08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

44
Temario El cálculo Datos necesarios Transmisión de calor Coeficiente de transmisión de calor "k" Cálculo del coeficiente de transmisión "k" Influencia del aislamiento en las pérdidas de calor- valores de coeficientes "k" Cálculo de las pérdidas de calor por transmisión Cálculo del coeficiente de transmisión global de un edificio "K 8 " Cálculo de las pérdidas por infiltraciones de aire Suplementos Cálculo de las pérdidas de calor totales Emisión calorífica de los elementos de calor Variación de la emisión calorífica en función de M distinto de 60°C Cálculo del salto térmico M Cálculo del diámetro de las tuberías Pérdidas de presión y de carga Diagrama caudal-presión para tuberías de acero Diagrama caudal-presión para tuberías de cobre Cálculo de la pérdida de calor horario en tuberías Cálculo de dilatación en tuberías Cálculo de las resistencias aisladas Valores de E de las resistencias simples Resistencias simples de cobre en metros de longitud equivalente de tubo Cálculo de la potencia del generador Rendimiento de la combustión de un generador Página 5 5 5 6 6 8 11 13 16 17 18 18 18 18 20 20 21 22 22 23 24 24 24 25 25 Página Selección del quemador Cálculo del consumo anual de combustible Cálculo de las características hidráulicas del circulador Cálculo del depósito de expansión Depósito de expansión abierto Depósito de expansión cerrado Cálculo de la chimenea Valores de tiro por metro lineal de chimenea temperatura exterior 25°C Cálculo de la sección Cálculo del conducto horizontal Ejemplo de cálculo de una instalación de calefacción (Distribución bitubular) Ejemplo de cálculo de una instalación de calefacción (Distribución monotubular) Sistemas monotubo Roca Dimensionado de los emisores por el método numérico Cálculo del generador Dimensionado de la red hidráulica Pérdidas de carga en las resistencias simples Pérdida de carga en las válvulas Pérdidas de carga varias Pérdida de carga total Dimensionado del circulador Cálculo del consumo de agua caliente sanitaria Corrección del consumo para distintas temperaturas de utilización Cálculo del consumo de agua caliente en bloques de viviendas Cálculo del consumo de agua caliente en hoteles 26 26 28 28 28 29 30 30 30 31 32 37 39 40 41 41 42 42 43 43 43 43 44 44 45 3

Transcript of 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Page 1: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Temario

El cálculo Datos necesarios Transmisión de calor Coeficiente de transmisión de calor "k"

Cálculo del coeficiente de transmisión "k"

Influencia del aislamiento en las pérdidas de calor­valores de coeficientes "k"

Cálculo de las pérdidas de calor por transmisión

Cálculo del coeficiente de transmisión global de un edificio "K8 "

Cálculo de las pérdidas por infiltraciones de aire

Suplementos

Cálculo de las pérdidas de calor totales

Emisión calorífica de los elementos de calor Variación de la emisión calorífica en función de M distinto de 60°C Cálculo del salto térmico M

Cálculo del diámetro de las tuberías Pérdidas de presión y de carga Diagrama caudal-presión para tuberías de acero Diagrama caudal-presión para tuberías de cobre

Cálculo de la pérdida de calor horario en tuberías

Cálculo de dilatación en tuberías

Cálculo de las resistencias aisladas Valores de E de las resistencias simples Resistencias simples de cobre en metros de longitud equivalente de tubo

Cálculo de la potencia del generador Rendimiento de la combustión de un generador

Página

5 5 5 6

6

8

11

13

16

17

18

18

18 18

20 20 21 22

22

23

24 24

24

25 25

Página

Selección del quemador

Cálculo del consumo anual de combustible

Cálculo de las características hidráulicas del circulador

Cálculo del depósito de expansión Depósito de expansión abierto Depósito de expansión cerrado

Cálculo de la chimenea Valores de tiro por metro lineal de chimenea temperatura exterior 25°C Cálculo de la sección Cálculo del conducto horizontal

Ejemplo de cálculo de una instalación de calefacción (Distribución bitubular) Ejemplo de cálculo de una instalación de calefacción (Distribución monotubular)

Sistemas monotubo Roca Dimensionado de los emisores por el método numérico Cálculo del generador Dimensionado de la red hidráulica Pérdidas de carga en las resistencias simples Pérdida de carga en las válvulas Pérdidas de carga varias Pérdida de carga total Dimensionado del circulador

Cálculo del consumo de agua caliente sanitaria Corrección del consumo para distintas temperaturas de utilización Cálculo del consumo de agua caliente en bloques de viviendas Cálculo del consumo de agua caliente en hoteles

26

26

28

28 28 29

30

30 30 31

32

37 39

40 41 41 42 42 43 43 43

43

44

44 45

3

Page 2: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

El Cálculo Datos necesarios

El dimensionado de los componentes de una instalación de calefacción y/o agua caliente sanitaria ha de ser el re­sultado más favorable, técnica y económicamente, obteni­do de un proceso de cálculo ajustado a unas determinadas necesidades de calor. Realizar una instalación de estas características exige un estudio previo para determinar los materiales más adecua­dos. Su precisión dependerá siempre de la cantidad y de­talle de la información obtenida.

Los datos y documentación que, entre otros, se precisan son(*):

- Planos del edificio, vivienda, local, etc. - Orientación cardinal. - Situación geográfica. - Aplicación del edificio o local. -Temperaturas exteriores e interiores. - Materiales empleados en la construcción. - Intermitencia de funcionamiento del sistema. -Tipo de instalación. -Sistema de distribución. -Combustible a utilizar. -Características del generador. - Características de los emisores. - Servicio de agua caliente sanitaria. - Regulaciófl automática. - Accesorios. -Varios.

(*) Se recomienda la consulta de las IT.Ie.05 e IT.Ie.23 referidas a Normas generales de cálculo y proyecto de la instalación, respectivamente. Igualmente, el contenido de la IT.Ie.02 relacionada con las exigencias ambientales y de confortabilidad .

La falta de datos concretos para definir estudios técnicos o económicos se traduce, inevitablemente, en un aumento innecesario de materiales y, en consecuencia, en un incre­mento del presupuesto definitivo.

Transmisión de calor

La forma de energía denominada calor se transmite de un cuerpo a otro siempre que exista una diferencia de tempe­ratura entre ambos. El traspaso de calor se presenta en tres formas físicas distintas:

Por conducción, es decir, cuando la transmisión de calor por un cuerpo tiene lugar sin desplaza­miento de sus moléculas. La energía calorífica que desprende un foco de calor se transmite a través de un cuerpo (varilla metálica, por ejemplo) de uno a otro de sus extremos, por contacto de molécula a molécula, desde el caliente al frío.

Por convección, es decir, cuando la transmisión de calor por un cuerpo tiene lugar con desplaza­r:niento de sus moléculas. La energía calorífica que desprende el emisor calienta el aire más próximo que, por este motivo, disminuye de peso espe­cífico y asciende. El natural empuje ascendente del aire ca­liente desplaza al frío el cual, a su vez, au­menta de temperatura. A medida que el proceso continúa el volumen de aire del local se calienta uniformemente.

Por radiación, es decir, cuando la transmisión de calor tiene lugar por ondas o rayos entre el foco y el cuerpo a calentar. La Tierra, por ejemplo, re­cibe calor del Sol en forma de energía de ra­diación.

En las instalaciones de calefacción la transmisión de calor por conducción y convección es la causa de las pérdidas de calor por transmisión a través de los materiales em­pleados en construcción ocasionadas por la diferencia de temperaturas entre sus superficies.

2oo e

oo e

Habitación Exterior

Pared

5

Page 3: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Coeficiente de transmisión de calor "k"

Cada material constructivo ofrece una determinada resis­tencia al paso del calor a través de si mismo. Algunos, como el cristal simple, resultan fáciles de atravesar mien­tras que otros, como los asilantes, oponen una mayor difi­cultad . El valor de esta resistencia, o coeficiente de trans­misión de calor "k", es la expresión numérica de la facili ­dad o dificultad que un material ofrece a la transmisión de calor.

Cálculo del coeficiente de transmisión "k" Si sometemos a estudio una pared de gran superficie S, de constitución homogénea, con caras paralelas y planas, que se mantienen a las temperaturas T1 y T2, la cantidad de calor Q que pasa a través del espesor "e" durante una hora será:

1

Donde:

A O= -- x Sx (T1-T2)

e 1

Q = Cantidad de calor en kcal/h o W. kcal W

A = Conductividad térmica en h x oc x m 0 oc x m

S = Superficie en m2

e = Espesor en m T1 y T2 = temperaturas en oc

Esta cantidad de calor transmitida (flujo) es directamente proporcional a la superficie S y a la diferencia de T1-T2, e inversamente proporcional al espesor "e". El coeficiente de conductividad térmica A representa el po­der de conducción del calor del material que se trate, es decir, la cantidad de calor que pasa a través de una pared de 1 m2 de superficie y 1 mm. de espesor durante una hora, cuando sus caras mantienen 1 oc de diferencia de temperaturas.

En una pared de varias capas, de espesores e1, e2, e3 y conductividades A1, A2, A3.

6

c::::::J c::::J ....__~1 1

e 2 .1 4 e 3 .1

se cumple la igualdad :

A A A Q = -

1 x S x (t1-t') = -

2 x S x (t'-t")= -

3 x S x (t"-t2)

e1 e2 e3

Con lo cual se concluye que la diferencia de temperaturas entre las superficies de una capa es proporcional a la rela­ción + , llamada "resistencia de conducción".

La resistencia total de conducción en una pared constituí­da por varias capas tiene el valor de la suma de la resisten­cia de conducción de todas ellas.

e1 e2 e3 en -+-+ -+ . .. + = Coef. de A1 A2 A3 An A resistencia

calorífica

Q = X S X (t1-t2) =A X S X (t1-t2) e1 e2 e3

- + - +-A1 A2 A3

Ejemplo de cálculo 1

Valorar la pérdida de calor a través de una pared con 20 m2

de superficie y 0,5 m. de espesor, siendo las temperaturas de sus caras 1 0°C y 0°C. A = 0,6

1 0°C c::::Jc:::::J 0°C

c::::::J c:::J 1 1 c:::Jc:::J

~

Page 4: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

A 0,6 Q =-X S X (T1-T2) =-X 20 X (10-0) = 240 kcal/h.

e 0,5

Ejemplo de cálculo 2

Se mejora el aislamiento térmico de _la p~red del ejemplo anterior mediante una capa de matenal a1slante de 4 cms. de espesor y A = 0,06. Valorar la pérdida de calor.

A

1

0,5

0,6 +

0,04

0,06 = 1,50

Q = -- x 20x10=133 kcal/h. 1,50

La cantidad de calor cedida por una superficie a tempera­tura TP a un fluido a temperatura TF, estando ambos en contacto, depende de la superficie S y de la magnitud TP­T F· En este caso:

Q = h X S X (T p - T F)

En el coeficiente h, llamado de "paso de calor por contac­to", están incluidos los factores que influyen en el inter­cambio de calor.

Q h = = Medida de la densidad de

S x (T P - T F) calor ~ por grado de dife­rencia de temperatura entre pared y fluido.

El cálculo de la transmisión del calor, es decir, el flujo des­de un fluido caliente a otro más frío a través de una pared supone el conocimiento de los coeficientes de paso de ca­lor "~" en las superficies, además de las propiedades y med1das del material. Cuando el fluJo de calor no varía con el tiempo (estado de equilibrio) pueden combinarse las ecuaciones del paso de calor y de conducción en la pared, ya que el calor recibido por una cara es siempre igual al que atraviesa la pared y al calor cedido por la cara opuesta.

Para un estado de equilibrio, el flujo de calor puede valo­rarse como:

t,

Q -

O = h1x S x (t1-t')

A 0= -- xS x (t'-t")

e

0= h2 x S x (t"-t2)

De donde:

t,-t2 =(_1- +_e_ \ h1 A

1

e .¡

+ _1 \ X h2)

= Resistencia al paso del calor h

Q

S

La expresión del paréntesis en la ecuación anterior repre­senta la resistencia total a la transmisión de calor, y equivale a la suma de resistencias parciales de paso de calor · + y de conducción +

1 Si la designamos por-- , entonces: O = k x S x (t1-t2)

k

--= Resistencia total a la transmisión de calor k

k = Coeficiente de transmisión total del calor

7

Page 5: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

r ,,

k= e 1

+:l: +

Donde:

k= Coeficiente de transmisión, en kcal/hxm2 x°C h1= Coeficiente de transmisión por contacto cara

interior (admisión) en kcal/h xm2 x°C h2=Coeficiente de transmisión por contacto cara

exterior (emisión) en kcal/h xm2 x°C e= Espesor en metros "-·=Coeficiente de conductividad térmica, en

kcal/h x m x oc

Ejemplo de cálculo 3

Valorar el coeficiente de transmisión de calor de la pared cuyos datos constructivos se señalan:

Cámara de aire f = 0,16

Ladrillo hueco A., = 0,22 ..,...____..,,

Ladrillo macizo A.2 = 0,5

k= 1 0,09 0,12

+ + -- + 0,16 + 7 0,22 0,5 20

=0,99 kcal/hxm2 x°C

Superfi- Sentido Coef. Coef. cie flujo admisión emisión

h, h2

Pared o m • .. 7 7

ventana !!

Aire Pared o ~~ / 7,5 7,5 en ventana

reposo 45° ~

i 7 7 Horizontal m:mmm

~ 5 5

Pared ~ • .. ::'1

Aire en ... 7 movimiento exterior + 20

10-12 nm:m:m ~ Km/h. Horizontal 5

Terreno Suelo ~ ~ 5 14

8

Valores de la resistencia a la conductividad de las capas de aire T Posición capa de

aire

Vertical

Horizontal

Sentido Flujo

.. ..

1

l

Espesor e Resistencia T

en mm en kcal/h m2°C

10 0,16 20 0,19 50 0,21

100 0,20 150 0,19

10 0,16 20 0,17

> 50 0,19

10 0,17 20 0,21

> 50 0,24

Ejemplo de aplicación coeficientes admisión y emisión "h"

a:

º a: w 1-z

' ' ' 1 1

1 1 1 1 ' 1

' ' ' 1

' ' ' ' ' :

so !

' : h, :7 1 1

' ' ' 1 1 1 1

1

' ' ' ' '

h,

~

EXTERIOR

® 7 1 h,

i h,

§ 7

INTERIOR 5 1 h,

¡ h, 5

§ 5 p.

G !h, 5

5 h,

h,

TERRENO 60 14 ® .

20 h,J h,l

7 2(1 1 h,

¡ h, 7

7 1 h,

1 h,

7

7 h,

5 h,.¡

1_h, 20

h, h, . 7 20

~

1 • Influencia del aislamiento

-1

h, 20

o

en las pérdidas de calor - valores de coeficientes "k" Mediante los ejemplos de cálculo desarrollados, se cons­tata en que medida la calidad de los materiales y el trata­miento térmico que reciban, puede hacer variar el resulta­do de las pérdidas de calor por transmisión. Puesto que los valores de "k" influyen muy directamente en la valoración de estas pérdidas, es evidente que una protección térmica aplicada a los materiales que se utiliza­rán en la construcción de un edificio o local dotado de un sistema de calefacción, aún cuando suponga una inversión adicional al coste de la obra, es absolutamente rentable económicamente, teniendo en cuenta los ahorros de ener­gía que se propucirán. En las páginas siguientes se facilitan valores de "k" para iguales materiales, sin y con aislamiento o cámara de aire. Su ponderación fundamenta el anterior comentario.

Page 6: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

l

~1,5

~~ -n::: :ni E~iii: -} ~.,L Ladnllo mac•zo

k= 1,97

~ 12 ¡e ¡3¡¡

=11:¡¡ -: -:::

~j -·· --- 1 Yeso

Ras1lla Ladnllo mac•zo

k= 1,38

11 1

1 11

1 11

1 11 1 11 1

11 1 1

11 1

k= 1,38

Muros sin aislamiento

---­·-iii_Jif Yeso

Ras111a Ladnllo mac1zo

k= 1,06

k = 1,76

k= 1.26

Muros con cámara de aire de 5 a 12 cms.

¡ 12 ¡e¡3U

!!111: =u:: -~:: -::: -: -·:· -: -: -·· -_ .. 40 mm k= 0,55

"e" 50 mm k = 0,47

60 mm k= 0,40

11

11

11

11

11

11

11

Ladnllo macizo

k= 0,49

k = 0,42

k= 0,37

1

1

1

1 1

1 : 1 1 1

¡ 1,5 12 ¡e ¡s j j

11!\1 - ::

=~::, = i!! - ·:·

-:: -:: -. --Aislamiento

Ladnllo mac•zo

k= 0,53

k = 0,45

k= 0,39

Muros con aislamiento de espesor "e"

1 22,5 -i 12 1 9~1,5.

-1.1.1:::

=m~ =lil¡ =tlll =m::: - ::: = :: - }

·~t 1 Ladnllo hueco

Ladnllo mac1zo

k = 1,47

t-12 ¡e¡ 9 H q¡:¡¡ =mi = tlll -m? -. - i - ::: -:

A1slamrento Ladnllo mac•zo

k= 1,11

11

11

11

11

11

11

11

Ladnllo mac•zo

k= 1,30 k= 1.28

Muros sin aislamiento

¡ 12 ~e¡ 12 if _.......... ... -------------

1111'

1111'

mi Ladnllo mac•zo

k= 1,01

11

11

11

11

11

11

11

Ladnllo maCIZO

k= 1,00

Muros con cámara de aire de 5 a 12 cms.

------------- i Yeso

L. hueco Aislamiento

Ladnllo mactzo

40 mm k= 0,50

¡ 12 ~e¡ 12 1

·5

j t

:-u.ullll.;;: - r

! 11111 - :::

=oo':' - :::: - < - \

Ladnllo mac•zo

k = 0,48

11

11

11

11

11

11

11

Ladnllo mac•zo

k= 0,48

"e" 50 mm k= 0,43 k= 0,42 k= 0,41

60 mm k = 0,37 k = 0,36 k = 0,36

Muros con aislamiento de espesor "e"

1 1 = 1 1 1 = 1 1

1 1 = 1 1 1 = 1 1

• o • o

1 1 = 1 1 1 = 1 1

• o • o

9

Page 7: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

10

~1.5 ·.·.· ·.· ::::[UJ~:::

k = 1,45

1

1 Yeso

Ladnllo hueco Enfoscado de cemento

1

1 Yeso

Ladrillo hueco Enfoscado de cemento

k = 1,35

Muros sin aislamiento.

1

Yeso Ladnllo hueCo

Enfoscado de cemento

1 24.5 1

1 Ladri llo hueco 1

Enfoscado Yeso de cemento

k = 1,17

···~·~~~~ Ladri llo hueco Enfoscado de cemento

k = 1 .09 k = 1,03 k = 0.93

Muros con cámara de aire de 5 a 12 cms.

