5. análisis experimental de flujos en cimacios lisos con pilas y ...

174
ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL ANÁLISIS EXPERIMENTAL DE LA DISIPACIÓN DE ENERGÌA EN CIMACIOS CON PERFIL LISO Y ESCALONADO PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL DIANA MARCELA MOLINA TUFIÑO [email protected] JUAN CARLOS GUEVARA SANGUANO [email protected] DIRECTOR: PROF. ING. CIRO GALO MENENDEZ [email protected] Quito, Septiembre 2010

Transcript of 5. análisis experimental de flujos en cimacios lisos con pilas y ...

Page 1: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA CIVIL Y AMBIENTAL ANÁLISIS EXPERIMENTAL DE LA DISIPACIÓN DE ENERGÌA E N

CIMACIOS CON PERFIL LISO Y ESCALONADO PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENI ERO CIVIL

DIANA MARCELA MOLINA TUFIÑO

[email protected] JUAN CARLOS GUEVARA SANGUANO

[email protected]

DIRECTOR: PROF. ING. CIRO GALO MENENDEZ [email protected]

Quito, Septiembre 2010

Page 2: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

DECLARACIÓN Nosotros, Diana Marcela Molina Tufiño, Juan Carlos Guevara Sanguano,

declaramos que el trabajo aquí descrito es de nuestra autoría; que no ha sido

previamente presentado para ningún grado o calificación profesional; y, que

hemos consultado las referencias bibliográficas que se incluyen en este

documento.

La Escuela Politécnica Nacional, puede hacer uso de los derechos

correspondientes a este trabajo, según lo establecido por la Ley de Propiedad

Intelectual, por su Reglamento y por la normatividad institucional vigente.

_________________________ __________________________

Diana Marcela Molina Tufiño Juan Carl os Guevara Sanguano

Page 3: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

II

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Diana Marcela Molina Tufiño

y Juan Carlos Guevara Sanguano, bajo mi supervisión.

______________________________ Prof. Ing. Ciro Galo Menéndez

DIRECTOR DE PROYECTO

Page 4: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

III

RESUMEN

La presente investigación está relacionada con los resultados experimentales

obtenidos en un Cimacio tipo Creager con fondo liso y escalonado, con el fin de

evaluar la disipación de energía para un rango de descarga entre 20 y 180 l/s,

mediante el uso de un canal de laboratorio. Para las pruebas, fueron diseñados y

construidos dos clásicos perfiles Creager de 1 m de ancho y de 0,57m de alto.

El primer vertedero tiene un perfil liso y el segundo vertedero posee un perfil

escalonado con 14 escalones, ambos vertederos poseen una pendiente en la

parte baja de 0.58:1(h:v).

Los dos vertederos fueron probados con y sin pilas. Además, con

ensanchamientos de las pilas con relación de ancho de vano be/bo = 0,5,

proporción que fue probada para el vertedero 1. Para el proceso de prueba los

dos vertederos fueron montados sobre un canal de inclinación variable con una

sección transversal rectangular de 25m de largo, 0,8m de alto y 1.0m de ancho.

Para el rango de caudales probados en el vertedero escalonado se obtuvo solo

régimen de flujo rasante con excepción del primer caudal en el que se observó un

flujo en transición.

Las cargas hidráulicas sobre el vertedero, la profundidad de agua y la velocidad

del flujo fueron medidas para cada descarga con el fin de calcular la energía

remanente, en cortes transversales en el extremo aguas abajo del vertedero.

Los resultados del procesamiento de datos mostraban que para el vertedero 1 sin

pilas, el porcentaje de la energía que se disipó disminuyó del 42.8% al 22% y con

tres pilas del 71% al 16%, para Z/Yc entre 15.3 y 3.5 y entre 15,3 a 4.1

respectivamente; para el vertedero 1 con ensanchamientos de pilas el porcentaje

de energía disipada varía de 78.1% a 24% para Z/Yc entre 15 a 4.2, donde Yc es

el calado crítico de cada descarga y Z la altura del vertedero.

Page 5: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

IV

Para el vertedero 2 sin pilas la energía disipada varía del 94.7% al 68.7% y con

tres pilas del 94.4% a 72.5%, para Z/Yc entre 16.3 y 4.1 y entre 16.2 a 4.5

respectivamente.

Como conclusión de los resultados experimentales, se observó que las tasas más

altas de disipación de energía de flujo se obtuvieron para el vertedero con fondo

escalonado con y sin pilas.

