Transcripción Alberts 2014.pdf

240
Molecular Biology of the Cell Sixth Edition Chapter 6 How Cells Read the Genome: From DNA to Protein Copyright © Garland Science 2015 Alberts • Johnson • Lewis • Morgan • Raff • Roberts • Walter

Transcript of Transcripción Alberts 2014.pdf

Page 1: Transcripción Alberts 2014.pdf

Molecular Biologyof the Cell

Sixth Edition

Chapter 6

How Cells Read the Genome:

From DNA to Protein

Copyright © Garland Science 2015

Alberts • Johnson • Lewis • Morgan • Raff • Roberts • Walter

Page 2: Transcripción Alberts 2014.pdf

CHAPTER CONTENTS

FROM DNA TO RNA

FROM RNA TO PROTEIN

THE RNA WORLD AND THE ORIGINS OF LIFE

Page 3: Transcripción Alberts 2014.pdf

Introduction

Page 4: Transcripción Alberts 2014.pdf

Introduction

Page 5: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Introduction

Page 6: Transcripción Alberts 2014.pdf

Introduction

Page 7: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Molecules Are Single-Stranded

Page 8: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 9: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 10: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 11: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 12: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 13: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 14: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 15: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 16: Transcripción Alberts 2014.pdf

RNA Molecules Are Single-Stranded

Page 17: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Transcription Produces RNA Complementary to One Strand of DNA

Page 18: Transcripción Alberts 2014.pdf

Transcription Produces RNA Complementary to One Strand of DNA

Page 19: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Polymerases Carry Out Transcription

Page 20: Transcripción Alberts 2014.pdf

RNA Polymerases Carry Out Transcription

Page 21: Transcripción Alberts 2014.pdf
Page 22: Transcripción Alberts 2014.pdf

RNA Polymerases Carry Out Transcription

Page 23: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Cells Produce Different Categories of RNA Molecules

Page 24: Transcripción Alberts 2014.pdf

Cells Produce Different Categories of RNA Molecules

Page 25: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Signals Encoded in DNA Tell RNA Polymerase Where to Start and Stop

Page 26: Transcripción Alberts 2014.pdf

Signals Encoded in DNA Tell RNA Polymerase Where to Start and Stop

Page 27: Transcripción Alberts 2014.pdf

Signals Encoded in DNA Tell RNA Polymerase Where to Start and Stop

Page 28: Transcripción Alberts 2014.pdf

Signals Encoded in DNA Tell RNA Polymerase Where to Start and Stop

Page 29: Transcripción Alberts 2014.pdf

Signals Encoded in DNA Tell RNA Polymerase Where to Start and Stop

Page 30: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Transcription Start and Stop Signals Are Heterogeneous in Nucleotide Sequence

Page 31: Transcripción Alberts 2014.pdf

Transcription Start and Stop Signals Are Heterogeneous in Nucleotide Sequence

Page 32: Transcripción Alberts 2014.pdf

Transcription Start and Stop Signals Are Heterogeneous in Nucleotide Sequence

Page 33: Transcripción Alberts 2014.pdf

Transcription Start and Stop Signals Are Heterogeneous in Nucleotide Sequence

Page 34: Transcripción Alberts 2014.pdf

Transcription Start and Stop Signals Are Heterogeneous in Nucleotide Sequence

Page 35: Transcripción Alberts 2014.pdf

Transcription Start and Stop Signals Are Heterogeneous in Nucleotide Sequence

Page 36: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Transcription Initiation in Eukaryotes Requires Many Proteins

Page 37: Transcripción Alberts 2014.pdf

Transcription Initiation in Eukaryotes Requires Many Proteins

Las 3 RNA polimerasas son estructuralemente similares entre ellas (y con la RNA polimerasa bacteriana)

comparten subunidades pero transcriben diferente tipo de genes.

Page 38: Transcripción Alberts 2014.pdf

La RNA polimerasa II tiene muchas similitudes estructurales con la RNA polimerasa bacteriana, pero también

existen diferencias importantes:1- La RNA polimerasa bacteriana requiere solo de una proteína adicional para la iniciación de la transcripción,la RNA polimerasa II requiere de muchas proteínas adicionales,llamadas factores de transcripción generales.2- La iniciación de la transcripción en eucariotes trata con el empacamiento de DNA en nucleosomas yen cromatina, una estructura altamente organizada, ausente en el cromosoma bacteriano.