¡2¡ 12 f·FH 121 12 1"15!1 121 12 ¡·¡ 9 H UDW:

HEIEB DHEI EBi !HEI EB BB EB! BBEB HEIEB

1

Ye~o 1 Ye~o \~·~~~o Ladrillo hueco LadriÚo hueco Ladrillo hueco

dEenfcoes~edn~o Enfoscado Enfoscado de cemento de cemento

40 mm k = 0.50 k = 0,49 k = 0,46

"e" 50 mm k = 0,43 k = 0,42 k = 0,40

60mm k = 0.47 k = 0,37 k = 0,35

Muros con aislamiento de espesor "e"

Mortero de cemento-------' Ri!SIIIa __ _____:_ _____ ___]

Mortero de cemento -----__j T.e¡a -------------'

F1brocemento

k = 0,9 1 k = 4.76

Cubiertas sin aislamiento

k = 0,4 0 k = 0,34

Cubiertas con aislamiento de espesor "e"

Baldos 'n Doble tablero ca tatan de rasil la

uiiiiiiii.J.\Iíiiii·~~~iiijililiifi . lnwmeab•hza"on

t~XI~ ~,:; J4(:;:fía: .. '. . . -. ' .. . " , ' .... l . . . ... . -.· ...... -TabiQUIIIOS ~g~~~~~~a~~~~ar de rasilla (espesor med1o B cm)

Con bovedilla ceramica Con bovedilla cerámica k = 0.98 k = 0.96

Con bovedilla de hormigón Con bovedi lla de hormigón k = 1,08 k = 1.19

Terrazas sin aislamiento.

Con bovedilla cerámica

.. .. 45 mm k = 0,42 e 60 mm k = 0,35

Con bovedilla de hormigón

.. .. 45 mm k = 0,44 e 60 mm k = 0,36

Con bovedilla cerámica 20 mm k = 0,60

"e" 25 mm k = 0,55 30mm k = 0.5 1

Con bovedilla de hormigón 20 mm k = 0,69

"e" 25 mm k = 0.62 30 mm k = 0,57

Terrazas con aislamiento de espesor "e"

Page 8: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

-70

Materiales constructivos sin aislar

-20

D 2Qo

D DI - D D

go

Cálculo de las pérdidas de calor por transmisión El valor de las pérdidas de calor por transmisión se deter­mina mediante la fórmula:

' k = 2,2

Materiales constructivos aislados

10

D D 20°

01 D D

go

1 Or = S X k X ~t

1

Donde:

Or = Cantidad de calor en kcal/h. S = Superficie en m2.

k = Coeficiente de transmisión de calor en kcal/h. x m2 x °C

~ t = Diferencia entre la temperatura interior y la exterior (ti -te)

El valor "k" es válido aplicado a paredes de constitución homogénea.

Ejemplo de cálculo 4

Valorar las pérdidas de calor por transmisión a través de una pared interior de hormigón de grava, enlucida por am­bas caras, de 15 cms. de espesor (k= 2,2) , con las medidas señaladas, siendo la temperatura interior de 20°C y la exte­rior de 0°C.

Or = 3 x 2,8 x 2,2 x 20 = 369,6 kcal/h

11

Page 9: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

1''

Temperaturas interiores recomendadas de cálculo

Tipo de local

- Viviendas: Baño ,,,,,,,,,., , Comedor ,,, , ,,,,, Dormitorios ,,,,,,, Dormitorios-estar ., Habitaciones de servicio ,,,,,,,,,, Aseos , ,,,,,,,, ,, Salas de estar ,,,, . Vestíbulos y pasillos .. ,., ,,,,,

- Bares ,,,,,,,,,.,,

- Bibliotecas: Salas de lectura ., ...

- Cafeterías , ,,,,,,,

- Cines , , ,,,,,,,,,.

-Colegios: Clases , , ,,,,,, , ,, Comedores ,,,,,, , Laboratorios ,,,,,. Salas de estudio

- Cuarteles: Comedores .. , ....... . . Dormitorios generales .. ,, , , ,,, Salas de estar

- Escuelas: Aulas , , , , ,,,,, .. ,, Botiquín ,,,,,,,,, Comedores , , ,, , ,, Habitaciones comunes ,,,,,, , , . Habitaciones profesores , , , , , , , Salas de juego para niños ,,,, , ,,, Vestuarios-duchas ,

- Fábricas: Comedores Oficinas ,,,,,,,,,,

- Gimnasios ,,,,,,,,

Tempera­tura

20 20 15 20

18 18 20

18

18

20

18

18

18 18 18 19

18

15 19

18 20 18

18

18

18 19

18 20

15

Tipo de local

- Hospitales: Baños , ,, .,,,,,, ,, Comedores , ,,,,,, Dormitorios (estancia todo el día) , , .,,,,, Dormitorios (estancia sólo por la noche) , , Quirófanos ,,,,,,, Sala de Rayos X .,, Salas de estar ,,,,, Salas de estar para ancianos o impedidos ,,,,,, ... Salas generales , , , Salas de recuperación

- Hoteles: Baños ,,,,,,,, ... , Comedores ,,,,,,, Dormitorios ,,,,,,, Dormitorios-estar ,, Habitaciones generales , , , ,,,, , Habitaciones de servicio , ,,,,, , Salas de baile ,, ... , Salas de estar ,,,,,

- Iglesias y capillas .,

- Oficinas: Oficinas generales , Oficinas privadas

- Residencias: Baños ,,,,,,,,,., Comedores , ,,,,,, Dormitorios ,,,,, ,, Salas de estudio­Biblioteca ,.,,,,.,,

- Restaurantes ,,,, ..

- Salas de baile

-Salas de banquetes

- Teatros

-Tiendas Locales , ,,,,,,,,, Locales de prueba de vestidos ,,,,,,,

Tempera­tura

20 21

22

15 29-32

22 21

22 22

23

20 20 18 20

21

18 20 20

18

20 20

19 18 15

19

20

18

20

18

18

21

Temperaturas aplicables para locales sin calefacción contiguos a los que la tienen, según la exterior de proyecto.

Locales sin calefacción

Locales rodeados de otros con calefacción

Sótanos

Terreno debajo de la solera del sótano

Terreno contiguo a muros contención sótano

Terreno debajo de la solera planta baia

Atico con forjado plano y cubierta inclinada o terraza con cámara

Atico con forjado inclinado o terraza sin cámara

12

Temperaturas exter. proyecto (0 C}

+3 o - 4 - 8

12 10 8 5

13 13 10 7

12 10 8 7

7 5 2 o

7 5 2 o

13 10 8 5

10 8 5 o

Temperatura exterior de proyecto de aplicación para los sistemas de calefacción destinados al bienestar de las personas en la edificación, según UNE 100-001-85.

Localidad

Albacete (Los Llanos)

Alicante (El Altet)

Barcelona (Prat)

Bilbao (Sondica)

Burgos (Villafria)

Cáceres (Ciudad)

C. Real (Instituto)

Córdoba (Aerop.)

Ibiza (Es Codola)

Jerez (Base aérea)

La Coruña (Observ.)

Las Palmas (Gando)

Logroño (Agoncillo)

Madrid (Barajas)

Mahón (Aerop.)

Málaga (El Rompeo.)

Oviedo (El Cristo)

P. Mallorca (Aerop.)

Salamanca (Matacán)

Santander (Ciudad)

Santiago (Aerop.)

Sevilla (Aerop.)

Teruel (Calamocha)

Valencia (M anises)

Valladolid (Ciudad)

Vigo (Peinador)

Zaragoza (Sanjurjo)

Altitud (m)

680

92

8

45

887

459

628

65

8

50

54

10

345

595

82

12

336

2

789

64

316

20

884

50

715

250

240

Condiciones de invierno

Temp. seca (°C)* Grados-día

99% 97,5% (Base 15°C} anuales

-4,7 -3,7 1.673

2,5 3,6 517

1,2 2,0 977

-0,7 -0,3 1.101

-7,2 -5,6 2.384

0,5 1,5 1.026

-4 ,7 -3,4 1.477

-1 ,2 -0,3 869

3,9 4,9 468

0,9 2,1 579

3,0 3,8 930

12,1 12,7

-1,8 -0 ,6 1.506

-4,2 -3,4 1.555

4,7 5,5 558

3,4 4,3 487

-0,5 0,2 1.462

-0,7 0,2 844

-B,3 -5,0 2.030

3,1 3,8 985

-1 '1 -0,1 1.540

0,4 1,5 580

-7,2 -B,1 2.324

-0,2 1 ,O 741

- 5,6 -4,4 1.920

0,0 0,8 1.288

- 3,4 -2,3 1.337

• Nivel 99% para hospitales, clínicas, residen?ia~ de ancianos, centr<;>s de cálculo y cualquier otro espacio que el tecn1co proyectista ;considere necesario que tenga este grado de cobertura. Nivel97,5% para todos los tipos de edificios y espacios no mencionados anteriormente.

Page 10: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Cálculo del coeficiente de transmisión global de un edificio "KG" (Norma básica NBE-CT -79, sobre condiciones térmicas)

Los cerramientos (muros, paredes, etc.) no suelen ser ho­mogéneos ni continuos; existen coincidencias de muros, perfiles de estructuras, forjados, etc. denominados "puen­tes térmicos" . En el coeficiente de transmisión han de in­cluirse los de estas partes singulares y obtener un coefi­ciente de transmisión global o útil del conjunto. A las partes singulares tratadas se aplica un coeficiente de transmisión lineal "k" , expresado en kcal/h x m x °C. En consecuencia, para una superficie de cerramientos S el coeficiente de transmisión global o útil resulta:

K x S+ L k x L ------ (kcal/h X m2 X 0 C}

S

Donde:

L = Longitud, en mts., de los "puentes térmicos".

Para "puentes térmicos" de ancho o dimensión definidos, tales como perfiles de forjado, pilares, etc., el coeficiente de transmisión lineal "k" puede transformarse en superfi­cial "K" según la relación:

k x L K = (kcal/h x m2 x 0 C)

S

Según la Norma Básica NBE-CT-79 el coeficiente de trans­misión global "K8 " de un edificio es la media ponderada de los coeficientes de transmisión "K" de los cerramientos que conforman un edificio

Donde:

KE = Coeficiente para cerramientos en contacto con el exterior: - Cerramientos verticales o inclinados más de

60° con la horizontal de separación con el exterior.

- Forjados sobre espacios exteriores. KN = Coeficiente para cerramientos de separación

con otros edificios o locales sin calefacción: - Cerramientos verticales de separación con

locales no calefactados o medianeros entre edificios.

-Cerramientos horizontales sobre espacios no calefactados de altura superior a 1 me­tro.

K0 = Coeficiente para cerramientos de techo o cu­bierta: - Cubiertas horizontales o inclinadas menos · de 60° con la horizontal. - Cubiertas bajo el terreno.

K8 = Coeficiente para cerramientos de separación con el terreno: -Muros enterrados o soleras - Forjados sobre cámara de aire de altura me-

nor de 1 metro.

L SE = Suma de las superficies de los cerramientos en contacto con el exterior, en m2 .

L SN = Suma de las superficies de los cerramientos de separación con otros edificios o locales sin calefacción , en m2.

L S0 = Suma de las superficies de los cerramientos de techo o cubierta, en m2.

L S8 = Suma de las superficies de los cerramientos de separación con el terreno, en m2 .

E: producto K8 x S8 puede sustituirse por el k8 x L8 (kcal/h x 0 C} , si se cumple que las pérdidas de calor por unidad de temperatura sean iguales con ambos métodos, es de­cir: K8 x S8 = k8 x L8

K8 = Coeficiente de transmisión de calor del ele­mento en contacto con el terreno, en kcal/h x m2 x oc

S8 = Superficie del elemento en contacto con el te­rreno, en m2.

k8 = Coeficiente lineal de transmisión de calor del elemento en contacto con el terreno, en kcal/h X m2 X °C.

L8 = Perímetro del elemento en contacto con el te­rreno, en m2.

De la igualdad anterior resulta: K8 = k8 x L8

Ss

Por otra parte, el factor de forma "f" de un edificio es:

Donde:

S = Suma de las superficies de los elementos de separación del edificio.

V = Volumen conformado por las anteriores.

El coeficiente K8 no será superior a los valores incluidos en la Tabla 1.

Tabla 1

Tipo de Factor Zona climática según Mapa 1 energía para de forma calefacción f (m ·•¡ A B e o E

Combustibles sólidos, liquidas "" 0,25 2,1 O (2,45) 1,61 (1,89) 1,40 (1,61) 1,26 (1 ,47) 1,19 (1 ,40) o gaseosos ;;. 1,00 1,20 (1 ,40) 0,92 (1,08) 0,80 (0,92) 0,72 (0,84) 0,68 (0,80)

Edificios sin calefacción ocalefactados "" 0,25 2, 10(2,45) 1,40 (1,61) 1,05(1 ,19) 0,91 (1 ,05) 0,77 (0,91) con energía ;;. 1,00 1,20 (1 ,40) 0,80 (0,92) 0,60 (0,68) 0,52 (0,60) 0,45 (0,52) eléctrica

En la Tabla precedente se indican valores de K8 para 0,25 ~ f ~ 1 ,OO. Para los intermedios:

13

Page 11: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

El coeficiente "a" se obtiene de la Tabla 2, en kcal/h x m2 Mapa 2 X °C

Tabla 2

Tipo de energía para calefacción

Zona climática según Mapa 1

A B e D E

Combustibles sólidos, líquidos gaseosos

0,30 (0,35) 0,23 {0,27) 0,20 (0,23) 0,18 (0,21) 0,17 (0,20)

Edificios sin calefacción o calefactados con energ ia eléctrica

0,30 (0,35) 0,20 {0,23) 0,15 (0,17) 0,13 {0,15) 0,11 (0,13)

Mapa 1

~C3 Palma de Mallorca

Los valores de los coeficientes útiles de transmisión "K" de los cerramientos, excluidos los huecos, no serán superio­res a los incluidos en la Tabla 3.

Tabla 3

Tipo de cerramiento Zona climática según Mapa 2

VyW X y z

Cerramientos Cubiertas 1,20 (1 ,40) 1,03 (1 ,20) 0,77 {0,90) 0,60 (0,70) exteriores

Fachadas ligeras 1,03 {1,20) 1,03 (1 ,20) 1,03 {1 ,20) 1,03 (1,20) '(,;; 200 kg/m2)

Fachadas pesadas 1,55 (1 ,80) 1 ,38 (1 ,60) 1 ,20 (1 ,40) 1 ,20 (1 ,40) (> 200 kg/m2)

Forjados sobre 0,86 (1 ,00) O, 77 (0,90) 0,69 (0,80) 0,60 (0, 70) espacio abierto

Cerramientos Paredes 1 '72 {2 ,00) 1,55 (1 ,80) 1 ,38 (1 ,60) 1,38 (1 ,60) con locales no calefactados Suelos o techos -(-) 1 ,20 (1 ,40) 1 ,03 (1 ,20) 1 ,03 (1 ,20)

14

Ejemplo de cálculo 5

Calcular el coeficiente de transmisión global KG de un edifi­cio, con la situación geográfica y características construc­tivas que se señalan:

Situación geográfica: Cuenca Zonas climáticas E (Mapa 1) y Z (Mapa 2)

Seis plantas habitables Altura libre entre forjados Cerramientos verticales e inclinados más de 60° con la horizontal de separación con el exterior (opácos con

= 2,6m

cámara de aire de 40 mm) = 918 m2 ;;{

Ventanas y puertas exterio-res con cristal simple en marco de carpintería metálica. = 297 m2

Puente térmico frente de for-jados con bovedilla cerámica. = 113 m2 i' -Perímetro = 565 m - Espesor = 200 mm Puente térmico pilares de hormigón - N° de soportes = 26 -Perímetro = 6 x 2,6 x 26 = 405m Puente térmico alfeizar - Longitud total = 129 m -Altura = 200 mm Puente térmico cajas persianas Forjado sobre garaje no calefactado con 200 mm de bovedilla cerámica. Cubierta inclinada con cá­mara de aire, 160 mm de bovedilla hormigón y 15 mm

= 81m2

= 64m2 't

= 354m2

de teja cerámica = 4 73 m2

Superficie total de cerramientos Volumen interior limitado por cerramientos Combustible previsto

= 2.325,8 m2

= 6.032 m3

Gasóleo C

~ "K" con "K" sin

aislamiento aislamiento

1,13 0,54

5,00 2,90

0,89 1,05

2,45 2,70

1,16 1,21

1,73

1,34 0,72

1,41 0,52

Page 12: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

f= S

V

2.325,8 --- = 0,386 m-1

6.032

KG = a (3 + 2_) = 0,17 (3 + -1-) = - 0,95 kcal/h x m2 x °C

f 0,386

Coeficiente para cerramientos exteriores

LK x S

LS

1,13 X 918 + 0,89 X 113 + 2,45 X 81 + 1,16 X 25,8 + 1,73 X 64 ------------------------=1,23

1.201,8

Según Tabla 3 para fachadas pesadas en zona climática Z el valor máximo ha de ser 1 ,20. En consecuencia, han de aislarse los cerramientos en contacto con el exterior (los 40

mm de cámara de aire) . Al aislar el muro aumentan las pér­didas por los puentes térmicos.

0,54 X 918 + 1,05 X 113 + 2,70 X 81 + i,21 X 25,8 + 1,73 X 64 ---------------------- = 0,8

1.201,8

El coeficiente para cerramientos con locales no calefacta­dos, (suelos o techos) según Tabla 3 en zona climática Z no ha de ser superior a 1 ,03. El del forjado sobre el garaje tiene un valor de 1 ,34 pero aislado con 20 mm de material adecuado es de 0,72.

El coeficiente para cerramientos exteriores (cubiertas) se­gún Tabla 3 en zona climática Z no ha de ser superior a 0,60. El de la cubierta propuesta tiene un valor de 1 ,41 pero aislado con 45 mm de material adecuado es de 0,52.