Page 6: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

V

ABSTRACT

The present work is related with the experimental results obtained on an ogee-

crest spillway with smooth and stepped bottom, in order to evaluate the energy

dissipation for a discharge range between 20 and 180 l/s, using a laboratory

channel. For testing, two classical WES – Creager profile for spillway weir of 1-m

width and 0.57-m high were designed and built . Spillway 1 had a smooth bottom

profile and spillway 2 had a stepped bottom profile with 14 steps, both spillway

with a downstream face inclination of 0.58:1(h:v). Spillway 1 and 2 were tested

with and no- piers. Besides, flaring pier gate with b/B=0.5 ratio were tested for

spillway 1 as well.

For testing process both spillways were assembled on a 25-m long, 0.8-m high,

1.0-m width rectangular cross section tilting channel. Skimming flow regimens

were obtained during the tests for the discharge range. Hydraulic heads over the

weir, flow velocity and water depth at cross sections on the end downstream of the

spillway- chutes were measured for each discharge in order to compute the

remaining energy.

The results of data processing showed that for spillway 1 with no-pier, the

percentage of energy dissipated decreased from 42.8% to 22% and with three

piers from 71% to 16%, for z/yc between 15.4 to 4.0 in both case; for the spillway

1 with flaring gate piers the percentage of energy dissipated varied from 78.1% to

24% for z/yc between 15 to 4.2, where yc is the critical depth for each discharge

and z is the spillway high. For spillway 2 with no-piers the energy dissipated varied

from 94.7% to 68.7% and with three piers from 94.4% to 72.5%, in both case for

z/yc from 16.3 to 4.2. As conclusion of the experimental results, it was observed

that the highest rates of flow energy dissipation were obtained for spillway with

stepped bottom with and no-piers.

Page 7: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

VI

PRESENTACIÓN

El avance de nuevos materiales y técnicas de construcción, permiten a los

ingenieros hoy en día realizar obras hidráulicas de mayor envergadura como son

en este caso las presas. Estas a su vez deben poseer ciertas características para

su serviciabilidad.

En el presente proyecto de titulación se realizarán ensayos en modelos de

Cimacios tipo Creager, añadiendo varias configuraciones a su perfil, modelos que

serán probados en un canal de laboratorio del Centro de Investigaciones y

Estudios en Recursos Hídricos (CIERHI). Al final de los cuales se obtendrán las

pérdidas de energía por fricción y turbulencia en cada uno de los cimacios a

probar.

Esta tesis se encuentra dividida en 8 capítulos donde se desarrolla por completo

el diseño, construcción, montaje, pruebas realizadas, metodología del proceso en

el laboratorio, procesamientos de los datos obtenidos del laboratorio y una

presentación de los resultados logrados en cada una de las diferentes

configuraciones de perfil que fueron sometidos los cimacios; parte que fue

desarrollada en los primeros seis capítulos de la siguiente forma: una primera

parte formada por los antecedentes, los objetivos del proyecto de titulación y la

infraestructura disponible para la realización de los ensayos desarrollada en los

tres capítulos iniciales, en el capítulo cuatro se desarrolla todo lo referente a un

Cimacio con perfil liso sin pilas y a un Cimacio de perfil liso con pilas, en el

capítulo cinco además de las pilas del capítulo anterior se colocan unos

ensanchamientos de las pilas denominados en la bibliografía como “flaring gate

piers”, para luego desarrollar la parte del Cimacio con perfil escalonado sin pilas y

con pilas en el capítulo seis.

Para finalizar se desarrolla un capítulo de comparación de resultados entre todos

los vertederos para llegar a concluir cual de todas las configuraciones resultó más

óptima en la disipación de la energía.

Page 8: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

VII

NOMENCLATURA UTILIZADA

A: Área mojada de la sección (m2)

a: Cotangente del ángulo de inclinación del vertedero

b : Ancho de la sección (m)

C: Coeficiente de descarga (m1/2/s)

dc (yc) : Calado crítico (m)

d0: Calado del flujo uniforme perpendicular al flujo en los

escalones. (m)

E: Energía total (m)

e: Espesor de la tabla triplex colocada al pie del cimacio (m)

Fr1: Número de Froude correspondiente a la sección de control 1.

f : Factor de fricción de Darcy Weisbach para flujo no aireado.

g: Aceleración de la gravedad (m/s2)