Page 39: Transcripción Alberts 2014.pdf

Transcription Initiation in Eukaryotes Requires Many Proteins

Page 40: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Polymerase II Requires a Set of General Transcription Factors

Page 41: Transcripción Alberts 2014.pdf

RNA Polymerase II Requires a Set of General Transcription Factors

Los factores de transcripción generales

ayudan a posicionar a la RNA

polimerasa correctamente sobre el

promotor, ayudan a separar la doble

hélice para que comience la

transcripción y a liberar a la RNA

polimerasa del promotor al modo de

elongación, una vez que inició la

transcripción. Se dice que los factores

son generales porque se requieren en

casi todos los promotores de la RNApol

II.

Page 42: Transcripción Alberts 2014.pdf

RNA Polymerase II Requires a Set of General Transcription Factors

Page 43: Transcripción Alberts 2014.pdf

RNA Polymerase II Requires a Set of General Transcription Factors

Secuencias consenso que se han encontrado cerca del inicio de la transcripción

Page 44: Transcripción Alberts 2014.pdf

RNA Polymerase II Requires a Set of General Transcription Factors

Page 45: Transcripción Alberts 2014.pdf
Page 46: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Polymerase II Also Requires Activator, Mediator, and Chromatin-Modifying Proteins

Page 47: Transcripción Alberts 2014.pdf

• La transcripción por la RNA pol II en una célula eucarionte es más compleja y requiere muchas más proteínas.

• 1- requiere de proteínas regulatorias - activadores transcripcionales, los cuales deben unirse a secuencias de DNA específicas y ayudan a atraer la RNA pol II al punto de inicio de la transcripción

• 2- la iniciación de la transcripción en eucariontes in vivo requiere de un complejo protéico - mediador, que permite que las proteínas activadoras se comuniquen con la RNA pol II y con los factores de transcripción generales.

• 3- la iniciación de la transcripción en eucariontes requiere el reclutamiento local de las enzimas modificadoras de la cromatina, incluyendo los complejos remodeladores de la cromatina y las enzimas modificadoras de las histonas.

Page 48: Transcripción Alberts 2014.pdf

Polymerase II Also Requires Activator, Mediator, and Chromatin-Modifying Proteins

Page 49: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Transcription Elongation in Eukaryotes Requires Accessory Proteins

Page 50: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Transcription Creates Superhelical Tension

Page 51: Transcripción Alberts 2014.pdf

Transcription Creates Superhelical Tension

Page 52: Transcripción Alberts 2014.pdf

Transcription Creates Superhelical Tension

Page 53: Transcripción Alberts 2014.pdf

Transcription Creates Superhelical Tension

Page 54: Transcripción Alberts 2014.pdf

Transcription Creates Superhelical Tension

Page 55: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 56: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 57: Transcripción Alberts 2014.pdf
Page 58: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 59: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 60: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 61: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 62: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 63: Transcripción Alberts 2014.pdf

El factor de transcripción TFIIH fosforila el

CTD de la RNA polimerasa II, indicando la

transición de la iniciación a la elongación. Las

proteínas necesarias para el capping, para el

procesamiento y para la poliadenilación del pre

RNAm reconocen las diferentes formas

fosforiladas del CTD de la RNA polimerasa II.

De lo que se trata es que las proteínas

encargadas del capping, de procesamiento del

pre RNAm y de la poliadenilación del RNAm

se acerquen a sus sitios de acción en el

RNAm precursor conforme se transcriben

durante la elongación.

la transcripción en eucariontes está acoplada al

procesamiento del RNA

Page 64: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Page 65: Transcripción Alberts 2014.pdf

Transcription Elongation in Eukaryotes Is Tightly Coupled to RNA Processing

Conforme la polimerasa transcribe, va cargando proteínas de procesamiento del preRNAm en su cola (CTD)las cuales va a transferir al RNAm naciente. La proteína de capping se une primero al CTD de la RNA polimerasa

cuando está fosforilada en la ser5 del hepta-repetido, una vez que la iniciación de la transcripción está avanzada. Esto asegura que la molécula de RNA se modifique eficientemente en el 5’.Posteriormente, el CTD de la polimerasa se fosforila en la ser2 por una kinasa asociada con las proteínas de elongación,y eventualmente se desfosforila en la ser5. Estas modificaciones en el CTD de la polimerasa van a atraer otras proteínasde procesamiento para que actúen en el RNAm conforme va emergiendo de la RNA polimerasa.Sin embargo son muchas las enzimas que procesan el RNAm, y no todas viajan con la RNA polimerasa.Pero una vez que alguna proteína crítica del procesamiento se ha transferido a la molécula de RNAm,

va a atraer al resto del complejo proteíco para que procese la molécula de RNA.