L KE X SE= 0,54 X 918 + 5 X 297 + 1,05 X 113 +2,70 X 81 + 1,21 X 25,8 + 1,73 X 64 = 2.460,01

L KN X SN = 0,72 X 354 = 254,88

L K0 X S0 = 0,52 X 473 = 245,96

2.460,01 + 0,5 X 254,88 + 0,8 X 245,96

2.325,8

2.784,22

2.325,8 = 1,20

El valor máximo de KG, según el factor de forma del edifi­cio , se ha calculado en 0,95 y, por tanto, el valor 1 ,20 no es admisible. Aumentando el aislamiento de ventanas y puer-

tas exteriores (cristal triple y 6 mm de cámara de aire) K= 2,90 y:

LKE X SE= 0,54 X 918 + 2,90 X 297 + 1,05 X 113 + 2,70 X 81 + 1,21 X 25,8 + 1,73 X 64 = 1.836,31

1.836,31 + 0,5 X 254,88 + 0,8 X 245,96

2.325,8

2.160,52 ---=0,92

2.325,8

15

Page 13: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Tabla de valores de Ka máximos admisibles Cálculo de las pérdidas por

Zona climatica mapa 1 infiltraciones de aire Estas pérdidas de calor se valoran mediante la fórmula:

A B e D E

f(m- 1) 11 11 11 11 11

1 0 1 =V X Ce X Pe X 'Y] X M 1 (*)

0,25 2,10 1,61 1,40 1,05 1,26 0,91 1,19 0,77 0,26 2,05 1,57 1,36 1,02 1,23 0,88 1,16 0,75 0,27 2,01 1,54 1,34 1,00 1,20 0,87 1,13 0,73 0,28 1,97 1,51 1,31 0,98 1,18 0,85 1 '11 0,72 Donde: 0,29 1,93 1,48 1,28 0,96 1,16 0,83 1,09 0,70 0,30 1,89 1,45 1,26 0,94 1,13 0,82 1,07 0,69 0 1 = Cantidad de calor en kcal/h. 0,31 1,86 1,43 1,24 0,93 1,12 0,80 1,05 0,68 0,32 1,83 1,40 1,22 0,91 1,10 0,79 1,04 0,67 Ce = Calor específico del aire 0.24 kcal/kg oc 0,33 1,80 1,38 1,20 0,90 1,08 0,78 1,02 0,66 Pe = Peso específico del aire seco 1.24 kg/m 3 a 0,34 1,78 1,36 1,18 0,89 1,06 0.77 1,00 0,65 1 ooc y 1 ,205 a 20°C 0,35 1,75 1,34 1 '17 0,87 1,05 0,76 0,99 0,64

'Y] = n° renovaciones/hora (0.5 en general excepto 0,36 1,73 1,32 1,15 0,86 1,03 0,75 0,98 0,63 0,37 1,71 1,31 1,14 0,85 1,02 0,74 0,96 0,62 comedor-estar y baño que se puede utilizar 1). 0,38 1,68 1,29 1 '12 0,84 1,01 0,73 0,95 0,61 Para grandes locales es necesario analizarlo 0,39 1,66 1,27 1 '1 1 0,83 1,00 0,72 0,94 0,61 ya que puede ser entre 0.25 y 0.75) 0,40 1,65 1,26 1,10 0,82 0,99 0,71 0,93 0,60 ~t = Diferencia entre la temperatura interior y la ex-0,41 1,63 1,25 1,08 0,81 0,97 0,70 0,92 0,59 0,42 1,61 1,23 1,07 0,80 0,96 0,69 0,91 0,59 terior (ti - te) 0,43 1,59 1,22 1,06 0,79 0,95 0,69 0,90 0,58 V = Volumen en m3. 0,44 1,58 1,21 1,05 0,79 0,94 0,68 0,89 0,57 0,45 1,56 1,20 1,04 0,78 0,93 0,67 0,88 0,57 0,46 1,55 1 '18 1,03 0,77 0,93 0,67 0,87 0,56 0,47 1,53 1 '17 1,02 0,76 0,92 0,66 0,87 0,56 0,48 1,52 1 '16 1,01 0,76 0,91 0,66 0,86 0,55 0,49 1,51 1 '15 1,00 0,75 0,90 0,65 0,85 0,55 0,50 1,50 1 '15 1,00 0,75 0,90 0,65 0,85 0,55 0,51 1,48 1 '14 0,99 0,74 0,89 0,64 0,84 0,54 0,52 1,47 1 '13 0,98 0,73 0,88 0,63 0,83 0,54

llfll É

0,53 1,46 1,1 2 0,97 0,73 0,87 0,63 0,83 0,53 0,54 1,45 1 '11 0,97 0,72 0,87 0,63 0,82 0,53

CQ.

0,55 1,44 1,10 0,96 0,72 0,86 0,62 0,81 0,52 C\1

0,56 1,43 1 '1 o 0,95 0,71 0,86 0,62 0,81 0,52 0,57 1,42 1,09 0,95 0,71 0,85 0,61 0,80 0,52 0,58 1 ,41 1,08 0,94 0,70 0,85 0,61 0,80 0,51 0,59 1,40 1,07 0,93 0,70 0,84 0,61 0,79 0,51 0,60 1,39 1,07 0,93 0,69 0,83 0,60 0,79 0,51 0,61 1,39 1,06 0,92 0,69 0,83 0,60 0,78 0,51 0,62 1,38 1,06 0,92 0,69 0,83 0,59 0,78 0,50 0,63 1,37 1,05 0,91 0,68 0,82 0,59 0,77 0.50 0,64 1,36 1,04 0,91 0,68 0,82 0,59 0,77 0,50 0,65 1,36 1,04 0,90 0,68 0,81 0,58 0,77 0,49 0,66 1,35 1,03 0,90 0,67 0,81 0,58 0,76 0,49 te = 0°C 0,67 1,34 1,03 0,89 0,67 0,80 0,58 0,76 0,49 0,68 1,34 1,02 0,89 0,67 0,80 0,58 0,75 0,49 0,69 1,33 1,02 0,88 0,66 0,80 0,57 0,75 0,48 0,70 1,32 1,01 0,88 0,66 0,79 0,57 0,75 0,48 0,71 1,32 1,01 0,88 0,66 0,79 0,57 0,74 0,48 (*) Fórmula empírica con la que se obtienen valores semejantes a los que 0,72 1,31 1,00 0,87 0,65 0,78 0,57 0,74 0,48 resultan de desarrollar complejos procesos de cálculo expuestos en 0,73 1,31 1,00 0,87 0,65 0,78 0,56 0,74 0,48 tratados de calefacción. Su aplicación se ha generalizado. 0,74 1,30 1,00 0,87 0,65 0,78 0,56 0,73 0,47 0,75 1,29 0,99 0,86 0,64 0,77 0,56 0,73 0,47

Ejemplo de cálculo 6 0,76 1,29 0,99 0,86 0,64 0,77 0,56 0,73 0,47 0,77 1,28 0,98 0,85 0,64 0,77 0,55 0,73 0,47 0,78 1,28 0,98 0,85 0,64 0,77 0,55 0,72 0,47 Valorar las pérdidas de calor por infiltraciones de aire en el 0,79 1,27 0,98 0,85 0,63 0,76 0,55 0,72 0,46 local de medidas y temperaturas señaladas. 0,80 1,27 0,97 0,85 0,63 0,76 0,55 0,72 0,46 0,81 1,27 0,97 0,84 0,63 0,76 0,55 0,71 0,46 0,82 1,27 0,97 0,84 0,63 0,76 0,55 0,71 0,46 0 1 = 2 x 3 x 2,8 x 0,24 x 1 ,205 x 0,5 x 20 = 48,6 kcal/h . 0,83 1,26 0,96 0,84 0,63 0,75 0,54 0,71 0,46 0,84 1,25 0,96 0,83 0,62 0,75 0,54 0,71 0,46 0,85 1,25 0,96 0,83 0,62 0,75 0,54 0,70 0,45 0,86 1,24 0,95 0,83 0,62 0,74 0,54 0,70 0,45 Método de las rendijas 0,87 1,24 0,95 0,82 0,62 0,74 0,53 0,70 0,45 0,88 1,24 0,95 0,82 0,62 0,74 0,53 0,70 0,45 0,89 1,23 0,94 0,82 0,61 0,74 0,53 0,70 0,45 1 0; = L (A X 1) X ~t X Cj)¡ 1 0,90 1,23 0,94 0,82 0,61 0,73 0,53 0,69 0,45 0,91 1,22 0,94 0,81 0,61 0,73 0,53 0,69 0,45 0,92 1,22 0,93 0,81 0,61 0,73 0,53 0,69 0,44 0,93 1,22 0,93 0,81 0,61 0,73 0,52 0,69 0,44 0 ,9~ 1,21 0,93 0,81 0,60 0,73 0,52 0,69 0,44 Donde: 0,95 1,21 0,93 0,81 0,60 0,73 0,52 0,69 0,44 0,96 1,21 0,92 0,80 0,60 0,72 0,52 0,68 0,44 O; = Cantidad de calor, en kcal/h 0,97 1,20 0,92 0,80 0,60 0,72 0,52 0,68 0,44 A = Valor de la infiltración, en m3/h x m (consultar 0,98 1,20 0,92 0,80 0,60 0,72 0,52 0,68 0,44 Tabla correspondiente) 0,99 1,20 0,92 0,80 0,60 0,72 0,52 0,68 0,44 1,00 1,20 0,92 0,80 0,60 0,72 0,52 0,68 0,44 = Longitud de rendijas expuestas al viento, en

m. (consultar Tabla correspondiente)

1 Combustibles sólidos, líquidos o gaseosos. ~ t = Diferencia ti - te 11 Edificios sin calefacción o calefactados con energía eléctrica Cj)¡ = lndice de infiltración

1,,,, 16

Page 14: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Las pérdidas por infiltraciones de aire dependen de la velo­cidad del viento, de la orientación de la fachada y del ta­maño de las rendijas. La velocidad del viento es variable. No obstante, puede considerarse como valor medio el de 16 --;- 24 km/h. Para locales con más de una fachada al exterior se consi­derará únicamente la que tenga mayor longitud de rendija. La longitud mínima de ésta será la mitad del total de todas.

El índice de infiltración cp¡ constituye la indicación numérica de la mayor o menor dificultad (facilidad) que oponen las rendijas al paso dél aire.

1 Cj)¡ = E X L X Z8 1

Donde:

E = lndice del .edificio (consultar Tabla correspon­diente).

L = lndice del local. Depende de la relación entre la superficie de ventanas y puertas expuestas al viento (S

8) y la de puertas interiores (S¡). Con­

sultar Tabla correspondiente. Ze = Suplemento de esquina, a considerar sólo en

aquellos casos en los que ventanas y puertas están situadas en paredes formando angula. Consultar Tabla correspondiente.

Así pues:

O¡ = L (A X 1) X M X E X L X Z8

Infiltración horaria (A) por metro lineal de rendija

Elemento

Ventanas y puertas exteriores

Puertas interiores

Material Sencilla

Metálica 1,5

No metálica 3

Estancas, 15

Hoja sencilla y doble cristal

1,5

2,5

Doble o sencilla y estanca

1,2

2

No estancas, 40

Determinación aproximada ·de longitud de rendija 1 en función de la superficie (S) de la puerta o ventana

Altura en m. del elemento

Longitud de rendija

Longitud rendija (puerta)

Ventana Puerta o ventana

0,5 0,63 0,75 0,88 1,20 1,25 1,50 2,00 2,50

7.,2·S 6,2·S 5,3·S 4,9·S 4,5·S 4, 1·S 3,7·S 3,3·S 3·S

2,6 3,3

Puerta 1 hoja f t Puerta 2 hojas

lndice del edificio E

Localidad normal Localidad ventosa

Situación V Casa Casa V Casa Casa ccenfila» aislada ccenfila» aislada

Protegida 4 0,24 0,34 6 0,41 0,58

Despejada 6 0,41 0,58 8 0.60 0,84

Muy despejada 8 0,60 0,84 10 0,82 1,13

siendo: V = velocidad del viento considerada en m/s. Obs.: Las casas en esquina se incluyen en el grupo ccfila .. .

-Casa ccen filan es la vivienda que junto con otra (s) forman la planta de un edificio.

Selección del índice E:

Fachadas afectadas por el viento

lndice E

Orientación N-N E-E Resto de orientaciones

Una Se toma el máximo correspondiente a despejado o muy despejado

Varias, despejadas

Varias, muy despejadas

El máximo correspondiente

El máximo correspondiente

El que corresponda a protegida

El que corresponda a despejada

El Reglamento de calefacción indica que la velocidad del viento que se utilizará a efectos de cálcdlo,_de infiltración, será la máxima de las medi­das diarias registradas en la localidad en un período de 1 O años.

lndice del local L (puertas interiores y ventánas)

Relación de No Metálicas Metálicas superficies L

Estancas No estancas Estancas No estancas

s. < 1,5 < 3 < 2,5 < 6 0,9

S; 1,5 -7- 3 3 c- 9 2 c- 6 6-7-20 0,7

Suplemento de esquina (Z0 )

Puertas y ventanas en paredes en esquina 1,2

Puertas y ventanas sin formar esquina 1 ,O

Suplementos

Al margen de las pérdidas de calor por transmisión e infil­traciones de aire, ya valoradas, en la práctica no han de despreciarse otras circunstancias susceptibles de modifi­car (incrementándolos), los valores ya determinados. Se trata de parámetros que, en cada caso, inciden para el cálculo de las pérdidas de calor totales de un local, edifi­cio, etc. y son los detallados en el Cuadro.

Concepto de suplemento Valor

Por orientación Norte 0,05 -7- 0,07

Por intermitencia: reducción nocturna 0,05

Por intermitencia: de 8 a 9 horas parada 0,1

Por intermitencia: más de 1 O horas parada 0,2 -7- 0,25

Más de 2 paredes al exterior 0,05

Ultimas plantas edificios de gran altura 0,02/metro

17

Page 15: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

1 r

Cálculo de las pérdidas de calor totales Se determina la pérdida total de calor mediante la fórmula:

1 Q = (QT + Ü¡) X (1 + F) 1

Donde:

Q = Cantidad de calor total en kcal/h. Or = Cantidad de calor total por transmisión. 0 1 = Cantidad de calor total por infiltraciones de aire F = Suma de suplementos

HABITACION

HABITACION

Ejemplo de cálculo 7

Cantidad de calor por transmisión: 30.000 kcal/h. = Or Cantidad de calor por infiltraciones: 1.500 kcal/h. = 0 1

Suplementos: - Por orientación Norte: 0,05 -Paro 9 h. diarias: O, 1 -Más dos paredes exteriores: 0,05

Total factor F = 0,2

Pérdida de calor total

Q = (30.000 + 1.500) x (1 + 0,2) = 37.800 kcal/h.

Emisión calorífica de los elementos de calor El cálculo de las necesidades de calor de una habitación o edificio se desarrolla considerando siempre la temperatura exterior (llamada de cálculo) que, generalmente, es la más baja que se alcanza en la zona durante el invierno. El dimensionado del emisor se hace normalmente para M = 60°C, cuyas condiciones de trabajo son:

18

l ta-.

te ! tm

ts

te = Temperatura de entrada fluido calefactor.= 90°C ts = Temperatura de salida fluido calefactor. = 70°C tm = Temperatura media radiador o panel. = 80°C ta =Temperatura ambiente. = 20°C

1 ~ t = tm - ta = 60°C 1

Variación de la emisión calorífica en función de ~t distinto de 60°C.

En la práctica puede resultar que la exigencia calorífica real de un local sea menor que la obtenida por cálculo, ya que la temperatura exterior con la que se ha operado se al­canza en pocas ocasiones. Las temperaturas del fluido ca­lefactor podrán ser más bajas y, en consecuencia, el ~t ya no será de 60°C y la emisión de calor resultante no será la misma. La potencia de un emisor en función de la temperatura puede representarse por:

n

Donde:

Q = Emisión calorífica en kcal/h . 0 60 = Emisión calorífica para ~t = 60°C =

te+ ts 90 + 70 -- -ta = -20

2 2 ~t = Salto térmico diferente del normal te = Temperatura entrada ts = Temperatura salida · ta = Temperatura ambiente n = Exponente de la curva característica del emi­

sor según ensayos (a facilitar por el fabricante)

Cálculo del salto térmico ~t

La diferencia entre las temperaturas de entrada y salida para una determinada temperatura ambiente es un valor determinante para el cálculo del salto térmico de un emi­sor. Debe tenerse en cuenta:

~ ts 1) Cuando --?: O, 7, el salto térmico puede determinarse

~te te+ ts

mediante la media aritmética. ~t = tm- ta = - ta 2

Page 16: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

L\ ts Ejemplo de cálculo 9 2) Cuando --< 0,7, el salto térmico puede determinarse

L\ te te-ts

Valorar el salto térmico de un emisor en las condiciones de trabajo te = 90°C, ts = 70°C y ta = 25°C

mediante la media logarítmica. L\t = L\ te

In-- L'lts ts-ta él ts -- -

Ejemplo de cálculo 8

Valorar el salto térmico de un emisor en las condiciones de trabajo te= 90°C, ts = 82°C y ta = 21 oc.

L\ts ts -ta 82-21 61 -- - = - =0,88 L'lte te-ta 90-21 69

90 + 82 L\t= -21 = 65°C

2

L\ te . L\ te Valores de In -- para diferentes valores de --

L\ ts L\ ts

ó te o 2 3 4

ó ts

1,4 0,365 1,5 0,405 0,412 0,419 0,425 0,432

1,6 0,470 0,476 0,482 0,489 0,495 1,7 0,531 0,536 0,542 0,548 0,554

1,8 0,588 0,593 0,599 0,604 0,610 1,9 0,642 0,647 0,652 0,658 0,663

2,0 0,693 0,698 0,703 0,708 0,713 2,1 0,742 0,747 0,751 0,756 0,761

2,2 0,788 0,793 0,797 0,802 0,806 2,3 0,833 0,837 0,842 0,846 0,850

2,4 0,875 0,880 0,884 0,888 0,892 2,5 0,916 0,920 0,924 0,928 0,932

2,6 0,956 0,959 0,963 0,967 0,971 2,7 0,993 0,997 1,001 1,004 1,008

2,8 1,030 1,033 1,037 1,040 1,044 2,9 1,065 1,068 1,072 1,075 1,078

3,0 1,099 1,102 1,105 1,109 1 '112 3,1 1 '131 1,135 1,138 1 '141 1,144

3,2 1,163 1,166 1,169 1,172 1,176 3,3 1,194 1,197 1,200 1,203 1,206

3,4 1,224 1,227 1,230 1,233 1,235 3,5 1,253 1,256 1,258 1,261 1,264

L\te te-ta

te-ts L\t =

L\te In--

L'lts

5

0,372 0,438

0,501 0,560

0,615 0,668

0,718 0,765

0,811 0,854

0,896 0,936

0,975 1,012

1,047 1,082

1 '115 1,147

1,179 1,209

1,238 1,267

70-25 45 =- = 0,69

90-25 65

te -ts 90-70 20

te-ta 90-25 In 1,444 In In

ts -ta 70-25

6 7 8 9

0,378 0,385 0,392 0,399 0,445 0,451 0,457 0,464

0,507 0,513 0,519 0,525 0,565 0,571 0,577 0,582

0,621 0,626 0,631 0,637 0,673 0,678 0,683 0,688

0,723 0,728 0,732 0,737 0,770 0,775 0,779 0,784

0,815 0,820 0,824 0,929 0,859 0,863 0,867 0,871

0,900 0,904 0,908 0,812 0,940 0,944 0,948 0,952

0,978 0,982 0,986 0,989 1,015 1,019 1,022 1,026

1,051 1,054 1,058 1,061 1,085 1,089 1,092 1,095

1,118 1,122 1,125 1,128 1,151 1,154 1,157 1,160

1,182 1,185 1,188 1 '191 1,212 1,215 1,218 1,221

1,241 1,244 1,247 1,250 1,270 1,273 1,275 1,278

En la Tabla precedente, el valor de In 1,44 = 0,365

20 L\t= = 55°C

0,365

19

Page 17: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

La Tabla refleja valores de emisión calorífica de un radiador en función del Llt.