H: Carga total sobre la cresta del vertedero (m)

Hmáx (yo): Máxima carga disponible aguas arriba (m)

Hdam (P): Altura del vertedero (m)

Kp: Coeficiente de contracción por pilas

Ka: Coeficiente de contracción por estribo

L: Longitud total neta de la cresta (m)

Le: Longitud efectiva de cresta (m)

RHL : Longitud del resalto Hidráulico (m)

N: Número de pilas

P: Desnivel entre la cresta del cimacio y el fondo del canal (m)

p/γ: Carga de presión (m)

PT: Punto de tangencia

P1: Carga piezométrica medida en la toma 1

Q: Caudal de descarga (m3/s)

q: Calado unitario que pasa por la sección (m2/s)

R: Radio de enlace (m)

Rh: Es el radio hidráulico de la sección (m)

V2/2g: Carga de velocidad (m)

Page 9: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

VIII

X, Y: Coordenadas del sistema cartesiano

Yo: Calados aguas arriba (m)

Y1: Calados aguas abajo (m)

yc: Calado crítico (m)

Yp: Calado de los picos formados en los cimacios con pilas (m)

ya: Calado en el escalón donde comienza la aireación (m)

y : Calado de la sección (m)

RHY1 : Calado inicial del resalto hidráulico (m)

RHY2 : Segundo calado conjugado o calado final del resalto hidráulico

Z: Desnivel a vencer (m)

z: Carga de posición (m)

∆E: Pérdida de energía producida en la estructura

∆ Ec (%): Pérdida de energía aplicando la ecuación experimental

∆H: Pérdida de energía aplicando ecuación de Chanson.

θ: Ángulo de inclinación del vertedero

Page 10: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

IX

GLOSARIO

Calado.- altura que alcanza la superficie del agua sobre el fondo.

Calinas.- Conjunto de corchos enlazados que pueden utilizarse como boya o

baliza.

Cavitación.- fenómeno que se produce por la formación de burbujas de vapor en

la parte posterior de un cuerpo que se desplaza en el seno de un líquido.

Cimacio.- Aliviadero con sección en forma de “S”

Erosión.- desgaste producido en un cuerpo por el roce con otro.

Gavión.- cestón relleno con tierra o piedras, usado en obras de defensa y

construcciones hidráulicas.

Limnímetro.- Consiste en un flutuador que sigue las variaciones del nivel de la

superficie del agua y cuyo movimiento es transmitido a un dispositivo de lectura o

de registro.

Paramento.- cualquiera de las dos caras de una pared.

Piezómetro.- instrumento que sirve para medir el grado de compresibilidad de los

líquidos.

Pivote.- punto de apoyo.

Remanente.- residuo de una cosa.

Remanso.- detención o suspensión de la corriente de agua.

Sistema de control de PLC.- sistemas de control automatizados mediante

programación para realizar una determinada tarea de tipo mecánica.

Socavación.- remoción del material de fondo de un río producido por el arrastre

de material.

Sujeción.- inclinación del paramento de un muro o terreno.

Talud.- inclinación del paramento de un muro o terreno.

Vano.- parte de la cresta por donde pasa el caudal.

Vórtices.- torbellino ó remolino. Centro de un ciclón.

Page 11: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

X

CONTENIDO

RESUMEN…………………………………………………………………………………………III

ABSTRACT………………………………………………………………………………………...IV

PRESENTACIÓN………………………………………………………………………………….VI

NOMENCLATURA UTILIZADA …..………………………………………………………….VI I

GLOSARIO…………………………………………………….…………………………………..IX

1. ANTECEDENTES ............................................................................................................................ 1

2. OBJETIVOS DEL PROYECTO DE TITULACIÓN ........... ......................................................... 3

2.1. OBJETIVO GENERAL .................................................................................................................. 3

2.2. OBJETIVOS ESPECÍFICOS .......................................................................................................... 3

3. INFRAESTRUCTURA DISPONIBLE PARA LOS ENSAYOS EXPERIMENTALES ............ 4

3.1. INSTALACIONES Y DESCRIPCIÓN DEL LABORATORIO .................................................... 4

3.1.1. SISTEMA DE RECIRCULACIÓN DE FLUJOS Y CANAL HIDRODINÁMICO ................. 4

3.2. MÁQUINAS Y HERRAMIENTAS ................................................................................................ 6