Page 66: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Capping Is the First Modification of Eukaryotic Pre-mRNAs

Page 67: Transcripción Alberts 2014.pdf

RNA Capping Is the First Modification of Eukaryotic Pre-mRNAs

3 enzimas, que actúan sucesivamente, realizan la reacción de capping.

Una fosfatasa elimina un fosfato del extremo 5’ nasciente del RNA,

una guanidiltransferasa añade un GMP en 5’-5’,

y una metil transferasa metila la guanosina.

Las 3 se unen al CTD fosforilado en la ser5,

y por lo tanto están listas para modificar el extremo 5’ naciente

al momento que emerge de la polimerasa.

Page 68: Transcripción Alberts 2014.pdf

El cap 5’ metilado significa un extremo 5’ de un RNAm,

y esto le permite a la célula distinguir entre otros tipos de moléculas

de RNA presentes en la célula. La RNA polI y la RNA pol III no

producen transcritos con cap, en parte porque no tienen CTD.

Cual es la función del cap en el extremo 5’ del RNAm?

En el núcleo, el cap del 5’ del RNAm se une a un complejo protéico (CBC)

que le ayuda al mensajero a procesarse y exportarse adecuadamente.

También el cap tiene una función en la traducción.

Page 69: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 70: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 71: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 72: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 73: Transcripción Alberts 2014.pdf
Page 74: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 75: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 76: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 77: Transcripción Alberts 2014.pdf

RNA Splicing Removes Intron Sequences from Newly Transcribed Pre-mRNAs

Page 78: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Nucleotide Sequences Signal Where Splicing Occurs

Page 79: Transcripción Alberts 2014.pdf

Nucleotide Sequences Signal Where Splicing Occurs

Page 80: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Splicing Is Performed by the Spliceosome

Page 81: Transcripción Alberts 2014.pdf

El splicing de RNA está hecho por el spliceosoma

• Los pasos críticos en el procesamiento de RNA están hechos por

• moléculas de RNA- no por proteínas. Las moléculas de RNA reconocen las secuencias de nucleótidos que especifican los sitios de procesamiento y

también participan en la química del procesamiento (la catálisis).

• Son moléculas de RNA pequeñas (menos de 200nt) y 5 (U1, U2, U4, U5 y U6) son las que están involucradas en el tipo principal de splicing del pre-RNAm.

Son los snRNAs (RNAs pequeños nucleares), y cada uno forma un complejo con al menos 7 subunidades protéicas, y forman un snRNP (ribonucleoproteína

pequeña nuclear). Estas snRNPs forman la médula de spliceosoma, el complejo de RNA y proteínas que realiza el splicing.

Page 82: Transcripción Alberts 2014.pdf

RNA Splicing Is Performed by the Spliceosome

Page 83: Transcripción Alberts 2014.pdf

RNA Splicing Is Performed by the Spliceosome

Page 84: Transcripción Alberts 2014.pdf

RNA Splicing Is Performed by the Spliceosome

Page 85: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• The Spliceosome Uses ATP Hydrolysis to Produce a Complex Series of RNA–RNA Rearrangements

Page 86: Transcripción Alberts 2014.pdf

The Spliceosome Uses ATP Hydrolysis to Produce a Complex Series of RNA–RNA Rearrangements

Page 87: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 88: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 89: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 90: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 91: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 92: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 93: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 94: Transcripción Alberts 2014.pdf

Other Properties of Pre-mRNA and Its Synthesis Help to Explain the Choice of Proper Splice Sites

Page 95: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Chromatin Structure Affects RNA Splicing

Page 96: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA Splicing Shows Remarkable Plasticity

Page 97: Transcripción Alberts 2014.pdf

RNA Splicing Shows Remarkable Plasticity

Page 98: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Spliceosome-Catalyzed RNA Splicing Probably Evolved from Self-splicing Mechanisms

Page 99: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• RNA-Processing Enzymes Generate the 3ʹ End of