Núm. Ellos. 1\. t 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

60 65 70 75 81 86 92 97 103 108 114 120 126 132 138 144,0 150 156 162 169 175 181 188 194 201 207

2 119 130 140 150 161 172 183 194 205 217 228 240 252 264 276 287,9 300 313 325 338 350 363 376 389 402 415

3 179 194 210 226 242 258 275 291 308 325 343 360 378 396 414 431,9 450 469 487 506 525 544 564 583 603 622

4 239 259 280 301 322 344 366 388 411 434 457 480 504 528 552 575,9 600 625 650 675 700 726 752 777 804 830

5 298 324 350 376 403 430 458 485 514 542 571 600 630 659 689 719,8 750 781 812 844 875 907 939 972 1004 1037

6 358 389 420 451 484 516 549 583 616 651 685 720 756 791 827 863,8 901 938 975 1013 1051 1089 1127 1166 1205 1245

7 418 454 490 527 564 602 641 680 719 759 799 840 882 923 965 1007,7 1051 1094 1137 1181 1226 1270 1315 1361 1406 1452

8 478 518 560 602 645 688 732 777 822 867 914 960 1007 1055 1103 1151,7 1201 1250 1300 1350 1401 1452 1503 1555 1607 1660

9 537 583 630 677 725 774 824 874 925 976 1028 1080 1133 1187 1241 1295,7 1351 1406 1462 1519 1576 1633 1691 1749 1808 1867

10 597 648 700 752 806 860 915 971 1027 1084 1142 1200 1259 1319 1379 1439,6 1501 1563 1625 1688 1751 1815 1879 1944 2009 2075

11 657 713 770 828 887 946 1007 1068 1130 1193 1256 1320 1385 1451 1517 1583,6 1651 1719 1787 1856 1926 1996 2067 2138 2210 2282

12 716 778 840 903 967 1032 1098 1165 1233 1301 1370 1440 1511 1583 1655 1727,6 1801 1875 1950 2025 2101 2178 2255 2332 2411 2489

13 776 842 910 978 1048 1118 1190 1262 1336 1410 1485 1561 1637 1715 1793 1871,5 1951 2031 2112 2194 2276 2359 2443 2527 2612 2697

14 836 907 980 1053 1128 1204 1281 1359 1438 1518 1599 1681 1763 1846 1931 2015,5 2101 2188 2275 2363 2451 2541 2631 2721 2812 2904

15 895 972 1050 1129 1209 1290 1373 1456 1541 1627 1713 1801 1889 1978 2068 2159,5 2251 2344 2437 2532 2626 2722 2818 2916 3013 3112

16 955 1037 1120 1204 1290 1376 1464 1553 1644 1735 1827 1921 2015 2110 2206 2303,4 2401 2500 2600 2700 2802 2904 3006 3110 3214 3319

17 1015 1102 1190 1279 1370 1462 1556 1651 1746 1843 1942 2041 2141 2242 2344 2447,4 2551 2656 2762 2869 2977 3085 3194 3304 3415 3527

18 1075 1166 1260 1354 1451 1548 1647 1748 1849 1952 2056 2161 2267 2374 2482 2591,4 2702 2813 2925 3038 3152 3267 3382 3499 3616 3734

19 1134 1231 1330 1430 1531 1634 1739 1845 1952 2060 2170 2281 2393 2506 2620 2735,3 2852 2969 3087 3207 3327 3448 3570 3693 3817 3942

20 1194 1296 1400 1505 1612 1720 1830 1942 2055 2169 2284 2401 2519 2638 2758 2879,3 3002 3125 3250 3375 3502 3629 3758 3887 4018 4149

Cálculo del diámetro de las tuberías Aplicando esta igualdad para el fluido calefactor agua (Pe = 1) y para un metro lineal de tubo, resulta:

Por la red de tubos de una instalación de calefacción circu­la el fluido calefactor que es portador de la energía calorífi­ca desde el generador hasta los emisores.

Pérdidas de presión y de carga

Cuando un fluido circula por el interior de un tubo recto de igual sección en toda su longitud, la presión de este fluido disminuye rectilíneamente a io largo del tubo. Si Les la longitud del tubo expresada en metros, p1 la pre­sión inicial y p2 la final.

p -P Caida de presión = p1 - p2; Pérdida de carga t1p = 1 2

L La pérdida de carga t1p depende de la longitud y también de otras variables como el diámetro del tubo, la velocidad y peso específico del fluido, la aceleraciónde la gravedad, y del coeficiente de rozamiento del tubo. Estos parámetros se relacionan según la fórmula:

.f1p = cp X

D<;mde:

v2 X pe X L

2xgxD

t1p = Pérdida de carga en kg/m2.

20

cp = Coeficiente de rozamiento (sin dimensiones) v = Velocidad en m/sg.

Pe= Peso específico kg/m 3

L = Longitud en metros g = Aceleración gravedad en m/sg.2

D = Diámetro interior del tubo en metros

f1p = cp X ; Se sabe que: 1 e = S X V 1 2xg x D

Donde: S = Sección m2

C = Caudal m3/sg. v = velocidad m/sg

C2 Por tanto: v2 =

y sustituyendo: t1p = cp x 2 X g X S2 X D

Como S= rr r2 S

2 = 9,86 ( ~ ) 4

= 9,86 X D4

16

Así: C2

f1p = 0,0827 X cp X -­D5

Fórmula tablas

El coeficiente de rozamiento "cp" depende del estado de la tubería y del régimen de la corriente que circula por ella. En una tubería recta si la corriente es lenta, su régimen es ordenado en lo que se refiere a trayectorias y curvas, que son siempre paralelas al eje del tubo. Si aumenta la veloci­dad de la corriente suficientemente las trayectorias cam­bian el sentido y el recorrido constantemente. El régimen de circulación ordenado se denomina "laminar" y el desor­denado "turbulento".

Page 18: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

La transición de uno a otro régimen en una tubería recta, tiene lugar de forma brusca y al estado en el que se produ­ce se le denomina "estado crítico", y depende de la v_elo­cidad, del diámetro y de la viscosidad del fluido circulante. El estado de la corriente y, en consecuencia, el estado crí­tico pueden describirse mediante una magnitud sin dimen­siones denominada "número de Reynolds" (Re).

La transición de régimen de corriente laminar a turbulenta, o estado crítico, se alcanza para Re = 2.300 (*) En un régimen laminar el coeficiente de rozamiento cp sólo depende de Re, y puede expresarse:

64 cp=­

Re

V X D Re =

(*) En tubos de sección circular y rectos, por debajo de este valor el régi ­men de corriente es siempre laminar aún cuando, si se evitan las per­turbaciones, se han obtenido en ensayos regímenes de corriente lami­nar con valores de Re > 2320.

Ve

Donde:

v = Velocidad en mts/seg. D = Diámetro interior en metros

Ve = Viscosidad cinemática en m2/seg.

En tuberías industriales, cuando Re ;;;, 3000, la corriente es ya turbu­lenta.

Diagrama Caudal- Presión para tuberías de acero (Temperatura del agua = 80° C) . (Reproducido en página 47)

20000

"""' ---

'-i \1~ \

, . .,-

-1-+-+--i-+--i--+-l

! NO/JO

1000

'! --~ --

- --,-

c-+tr H-ttlr-::ttt:!:j H '

l\ \!j~ t- t ":lzZHf-t· fEe-~- ff~fc-3~~~a{E~~~-~'-iffi{ Ejemplo: " ,!= rx l\ 1, · · Caudal C = 500 1/h. , :dt' l+-f''rl-l--+-+---->tx--H-I''tr+-~-~--f'.IL+>-,,I--+++-_ .. +_-+-t

1•,'-·¡II- 0 Tubo = 1" t

110 1 1 ~ i _ 1¡ Velocidad = 0,25 m/seg. i= "" : t 'h. v ~ -?~ _ -l-+-f+ - 1-+-!: : Pérdida de carga ~p = 3,3 mm c.a. +-~ Tf - -+-H~ ;,...-4-+++l-+-++-i-+---1e-+l -i+-+ H!III- H - 1 1 1 11 1 11 1 1 ,; y ' --.¡ -Tl- 1 1 1 1 1 1 ! 1 1 1 1 ¡- ·· 1

ODS ' '~ ,, oe ,,, "~ll! e .,ttJ ,.~¡;I,D (J Jf"-· .fO 10 JO n • » ,.,..so, 71#11110'1()() - .,, • .,1()0 -----¡jT.,O!'

Pérdida de carga mm c.a./m

21

Page 19: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Diagrama Caudal - Presión para tuberías de cobre (Temperatura de agua = 45 °C)

E ....... ro eS E E ca Ol .... ca ü Q) "O ca

"O

'E ·Q) 0...

Denominación del tubo de 1 mm de espesor

Factores de corrección para temperaturas medias del agua distintas de 45 °C

Temperatura del agua °C

5 10 40 50 60 70 80 100

Factor de corrección

1 ,24 1 '18 1 ,02 0,99 0,96 0,94 0,92 0,91

Cálculo de lá pérdida de calor horario en tuberías La pérdida de calor por hora en un tubo de longitud L, vie­ne dada por la fórmula:

1 Q = k X L X {ti - ta) 1

Donde:

22

Q = Cantidad de calor kcal/h. k= Coeficiente de transmisión. L = Longitud tubo. ti = Temp. interior del agua.

ta = Temperatura ambiente.

q, +-4--+-4~+++++-

Valores de k para tubos sin aislar

Diámetro Pulg . 1/2 3/4 1 11/411/2 nominal mm 15 20 25 32 40

Tubo 0,8 0,9 1 '1 1,4 1,5 horizontal

Tubo 0,9 1 '1 1,3 1,6 1,7 vertical

50 57 60 80 100

1,8 1,9 2,2 2,7 3,2

1,8 1,9 2,2 2,7 3,2

Para tubos aislados colocados dentro de ranuras de pared cerradas, considerar ta = 45 oc Para tubos no aislados colocados en ranuras cerradas, considerar ta = 35 oc

Page 20: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Cantidad de calor aproximada en kcal/h que pierde cada metro lineal de tubería.

Tubería sin aislar

3/8" 1/2" 3/4" 1"

1 1/4" 1 1/2"

2" 2 1/2"

57 64 70 82 94

106 119 131 i43 156

20

10 12 14 16 19 21 25 30 26 28 30 35 39 43 48 52 56 61

Tubería aislada

3/8" 1/2" 3/4" 1"

1 1/4" 1 1/2"

2"

21/2" 57 64 70 82 94

106 119 121 143 156

20

2 3 3 4 4

5

6 5

6

6 7

8 9

10 10 11

12

25

15 17 19 23 27 30 35 43 37 40 43 49 56 61 68 74 80 86

25

2 3 4

5

5

6 7

9 7

8 9

10 11

12 14 15 16 17

30

17 21 25 29 35 38 45 56 48 52 56 64 72 79 87 96

103 111

30

3 4 5 6 7

8 9

11

10 10 11

13 14 16 17 19 21 22

35

21 26 31 36 43 47 55 68 59 64 68 78 88 97

107 117 126 136

35

4 5 6

7

9 9

11

14 12 13 14 16 18 19 21 23 25 27

40

25 31 37 42 50 56 66 81 70 76 81 93

105 115 127 139 150 161

40

5

6 7

8 10 11

13 16 14 15 16 19 21 23 25 28 30 32

Temperatura media -Temperatura ambiente (L'.t)

45 50 55

29 33 37 36 41 46 42 48 54 49 56 62 58 66 74 65 73 82 76 86 97 94 107 119 81 92 103 88 99 111 94 107 119

107 122 136 121 137 154 134 152 170 147 167 187 161 182 204 173 197 220 187 212 237

60 65

41 45 51 55 59 65 69 75 82 90 91 99

107 117 132 145 114 124 123 135 132 145 151 165 170 186 188 206 207 227 226 247 243 267 262 288

70

49 60 71 82 98

108 127 158 135 147 158 180 203 224 246 269 290 313

75

53 65 76 89

106 117 138 170 146 159 170 195 219 242 266 291 314 338

Temperatura media- Temperatura ambiente (D.t)

45

6

7

8 10 12 13 15 19 16 18 19 21 24 27 29 32 35 37

50

7

8 10 11

13 14 17 21 18 20 21 24 27 30 33 36 39 42

55

7

9

11

12 15 15 16 24 21 22 24 27 31 34 37 41 44

47

60

8 10 12 14 16 18 21 26 23 25 26 30 34 38 41 45 49 52

65

9 11

13 15 18 20 23 29 25 27 29 33 37 41 45 49 53 58

70

10 12 14 16 20 22 25 31 27 29 31 36 41 45 49 54 58 63

75

11

13 15 18 21 23 28 34 29 32 34 39 44 48 53 58 63 68

Cálculo de dilatación en tuberías

80

57 70 82 95

113 126 148 183 157 170 183 209 235 260 286 313 337 363

80

12 14 16 19 23 25 30 37 31 34 37 42 47 52 57 63 67 73

85

61 75 88

102 121 134 158 195 168 182 195 224 252 278 306 334 360 389

85

12 15 18 20 24 27 32 39 34 36 39 45 50 56 61 67 72 78

90

65 80 94

109 129 143 169 208 179 194 208 238 268 296 326 356 384 414

90

13 16 19 22 26 29 34 42 36 39 42 48 54 59 65 71 77

83

95 100

70 85 99

115 137 152 179 221 190 206 221 253 284 314 346 378 407 439

95

14 17 20 23 27 .30

36 44 38 41 44 51 57 63 69 76 81 88

73 98

105 122 145 161 189 233 201 218 233 267 301 332 366 399 430 464

100

15 18 21 24 29 32 38 47 40 44 47 53 60 66 73 80 86 93

Durante el trazado de las tuberías, debe tenerse en cuenta la dilatación de las mismas. Este aumento de longitud puede determinarse mediante la fórmula:

1 ~[,. = l X a X M

Donde:

~L = Longitud dilatada en mm. L = Longitud inicial en m. a = Coeficiente dilatación acero: a 80 °C. 0,96 mm. por m.

cobre: a 80 °C. 1,36 mm: por m. latón: a 80 °C. 1,52 mm.:por m.

~t = Diferencia de temperaturas (temp. media fluido-temperatura ambiente)

Cuando al aplicar la fórmula se incluye el valor de un coeficiente "a" para 80 oc no debe tomarse en consideración el factor ~t.

23

Page 21: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

~¡ , 2

Cálculo de las resistencias aisladas La caida de -presión en una resistencia aislada, o simple, se determina mediante la fórmula:

Donde:

v2 x y P1 - P2 = ~p = E ---

2xg

~p = Pérdida de presión en kg/m2

E = Coeficiente resistencia. No depende de Rey-nolds.

v = Velocidad en m/sg. y = Peso específico en kg/m 3

g = Aceleración de la gravedad en m/sg2

El coeficiente de resistencia E viene determinado por la forma constructiva de la resistencia simple que se trate y, al contra­rio del coeficiente de rozamiento cp, no depende del número de Reynolds.

Valores de E de las resistencias simples

Resistencia simple E

Caldera 2,5

Radiadores 3

Unión con aumento de sección

Unión con disminución de sección 0,5

Doble curva (180°) 2

Válvula de retención 2

Curva 90° r/d = 1 ,5 0,5

Curva 90° r/d = 2,5 0,3

Símbolo Resistencia simple E

Pieza T (1), en ángulo recto derivación, división 1,5

derivación, unión 1,0

paso, división o

paso, unión 0,5

"'&.&- ._ ,... cruce (entrada o salida por ambos extremos 3 0 '"' - 1 1

• de la T) '

(1) En las piezas T el valor E es válido considerando la velocidad de la co­rriente total.

Diámetro tubería 3/8" 1/2" 3/4" 1" 11/4" 11/2" 2"

Codo 90° 2,5 2 1,5 1,5

Soldadura circular 0,5 0,5 0,4 0,4 0,3 0,3 0,2

Válvula compuerta 1 ,5

* Llave radiador paso escuadra

* Llave radiador paso recto

4

8,5

4

8,5

0,5 0,5 0,3 0,3 0,3

2 2

6 6

* Valores diferentes para cada fabricante

Resistencias simples de cobre en metros de longitud equivalente de tubo

Diámetro del tubo 10/12 12/14 13/15 14/16 16/18

Codo 90° 0,45 0,50 0,50 0,60 0,70

Curva 45° 0,30 0,35 0,40 0,40 0,50

Curva 90° 0,40 0,45 0,50 0,50 0,55

Te 0,14 0,16 0,18 0,20 0,22

Te 0,65 0,75 0,80 0,90

Válvula paso recto 0,60 0,70 0,80 0,90 1,10

metros

Velocidad agua en m/seg.

Pérdida de presión en mm C.a. para¿ E = 1 a 15 (agua a 80°C)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,01 0,01 0,01 0,02 0,02 0,05 0,05 0,05 0,05 0,05 0,05 0,1 0,1 0,1 0,1 0,1 0,015 0,01 0,02 0,05 0,05 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,02 0,02 0,05 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,3 0,3 0,3 0,3 0,3 0,025 0,05 0,1 0,1 0,1 0,2 0,2 0,2 0,3 0,3 0,4 0,4 0,4 0,5 0,5 0,5 0,03 0,05 0,1 0,2 0,2 0,2 0,3 0,3 0,4 0,4 0,5 0,5 0,6 0,6 0,7 0,7 0,035 0,1 0,1 0,2 0,3 0,3 0,4 0,5 0,5 0,6 0,7 0,7 0,8 0,8 0,9 1,0 0,04 0,1 0,2 0,3 0,3 0,4 0,5 0,6 0,7 0,7 0,8 0,9 1,0 1,0 1,1 1,2 0,045 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 0,05 0,1 0,3 0,4 0,5 0,6 0,8 0,9 1,0 1,1 1,3 1,4 1,5 1,6 1,7 1,9 0,06 0,2 0,4 0,6 0,7 0,9 1,1 1,3 1,4 1,6 1,8 2,0 2,2 2,4 2,5 2,7 0,07 0,3 0,5 0,8 1,0 1,2 1,5 1,7 2,0 2,2 2,5 2,7 3,0 3,2 3,4 3,7 0,08 0,3 0,7 1,0 1,3 1,6 1,9 2,2 2,6 2,9 3,2 3,5 3,9 4,1 4,5 4,8 0,09 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2 3,6 4,0 4,4 4,8 5,3 5,7 6,1 010 . 05 . 1 o . . . 1 5 2 o . . 2 5 3 o 35 . 40 . 45 . 50 . 55 . 60 . 65 . 70 75 . 0,11 0,6 1,2 1,8 2,4 3,0 3,6 4,2 4,8 5,4 6,0 6,6 7,2 7,8 8,3 8,9 0,12 0,7 1,4 2,2 2,9 3,6 4,3 5,0 5,7 6,5 7,2 7,9 8,5 9,2 10,0 10,7 0,13 0,9 1,7 2,5 3,4 4,2 5,1 5,9 6,7 7,6 8,3 9,2 10,0 10,9 11,7 12,5 0,14 . 1,0 2,0 2,9 3,9 4,9 5,9 6,8 7,8 8,7 9,7 10,7 11,6 12,6 13,6 14,6 0,15 1,1 2,2 3,4 4,5 5,6 6,7 7,8 8,9 10,0 11,1 12,2 13,4 14,5 15,6 16,7

0,16 1,3 2,6 3,8 5,1 6,4 7,7 8,8 10,1 11 ,4 12,7 13,9 15,2 16,5 17,8 19,0

0,17 1,4 2,9 4,3 5,8 7,2 8,5 10,0 11 ,4 12,9 14,3 15,7 17,2 18,6 20,1 21 ,5

0,18 1,6 3,2 4,8 6,5 8,0 9,6 11,2 12,8 14,4 16,1 17,7 19,3 21,0 22,5 24,0 0,19 1,8 3,6 5,4 7,2 8,9 10,7 12,5 14,3 16,1 17,9 19,7 21,5 23,5 25,0 27,0

0,20 2,0 4,0 6,0 8,0 9,9 11,9 13,9 15,8 17,8 20,0 22,0 24,0 26,0 28,0 30,0

4

Page 22: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Velocidad agua en m/seg.