4. ANÁLISIS EXPERIMENTAL DEL FLUJO EN CIMACIOS TIPO CREAGER ..................... 9

4.1. INTRODUCCIÓN SOBRE LOS CIMACIOS TIPO CREAGER DE PERFIL LISO ...................... 9

4.1.1. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS ESTRUCTURAS .............................. 10

4.1.1.1. Diseño ............................................................................................................................ 10

4.1.1.2. Construcción .................................................................................................................. 16

4.1.1.3. Montaje .......................................................................................................................... 18

4.1.2. PLAN DE PRUEBAS EN CIMACIOS LISOS ....................................................................... 19

4.1.3. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL LABORATORIO ............... 19

4.1.4. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS EXPERIMENTALES .......... 25

4.1.4.1. Presentación de Resultados ............................................................................................ 33

4.1.5. CONCLUSIONES ................................................................................................................... 36

4.2. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS LISOS CON PILAS ..................... 37

4.2.1. INTRODUCCIÓN SOBRE CIMACIOS LISOS CON PILAS ............................................... 37

4.2.2. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS ESTRUCTURAS. ............................. 37

4.2.2.1. Diseño ............................................................................................................................ 37

4.2.2.2. Construcción .................................................................................................................. 41

4.2.2.3. Montaje .......................................................................................................................... 43

4.2.3. PLAN DE PRUEBAS EN CIMACIOS LISOS CON PILAS ................................................. 44

4.2.4. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL LABORATORIO ............... 45

Page 12: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XI

4.2.5. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS EXPERIMENTALES ........... 50

4.2.5.1. Presentación de Resultados ............................................................................................ 55

4.2.6. CONCLUSIONES ................................................................................................................... 58

5. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS LISO S CON PILAS Y

ESTRECHAMIENTOS ENTRE PILAS ..................................................................... 59

5.1. DESCRIPCIÓN BIBLIOGRÁFICA DE ESTUDIOS EXPERIMENTALES REALIZADOS EN

CIMACIOS DENOMINADOS “FLARING GATE PIERS” ........................................................ 59

5.2. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LOS ESTRECHAMIENTOS ........................... 62

5.2.1. Diseño ...................................................................................................................................... 62

5.2.2. Construcción ............................................................................................................................ 64

5.2.3. Montaje .................................................................................................................................... 66

5.3. PLAN DE PRUEBAS EN CIMACIOS LISOS CON PILAS Y ESTRECHAMIENTOS ENTRE PILAS. .. 67

5.4. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL LABORATORIO. ..................... 68

5.5. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS EXPERIMENTALES .................. 74

5.5.1. PRESENTACIÓN DE RESULTADOS .................................................................................. 80

5.5.1.1. Comparación de resultados de la disipación de energía entre los vertederos lisos ......... 83

5.6. CONCLUSIONES. ....................................................................................................................... 84

6. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS E SCALONADOS ................. 86

6.1. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS ESCALONADOS SIN PILAS ..... 86

6.1.1. BREVE DESCRIPCIÓN DE ESTUDIOS REALIZADOS SOBRE LA DISIPACIÓN DE

ENERGÍA. ............................................................................................................................... 89

6.1.2. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS ESTRUCTURAS. ............................ 91

6.1.2.1. Diseño ............................................................................................................................ 91

6.1.2.2. Construcción .................................................................................................................. 93

6.1.2.3. Montaje .......................................................................................................................... 97

6.1.3. PLAN DE PRUEBAS EN CIMACIOS ESCALONADOS SIN PILAS ................................. 99

6.1.4. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL LABORATORIO. .............. 99

6.1.5. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS EXPERIMENTALES ......... 104

6.1.5.1. Presentación de resultados ...................................................................................................... 111

6.1.6. CONCLUSIONES. ................................................................................................................ 117

6.2. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS ESCALONADOS CON PILAS . 118

6.2.1. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS PILAS. ........................................... 118

6.2.1.1. Montaje ...................................................................................................................................... 118

6.2.2. PLAN DE PRUEBAS EN CIMACIOS ESCALONADOS CON PILAS ............................. 119

6.2.3. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL LABORATORIO. ........... 119

6.2.4. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS EXPERIMENTALES. ........ 123

6.2.4.1. Presentación de resultados ...................................................................................................... 128

6.2.5. CONCLUSIONES. ................................................................................................................ 135

