto de Datos

Tabla . Datos gravimétricos y magnéticos asignados a cada bloque del modelo

conjugado. Fuentes: UC, NR; Torres-Zamudio, 2002; Barriol et al., 2006; Jiménez-

Castañeda, 2009; Tapia-Cruz, 2011.

Esquema Leyenda Densidad relativa

(gm/cc)

Susceptibilidad

(cgs)

Depósito de basura 1.5 0.00007

Aluvión 1.9 0.00002

Acuífero Confinado 2 0

Toba

Andesítica/Andesita

2.45 0.02

Lutita/Arenisca 2.67 0.00004

Gneis 3 0.00013

Bloque 1* 4 0.0115

*Bloque 1: posible estructura

Perfil 1

Page 20: Trabajo Final Geofísica

Figura .

Figura .

Perfil 3

Discusión

Conclusiones

Referencias

Page 21: Trabajo Final Geofísica

Belmonte-Jiménez, S.I., Jiménez-Castañeda, M.E., Pérez-Flores, M.A., Campos-Enríquez, J.O., Reyes-López, J.A. y Salazar-Peña, Leobardo. 2012. Characterization of a leachate contaminated site integrating geophysical and hydrogeological information. Geofísica Internacional. 51(4): 309-321.

Belmonte-Jiménez, S.I., Campos-Enríquez, J.O. y Alatorre-Zamora, M.A. 2005. Vulnerability to contamination of the Zaachila aquifer, Oaxaca, Mexico. Geofísica Internacional. 44(3): 283-300.

Belmonte-Jiménez, S.I., Aragón-Sulik, M., Navarro-Mendoza, S. y Herrera-Barrientos, J. NR. ERIS: método para determinar el riesgo de contaminación de un sistema acuífero. Caso Valle de Zaachila, Oaxaca. IPN-CIIDIR-Oaxaca, Santa Cruz, Xoxocotlán, Oaxaca. México, 13 p.

Barriol, Y., Sullivan-Glaser, K., Pop, J., Bartman, B., Corbiell, R., Otto-Eriksen, K., Laastad, H., Laidlaw, J., Manin, Y., Morrison, K., Sayers, C.M., Terrazas-Romero, M. y Volokitin, Y. 2006. Las presiones de las operaciones de perforación y producción.

Cantos-Figueroa, J. 1974. Tratado de Geofísica y Aplicada. 2a. Ed. E.T.S. de Ingenieros de Minas, España, 520 p.

Dávalos-Álvarez, O.G. 2006. Evolución tectónica cenozoica en la porción norte de la falla de Oaxaca. Tesis Maestría. UNAM. Centro de Geociencias, Juriquilla, Querétaro, 112 p.

GM-SYS. NR. Grav/Mag Modeling Software. User´s Guide for Version 4.6. Northwest Geophysical Associates, Inc. Corvallis, USA, 89 p.

Jiménez-Castañeda, M.E. 2009. Caracterización hidrogeológica de la laguna de lixiviados del tiradero municipal de la Ciudad de Oaxaca.Tesis Maestría. CIIDIR-Oaxaca, Instituto Politécnico Nacional, Oaxaca de Juárez, México, 86 p.

Kearey, P., Brooks, M. y Hill, I. 2002. An introduction to Geophysical exploration. 3a. Ed. Brackwell Science Ltd, Gran Bretaña, 281 p.

Morán-Zenteno, D. J. 1984. Geología de la República Mexicana: México. Universidad Nacional Autónoma de México, Instituto Nacional de Estadística, Geografia e Informática. Geología de la República Mexicana.

Navarro-Mendoza, S., Aragón-Sulik, M. y Belmonte-Jiménez, S.I. NR. Parámetros físicos y químicos que influyen sobre la aptitud de un sitio destinado a la

Page 22: Trabajo Final Geofísica

disposición de residuos municipales. IPN-CIIDIR-Oaxaca. Santa Cruz, Xoxocotlán, Oax. México, 7p.

Torales-Iniesta, J.S. 1998. Información histórica de las rocas de Oaxaca. Temas de Ciencia y Tecnología. Universidad Tecnológica de la Mixteca. 2(6):21-28.

Torres-Zamudio, A. 2002. Estructura de la zona de subducción de Oaxaca a partir de datos gravimétricos. Tesis Licenciatura. Escuela Superior de Ingeniería y Arquitectura. Instituto Politécnico Nacional. México, D.F., 64 p.

Telford, W.M., Geldart, L.P. y Sheriff, R.E. 2004. Applied Geophysics. 2a.Ed. Cambridge, New York, U.S.A., 760 p.

Tapia-Cruz, V. 2011. Estudio aeromagnético en el sureste de México zona limítrofe Guerrero-Oaxaca. Tesis Licenciatura. Facultad de Ingeniería. Universidad Nacional Autónoma de México. México, D.F., 76 p.

UC. NR. Densidad, densidad relativa (gravedad específica) y absorción del agregado fino. Universidad Centroamericana “José Simeon Cañas”. San Salvador, El Salvador, 14 p.