2 3 4

Pérdida de presión en mm C.a. para:¿ E = 1 a 15 (agua a 80°C)

5 6 7 8 9 10 11 12 13 14 15

0,22 2,4 4,8 7,2 9,5 12,0 14,4 16,8 19,2 21,4 24,0 26,5 29,0 31 ,5 34,0 36,0

0,24 2,9 5,7 8,5 11,4 14,3 17,1 20,0 23,0 26,0 28,5 31,5 34,5 37,5 40,0 43,0

0,26 3,4 6,7 10,0 13,4 16,7 20,0 23,5 27,0 30,5 33,5 37,0 40,0 44,0 47,0 51

0,28 3,9 7,8 1i ,6 15,5 19,4 23,5 27,5 31,5 35,0 39,0 43,0 47,0 51 55 59 0,30 4,5 8,9 13,4 17,8 22,5 27,0 31 ,5 36,0 40,5 45,0 49,0 54 58 63 67

0,32 5,1 1 O, 1 15,2 20,5 25,5 30,5 35,5 41 ,O . 46,0 51 56 61 66 71 77 0,34 5,8 11,4 17,2 23,0 29,0 34,5 40,5 46,0 52 58 63 69 75 80 85

0,36 6,5 12,8 19,3 26,0 32,5 39,0 45,0 52, 58 65 71 78 83 89 96

0,38 7,2 14,3 21 ,5 29,0 36,0 43,0 50 58 65 72 79 85 93 99 107

0,40 8,0 15,9 24,0 32,0 40,0 48,0 56 64 72 80 87 95 103 111 119

----~0~,4=2 _______ 8~,7~~1~7~,5---=26~·~5--~3~5~,0 ___ 4~4~,0~~5~3 ,~0--~6~2 ____ ~70~ __ ~7~9 ____ 8~7 --~9~6~~1~05~--1~1~3--~1 =22~--1~3~1 --0,44 9,5 19,2 29,0 38,5 48,0 58 68 77 86 96 105 115 124 134 144

0,46 10,4 21,0 31 ,5 42,0 53 63 74 83 94 105 115 126 136 147 157

0,48 11 ,4 23,0 34,5 46,0 57 69 80 91 103 114 125 137 148 160 171

0,5 12,4 25,0 37,5 50 62 75 86 99 111 124 136 149 161 173 186

0,55 15,0 30,0 45,0 60 75 89 105 119 135 150 165 180 195 210 225 0,06 17,8 36,0 54,0 72,0 89 107 125 143 161 178 196 215 235 250 270

0,65 21 ,0 42,0 63 83,0 105 125 147 167 189 210 230 255 275 295 315 0,07 24,5 49,0 73 97,0 121 145 169 195 220 245 270 295 320 340 365

O, 75 28,0 56 83 111 139 167 195 225 250 280 310 335 365 395

0,8 32,0 64 95 127 159 191 225 255 285 320 350 385 410 450

0,85 36,0 72 1 07 143 179 215 250 290 325 360 395 430 470 500

0,9 40,5 81 121 161 200 240 285 325 365 400 440 480 530 570

0,95 45,0 89 133 179 225 270 315 360 405 450 500 540 590 630

1 ,O 50 99 149 200 250 300 350 400 450 500 550 600 650 700

1 '1 60 119 179 240 300 360 420 480 540 600 660 720 780 830

1,2 72 143 215 285 360 430 500 570 650 720 790 850 920 1000

1,3 83 167 255 335 420 510 590 670 760 830 920 1000 1090 1170

1,4 97 195 295 390 490 590 680 780 870 970 1060 1160 1260 1360

1 ,5 111 225 335 450 560 670 780 890 1000 111 o 1220 1340 1450 1560

1,6 127 255 385 510 640 770 880 1010 1140 1270 1390 1520 1650 1780

1 '7 143 290 430 580 720 850 1000 1140 1290 1430 1570 1720 1860 2000

1 ,8 161 325 485 650 800 960 1120 1280 1440 1610 1770 1930 2100 2250

1,9 179 360 540 720 890 1070 1250 1430 1610 1790 1970 2150 2350 2500

2,0 200 400 600 790 990 1190 1390 1580 1780 1980 2200 2400 2600 2800

2,2 240 480 720 950 1200 1440 1680 1920 2150 2400 2650 2900 3100 3350

2,4 285 570 850 1140 1430 1710 2000 2300 2550 2850 3150 3450 3700 4000

2,6 335 670 1000 1340 1670 2000 2350 2700 3000 3350 3700 4000 4350 4700

2,8 390 780 1160 1550 1940 2350 2750 3100 3500 3900 4250 4650 5050 5450

3,0 450 890 1340 1780 2250 2650 3100 3500 4000 4450 4900 5300 5800 6200

Factor de conversión ~ para resistencias simples con diferentes temperaturas del agua tH

40 50 60 80 100

~ 0,98 0,98 0,99 1 ,O 1,02

Rendimiento de la combustión de un generador

Cálculo de la potencia del generador En la caldera tiene lugar el intercambio de calor entre el que emite el combustible quemado y el fluido calefactor que lo recibe. La potencia de la caldera se determina según la fórmula:

% Rendimiento = 1 00- K x

Donde:

Th =Temperatura humos Ta = Temperatura ambiente

Th-Ta

420

480

540

610

680

750

890

1070

1250

1460

1670

1900

2150

2400

2700

3000

3600

4300

5000

5800

6700

K = 0,495 + (0,00693 x % C02) para gasóleo 1 P = (Q + OJ x a 1 K= 0,516 + (0,0067 x % C02) para fuel de cual­

quier tipo

Donde:

P = Potencia caldera en kcal/h . Q = Potencia instalada en radiadores kcal/h.

QL = Pérdidas de calor por tuberías kcal/h. a = Aumento por inercia, de 1,1 -:- 1 ,2

K = 0,379 + (0,0097 x % C02) para gas natural y

K= 0,68

K= 0,57 K= 0,50

G.L.P. para hulla y antra­cita para coke para gas manufac­turado

25

Page 23: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

IJ 1

1 1¡

1

Rendimiento mínimo de calor en %

Combustible mineral sólido

Potencia útil Con parrilla Con funcionamiento Combustible del generador de carga automático o líquido o enkW manual semiautomático gaseoso

Hasta 60 73 74 75

de60 a 150 75 78 80

de 150 a 800 77 80 83

de 800 a 2000 77 82 85

más de 2000 77 86 87

Selección del quemador Para el correcto acoplamiento de un quemador a un gene­rador debe considerarse fundamentalmente la potencia y las características de la cámara de combustión de éste. Elegido el generador, según la potencia requerida por la instalación, deberá determinarse el valor de kg/h ó m3/h de combustible a quemar.

p kg/h. o m3/h = ---­

P.C.I. X 11

Donde:

P = Potencia generador en kcal/h. P.C.I. = Poder Calorífico Inferior del combustible.*

11 = Rendimiento del generador.

* Poder Calorífico Inferior de un combustible es la energía desprendida durante su combustión por unidad de medi­da (kg. o m3) durante una hora, no recuperando la energía de condensación del vapor de agua contenido en los ga­ses de combustión.

Poder Calorífico Inferior de: Gasóleo 8.800 kcal/1. - 10.200 kcal/kg Gas ciudad 3.800 kcal/m3 (n) Gas natural 9.300 kcal/m3 (n) Gas propano 23.200 kcal/m3 (n) - 11.000 kcal/kg.

En la elección del quemador deberá tenerse en cuenta que si la caldera seleccionada es de hogar presurizado, aquel debe también serío. Este tipo de quemador únicamente podrá seleccionarse conociendo la curva característica de caudal y presión.

Ejemplo 1

Consumo combustible = 30 kg./h Sobrepresión hogar caldera = 40 mm c.a. E:l quemador cuya curva característica se indica es el ade­cuado.

Ejemplo 11

Consumo combustible = 50 kg./h. Sobrepresión hogar caldera = 60 mm c.a. El quemador cuya curva característica se indica no es ade­cuado. Debería seleccionarse un modelo superior.

26

60 -----1p NO 1 1 1

40 ---.,SI 1 1 1 1 1

cci 1 1

ü 1 E 1 E 1

o 10 20 30 40 50 60 kg/h

Cálculo del consumo anual de combustible La exigencia calorífica calculada para una instalación con­tiene valores escogidos para supuestas condiciones clima­tológicas basadas en datos estadísticos, que pueden no corresponderse con las reales. Para desarrollar el cálculo del consumo por temporada de calefacción, o anual de combustible, deberán aplicarse factores de corrección que hagan del valor resultante el más cercano a la realidad, en cuanto al consumo de ener­gía, el cual viene determinado según la fórmula:

Donde:

Z x (ta-te m) x a x b x e + Q Co = 24 x

(ta-te min) x P.C.I. x 11

Co = Consumo anual de combustible en kg o m3 (calefacción)

Z = Número de días calefacción ta = Temp. ambiente

tem = Temp. exterior media período de calefac­ción

te min = Temp. exterior mínima P.C.I. = Poder calorífico inferior combustible

11 = Rendimiento total instalación (caldera, re­gulación, distribución)

a- Factor reducción temperatura - Hospitales - Viviendas plena calefacción - Viviendas reducción nocturna -Escuelas

b- Factor reducción servicio -Viviendas calef. continua - Viviendas con reducción servicio

fines de semana, etc -Escuelas

e- Factor corrección exigencia calorífica

e= Qt

Q

1 0,95 0,9 0,8

0,9 0,75

Page 24: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

/

Donde: Z x (ta - tem) corresponde a los grados-día* con base de

Qt= Pérdidas de calor por transmisión 15 oc en la mayoría de tratados españoles.

Q= Pérdidas totales • Los grados-día de un período determinado de tiempo es el resultado de la suma, para todos los días de éste período, de la diferencia entre la temperatura base de los grados-día y la temperatura media del día.

Grados-día con temperatura base 15/15 (UNE- 100-002-88)

Valores mensuales y anuales

Observatorio Ene. Feb. Mar. Abr. M ay. Jun. Jul. Ago. Sep. Oct. Nov. Dic. Año

Andalucía Al m ería 91 66 45 16 1 o o o o 1 19 80 319 Cádiz 81 52 44 15 2 o o o o 1 17 80 292 Córdoba (Aeropuerto) 220 149 117 51 8 o o o o 20 101 204 870 Granada (Armilla) 241 202 171 98 31 1 o o 2 33 139 260 1178 Hu el va 96 60 48 16 2 o o o o 1 26 100 349 Jaen 188 146 119 54 17 o o o o 16 91 179 810 Jerez (Aeropuerto) 137 90 73 31 6 o o o o 4 44 141 526 Málaga (Aeropuerto) 96 77 62 28 2 o o o o 3 28 98 394 Marbella (Instituto) 67 55 36 10 o o o o o 1 17 72 258 Sevilla (Facultad 118 63 40 13 2 o o o o 2 29 113 380

de Ciencias)

Aragón 32 Calamocha 377 323 312 217 113 28 2 3 122 256 379 2173

Candanchú 493 475 472 402 284 159 74 85 150 254 397 491 3736 Da roca 330 277 266 167 71 13 o o 16 87 229 342 1798 Sabiñánigo 368 313 294 188 90 19 1 2 30 121 267 376 2069 Teruel 350 283 267 184 82 12 1 2 18 113 256 324 1892 Zaragoza (Aeropuerto) 285 222 187 99 26 1 o o 3 52 176 286 1337

Asturias Aeropuerto de Asturias 192 168 186 144 80 22 1 o 9 49 121 196 1168 Gijón 157 138 147 96 37 3 o o 2 27 88 168 863 Oviedo (El Cristo) 244 193 205 176 100 26 3 4 20 90 168 233 1462

Baleares Ciudadela 91 78 77 28 4 o o o o 3 23 73 377 Ibiza (Aeropuerto) 109 96 91 39 3 o o o o 3 29 97 467 Mahón (Aeropuerto) 138 134 124 81 14 o o o o 15 55 107 668 Son San Juan (Aerop.) 185 153 140 92 15 o o o o 22 90 147 844 Son Torrella 268 256 247 198 81 13 1 1 7 95 195 254 1616

Canarias Gando (Aeropuerto) 1 1 o o o o o o o o o o 2 Los Rodeos (Aerop.) 71 80 80 65 35 3 o o o 1 16 68 419

Cantabria Reinosa 373 329 328 239 156 81 30 26 67 139 268 372 2408 Santander (Centro) 161 147 158 117 47 7 o o 3 26 87 170 923 Torrelavega (Sniace) 207 147 167 123 58 11 o o 7 42 124 175 1061

Castilla-La Mancha Ciudad Real (Ciudad) 303 241 214 126 51 4 o o 5 60 199 308 1511 Cuenca 339 292 265 168 79 11 o o 13 89 227 342 1825 Guadalajara 289 242 210 120 46 3 o o 5 54 184 295 1448 Los Llanos (Aerop.) 335 268 236 157 50 2 o o o 96 210 313 1675 Molina de Aragón 392 338 332 232 126 34 2 4 43 144 289 395 2332 Toledo 265 208 177 91 30 2 o o 2 37 156 284 1252

Castilla-León Aranda de Duero 353 307 267 167 92 14 1 1 19 93 238 361 1913 Avila 357 326 317 230 137 36 1 4 37 130 274 388 2237 Burgos (Instituto) 353 297 288 201 108 30 2 3 30 106 244 361 2023 La Alberca 332 291 265 266 120 42 3 5 24 96 241 348 2033 León (Virgen del Camino) 369 307 287 202 122 29 2 4 35 115 249 369 2090 Miranda de Ebro 319 258 248 167 75 20 2 2 24 97 222 324 1758 Palencia 341 277 261 172 91 18 1 2 18 79 211 339 1810 Ponferrada 328 248 215 129 69 9 o 1 14 74 211 346 1644 Salamanca 328 268 251 161 83 11 o 1 17 88 225 352 1785 Segovia 334 293 275 186 97 18 o 1 23 98 239 367 1931 Soria 368 324 311 221 125 34 2 3 35 123 226 380 2152 Valladolid (Ciudad) 346 273 251 159 80 12 o 1 17 88 229 355 1811 Zamora 338 256 238 146 74 9 o o 12 74 210 344 1701

C;;~taluña Girona 232 199 167 91 21 1 o o 2 41 133 232 1119 la Molina 501 480 480 378 260 142 49 66 148 262 392 508 3666 Lleida 300 204 157 75 14 o o o 2 41 174 302 1269 Manresa 346 275 226 128 32 2 o o 3 63 209 348 1632 Montseny 425 432 444 364 246 137 42 58 133 236 337 435 3289 Ribas de Freser 329 298 281 190 88 27 2 3 48 127 240 334 1967 Tarragona 158 132 125 63 12 1 o o o 15 75 158 739 Tortosa 149 110 90 35 4 o o o o 7 60 154 609 Vic 359 272 221 131 36 2 o o 7 80 224 353 1685 Viella 372 336 322 234 133 55 11 17 65 150 283 401 2379

27

Page 25: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

1 1 11

Grados-día con temperatura base 15/15 (UNE- 100-002-88)

1 1

1

Valores mensuales y anuales

Observatorio Ene. Feb. Mar. Abr. M ay.

Ceuta y Melilla Ceuta 125 112 111 67 17 Malilla 60 47 39 15 1

Extremadura Cáceres (Ciudad) 211 171 144 73 34 Zafra 214 180 164 87 34

Galicia Carballino-Uceira 307 262 233 159 98 La Coruña (Ciudad J.) 155 143 141 102 54 Lugo (Punto Centro) 297 250 245 184 120 Pontevedra 146 121 101 56 23 Monforte de Lemas 265 199 168 88 39 Santiago de Compostela

(Labacolla) 243 219 207 151 101 Vigo 143 128 107 67 38

La Rioja Logroño 276 220 187 127 47

Madrid Alcalá de Henares (B.A.) 308 247 172 110 22 Madrid (Retiro) 275 223 185 100 41 Navacerrada 473 469 482 393 388

Murcia Jumilla (IL) 259 217 185 106 24 Murcia (San Javier) 146 119 104 50 8

Navarra Pamplona 290 252 235 153 71

País Vasco Durango 255 231 230 177 90 Eibar 236 199 197 124 50 lgueldo 203 195 199 148 72 Lasarte 175 158 159 109 40 Sondica (Aeropuerto) 182 169 175 126 48 Vitoria (Aeropuerto) 310 270 261 186 96

Valencia Al coy 213 196 185 112 31 Alicante (El Altet) 129 105 88 36 3 Castellón 124 102 90 40 3 Utiel 365 310 294 191 84 Valencia (Manises/Aerop.) 176 135 116 50 5

La temperatura mensual media es el promedio de las. tem­peraturas diarias de todo un mes. En el gráfico se ha representado la curva anual, limitada a la temporada de calefacción, con un valor límite de 15 oc de principio y final de temporada y 20 °C como temperatu­ra normal en el interior. En este caso el número de grados-día corresponde al área rayada, limitada por la curva, por la línea de temperatura interior y por las ordenadas del principio y final de tempo­rada de calefacción. El espacio entre estas determina el número de días de calefacción.

22

ü 20

o 18 Cll

'6 16 (1)·

E o 14

·~ 12 x <ll 10 ~

8 ::J

~ 6 <ll c. E 4 ~ 2

o

t0 ~ t2; 1\ ~ t:% ~

rL 1/ V: 1/

~ ~ r¿ ~ ~ ~ ~V/ r'l ~ ~ j ~ ~

E. . . <ll u iJ u (/) o z o

~ ~ ~ Vj ~ l'i' V/ ~ L L L ~ V / L 7 v¿ ~ ~ t;'l l1

~ ~ ¡;¿¿ r1 V/ ~ ~ rt ~ 88 ~ rz ~ t1 ~ 0 1-

~ 28

Jun. Jul. Ago. Sep. Oct. Nov.

o o o o 5 47 o o o o 1 9

2 o o 21 106 3 o o 36 115

23 2 3 34 103 215 9 o o 1 24 83

38 5 5 30 90 200 2 o o 2 16 76 5 o o 10 58 175

25 2 2 19 67 163 4 o o 2 18 67

7 o o 9 58 176

6 o o 5 61 212 3 o o 5 51 175

132 30 42 133 255 388

o o o 1 44 158 o o o o 6 45

18 16 64 194

28 6 4 21 67 167 11 o o 10 47 143 17 o o 9 47 131 10 o o 6 30 103 11 o o 7 37 113 32 3 3 29 92 217

2 o o 2 36 117 o o o o 3 34 o o o o 5 41

12 o o 15 102 251 o o o o 11 73

Ejemplo de cálculo 1 O

Z = Número días de calefacción 140 ta = Temperatura ambiente 20 oc

Dic. Año

120 604 57 229

228 991 239 1073

303 1742 151 863 296 1760 152 695 284 1291

245 1444 145 719

278 1385

310 1453 283 1341 490 3675

270 1264 139 617

308 1603

262 1538 240 1257 228 1249 184 974 202 1070 324 1823

237 1131 121 517 118 523 373 1997 175 741

tem = Temperatura exterior media período calefacción 10 oC.

te min = Temperatura exterior mínima O oc a = Factor reducción temperatura 0,9 b = Factor reducción servicio 0,9 e = Factor corrección exigencia calorífica 0,95

Q = Pérdidas de calor 8.000 kcal/h P.C.I. = Poder calorífico inferior gasóleo 10.200 kcal/kg

r¡ = Rendimiento total instalación 0,80

Co = 24 x 140 (20- 1 0) X 0,9 X 0,9 X 0,95 X 8.000

(20 - 0) X 1 0.200 X 0,8

= 1 .267 kg de gasóleo

Cálculo de las características hidráulicas del circulador La misión del circulador en una instalación de calefacció por agua caliente consiste en superar las resistencias qu ofrece el circuito a la circulación del fluido por su interior. Si se eligen diámetros muy pequeños de tubería la red r sulta económica, pero las velocidades de circulación y, p tanto, las pérdidas de presión serán importantes y las e racterísticas hidráulicas del circulador serán más elevada

Page 26: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

El caso contrario conlleva pequeñas velocidades pero re­des con diámetros mayores. Así pues, debe constituirse, mediante el equilibrio de todos los parámetros, la red más ventajosa. El caudal de agua vendrá determinado por la fórmula:

Donde:

C = Caudal en 1/h. P = Potencia caldera en kcal/h.