Page 13: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XII

7. ANÁLISIS COMPARATIVO DE LOS RESULTADOS OBTENIDOS. ............................... 136

7.1. COMPARACIÓN DE RESULTADOS DE DISIPACIÓN DE ENERGÍA EN LAS DIFERENTES

CONFIGURACIONES DEL PERFIL DEL CIMACIO TIPO CREAGER ................................. 136

7.2. COMPARACIÓN DE LA LONGITUD DE RESALTO HIDRÁULICO. ............................................. 139

7.3. COMPARACIÓN DEL COEFICIENTE DE DESCARGA ........................................................ 141

8. CONCLUSIONES Y RECOMENDACIONES. ......................................................................... 142

8.1. CONCLUSIONES ......................................................................................................................... 142

8.2. RECOMENDACIONES ................................................................................................................. 145

9. ANEXOS........................................................................................................................................ 146

10. BIBLIOGRAFÍA. ......................................................................................................................... 152

Page 14: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XIII

LISTADO DE FIGURAS

FIGURA 1 . EJEMPLO DE CIMACIO TIPO CREAGER ..................................................................... 10

FIGURA 2 . ECUACIONES DE CÁLCULO DEL CUADRANTE DE AGUAS ARRIBA Y DE

AGUAS ABAJO, PARA EL SISTEMA COORDENADO MOSTRADO. .................... 12

FIGURA 3. PERFIL DEL CIMACIO LISO ......................................................................................... 13

FIGURA 4. DISEÑO DE UN CIMACIO LISO .................................................................................. 14

FIGURA 5. CURVA DE DESCARGA DEL VERTEDERO TRIANGULAR ESTÁNDAR DE

900…. ............................................................................................................................... 20

FIGURA 6. VISTA EN PLANTA DEL ÁREA DE MEDICIÓN EN EL CANAL-CIMACIO

LISO…. ........................................................................................................................... 21

FIGURA 7. VISTA LATERAL DEL ÁREA DE MEDICIÓN EN EL CANAL-CIMACIO LISO .... 22

FIGURA 8. CORTE TRANSVERSAL DE LA SECCIÓN DEL CANAL-CIMACIO LISO ............ 22

FIGURA 9. COEFICIENTE DE DESCARGA POR PILAS .............................................................. 32

FIGURA 10. ∆E VS. YC/H CON EC. DE BERNOULLI – CIMACIO LISO ..................................... 35

FIGURA 11. ∆E VS. Z/YC CON EC. DE BERNOULLI – CIMACIO LISO ...................................... 35

FIGURA 12. TIPOS DE FORMA DE PILA ........................................................................................ 38

FIGURA 13. PARÁMETROS DE DISEÑO DE LA PILA TIPO 3 ..................................................... 38

FIGURA 14. COORDENADAS DEL PUNTO DE TANGENCIA PT ................................................ 39

FIGURA 15. DISEÑO DE LA PILA .................................................................................................... 40

FIGURA 16. VISTA LATERAL DE LA PILA .................................................................................... 41

FIGURA 17. VISTA EN PLANTA DEL ÁREA DE MEDICIÓN EN EL CANAL-CIMACIO LISO

CON PILAS ..................................................................................................................... 46

FIGURA 18. VISTA LATERAL DEL ÁREA DE MEDICIÓN EN EL CANAL-CIMACIO LISO

CON PILAS ..................................................................................................................... 47

FIGURA 19. CORTE TRANSVERSAL DE LA SECCIÓN DEL CANAL-CIMACIO LISO CON

PILAS… .......................................................................................................................... 47