Eukaryotic mRNAs

Page 100: Transcripción Alberts 2014.pdf

RNA-Processing Enzymes Generate the 3ʹ End of Eukaryotic mRNAs

Page 101: Transcripción Alberts 2014.pdf

RNA-Processing Enzymes Generate the 3ʹ End of Eukaryotic mRNAs

Page 102: Transcripción Alberts 2014.pdf

RNA-Processing Enzymes Generate the 3ʹ End of Eukaryotic mRNAs

Page 103: Transcripción Alberts 2014.pdf

RNA-Processing Enzymes Generate the 3ʹ End of Eukaryotic mRNAs

Page 104: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Mature Eukaryotic mRNAs Are Selectively Exported from the Nucleus

Page 105: Transcripción Alberts 2014.pdf

Mature Eukaryotic mRNAs Are Selectively Exported from the Nucleus

Page 106: Transcripción Alberts 2014.pdf

Mature Eukaryotic mRNAs Are Selectively Exported from the Nucleus

Page 107: Transcripción Alberts 2014.pdf

Mature Eukaryotic mRNAs Are Selectively Exported from the Nucleus

Page 108: Transcripción Alberts 2014.pdf

Mature Eukaryotic mRNAs Are Selectively Exported from the Nucleus

Page 109: Transcripción Alberts 2014.pdf

Mature Eukaryotic mRNAs Are Selectively Exported from the Nucleus

Page 110: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• Noncoding RNAs Are Also Synthesized and Processed in the Nucleus

Page 111: Transcripción Alberts 2014.pdf

Noncoding RNAs Are Also Synthesized and Processed in the Nucleus

Page 112: Transcripción Alberts 2014.pdf

Noncoding RNAs Are Also Synthesized and Processed in the Nucleus

Page 113: Transcripción Alberts 2014.pdf

Noncoding RNAs Are Also Synthesized and Processed in the Nucleus

Page 114: Transcripción Alberts 2014.pdf

Noncoding RNAs Are Also Synthesized and Processed in the Nucleus

Page 115: Transcripción Alberts 2014.pdf

Noncoding RNAs Are Also Synthesized and Processed in the Nucleus

Page 116: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• The Nucleolus Is a Ribosome-Producing Factory

Page 117: Transcripción Alberts 2014.pdf

The Nucleolus Is a Ribosome-Producing Factory

Page 118: Transcripción Alberts 2014.pdf

The Nucleolus Is a Ribosome-Producing Factory

Page 119: Transcripción Alberts 2014.pdf

The Nucleolus Is a Ribosome-Producing Factory

Page 120: Transcripción Alberts 2014.pdf

The Nucleolus Is a Ribosome-Producing Factory

Page 121: Transcripción Alberts 2014.pdf

The Nucleolus Is a Ribosome-Producing Factory

Page 122: Transcripción Alberts 2014.pdf

The Nucleolus Is a Ribosome-Producing Factory

Page 123: Transcripción Alberts 2014.pdf

FROM DNA TO RNA

• The Nucleus Contains a Variety of Subnuclear Aggregates

Page 124: Transcripción Alberts 2014.pdf

The Nucleus Contains a Variety of Subnuclear Aggregates

Page 125: Transcripción Alberts 2014.pdf

The Nucleus Contains a Variety of Subnuclear Aggregates

Page 126: Transcripción Alberts 2014.pdf

The Nucleus Contains a Variety of Subnuclear Aggregates

Page 127: Transcripción Alberts 2014.pdf

The Nucleus Contains a Variety of Subnuclear Aggregates

Page 128: Transcripción Alberts 2014.pdf

The Nucleus Contains a Variety of Subnuclear Aggregates

Page 129: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• An mRNA Sequence Is Decoded in Sets of Three Nucleotides

Page 130: Transcripción Alberts 2014.pdf

An mRNA Sequence Is Decoded in Sets of Three Nucleotides

Page 131: Transcripción Alberts 2014.pdf

An mRNA Sequence Is Decoded in Sets of Three Nucleotides

Page 132: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• tRNA Molecules Match Amino Acids to Codons in mRNA

Page 133: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 134: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 135: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 136: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 137: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 138: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 139: Transcripción Alberts 2014.pdf

tRNA Molecules Match Amino Acids to Codons in mRNA

Page 140: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• tRNAs Are Covalently Modified Before They Exit from the Nucleus