M = Salto térmico instalación (temp. ida- temp. retorno)

Ce= Calor específico kcal/h . kg oc = 1 para el agua Pe = Peso específico en kg/dm 3 = 1 para el agua

El volumen de agua contenido en la instalación no ha de tenerse en cuenta para fijar el caudal horario. El comportamiento del circulador en funcionamiento lo de­terminan la curva característica del propio circulador y la del circuito de tubos. Esta última establece la relación en­tre la presión y el caudal de la misma. El punto de servicio del circulador viene determinado por la intersección de la curva característica de este y la corres­pondiente a la instalación.

.; ti

E e

·O ·¡¡; ~ a.

1

Curva . 1 •.....-.;~U/. ~dor

/ /

~~o 1 du / ) /

cu~"'~ a. --r·--- ·

f.-- ' /

1 ·A- Punto de r--·~'

funcionamiento 111..

"' '

Caudal m3/h

Cálculo del depósito de expansión La misión del depósito de expansión es la de absorber el aumento de volumen de agua que se produce al calentar la contenida en la instalación.

Depósito de expansión abierto

La capacidad del depósito de expansión ha de valorarse conociendo el volumen total de agua en la instalación (cal­dera, emisores, tuberías, etc.) y ha de ser la suficiente para absorber el aumento de volumen de agua que se origina cuando ésta se calienta. De acuerdo con la Normativa vigente, la capacidad mínima del depósito ha de ser el 6% del volumen total de la insta­lación, es decir:

1 V = 0,06 X V1 1

Donde:

V = Capacidad depósito en litros. V1 = Volumen total instalación en litros.

A = Tubo seguridad

Dilatación del agua:

10 oc

20 °C

30 °C

40 °C

50 oc

0,027%

0,177%

0,435%

0,782%

1,21 %

1

1 +

n 1 Purga • de aire

1 ·;

1 •

1 • 1 • 1 • ~

B = Tubo Tubo retorno rebosadero

1,71%

7Q °C 2,27%

80 °C 2,90%

90 °C 3,59%

100 oc 4,34%

Contenido de agua en los tubos por metro lineal:

DIN 2440 Cobre (con o sin soldadura)

3/8" 0,128 6/8 0,028

1/2" 0,213 8/10 0,050

3/4" 0,380 10/ 12 0,079

1" 0,602 12/14 0,113

1 1/4" 1,04 13/15 0,133

1 1/2" 1,359 14/16 0,154

2" 2,248 16/18 0,201

2 1/2" 3,772 20/22 0,314

3" 5,204

4" 8,820

5" 13,431

En el caso de que no pudieran ser obtenidos los valores para determinar el volumen total de la instalación, el cálcu­lo de la capacidad del depósito de expansión podrá reali­zarse mediante la fórmula empírica DIN 4751, obteniéndo­se resultados válidos.

P X 1,2 V=---

1000

29

Page 27: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Donde:

V = Capacidad depósito en litros P = Potencia caldera en kcal/h.

Los valores de los diámetros de las tuberías de seguridad serán:

Tubo seguridad ida A 0 = 15 + 1 ,5 V P Tubo seguridad retorno B 0 = 15 + V P 0 Tubo rebosadero = A 0

Siendo: P = Potencia caldera en kW. A y B = 0 interior en mm

1 MINIMOA0yB0 ~ 26mm 1

Depósito de expansión cerrado

Actualmente, las instalaciones de calefacción por agua ca­liente tienden a efectuarse a circuito cerrado, incorporando depósitos de expansión también cerrados. En ellos, al elevarse la temperatura del agua y, por tanto, la presión, ésta empuja la membrana y el nitrógeno de la cá­mara se comprime hasta quedar equilibradas las presio­nes.

1 Cámara de nitrógeno 2 Cámara expansión de agua 3 Orificio conexión a la instalación 4 Membrana especial 5 Válvula llenado de gas precintada

1 Vu ~Vi x a% 1

Donde:

Vu = Volumen o capacidad útil. Vi = Volumen agua de la instalación

a % = Coeficiente dilatación del agua

Es necesario, además, determinar el "coeficiente de utiliza­ción" , ,que depende de la altura manométrica de la instala­ción y de la presión máxima de trabajo (tarado de la válvula de seguridad del depósito).

30

* Pf = Presión absoluta máxima de trabajo. * Pi = Presión absoluta altura manométrica.

'Y] = Coeficiente utilización. Vu = Capacidad útil del depósito. Vv = Capacidad total del depósito.

* Presión absoluta = Presión relativa + Presión atmosférica.

Agua

Aire

0 Tubo conexión a depósito = 20 mm mínimo

Ejemplo de cálculo 11

V u

Determinar la capacidad de un depósito de expansión ce­rrado para una instalación de 20 metros de altura, un con­tenido total de agua de 590 litros, temperatura ida de 90 °C, temperatura retorno de 70 oc y presión máxima de tra­bajo 3 kg/cm2.

Coeficiente dilatación agua 80 oc = 2,9 (Ver Tabla pág. 29).

Cálculo volumen expansión o capacidad útil depósito

2,9 X 590 Vu = = 17,1 litros

100

Cálculo coeficiente utilización

4-3 'Y]= = 0,25

4

Cálculo capacidad total depósito

Vv = 17,1

1 6,84 litros 1 0,25

Cálculo de la chimenea La chimenea tiene la misión de evacuar los gases de com­bustión procedentes del hogar. Al mismo tiempo, el tiro que produce facilita la entrada de aire necesario para la combustión . El tiro de la chimenea se origina por la diferencia de pesos específicos del aire exterior frío y de los gases de combus­tión, y es tanto más intenso cuanto más alta es la chime­nea aunque depende de la resistencia que ofrecen los con­ductos de humos de la caldera y de las características constructivas de la propia chimenea.

1 T = H (Y a - Y g) 1

Donde:

T = Tiro chimenea en mm c.a. H = Altura vertical en metros.

Ya = Peso específico aire exterior en kg/m 3

Yg = Peso específico gases combustión en kg/m 3

Page 28: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Valores del tiro por metro lineal de chimenea -temperatura exterior 25 oc

Temperatura media humos Tiro chimenea en mm c.a./m

0,44

0,48

0,51

0,54

0,57

0,62

El tiro es tanto mayor cuanto más elevada sea la diferencia de temperaturas entre la del aire exterior y la de los gases. En una chimenea sobredimensionada o construida con material inadecuado que no asegure su estanquidad, se producirán infiltraciones de aire frío que disminuiran el tiro y el rendimiento de la combustión, con el consiguiente de­rroche de energía.

Cálculo de la sección

Se determina mediante la fórmula:

S = K X

Donde:

p

Vh-

S = Sección en cm2

P = Potencia caldera en kcal/h. h = Altura reducida en metros K = Coeficiente = 0,03 para sólidos

0,02 para líquidos 0,008 a 0,014 para calderas so­brepresionadas.

Esta fórmula contempla la presencia de los conductos para la unión de la caldera con la chimenea, cambios de sección y dirección, etc. que han de ser considerados para evitar errores de dimensionado. Por estos conceptos, la al­tura real vendrá reducida en:

0,5 metros por cambio de dirección o T 0,5 metros por cambio de sección 1 metro por cada metro de tramo horizontal 1 metro por cada m m. de pérdida de carga de la caldera

Por tanto, la altura reducida de la chimenea se determina por:

1 h = H - (n -x 0,5 + L + p) 1

Donde:

h = altura reducida 'H = altura real n = número codos L = longitud horizontal p = resistencia caldera 2 -:- 4 mm. (1)

(1) 2 mm. hasta 160.000 kcal/h 3 mm. hasta 320.000 kcal/h 4 mm. más de 320.000 kcal/h

La resistencia "p" sólo ha de considerarse para calderas con hogar en depresión.

Ejemplo de cálculo 12

Valorar la altura reducida, la sección y el diámetro de una chimenea de 25 metros de altura real para una caldera de 152.000 kcal/h de potencia.

Hogar en depresión Combustible sólido 2 curvas en unión caldera-chimenea 3,5 mts. longitud del tramo horizontal

h = 25 - (2 x 0,5 + 3,5 + 2) = 18,5 mts.

152.000 S = 0,03 x = 1.060 cm2

VT8,5

1.060 = 3,14 X ( ~ r ( ~ r 1.060

3,14 = 338 cm.

D = V 338 = 18,4 cm ; D (0) = 18,4 x 2 = 37 cm.

2

Ejemplo de cálculo 13

Valorar la altura reducida, la sección y el diámetro de una chimenea de 22,5 metros de altura real para una caldera de 760.000 kcal/h de potencia.

Hogar sobrepresionado Combustible líquido 2 curvas en unión caldera-chimenea 1 ,5 mts. longitud del tramo horizontal

h = 22,5- (2 x 0,5 + 1,5) = 20 mts.

760.000

V20 S= 0,011 X = 1.869 cm2

1.869=3,14 x (-D2

)2 ·, ( _D2

)2 1.869

3,14 = 595 cm.

D -- = V 595 = 24,4 cm. ; D (0) = 24,4 x 2 = 49 cm.

2

- En caso de chimeneas de sección rectángular ha de tenerse en cuenta que la relación entre lados no sea superior a 1 ,5.

-La sección mínima no ha de ser inferior a 300 cm 2

-Aumentar un 6% por cada 500 metros sobre el nivel del mar. ·

Cálculo del conducto horizontal

La sección del conducto horizontal se determina según la fórmula:

E = S X ( 0,6 X ~ + 1 )

Donde:

E = Sección en cm2 del canal horizontal. S = Sección vertical cm2.

L = Longitud horizontal m. H = Altura chimenea m.

L < H

2

31

Page 29: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Ejemplo de cálculo 14

Valorar la sección del conducto horizontal de 2 metros de longitud de unión entre una caldera de 300.000 kcal/h de potencia y una chimenea de 20 metros de altura real.

Hogar en depresión Combustible líquido 1 codo en tramo horizontal

h = 20 - (1 x 0,5 + 2 + 3) = 14,5 mts.

300.000

Vl4,5 S= 0,02 X = 1.580 cm2

E = 1.580 X ( 0,6 X 2

2

0 + 1 ) = 1.675 cm2

Detalle de empalme entre caldera y chimenea

Nota: La longitud "A" debe aislarse cuando supere la de 1 m.

Ejemplo de cálculo de una instalación de calefacción (Distribución bitubular)

Se aplica a una vivienda individual de características:

-Vivienda en un edificio sin calefacción - Tuberías de acero estirado -Temperatura exterior mínima=- 4 oc -Temperatura de confort= 20 oc -Temperatura mínima viviendas colindantes y escalera

comun,itaria = 5 oc -Temperatura de ida = 90 oc -Temperatura de retorno = 70 oc - Regimen de intermitencia = reducción nocturna

Datos de alzado: -Altura ventana baño: 0,70 metrós.

32

L__

- Altura otras ventanas: 1 ,50 metros. -Altura puertas interiores y puertas-ventana: 2,20 metros. -Altura entre suelo y techo: 2,70 metros.

Composición del material constructivo y coeficiente de transmisión: -Muro exterior de ladrillo macizo de 12 cms. de espesor,

con cámara de aire de 1 O cms. + tabicón de 8 cms. + enlucido de yeso. (k = 1,1 ).

-Muro interior simple -de ladrillo hueco de 7-8 cms. de es­pesor, enlucido por ambas caras (k= 1 ,7).

- Pared interior simple de ladrillo hueco de 3-4 cms. de es­pesor, enlucida por ambas caras (k = 2,1 ).

- Puertas interiores de madera contrachapada con doble pared (k = 1 ,9).

- Puerta exterior de madera maciza (k = 3,0). -Ventanas con doble acristalamiento y cámara de aire de

6 mm. entre cristales (k = 2,9). - Puerta-ventana exterior con cristal sencillo de 1 ,25 mm

(k = 5,0). -Techo de terrazo con forjado de bovedilla de hormigón

(k = 1 ,4).

- Suelo de parquet con forjado de bovedilla cerámica (k = 1 ,2).

Cálculo de superficies

Dependencia: baño

Superficie Longitud Alto/ancho Superficie Deducción Superficie m

Muro ext. 2,85

Ventana 0,90

Puerta 0,70

Muro int.

Pared int. 2,85

Suelo 2,85

Techo 2,85

Pérdidas de calor por:

Superficie Coef. k

Muro ext. 1,1 20- (-4)

Ventana 2,9 20- (-4)

Puerta 1,9 20-8

Muro int.

Pared int. 2,1 20- 8

Suelo 1 ,2 20 - 5

Techo

Suple­mentos F

1,4 20- 5

Orientación Norte

0,05

m brutam2 m2 netam2

2,70 7,69 0,63 7,06

0,70 0,63 0,63

2,20 1,54 1,54

2,70 7,69 1,54 6,15

1,70 4,84 4,84

1,70 4,84 4,84

Transmi-Infiltraciones sión

Volumen Renova-Or=Sxkxót m3 ciones/h 01=VxC.xP.X l] Xót

186

44

35

155

87

102 13,06

609 91

Intermitencia Más de dos paredes exter. Total

0,05 0,1

Pérdidas de calor totales Q = (QT + 0 1) x (1 + F) = 1 770 kcal/h 1

Page 30: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Cálculo de superficies N.0 2

Dependencia: dormitorio 111

Superficie Longitud Alto/ancho Superficie Deducción Superficie

m m brutam2 m2 netam2

Muro ext. 9,30 2,70 25,11 1,50 23,61

Ventana 1,00 1,50 1,50 1,50

Puerta 0,70 2,20 1,54 1,54

Muro int.

Pared int.

Suelo 4,00 3,10 12,40 12,40

Techo 4,00 3, 10 12,40 12,40

Pérdidas de calor por: Transmi-

Infiltraciones sión

Superficie Coef. t.t

Or=Sxkxt.t Volumen Renova- Q1=VxC,xP,Xl]Xt.l

k oc m3 ciones/h

Muro ext. 1 '1 20- (-4) 623

Ventana 2,9 20- (-4) 104

Puerta 1,9 20-8 35

Muro int.

Pared int.

Suelo 1,2 20 -5 223

Techo 1,4 20-5 260 33,48 0,5

1.245 11 6

Orientación Intermitencia Más de dos Total Norte paredes exter.

Suple­mentos F

0,05 0,05 0,05 0,15

Pérdidas de calor totales O = (QT + 0 1) x (1 + F) = 1 1.565 kcal/h 1

Cálculo de superficies N.0 3

Dependencia: dormitorio 11

Superficie Longitud Alto/ancho Superficie Deducción Superficie

m m brutam2 m2 netam2

Muro ext. 5,55 2,70 14,98 1,50 13,48

Ventana 1,00 1,50 1,50 1,50

Puerta 0,70 2,20 1,54 1,54

Muro int.

Pared int.

Suelo 3,20 2,90 9,28 9,28

Techo 3,20 2,90 9,28 9,28

Pérdidas de calor por: Transmi-

Infiltraciones sión

Superficie Coef. t.t Or=Sxkxt.t

Volumen Re nova-Q1=Vx C,x P,x ~ x t.t k oc m3 ciones/h

Muro ext. 1 '1 20 - (-4) 356

Ventana 2,9 20 - (-4) 104

Puerta 1,9 20 - 8 35

Muro int.

Pared int.

Suelo 1,2 20 - 5 167

Techo 1,4 20 - 5 195 25,06 0,5

857 87

Orientación Intermitencia Más de dos Total Norte paredes exter.

Sup le­mentos F

0,05 0,05

Pérdidas de calor totales O = (OT + 0 1) x (1 + F) = 1 991 kcal/h J

33

Page 31: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Cálculo de superficies N.0 4

Dependencia: dormitorio 1

Superficie Longitud Alto/ancho Superficie Deducción Superficie

m m bruta m2 m2 netam2

Muro ext. 2,55 2,70 6,88 1,50 5,38

Ventana 1,00 1,50 1,50 1,50

Puerta 0,70 2,20 1,54 1,54

Muro int.

Pared int. 1,95 2,70 5,26 1,54 3,72

Suelo 2,90 2,85 8,26 8,26

Techo 2,90 2,85 8,26 8,26

Pérdid~s de calor por: Transmi-

Infiltraciones sión

Superficie Coef. L\t O¡=SxkxL\t Volumen Renova- 01=VxC,xP,Xl] XL\t k oc m3 ciones/h

Muro ext. 1 '1 20- (-4) 142

Ventana 2,9 20- (-4) 104

Puerta 1,9 20-8 35

Muro int.

Pared int. 2,1 20-8 94

Suelo 1,2 20-5 149

Techo 1,4 20-5 173 22,30 0,5

697 77

Orientación Intermitencia Más de dos Total Norte paredes exter.

Suple­mentos F 0,05 0,05

Pérdidas de calor totales O = (OT + 0 1) x (1 + F) = 1 813 kcal/h 1

L 34

1

Cálculo de superficies N.0 5

Dependencia: comedor-estar

Superficie Longitud Alto/ancho Superficie Deducción Superficie

m m bruta m2 m2 netam2

Muro ext. 6,40 2,70 17,28 3,4 13,88

Ventana 0,92 1,50 1,38 1,38

Puerta 0,70 2,20 1,54 1,54

Puerta-vent. 0,92 2,20 2,02 2,02

Pared int.

Suelo 5,1 3,40 17,34 17,34

Techo 5,1 3,40 17,34 17,34

Pérdidas de calor por: Transmi-

Infiltraciones sión

Superficie Coel. L\t O¡=SxkxL\t Volumen Re nova-01=VxC,xP,x ~x L\t k oc m3 cioneslh

Muro ext. 1 '1 20- (-4) 366

Ventana 2,9 20- (-4) 96

Puerta 1,9 20-8 35

Puerta-vent. 5,0 20- (-4) 242

Pared int.

Suelo 1,2 20-5 312

Techo 1,4 20-5 364 46,82

1.415 325

Orientación Intermitencia Más de dos Total Norte paredes exter.

Suple­mentos F 0,05 0,05 0,1

Pérdidas de calor totales O = (OT + 0 1) x (1 + F) = 1 1.914 kcal/h 1

Page 32: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

-:7

Cálculo de superficies N.0 6

Dependencia: anexa a comedor-estar

Superficie Longitud m

Muro ext.

Ventana

Puerta 0,90

Muro int. 1,70

Pared int.

Suelo 1,90

Tscho 1,90

Pérdidas de calor por:

Superficie

Muro ext.

Ventana

Puerta

Muro int.

Pared int.

Suelo

Techo

Suple­mentos F

Coef. ~t

k oc

3,0 20- 5

1 ,7· 20-5

1,2 20- 5

1,4 20- 5

Orientación Norte

Alto/ancho Superficie Deducción Superficie m brutam2 m2 netam2

2,20 1,98 1,98

2,70 4,59 1,98 2,61

1,65 3,13 3,13

1,65 3,13 3,13

Transmi-Infiltraciones sión

Or=Sxkxót volumen Renova-Q1=Vx C, x P,xt¡x~ t m3 ciones/h

89

67

56

66 8,45

278 59

Intermitencia Más de dos Total paredes exter.