FIGURA 20. ∆E VS. YC/H CON EC. DE BERNOULLI – CIMACIO LISO CON PILAS ................ 57

FIGURA 21. ∆E VS. Z/YC CON EC. DE BERNOULLI – CIMACIO LISO CON PILAS ................ 57

FIGURA 22. VISTA LONGITUDINAL Y EN PLANTA DE UN JET TIPO HENDIDURA............. 60

Page 15: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XIV

FIGURA 23. ESQUEMA DE ESTRUCTURAS DE DISIPACIÓN- PROYECTO

HIDROELÉCTRICO YANTAN-CHINA ....................................................................... 61

FIGURA 24. FORMA Y DIMENSIONES DE LOS ESTRECHAMIENTOS ..................................... 63

FIGURA 25. FORMA DE INSTALACIÓN DE LOS ESTRECHAMIENTOS ................................... 66

FIGURA 26. VISTA EN PLANTA DEL ÁREA DE MEDICIÓN EN EL CANAL-C. LISO CON

PILAS Y ESTRECHAMIENTOS ................................................................................... 70

FIGURA 27. VISTA LATERAL DEL ÁREA DE MEDICIÓN EN EL CANAL-C. LISO CON PILAS

Y ESTRECHAMIENTOS ............................................................................................... 70

FIGURA 28. CORTE TRANSVERSAL DEL CANAL-C. LISO CON PILAS Y

ESTRECHAMIENTOS. .................................................................................................. 71

FIGURA 29. ∆E VS. YC/H CON EC. DE BERNOULLI – C. CON PILAS Y

ESTRECHAMIENTOS….. ............................................................................................. 82

FIGURA 30. ∆E VS. Z/YC CON EC. DE BERNOULLI – C. CON PILAS Y ESTRECHAMIENTOS

......................................................................................................................................... 83

FIGURA 31. COMPARACIÓN DE RESULTADOS ∆E VS. Z/YC CON EC. DE BERNOULLI –

CIMACIOS LISOS .......................................................................................................... 84

FIGURA 32. FLUJO RASANTE ......................................................................................................... 88

FIGURA 33. REGIONES DEL PATRÓN DE FLUJO EN RÉGIMEN RASANTE. ........................... 89

FIGURA 34. PERFIL DEL CIMACIO ESCALONADO ..................................................................... 92

FIGURA 35. VISTA EN PLANTA DEL ÁREA DE MEDICIÓN EN EL CANAL-CIMACIO

ESCALONADO ............................................................................................................ 100

FIGURA 36. VISTA LATERAL DEL ÁREA DE MEDICIÓN EN EL CANAL-CIMACIO

ESCALONADO ............................................................................................................ 101

FIGURA 37. CORTE TRANSVERSAL DEL CANAL-CIMACIO ESCALONADO ...................... 102

FIGURA 38. ILUSTRACIÓN DE LOS CALADOS MEDIDOS-CIMACIO ESCALONADO ......... 105

FIGURA 39. ∆E VS. YC/H CON EC. DE BERNOULLI – CIMACIO ESCALONADO ................. 114

FIGURA 40. ∆E VS. Z/YC CON EC. DE BERNOULLI – CIMACIO ESCALONADO ................. 114

FIGURA 41. ∆E VS. YC/H CON EC. DE CHANSON – CIMACIO ESCALONADO .................... 115

FIGURA 42. ∆E VS. Z/YC CON EC. DE CHANSON – CIMACIO ESCALONADO ..................... 115

FIGURA 43. ∆E VS. Z/YC CON EC. DE CHANSON Y EC. DE BERNOULLI – CIMACIO

ESCALONADO ............................................................................................................ 116

Page 16: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XV

FIGURA 44. VISTA EN PLANTA DEL ÁREA DE MEDICIÓN. CIMACIO ESCALONADO CON

PILAS. ........................................................................................................................... 120

FIGURA 45. VISTA LATERAL DEL ÁREA DE MEDICIÓN. CIMACIO ESCALONADO CON

PILAS… ........................................................................................................................ 120

FIGURA 46. ∆E VS. YC/H CON EC. DE BERNOULLI – CIMACIO ESCALONADO CON PILAS

....................................................................................................................................... 131

FIGURA 47. ∆E VS. Z/YC CON EC. DE BERNOULLI – CIMACIO ESCALONADO CON PILAS

....................................................................................................................................... 131

FIGURA 48. ∆E VS. YC/H CON EC. DE CHANSON – CIMACIO ESCALONADO CON PILAS 132

FIGURA 49. ∆E VS. Z/YC CON EC. DE CHANSON – CIMACIO ESCALONADO CON PILAS 132

FIGURA 50. COMPARACIÓN DE PÉRDIDA DE ENERGÍA ENTRE EC DE BERNOULLI Y EC.

DE CHANSON. C. ESCALONADO CON PILAS ....................................................... 133

FIGURA 51. COMPARACIÓN DE PÉRDIDA DE ENERGÍA ENTRE EC DE BERNOULLI Y EC.

