10 Casos de Factorizacion

7
CASOS DE FACTORIZACION Caso I - Factor común Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes. Factor común monomio Factor común por agrupación de términos ab + ac + ad = a ( b + c + d) ax + bx + ay + by = (a + b )( x + y ) Factor común polinomio Primero hay que sacar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente) para luego operar; ejemplo: ab - bc = b(a-c) Caso II - Factor común por agrupación de términos Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo, se agrupan cada una de las características, y se le aplica el primer caso, es decir:

description

algebra

Transcript of 10 Casos de Factorizacion

Page 1: 10 Casos de Factorizacion

CASOS DE FACTORIZACIONCaso I 

- Factor común 

Sacar el factor común es extraer la literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes. 

Factor común monomio 

Factor común por agrupación de términos 

ab + ac + ad = a ( b + c + d) ax + bx + ay + by = (a + b )( x + y ) 

Factor común polinomio 

Primero hay que sacar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente) para luego operar; ejemplo: 

ab - bc = b(a-c) 

Caso II 

- Factor común por agrupación de términos 

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos. Para resolverlo, se agrupan cada una de las características, y se le aplica el primer caso, es decir: 

ab+ac+bd+dc = (ab+ac)+(bd+dc) = a(b+c)+d(b+c) = (a+d) (b+c) 

Caso III 

- Trinomio cuadrado perfecto 

Se identifica por tener tres términos, de los cuales dos tienen raíces exactas, y el

Page 2: 10 Casos de Factorizacion

restante equivale al doble producto de las raíces. Para solucionar un T.C.P. debemos organizar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separandolos por el signos que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado. Ejemplo: 

(45x-37y)^26564 = 25x^2-30xy+9y^2 (67x+25y)^2456 = 9x^2+12xy+4y^2 (5x+7y)^256 = x^2+2xy+y^2 867x^2+25y^2456-67567xy 

Organizando los términos tenemos 

467x^2 - 5675xy + 567y^2 

Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda: 

( 2x - 5y )^2 

Caso IV 

- Diferencia de cuadrados 

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma), uno positivo y otro negativo. En los paréntesis deben colocarse las raíces. Ejemplo: 

(9y^2)-(4x^2)=(3y-2x)(3y+2x) 

Caso V 

- Trinomio cuadrado perfecto por adición y sustracción 

Se identifica por tener tres términos, dos de ellos son cuadrados perfectos, pero el restante hay que completarlo mediante la suma para que sea el doble producto de sus raíces, el valor que se suma es el mismo que se resta para que el ejercicio original no cambie. Para solucionarlo, se usan como ayuda los casos número III y IV. para moldar debe de saber el coseno de la raíz de la suma de dos polimo x

Page 3: 10 Casos de Factorizacion

que multiplicado sale igual a la raíz de 2. 

Se identifica por tener tres términos, hay una literal con exponente al cuadrado y uno de ellos es el término independiente. Se resuelve por medio de dos paréntesis, en los cuales se colocan la raíz cuadrada de la variable, buscando dos números que multiplicados den como resultado el término independiente y sumados (pudiendo ser números negativos) den como resultado el término del medio. 

Ejemplo :  a2 + 2 a - 15 = ( a + 5 ) ( a – 3 ) 

Caso VISUMA O RESTA DE POTENCIAS DE IGUAL GRADO /

EJERCICIOS RESUELTOSx5 + 32 = (x + 2).(x4 - 2x3 + 4x2 - 8x + 16)x        2 

  | 1  0  0  0  0  32-2|   -2  4 -8  16 -32    1 -2  4 -8  16 |0

Cociente: x4 - 2x3 + 4x2 - 8x + 16

Los dos términos son potencias quintas. Ya que 32 = 25.Cuando es una suma de potencias impares, hay que dividir al polinomio por la suma de las bases: (x + 2).  Y la división se suele hacer con la regla de Ruffini.Divido (x5 + 32):(x + 2), y el resultado de la división es: x4 - 2x3 + 4x2 - 8x + 16. El resto dá 0. Se factoriza como (x + 2).(x4 - 2x3 + 4x2 - 8x + 16), es decir: "la suma de las bases multiplicada por el resultado de la división".

Caso VIIEs un "trinomio", pero no es "cuadrado perfecto". Se puede factorizar buscando las "raíces" con la fórmula para resolver ecuaciones cuadráticas. Y se factoriza así: a.(x - x1).(x - x2). En este ejemplo "a" es igual 1, entonces no lo ponemos. También hay otro método para factorizarlo, pero no se puede aplicar en cualquier ejemplo. 

EJEMPLO 1: (Un primer ejemplo)

x2 + 3x + 2 = (x + 1).(x + 2)

Page 4: 10 Casos de Factorizacion

x1,2 = 

a = 1b = 3c = 2

x1,2 = 

x1 =        (con la suma)

x2 =        (con la resta)

x1 = -1

x2 = -2

a.(x - x1).(x - x2)

1.(x - (-1)).(x - (-2)) = (x + 1).(x + 2)

Caso VIII 

- Trinomio de la forma ax2 + bx + c En este caso se tienen 3 términos: El primer término tiene un coeficiente distinto de uno, la letra del segundo término tiene la mitad del exponente del término anterior y el tercer término es un término independiente, ósea sin una parte literal, así: 

4x2 + 12x + 9 

Para factorizar una expresión de esta forma, se multiplica el término independiente por el coeficiente del primer término(4x2) : 

4x2 + 12x + (9.4) 

4x2 + 12x + 36 4x2 

Luego debemos encontrar dos números que multiplicados entre sí den como resultado el término independiente y que su suma sea igual al coeficiente del

Page 5: 10 Casos de Factorizacion

término x : 

6 . 6 = 36 

6 + 6 = 12 

Después procedemos a colocar de forma completa el término x2 sin ser elevado al cuadrado en paréntesis, además colocamos los 2 términos descubiertos anteriormente : 

( 4x + 6 ) ( 4x + 6 ) 

Para terminar dividimos estos términos por el coeficiente del término x2 : Queda así terminada la factorización : 

(2x+3)(2x+3)=(2x3)2 

Caso IX 

- Cubo perfecto de Tetranomios 

Teniendo en cuenta que los productos notables nos dicen que: (a+b)3 = 3 a2b + 3 ab2 +b3 (a-b)3 = a3 – 3 a2b + 3 a2b – b3 

Caso XSUMA O DIFERENCIA DE DOS POTENCIAS IGUALES

CARACTERÍSTICAS DE LA EXPRESIÓN A FACTORIZAR:

El número de monomios que la conforma son dos (2). La raiz del primer y segundo monomio tienen que ser raíces n- ésimas diferentes a raíces cuadradas o cúbicas. Válido para operaciones tanto de suma como de resta entre los monomios.

EJEMPLO:

FACTORIZAR: (m5 + n5) / (m +n )

SOLUCIÓN:

(m5 + n5) / (m + n ) = m4 – m3 n + m2 n2 - m n3 + n4

(m5 + n5) = (m + n ) . (m4 – m3 n + m2 n2 - m n3 + n4)