0,05 0,05

Pérdidas de calor totales O = (OT + 0 1) x (1 + F) = 1 354 kcal/h 1

COMEDOR-ESTAR

Cálculo de superficies N.0 7

Dependencia: cocina

Superficie Longitud Alto/ancho Superficie Deducción Superficie m

Muro ext. 2,35

Ventana 1,00

Puerta

Muro int. 3,35

Pared int.

Suelo 3,25

Techo 3,25

Pérdidas de calor por:

Superficie

Muro ext.

Ventana

Puerta

Muro int.

Pared int.

Suelo

Techo

Suple­mentos F

Coef. ~t k 'C

1 '1 20- (-4)

2,9 20- (-4)

1,7 20-5

1,2 20-5

1,4 20- 5

Orientación Norte

m brutam2 m2 netam2

2,70 6,34 1,50 4,84

1,50 1,50 1,50

2,70 9,04 9,04

2,35 7,64 7,64

2,35 7,64 7,64

Transmi-Infiltraciones sión

Or=Sx kx~t Volumen Renova-

Q1 =VxC,x P,x t¡ x~t m3 ciones/h

128

104

231

138

160 20,63 0,5

761 72

Intermitencia Más de dos Total paredes exter.

0,05 0,05

Pérdidas de calor totales O = (OT + 0 1} x (1 + F) = 1 875 kcal/h 1

BAÑO

DORMITORIO 111

DORMITORIO 1 DORMITORIO 11

ESCALA: 1 :1 00

35

Page 33: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

~11

El cálculo de la red hidráulica ha de apoyarse en un croquis del trazado de tubos, a la misma escala que la utilizada para la vivienda. Se reflejarán en él las potencias de cálculo

875 kcaVh

COCINA 7282 kcaVh

CALDERA

1/2"

2268 kcaVh

COMEDOR·ESTAR

Definir la potencia del generador supone conocer las pérdidas de calor en las tuberías, que son funciqn de su diámetro. Aún cuando éste no ha sido definido es válido considerar que las pérdidas de calor señaladas serán como máximo, conforme a la actual Normativa (IT.IC.04.4), el5% de la potencia útil instalada. Así pués, provisionalmente:

Pérdidas de calor en tuberías = 5

(1.565 + 770 + 991 + 813 + 2.268 + 875) 100

= 364 kcal/h

Potencia del generador (Consultar pág. 25) =

= (7.282 + 364) x 1,2 = 9.175 kcal/h

Los valores de caudal circulante en cada uno de los tra­mos del circuito hidráulico se reflejan en el Cuadro.

Potencia de cálculo Caudal, litros/h = Tramo kcal/h Potencia

20°C

BC 1.565 78,25

BA 770 38,50

DB 770 + 1.565 = 2.335 116,75

DE 991 49,55

FD 2.335 + 991 = 3.326 166,30

FG 813 40,65

HF 3.326 + 813 = 4.139 206,95

Hl 2.268 113,40

JH 4.139 + 2.268 = 6.407 320,35

JK 875 43,75

J-Caldera 7.282 364,1

36

o reales (si se hubieran elegÍdo los modelos de emisores y generador).*

BAÑO 3/8''

770 kcaVh .. - ... A

B

3/8" 116,75 1/h

DORMITORIO 1

38,50 1/h

3/8"

78,251/h

e 1565kcal!h

DORMITORIO 111

ESCALA: 1 :1 00

El tubo empleado para el tendido de la red será de acero estirado. Para determinar el diámetro de cada tramo de tubería se escoje para iniciar el estudio, el comprendido entre la cal­dera y el emisor más alejado o situado más desfavorable­mente que, en el croquis, es el que corresponde al «dormi-

. torio 111» el cual, presumiblemente, será el tramo que ofrez­ca mayor dificultad al paso del agua desde la caldera. Se inicia el cálculo en el punto C y el primer tramo en estudio será el «BC». Se elige para ello una pérdida de carga por rozamientos de 12 mm c.a. (*) por metro de tubería, y con ayuda del diagrama que relaciona caudal y pérdida de car­ga se deducen los diámetros para una determinada veloci­dad de circulación (Consultar pág·. 47,). A este respecto, con el fin de evitar que la circulación del agua por el interior de las tuberías pueda producir ruidos molestos, deberán ajustarse los valores para velocidades máximas según el diámetro de tubo, de acuerdo con el Cuadro.

(*) Nota: Usualmente se trabaja con pérdidas de carga entre 12 y 16 mm c.a./m. En este caso, utilizado como ejemplo, se ha escogido el valor de 12 mm c.a./m.

Diámetro tubería Veiocidad máxima en, en m/seg.

3/8 0,4

1/2 0,6

3/4 0,8

1 ,O

1 1/4 1,2

1 1/2 1,4

2 1,6

Los valores de diámetro que resultan sobre el diagrama caudal-presión (tuberías de acero) para los diferentes cau­dales e igual pérdida de carga figuran en el Cuadro.

Page 34: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Tramo Diámetro tubería

BC 3/8"

BA 3/8"

DB 3/8"

DE 3/8"

FD 1/2"

FG 3/8"

HF 1/2"

Hl 3/8"

JH 3/4"

JK 3/8"

J-Caldera 3/4"

En el mismo diagrama, con los valores de caudal y diáme­tro se obtienen los de pérdida de carga y velocidad reales en cada tramo del circuito principal (caldera-C). Con todos los valores conocidos se ha completado el Cuadro.

Tramo Diámetro Caudal Long. "L" Perd. carga "R" L x R Velocidad

1/h m mmc.a/m mmc.a. m/seg.

BC 3/8" 78,25 12,0 5,5 66,00 0,19

DB 3/8" 116,75 7,5 11,5 86,25 0,28

FD 1/2" 166.30 2,5 6,3 15,75 0,24

HF 1/2" 206,95 8,6 9,2 79,12 0,30

JH 3/4" 320,35 3,0 4,8 14,40 0,26

J-Caldera 3/4" 364,1 7,0 6,0 42,00 0,30

Caldera-e 40,6 303,52

La pérdida de carga en las resistencias aisladas o simples de cada tramo del circuito principal se define relacionando los valores de E de los cuadros de la página 24 con los de velocidad en la Tabla de las páginas 24-25.

TRAMO BC (3/8") Emisor 1 Llave emisor paso escuadra 2 Curvas 90° r/d = 1 ,5 4 Codos 90° 2 Piezas T paso, división

TRAMO DB (3/8") 6 Codos 90° . 1 Pieza T cruce (entrada) 1 Pieza T cruce (salida)

TRAMO FD (1 /2") 2 Piezas T paso, división 1 Unión con aumento de sección 1 .Unión con disminución de sec.

TRAMO HF (1/2") 4 Codos 90° 2 Piezas T paso, división

3 4 1

10 o

TOTAL '18

15 3 3

TOTAL 21

TOTAL

TOTAL

o 1 0,5

1,5

8 o 8

TRAMO JH (3/4") 4 Codos 90° 6 1 Pieza T cruce (entrada) 3 1 Pieza T cruce (salida) 3 1 Unión con aumento de sección 1 1 Unión con disminución de sec. 0,5

TOTAL 13,5

TRAMO CALDERA-J (3/4") 1 Generador 3 2 Curvas 90° r/d = 1 ,5 1 2 Curvas 90° r/d = 2,5 0,6

TOTAL 4,6

Para la utilización de la Tabla páginas 24-25 proceder a:

1) Seleccionar en la columna de la izquierda (velocidad agua en m/seg.) la velocidad de circulación definida para el tramo en estudio.

2) Seleccionar en la fila numerada de 1 al 15 el valor E (to­tal) de las resistencias simples en el mismo tramo. (*)

3) El recuadro de la Tabla, intersección de los valores se­leccionados de velocidad y de E, señala la pérdida de carga total por resistencias simples en el tramo conside­rado.

(*) Cuando el valor de E para un mismo tramo sea superior a 15 habrá de desglosarse en tantos valores de 15 como sean necesarios y un resto (si lo hubiere) y se obtendrán para cada uno, en la forma descrita, los valores de pérdida de carga. La suma de estos valores será la pérdida de carga total de las resistencias en el tramo en estudio.

Pérdida de Pérdida carga carga tramos I de resistencias Total pérdida

rectos Velocidad resistencias simples, de carga Tramo mmc.a. m/seg simples mmc.a. mmc.a.

BC 66,00 0,19 18 32,4 98,40

DB. 86,25 0,28 21 82,5 168,75

FD 15,75 0,24 1,5 4,3 20,05

HF 79,12 0,30 8 36,0 115,12

JH 14,40 0,26 13,5 45,5 59,90

J -/Caldera 42,00 0,30 4,6 20,6 97,60

Caldera-e 303 ,52 221,3 524,82

El circulador para esta instalación ha de tener las caracte­rísticas de:

CAUDAL 9.175

20 = 460 litros/hora= 0,46 m3/h.

PRESION = 524,82 mm c.a. = 0,52 m.c.a.

Ejemplo de cálculo de una instalación de calefacción (Distribución monotubular}

En este sistema, la circulación del agua desde el generador hasta los emisores de calor, su distribución en éstos y la circulación de retorno al generador se realiza mediante la utilización de un sólo tubo. El agua que sale de un emisor alimenta el siguiente y, así, sucesivamente y, por tanto, el conjunto de emisores y el generador forman un circuito co­nectado en serie por los tramos de tubo.

37

Page 35: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

El tendido de tubos que se inicia en el generador, une éste con los emisores y finaliza en el mismo generador se deno­mina ANILLO. En las instalaciones con más de un anillo se define la pér­dida de carga del principal y se equilibra con el resto. Es importante dimensionar muy ajustadamente las instala­ciones monotubulares ya que de la exactitud del cálculo dependen en gran medida la emisión de calor y el correcto funcionamiento del sistema.

El cálculo se aplicará a la vivienda cuyas características son conocidas. Las únicas variantes respecto a temperaturas y material

G) COMEDOR·ESTAR

®

son:

-Temperatura de ida = 90 oc -Temperatura de retorno = 75 °C - Tuberías de cobre

Las pérdidas de calor en cada dependencia ya han sido valoradas. No obstante, las condiciones de trabajo de los emisores no son las mismas (Llt =1= 60 °G) y, por tanto, la potencia de cálculo obtenida para cada uno deberá locali­zarse en la columna del M que le corresponda o corregirse con un factor numérico al objeto de que su emisión de ca­lor sea la misma que en el sistema de distribución bitubular (M = 60 °C).

0 DORMITORIO 111

DORMITORIO 1

A partir del emisor de mayor potencia, y siguiendo el anillo, se numeran todos los emisores. En el Cuadro 1 (página 39) se anota la potencia provisional de cálculo que les corres­ponde (columna 2) e, igualmente, la potencia acumulada según el lugar que ocupan en el anillo (columna 3).

Proceder según la operativa:

1- En el Cuadro 2 se traza una pendiente con origen en el valor de la temperatura de ida elegida (eje de ordena­das) hasta el de la de retorno en la vertical trazada en el valor de la potencia total instalada (eje de abcisas).

2- Desde los valores de potencia acumulada reflejados en la columna 3 (trasladados al eje de abcisas) trazar verti-

38

· ESCALA: 1 :1 00

cales hasta la pendiente y, desde los puntos de inter­sección sobre ésta, horizontales hacia el Cuadro 4.

3- Seleccionar o trazar en el Cuadro 3 la recta que corres­ponde al caudal que circula por cada emisor y prolon­garla hasta el límite del Cuadro.

Caudal del anillo = Potencia del anillo

Diferencia de temperaturas

7.282

15 = 485 litros/hora.

De este caudal, a la máxima abertura de la llave monotubo, entra en el emisor un 35% (paneles) o un 40% (radiadores).

Page 36: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Ú) <O

i..L..

e ·O ü u Q) .... .... o (.)

Q)

"O .... o ü lll u.

t:.T (

T1 (temper•ture 1mb1entel

22° 18° 20° 0,&46 0.784 0.814 0.862 0,799 0,829

0.880 0,8 14 0.&46 0.8116 0,829 0,862 0,917 0.&46 0 .880 0.937 0.862 0.896 0,957 0.880 0.917 0.978 0.898 0.937 1 0 .917 0,957 1.02 1 0,937 0 ,978 1,04<4 0.957 1 1.069 0,978 1.021 1.095 1 1,044

1.122 1,021 1,06S 1.1 51 I .O·U 1,095 1.18 1 1,069 1.1 22 1,209 1,095 1 151

1,240 1.122 1.18 1

1.275 1.1 51 1,209 1.310 1.18 1 1,240 1.345 1.209 1,275 1,385 1.240 1.310 1,424 1.275 1,345

1.486 1.310 1,385 1,515 1.3<15 1.424 1,560 1,385 1.466

1.6 10 1.42• 1,515 1.663 1,466 1,560 1,718 1,5 15 1.610 1, 776 1,560 1,663 1.841 1,810 1,71 8 - - -- - -- -- - -

;alto térmico emisor)

.... o tll

E Q)

(ij

lll .... e Q)

Q) :::1 O' ro :::1 O> lll Q)

"O ro .... o

.S::. (i) o !:; :.J

-

-= --

-

fll .

rp'

,!P

,,o

,1'

,.;:. ,p' ' ,4> .

Sistema monotubo Roca

Cuadro 4 Gráfico para la corrección de la emisión calorífica

r-- ~ -- -.. -- ---- 90 -.. - -- -- - ---- -- -.. -- -.. -- ~ r-- - -.. -- -- -.. -.. -- -.. - r-- -- --.. -- -.. -.. -- -- -.. -- ~

-- --~ Bs --.._, l!!oo. --=: ~ ;;;:.,., -.. -- Cuadro 2 -.. .._,

~ --=: ~ 1 -- --i;l¡¡;, r-- """"!! ~ ~ - -- r-- -- -- -... - ~ - !""'! 90 :---. Be ..... -- 1!!1. -- -- -.. -.. -- CD i:::- r-- --- .... -¡,; t-- - t-- r-- ~ -- -.. -.. -- .... -- 2r-

~ ~ ~ - .... liii;;;; r-- -.. ¡oo¡¡¡¡;, l"iii; 3 3

:""" ~ 1'-íi .... -.. ~

-~4'r-o -- -.. ¡¡¡;;;, -.. tll 4

-- liiiO::: - E

?S -- Q)

"'so 5

-- ?o -- -- ::"" o;;;::, 6

"O 6 -- -- -- lll .... -.. -.. - e -- r- -.. Q) 75

6s~ ~ a. ¡-..... ~ ~ e- -- t-- -- E ~ ~ ~ ._ --._ 1-- -- ~ ~ -..

~ 70 ¡--..., t-... t--. t::--t-.. ¡.._ 6o ~ t-- -- ¡.._ t-.. 1--t-- -- t-.. ¡.._ -- r-- -.. 1-- t-- t-.. t-- r-- t-- t-- .._ r-- -- t-.. 1-- t--~ r-- r-- r-- -- .._ r-- t-, 65

21 19 17 15 13 11 9 7 3 1 o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 20 18 16 14 12 10 6 2 :E Potencia calorifica

90

kcaVh x 100

..-:: 2 ~

5 Cuadro 1 :;,.:

6 CD ® ® 0 ® , 'Z 10 g 3 ,. ..... """ ~.,;".; r.....:; •.IJ ~ Potencia ~ Potencia Factor Potencia ...... "' / ....... V. fi, , >< N.o de cálculo de cálculo corregida /" -"' '/ 1/. ~~- 'f .S::. emisor correcc.

::::, kcal/h kcal/h "F" kcal/h 4 15 lll u ...... '/ .:.:.

1 2.268 2268 0,917 2.080 ro u

20'€ o 2 813 3.081 0,937 762 (ij

1 u 3 991 4.072 0,978 969 ro 25 'ü

e 4 1.565 5.637 1,069 1.673 -"' , I/ f ~ 1 lf f f Q) , / ~ ~N " I 1 o a.. 5 770 6.407 1,095 843 30 , f f III 6 875 7282 1,122 982

,-.."'' • .¡;.'_,?..? .{ ./ ~ ~ ~ , ,

Cuadro 3

Page 37: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Caudal del anillo x 40 Caudal al emisor =

100

= 194 litros/hora.

485 X 40

100

4- Desde los valores de potencia para cada emisor refleja-

Emisor 3 Tm = 83,2+ 78

2 = 80,6 oc

~t = 80,6 oc- 20 oc = 61 oc

dos en la columna 2 (trasladados al eje de ordenadas) Emisor 4 trazar horizontales hasta la recta de caudal y, desde los

Tm = 81,1+73,1 ----- = 77,1 oc

2 puntos de intersección sobre ésta, verticales hacia el Cuadro 4.

~t = 77,1 °C-20°C = 57°C

5- Los puntos de intersección que se determinan en el Cuadro 4 entre las horizontales trazadas desde el Gua- Emisor 5 dro 2 y las verticales trazadas desde el Cuadro 3, cons-

Tm = 78,1 + 74,3 ----- = 76,2 oc

2 tituyen el origen de rectas paralelas a las pendientes hasta el límite del mismo Cuadro. A partir de él han de prolongarse en horizontal hasta la columna de la Tabla que corresponda a la temperatura de ambiente elegida

~ t = 76,2 oc - 20 oc = 56 oc

(20°C). Emisor 6 Tm = 76,8+ 72,4 ----- = 74,6 oc

Los valores de la Tabla corresponden al factor de correc-ción «F» que ha de aplicarse a la potencia de cálculo de cada emisor. Estos valores, cuando el señalado quede en­tre dos de los reflejados en la Tabla, pueden definirse por exceso, por defecto e, incluso, por extrapolación entre am­bos. En cualquier caso las potencias resultantes serán váli­das. Para el ejemplo que se desarrolla se han elegido los valores más próximos a los determinados por el proceso gráfico seguido, y son lós reflejados en la columna 4.

La potencia corregida de cada emisor es la resultante del producto de la potencia de cálculo y el factor de correc­ción. Se refleja en la columna 5.

Las horizontales trazadas desde el Cuadro 2 al Cuadro 4 determinan el valor de la temperatura del agua a la entrada de cada emisor:

Te emisor 1 = 90 oc Te emisor 2 = 85,2 oc Te emisor 3 = 83,2 oc Te emisor 4 = 81,1 oc Te emisor 5 = 78,1 °C Te emisor 6 = 76,8 oc

Por otra parte, las verticales trazadas desde el Cuadro 3 al Cuadro 4 determinan el valor de la diferencia entre la tem­peratura del agua a la entrada Te y a la salida Ts, es decir, el salto térmico del emisor.

~t1 emisor 1 = 11,6 oc ; Ts = 78,4 oc ~t2 emisor 2 = 4,1 oc; Ts = 81,1 oc M 3 emisor 3 = 5,2 oc ; Ts = 78,0 oc M 4 emisor 4 = 8,0 oc ; Ts = 73,1 oc ~t5 emisor 5 = 3,8 oc; Ts = 74,3 oc ~t6 emisor 6 = 4,4 oc ; Ts = 72,4 oc

Así pues:

Emisor 1

Emisor 2

40

Tm = 90 + 78,4

2 = 84,2 oc

~t = 84,2 oc- 20 oc= 64 oc

Tm= 85,2 + 81,1 ----- = 83,15°C

2

~t = 83,15 oc- 20 oc= 63 oc

2

~t = 74,6 oc- 20 oc= 55 oc

De la Tabla en página 20 se deduce la potencia (extrapo­lando cuando sea necesario) de los diferentes emisores para el ~ t calculado.