DE CHANSON. C. ESCALONADO CON Y SIN PILAS ........................................... 134

FIGURA 52. CURVAS COMPARATIVAS DE PÉRDIDA DE ENERGÍA ∆ E VS. YC/H-EC

BERNOULLI ................................................................................................................. 136

FIGURA 53. CURVAS COMPARATIVAS DE PÉRDIDA DE ENERGÍA ∆ E VS. Z/YC-EC

BERNOULLI ................................................................................................................. 137

FIGURA 54. CURVAS COMPARATIVAS DE PÉRDIDA DE ENERGÍA ∆ E VS. YC/H-EC

BERNOULLI, EC EXPERIMENTAL Y EC CHANSON ............................................ 138

FIGURA 55. CURVAS COMPARATIVAS DE PÉRDIDA DE ENERGÍA ∆ E VS. Z/YC-EC

BERNOULLI, EC EXPERIMENTAL Y EC CHANSON ............................................ 138

FIGURA 56. CURVAS COMPARATIVAS DEL COEFICIENTE DE DESCARGA VS Z/YC ...... 141

Page 17: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XVI

LISTADO DE FOTOGRAFÍAS

FOTOGRAFÍA 1. CANAL HIDRODINÁMICO- CIERHI .................................................................... 5

FOTOGRAFÍA 2. TANQUE DE CARGA Y VERTEDERO TRIANGULAR DEL CANAL

HIDRODINÁMICO – CIERHI ......................................................................................... 6

FOTOGRAFÍA 3. PERFIL DEL CIMACIO EN MADERA (MOLDE) .............................................. 17

FOTOGRAFÍA 4. CIMACIO TIPO CRECER DE PERFIL LISO ....................................................... 18

FOTOGRAFÍA 5. VERTEDERO INSTALADO EN EL CANAL. ...................................................... 18

FOTOGRAFÍA 6. TOMA FRONTAL DEL CIMACIO LISO ............................................................. 24

FOTOGRAFÍA 7. TOMA LATERAL DEL FLUJO SOBRE EL CIMACIO LISO ............................. 23

FOTOGRAFÍA 8. TOMA LATERAL DEL RESALTO HIDRÁULICO-CIMACIO LISO ................ 24

FOTOGRAFÍA 9. CONSTRUCCIÓN DE LA PILA PASO 1 ............................................................. 42

FOTOGRAFÍA 10. CONSTRUCCIÓN DE LA PILA PASO 2 ........................................................... 42

FOTOGRAFÍA 11. PILA CONSTRUIDA ........................................................................................... 43