Page 141: Transcripción Alberts 2014.pdf

tRNAs Are Covalently Modified Before They Exit from the Nucleus

Page 142: Transcripción Alberts 2014.pdf

tRNAs Are Covalently Modified Before They Exit from the Nucleus

Page 143: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule

Page 144: Transcripción Alberts 2014.pdf

Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule

Page 145: Transcripción Alberts 2014.pdf

Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule

Page 146: Transcripción Alberts 2014.pdf

Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule

Page 147: Transcripción Alberts 2014.pdf

Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule

Page 148: Transcripción Alberts 2014.pdf

Specific Enzymes Couple Each Amino Acid to Its Appropriate tRNA Molecule

Page 149: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Editing by tRNA Synthetases Ensures Accuracy

Page 150: Transcripción Alberts 2014.pdf

Editing by tRNA Synthetases Ensures Accuracy

Page 151: Transcripción Alberts 2014.pdf

Editing by tRNA Synthetases Ensures Accuracy

Page 152: Transcripción Alberts 2014.pdf

Editing by tRNA Synthetases Ensures Accuracy

Page 153: Transcripción Alberts 2014.pdf

Editing by tRNA Synthetases Ensures Accuracy

Page 154: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Amino Acids Are Added to the C-terminal End of a Growing Polypeptide Chain

Page 155: Transcripción Alberts 2014.pdf

Amino Acids Are Added to the C-terminal End of a Growing Polypeptide Chain

Page 156: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• The RNA Message Is Decoded in Ribosomes

Page 157: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 158: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 159: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 160: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 161: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 162: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 163: Transcripción Alberts 2014.pdf

The RNA Message Is Decoded in Ribosomes

Page 164: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Elongation Factors Drive Translation Forward and Improve Its Accuracy

Page 165: Transcripción Alberts 2014.pdf

Elongation Factors Drive Translation Forward and Improve Its Accuracy

Page 166: Transcripción Alberts 2014.pdf

Elongation Factors Drive Translation Forward and Improve Its Accuracy

Page 167: Transcripción Alberts 2014.pdf

Elongation Factors Drive Translation Forward and Improve Its Accuracy

Page 168: Transcripción Alberts 2014.pdf

Elongation Factors Drive Translation Forward and Improve Its Accuracy

Page 169: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Many Biological Processes Overcome the Inherent Limitations of Complementary Base-Pairing

Page 170: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Accuracy in Translation Requires an Expenditure of Free Energy

Page 171: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• The Ribosome Is a Ribozyme

Page 172: Transcripción Alberts 2014.pdf

The Ribosome Is a Ribozyme

Page 173: Transcripción Alberts 2014.pdf

The Ribosome Is a Ribozyme

Page 174: Transcripción Alberts 2014.pdf

The Ribosome Is a Ribozyme

Page 175: Transcripción Alberts 2014.pdf

The Ribosome Is a Ribozyme

Page 176: Transcripción Alberts 2014.pdf

The Ribosome Is a Ribozyme

Page 177: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Nucleotide Sequences in mRNA Signal Where to Start Protein Synthesis

Page 178: Transcripción Alberts 2014.pdf

Nucleotide Sequences in mRNA Signal Where to Start Protein Synthesis

Page 179: Transcripción Alberts 2014.pdf

Nucleotide Sequences in mRNA Signal Where to Start Protein Synthesis

Page 180: Transcripción Alberts 2014.pdf

Nucleotide Sequences in mRNA Signal Where to Start Protein Synthesis

Page 181: Transcripción Alberts 2014.pdf

Nucleotide Sequences in mRNA Signal Where to Start Protein Synthesis

Page 182: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Stop Codons Mark the End of Translation

Page 183: Transcripción Alberts 2014.pdf

Stop Codons Mark the End of Translation

Page 184: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Proteins Are Made on Polyribosomes

Page 185: Transcripción Alberts 2014.pdf

Proteins Are Made on Polyribosomes

Page 186: Transcripción Alberts 2014.pdf

Proteins Are Made on Polyribosomes

Page 187: Transcripción Alberts 2014.pdf

Proteins Are Made on Polyribosomes

Page 188: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• There Are Minor Variations in the Standard Genetic Code

Page 189: Transcripción Alberts 2014.pdf

There Are Minor Variations in the Standard Genetic Code

Page 190: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Inhibitors of Prokaryotic Protein Synthesis Are Useful as Antibiotics