1- Potencia de cálculo (M = 60°C) = 2.268 kcal/h; potencia con M = 64°C 2.456 kcal/h

2- Potencia de cálculo (~t = 60°C) = 813 kcal/h; potencia con ~t = 63°C 864 kcal/h

3- Potencia de cálculo (~t = 60°C) = 991 kcal/h; potencia con ~t = 61°C 1.013 kcal/h

4- Potencia de cálculo (~t = 60°C) = 1.565 kcal/h; potencia con M = 57°C 1.457 kcal/h

5- Potencia de cálculo (M = 60°C) = 770 kcal/h; potencia con M = 56°C 697 kcal/h

6- Potencia de cálculo (~t = 60°C) = 875 kcal/h; potencia con M = 55°C 768 kcal/h

Las necesidades de calor de los locales son independien­tes del sistema de distribución (bitubular o monotubular) empleado y, por tanto, la potencia de los emisores ha de corresponderse siempre con la de cálculo. Para que los radiadores incluidos ahora en un sistema mo­notubular (M t- 60 °C) emitan la potencia de cálculo (~t = 60 °C) deben modificarse:

Emisor 1 2.456 kcal/h- 2.268 k cal/h .. = 188 kcal/h a deducir

Emisor 2 864 kcal/h- 813 kcal/h = 51 kcal/h a deducir

Emisor 3 1.013 kcal/h- 991 kcal/h = 22 kcal/h a deducir

Emisor 4 1.565 kcal/h -1.457 kcal/h = 108 kcal/h a añadir

Emisor 5 770 kcal/h- 697 kcal/h = 73 kcal/h a añadir

Emisor 6 875 kcal/h- 768 kcal/h = 107 kcal/h a añadir

Dimensionado de los emisores por el método numérico El método consiste en determinar el salto térmico utilizan­do unas ecuaciones obtenidas del balance energético del emisor. El agua entra en la válvula monotubo a temperatura Te; una parte (35% en paneles y 40% en radiadores) entra en el emisor y sale de él a temperatura Ts (inferior a Te). El cau­dal a "Ts" se mezcla con el 60% -:-- 65% que no ha entrado en el emisor y se obtiene a la salida de la llave todo el cau­dal del anillo a temperatura Ti, que es la de entrada al si­guiente emisor.

Page 38: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

El dimensionado de los emisores de un anillo comporta el conocimiento de las temperaturas Te, Ts, Ti y el caudal del anillo.

Caudal del anillo Ca (1/h) = Potencia del anillo (kcal/h)

~ta del anillo (0 C)

Caudal en el emisor Ce (1/h) = Ca X P

_ { 0,35 (Paneles) p - 0,40 (Radiadores)

Potencia cálculo del emisor (kcal/h) Ts = Te- (oC)

Caudal del emisor (1/h)

Ti = Te - (Te- Ts) x P

Te + Ts Salto térmico del emisor ~te = -----ta

2

(ta = temp. ambiente)

Los valores obtenidos para cada emisor aplicando el mé­todo numérico serán sensiblemente iguales a los resulta­dos del método gráfico.

• Te Ti

Cálculo del generador

La vivienda no ha variado y, por tanto, se instalará la mis­ma caldera que en el sistema bitubo, pues las necesidades de calor son las mismas.

Q = (7 .282 + 364) x 1 ,2 = 9.175 kcal/h

Dimensionado de la red hidraulica

La longitud del anillo, medida sobre el esquema, resulta ser de 20 metros, aproximadamente. El caudal del anillo se ha valorado en 485 1/h. En la Tabla de correspondencia orientativa entre caudal y diámetro de tubo de cobre resulta un 0 16/18.

Caudall/h Diámetro del tubo

140 10/12

230 12/14

270 13/15

340 14/16

520 16/18

41

Page 39: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

En el ábaco para tubos de cobre un caudal circulante de 485 1/h por un 0 16/18 ocasiona una pérdida de carga de 42 mm c.a./m.

20

5

Denominación del tubo de 1 mm de espesor

1 f

La pérdida de carga en los 20 metros de tubo es de:

42 x 20 = 840 mm c.a.

Pérdida de carga en las resistencias simples

La resistencia que ofrecen los accesorios incorporados al circuito hidráulico de una instalación monotubular (resis­tencias simples) no se definen con un valor de coeficiente de resistencia como en el caso de distribución bitubular sino en metros de longitud equivalente de tubo. En la Tabla se señalan estos valores en función del diámetro seleccio­nado.

Diámetro del tubo 10/12 12/14 13/15 14/16 16/18

Codo 90° _j 0,45 0,50 0,50 0,60 0,70

Curva 45° __/. 0,30 0,35 0,40 0,40 0,50

Curva 90° __) 0,40 0,45 0,50 0,50 0,55

Te ..L.. 0,14 0,16 0,18 0,20 0,22 -Te .:!L_ 0,65 0,75 0,80 0,90

Válvula paso recto 0,60 0,70 0,80 0,90 1,10

1 4 2

ll

~ , +-4--+-4-+++4++-

2000 5000 7000 10.000

En el ejemplo que se desarrolla, con un generador y seis emisores, se toman en consideración dos curvas de 90° para la conexión del anillo al generador e, igualmente, dos curvas de 90° para la conexión del circuito a la válvula (lla­ve) de cada emisor; en total 14 curvas de 90° La Tabla determina que para cada uno .de estos acceso­rios, para tubo de 16/18, corresponden 0,55 metros de longitud equivalente. La pérdida de carga debida a las resistencias simples es de:

(14 x 0,55) x 42 = 323,4 mm c.a.

Pérdida de carga en las válvulas

La gráfica que ha de servir de base para la determinación de la pérdida de carga que ofrece el modelo de válvula se­leccionada ha de ser facilitada por el fabricante. En el ejemplo que se trata se han de utilizar las gráficas que corresponden a las válvulas monotubo Roca T16 (tu­bos 12/14,13/15 y 14/16) yT18 (tubo 16/18) . A la máxima abertura de la válvula corresponde un valor porcentual de caudal al emisor del 35% en el caso de pa­neles y del 40% cuando se trata de radiadores.

Page 40: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

al (.)

E E e Q)

ro O> ..... ro (.)

Q) "O ro :Q "O ..... -Q) a...

al (.)

E E e Q)

ro O> ..... ro (.)

Q) "O ro "O '6 ..... -Q) a...

Llave mono tubo T16

1000

800

600

400

300

200

150 1

'11 '1

100 1.r

80

60

40

30

1

Jll , ~ r1

1,, ll ~

1 2

50 60 80 100 150 200 300 400 500 600

1000

800

600

400

300

200

150

100

80

60

40

30

Caudal del anillo en litros/hora

Curva 1 - Paneles Curva 2 - Radiadores

Llave monotubo T18

1 1

11

il,ll 'J[ 1

' lt 1 50 60 80 100 150 200

l lJ

1

11

JJ il, 'J ,

1

2

300 400 500 600

Caudal del anillo en litros/hora

Curva 1 - Paneles Cl!lrva 2 - Radiadores

En la gráfica para la llave T18 en una instalación con radia­dores (curva 2), para un caudal de 485 litros/hora, corres­ponde una pérdida de carga de 800 mm c.a,. La pérdida de carga debida a las válvulas es de:

800 x 6 = 4.800 mm c.a.

Pérdidas de carga varias

En toda instalación monotubular en la que no se aprecien otras causas susceptibles de ocasionar pérdidas de carga adicionales, estará justificada la inclusión en este capítulo de las debidas a aplastamientos o deformaciones sufridas por las tuberías por efecto de su manipulación en obra. Por estos conceptos se aumenta entre un 10% y un 15% el valor que corresponde a la suma de las pérdidas de car­ga debidas a la tubería y a las resistencias simples. La pérdida de carga por conceptos varios en el ejemplo que se desarrolla es de:

(840 + 323,4) x O, 15 = 17 4,6 mm c.a.

Pérdida de carga total

El anillo de la instalación del ejemplo presenta una pérdida de carga total de:

840 + 323,4 + 4.800 + 17 4,6 = 6.138 mm c.a.

Dimensionado del circulador

El circulador adecuado para la instalación propuesta ha de incluir, al mismo tiempo, los parámetros hidráulicos de:

Nota:

Caudal = 485 litros/hora = 0,5 m3/h Presión = 6.138 mm c.a. = 6,2 m c.a.

Para las características (magnitud) de la instalación las pérdidas de carga valoradas pueden considerarse excesi­vas . En este caso, se realizarán dos anillos de similar po­tencia bien equilibrados hidráulicamente (pérdida de car­ga).

Cálculo del consumo de agua caliente sanitaria La determinación del consumo de agua caliente sanitaria no puede valorarse mediante fórmula matemática alguna. Por este motivo, el cálculo deberá establecerse sobre la base de datos estadísticos que cubren las necesidades en el momento más defavorable de demanda. Estos datos atienden a:

- Número de habitaciones -Número de personas - Nivel de confort - Número de aparatos sanitarios de consumo - Clase o tipo de edificio

Sea cual fuere el sistema de producción de agua caliente para usos sanitarios y la temperatura máxima del fluido que deba calentarla, las necesidades de agua caliente han de determinarse a partir de:

- Cálculo de la necesidad máxima horaria (hora punta) - Cálculo de la necesidad diaria

Para ello es necesario haber determinado los consumos de agua caliente para cada aparato y el consumo por día para distintos tipos de edificio .

43

Page 41: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Cuadro 1

Consumo en viviendas por utilización de aparato en función de la temperatura

Aparato Consumo litros Temperatura °C

Fregadero 20 60

Lavabo 6 40

Ducha 40 (35) 40(45)

Bidé 6 40

Bañera 128 (11 O) 40 (45)

Cuadro 2

Consumo diario en viviendas en litros a 45 °C

N.0 Habitaciones 3 4

N.0 Personas 3a5 4a7

U) Fregadero 461ts. 571ts. o Lavabo 181ts. 231ts. 1-

Ducha 461ts. 461ts. <1: a: Bidé 61ts. 11 lts. <1:

Bañera 1251ts. 250 lts. a.. <1:

TOTAL 241 lts. 3871ts.

Otra forma posible de determinar el consumo diario en una vivienda es relacionando personas y habitaciones, según la igualdad:

1 Habitación = 1 ,5 personas

El consumo estimado por persona y día es:

1 persona = 57 litros/día a 45 oc

Corrección del consumo para distintas temperaturas de utilización

Para transformar los consumos ofrecidos en los anteriores

Ejemplo de cálculo 15

Determinar la cantidad de agua a 45 oc que se necesitará para una bañera si se sabe que se precisan 70 litros a 60 oc para una utilización. La temperatura del agua de red es de 15 °C.

70 X (60 -15) ------ = 105 litros a 45 oc

45-15

Cálculo del consumo de agua caliente en bloques de viviendas

La cantidad de agua caliente que puede considerarse como demanda para un determinado número de viviendas resultará de aplicar una de las dos formas de cálculo ya expuestas. Ambos procedimientos de cálculo están relacionados en­tre si ya que, aproximadamente, el consumo diario equiva­le a 3 ó 4 veces el consumo punta en una hora. (Relación válida para más de 20 aparatos). Una orientación en porcentaje de la distribución del consu­mo en viviendas, en función de las horas del día, se refleja en el gráfico.

o 2 4 6 8 1 o 12 14 16 18 20 22 . 24

Hora del día

Cuadros a distintas temperaturas de uso deberá utilizarse: El cálculo horario punta se realizará mediante la fórmula:

44

Caudal necesario =

Caudal conocido x (Temp. conocida- Temp. agua fría)

Temp. deseada- Temp. agua fría

Donde:

Ch = Consumo horario punta en litros/hora. L1 = Consumo bañera en litros (11 O a 45 °C) L2 = Consumo ducha en litros (35 a 45 °C) R1 = Número de bañeras o duchas. Y = Coeficiente de simultaneidad horaria. 0fer grá­

fico pág. 45) 1 ,2 = Factor de aumento por pérdidas en tubería e

incrustaciones (sólo para viviendas).

Page 42: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

Curva~ de simultaneidad en viviendas

100

#. 90

ffi 80

70

60

50

40 30

20 10

o

1~

........

~ .......

"'""'

' ..... ~

........... ............... ......... .......

' -..... ..... ~-- -.

. 56 7 8 10 20 30

•'

¡....... ¡.....

B

-· -· -- - ... ¡--- ---- A --- .. ~ .. .

50 70 100 200 300 500

N.0 de bañeras o duchas utilizadas

A - Consumo durante 1 O minutos. B - Consumo horario

Ejemplo de cálculo 16

Determinar lo"s consumos horario punta y diario en un blo­que de 40 viviendas con 3 habitaciones cada una, un cuar­to de baño y un aseo eón ducha. La curva de simultaneidad da para el punto 80 en el eje de abcisas (40 baños + 40 duchas) un coeficiente Y = 0,32. Así pues: Consumo horario punta:

Ch = ((11 0 X 40) + (35 X 40)) X 0,32 X 1,2 =

= 2.227 lts./hora a 45 oc

Consumo día: Según el Cuadro 2 el consumo diario en viviendas de 3 ha­bitaciones se estima en 241 lts. a 45 °C. Luego:

241 x 40 = 9.640 litros/día a 45 oc

Ejemplo de cálculo 17

Determinar los consumos horario punta y diario en un blo­que de 1 O viviendas con 4 habitaciones cada una, dos cuartos de baño y un aseo con ducha. La curva de simultaneidad da para el punto 30 (20 baños + 1 O aseos) un coeficiente Y = 0,42. Así pues: Consumo horario punta.:

Ch = ((11 0 X 20) + (35 X 1 0)) X 0,42 X 1,2 = = 1.285 lfs/hora a 45 oc

Consumo día:

387 X 10 = 3.870

Para ello, sea cual fuere el procedimiento para la produc­ción de agua caliente, son válidos los valores del Cuadro 1 y los que se señalan en el Cuadro 3.

Cuadro 3

Consumo por persona y día

Consumo litros Categoría hotel mínimo- máximo Temperatura °C

Lujo 120- 150 45

1" Clase 90-120 45

2" Clase 70-90 45

Otras categorías 50-70 45

El cálculo horario punta, se efectuará de acuerdo con la fórmula:

Donde:

Ch = Consumo horario punta. L1 = Consumo bañera en litros (11 O a 45 °C). R1 = Número de bañeras o duchas. Y = Coeficiente de simultaneidad horaria. fYer grá­

ficos pág. 46)

45

Page 43: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

120

100

:::f¿ o 80 e 75 Q)

(/) ctl

"O ctl . ~

60 :¡:::¡ ::::1 (/) ctl ..e (.) ::::1

"O o

40 (/) ctl .... Q) te ctl

(()

20

Consumo elevado Hoteles de Lujo y 18

' ' ' ..... B

' -"

... ¡...,

......

' r---

" loto.. A

" ....

'-' .... ""'

......

.....

...... ..... ~ -.... ....

........

.. 3

r- 2

3

1-i"' 2

5 10 20 50 100 200 500

Número de bañeras o duchas

Las Curvas, 1, 2 y 3 representan la relación de bañeras/ca­mas. Curva 1 - Relación bañeras/camas = 0,5 Curva 2 - Relación bañeras/camas = 0,3 Curva 3 - Relación bañeras/camas = O, 15

Las habitaciones con camas dobles (matrimonio) se consi ­deran como de dos camas.

Ejemplo de cálculo 18

Determinar los consumos hora punta y diario en un hotel de 2a categoría con 70 habitaciones individuales sin baño y 30 con baño.

Número de camas = 100 · Relación bañeras/camas = 0,3 (Curva 2) Coeficiente Y (Punto 30 Curva 2) consumo normal = 58% Personas = 1 00

Ch = 110 X 30 X 0,58 = 1.9141ts./hora a 45 °C Consumo diario = 70 x 100 = 7.000 lts./día mínimo Consumo diario = 90 x 100 = 9.000 lts./día máximo

46

120

100

\

:::f¿ o 80 e Q)

(/)

ctl "O ctl

.~ 60 :¡:::¡

::::1 58 (/) ctl ..e (.) ::::1

"O

o (/) 40 ' ctl .... Q) te ctl ' (()

~

20

Consumo normal Hoteles 28 y Pensiones.

." ' B

' .........

'" .........

--...... , ... -

' A ......... r--...... ¡..

""" ~ ¡-.......

..... ~ ... ¡...-.,

~

ro-

...

...

-

3

2

3 2 1

5 10 20 50 100 200 500

Número dé bañeras o duchas

Ejemplo de cálculo 19

Determinar los consumos hora punta y diario en . un hotel de 1 a categoría con 75 habitaciones dobles y 25 individua­les, todas con cuarto de baño.

Número de camas = (75 x 2) + 25 = 175 Relación bañeras/camas = 0,57 (Curva 1) Coeficiente Y (punto 100 Curva 1) consumo elevado = 75% Personas = 150 + 25 = 175

Ch = 110 X 100 X 0, 75 = 8.250 lts./hora a 45 °C Consumo diario = 90 x 175 = 15.700 lts./día mínimo Consumo diario = 120 x 175 = 21 .000 lts./día máximo

Page 44: 08 Monografia Didactica Calculo Calefaccion Roca Reglamentacion No Actual

PERDIDA DE PRESION Y VElOCIDAD EN TUBERIAS DE AGUA CAliENTE

Pérdida de carga mm c.a./m

El 0.0!1< 0.1 02 0.5 1.0 2.0 ~Q 10 ZO O,U IVV 200

Kg/~-~~8-106 1 1 1 1 1 1 i ¡ 1 1 1 1 1 1 1 1 :¡ :¡:::p =t::P! 1/K4 \ \~ \JS(t\J\J;k 1 \W\4 '\[)f3f 't\h :p H 1 i 1 1 :;::i--L-LLtf-R !0

6

~\J \L.,).(" ; 1 1 ' : : ¡ ¡ , , , 1 ~ 5oo.o

d t::r.<"'li\ "' b·"'l-l :. 1 ·;-------~ 2.00.00

~-(, .. ..::~\- , ,----:-\-L...J~,~-*....L\::~,.."f~~!('"''F-'~,~-+-H~~-4

tP:J\.:~~-\:-4~-~~~~ry"·~~

• ...._¡

-:::; ~~C..~§ ::3

!.000

300

200

100

80

20

10

16

14

12

.~~-l\:-+-l.t-+\-·+~~---"rl2 .000

;r-~500

:\:JJk"C\'\'\tt \i~!\:\~tJ>Q\1

\,".:\:'t-\t\J)~. \1!'1 ;¡ i ffirt.OO

lOO

1 .... r= 1 1 1, 1 ! 1 1 * 1 : \ 1 1 !\ 1 \' "'.c 1\ 1 1\ ·: 'k ; ' ;;v \ '\ ! - ~ 1 1 1 , 1 '. 1 1 : 1 ·, 1 ' ' ·· 1 1 •• 1 1 :so

, SEGUN LAS N,OR~AS1 D~ T.U~ 1 LO POSIBLE.

r-¡ 20 1 1

0.14 0.18 0.25 035 0.45 06 0.8 1.0 14 1.8 2.5 3.5 45 6 8 14 18 25 35 45 60 80 100 140 180 200 0.05 0.12 0.16 0.2 03 04 0.5 0.7 0.9 i.2 1.6 2.0 30 4.0 !5.0 7 9 12 16 20 ;'50 40 50 70 90 120 160 200 lSOO

w o

_)

<2: e ::J <:: u