Page 191: Transcripción Alberts 2014.pdf

Inhibitors of Prokaryotic Protein Synthesis Are Useful as Antibiotics

Page 192: Transcripción Alberts 2014.pdf

Inhibitors of Prokaryotic Protein Synthesis Are Useful as Antibiotics

Page 193: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Quality Control Mechanisms Act to Prevent Translation of Damaged mRNAs

Page 194: Transcripción Alberts 2014.pdf

Quality Control Mechanisms Act to Prevent Translation of Damaged mRNAs

Page 195: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Some Proteins Begin to Fold While Still Being Synthesized

Page 196: Transcripción Alberts 2014.pdf

Some Proteins Begin to Fold While Still Being Synthesized

Page 197: Transcripción Alberts 2014.pdf

Some Proteins Begin to Fold While Still Being Synthesized

Page 198: Transcripción Alberts 2014.pdf

Some Proteins Begin to Fold While Still Being Synthesized

Page 199: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Molecular Chaperones Help Guide the Folding of Most Proteins

Page 200: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Cells Utilize Several Types of Chaperones

Page 201: Transcripción Alberts 2014.pdf

Cells Utilize Several Types of Chaperones

Page 202: Transcripción Alberts 2014.pdf

Cells Utilize Several Types of Chaperones

Page 203: Transcripción Alberts 2014.pdf

Cells Utilize Several Types of Chaperones

Page 204: Transcripción Alberts 2014.pdf

Cells Utilize Several Types of Chaperones

Page 205: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Exposed Hydrophobic Regions Provide Critical Signals for Protein Quality Control

Page 206: Transcripción Alberts 2014.pdf

Exposed Hydrophobic Regions Provide Critical Signals for Protein Quality Control

Page 207: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 208: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 209: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 210: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 211: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 212: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 213: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 214: Transcripción Alberts 2014.pdf

The Proteasome Is a Compartmentalized Protease with Sequestered Active Sites

Page 215: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• Many Proteins Are Controlled by Regulated Destruction

Page 216: Transcripción Alberts 2014.pdf

Many Proteins Are Controlled by Regulated Destruction

Page 217: Transcripción Alberts 2014.pdf

Many Proteins Are Controlled by Regulated Destruction

Page 218: Transcripción Alberts 2014.pdf

Many Proteins Are Controlled by Regulated Destruction

Page 219: Transcripción Alberts 2014.pdf

FROM RNA TO PROTEIN

• There Are Many Steps From DNA to Protein

Page 220: Transcripción Alberts 2014.pdf

There Are Many Steps From DNA to Protein

Page 221: Transcripción Alberts 2014.pdf

THE RNA WORLD AND THEORIGINS OF LIFE

• Introduction

Page 222: Transcripción Alberts 2014.pdf

Introduction

Page 223: Transcripción Alberts 2014.pdf

THE RNA WORLD AND THEORIGINS OF LIFE

• Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 224: Transcripción Alberts 2014.pdf

Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 225: Transcripción Alberts 2014.pdf

Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 226: Transcripción Alberts 2014.pdf

Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 227: Transcripción Alberts 2014.pdf

Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 228: Transcripción Alberts 2014.pdf

Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 229: Transcripción Alberts 2014.pdf

Single-Stranded RNA Molecules Can Fold into Highly Elaborate Structures

Page 230: Transcripción Alberts 2014.pdf

THE RNA WORLD AND THEORIGINS OF LIFE

• RNA Can Both Store Information and Catalyze Chemical Reactions

Page 231: Transcripción Alberts 2014.pdf

RNA Can Both Store Information and Catalyze Chemical Reactions

Page 232: Transcripción Alberts 2014.pdf

THE RNA WORLD AND THEORIGINS OF LIFE

• How Did Protein Synthesis Evolve?

Page 233: Transcripción Alberts 2014.pdf

THE RNA WORLD AND THEORIGINS OF LIFE

• All Present-Day Cells Use DNA as Their Hereditary Material

Page 234: Transcripción Alberts 2014.pdf

All Present-Day Cells Use DNA as Their Hereditary Material

Page 235: Transcripción Alberts 2014.pdf

PROBLEMS

Page 236: Transcripción Alberts 2014.pdf

PROBLEMS

Page 237: Transcripción Alberts 2014.pdf

PROBLEMS

Page 238: Transcripción Alberts 2014.pdf

PROBLEMS

Page 239: Transcripción Alberts 2014.pdf

PROBLEMS

Page 240: Transcripción Alberts 2014.pdf

PROBLEMS