FOTOGRAFÍA 12. PILAS MONTADAS VISTA FRONTAL ............................................................ 44

FOTOGRAFÍA 13. PILAS MONTADAS VISTA POSTERIOR. ........................................................ 44

FOTOGRAFÍA 14. TOMA FRONTAL DEL CIMACIO LISO CON PILAS ...................................... 49

FOTOGRAFÍA 15. TOMA LATERAL DEL FLUJO SOBRE EL CIMACIO LISO CON PILAS ..... 48

FOTOGRAFÍA 16. TOMA LATERAL DEL RESALTO HIDRÁULICO- CIMACIO LISO CON

PILAS…………………. ................................................................................................. 49

FOTOGRAFÍA 17. CONSTRUCCIÓN DE ESTRECHAMIENTOS - PASO 1 .................................. 64

FOTOGRAFÍA 18. CONSTRUCCIÓN DE ESTRECHAMIENTOS - PASO 2 .................................. 65

FOTOGRAFÍA 19. CONSTRUCCIÓN DE ESTRECHAMIENTOS – PASO 3 ................................. 65

FOTOGRAFÍA 20. TOMA FRONTAL DE LOS ESTRECHAMIENTOS INSTALADOS ................ 67

FOTOGRAFÍA 21. TOMA POSTERIOR DE LOS ESTRECHAMIENTOS INSTALADOS ............. 67

FOTOGRAFÍA 22. TOMA FRONTAL – C. CON PILAS Y ESTRECHAMIENTOS Q = 40 L/S ..... 72

FOTOGRAFÍA 23. TOMA FRONTAL – C. CON PILAS Y ESTRECHAMIENTOS Q = 100 L/S .. 72

FOTOGRAFÍA 24. TOMA LATERAL – C. CON PILAS Y ESTRECHAMIENTOS Q = 100 L/S ... 73

FOTOGRAFÍA 25. TOMA LATERAL – C. CON PILAS Y ESTRECHAMIENTOS Q = 80 L/S ..... 73

Page 18: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XVII

FOTOGRAFÍA 26. TOMA FRONTAL RESALTO SUMERGIDO – C. CON PILAS Y

ESTRECHAMIENTOS Q = 100 L/S ............................................................................ 73

FOTOGRAFÍA 27. CONSTRUCCIÓN CIMACIO ESCALONADO – PASO 1 ............................... 94

FOTOGRAFÍA 28. CONSTRUCCIÓN CIMACIO ESCALONADO – PASO 2 ............................... 94

FOTOGRAFÍA 29. CONSTRUCCIÓN CIMACIO ESCALONADO – PASO 3 ............................... 95

FOTOGRAFÍA 30. CONSTRUCCIÓN CIMACIO ESCALONADO – CRESTA DEL CIMACIO .... 95

FOTOGRAFÍA 31. CONSTRUCCIÓN CIMACIO ESCALONADO – CRESTA DEL CIMACIO

COLOCADA…………. .................................................................................................. 96

FOTOGRAFÍA 32. CONSTRUCCIÓN CIMACIO ESCALONADO .................................................. 96

FOTOGRAFÍA 33. ESTRUCTURA DE SOPORTE PARA EL LIMNÍMETRO ................................ 97

FOTOGRAFÍA 34. INSTALACIÓN DEL CIMACIO ESCALONADO CON PERNOS .................... 97

FOTOGRAFÍA 35. COLOCACIÓN DE LOS ESCALONES DE ACRÍLICO EN EL CIMACIO

ESCALONADO………. ................................................................................................. 98

FOTOGRAFÍA 36. CIMACIO ESCALONADO INSTALADO .......................................................... 98

FOTOGRAFÍA 37. PIEZÓMETROS ................................................................................................... 98

FOTOGRAFÍA 38. TOMA FRONTAL-CIMACIO ESCALONADO Q=20L/S ............................... 103

FOTOGRAFÍA 39. TOMA FRONTAL-CIMACIO ESCALONADO Q=100L/S.............................. 103

FOTOGRAFÍA 40. TOMA LATERAL-CIMACIO ESCALONADO Q=140L/S .............................. 103

FOTOGRAFÍA 41. TOMA LATERAL-RECIRCULACIÓN DEL FLUJO EN GRADAS-CIMACIO

ESCALONADO……… ................................................................................................ 104

FOTOGRAFÍA 42. TOMA FRONTAL CIMACIO ESCALONADO CON PILAS .......................... 118

FOTOGRAFÍA 43. TOMA POSTERIOR CIMACIO ESCALONADO CON PILAS. ...................... 119

FOTOGRAFÍA 44. TOMA FRONTAL. CIMACIO ESCALONADO CON PILAS Q = 20L/S ....... 121

FOTOGRAFÍA 45. TOMA FRONTAL. CIMACIO ESCALONADO CON PILAS Q = 140L/S ..... 122

FOTOGRAFÍA 46. TOMA LATERAL. CIMACIO ESCALONADO CON PILAS. ........................ 122

Page 19: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XVIII

LISTADO DE TABLAS

TABLA 1. COORDENADAS DEL CIMACIO ................................................................................... 13

TABLA 2. DATOS TOMADOS EN EL LABORATORIO-C. LISO SIN PILAS .............................. 23

TABLA 3. SERIE DE CAUDALES A SER ENSAYADOS- CIMACIO LISO .................................. 28

TABLA 4. DATOS REALES DE CALADOS Y RESALTO HIDRÁULICO-CIMACIO LISO ........ 33

TABLA 5. CÁLCULOS EN LA SECCIÓN 1 DEL CIMACIO LISO ................................................. 33

TABLA 6. PÉRDIDA DE ENERGÍA EN CIMACIO LISO CON EC. DE BERNOULLI .................. 34

TABLA 7. CALADO CRÍTICO, RELACIÓN YC/H Y Z/YC – CIMACIO LISO ............................. 34

TABLA 8. PARÁMETROS DEL RESALTO HIDRÁULICO-CIMACIO LISO ................................ 34

TABLA 9. VALORES DEL COEFICIENTE DE DESCARGA- CIMACIO LISO ............................. 34

TABLA 10. DATOS DE LABORATORIO-CIMACIO LISO CON PILAS ......................................... 48

TABLA 11. SERIE DE CAUDALES A SER ENSAYADOS-CIMACIO LISO CON PILAS .............. 51

TABLA 12. DATOS REALES DE CALADOS Y RESALTO HIDRÁULICO CIMACIO LISO CON

PILAS .............................................................................................................................. 55

TABLA 13. CÁLCULOS EN LA SECCIÓN 1 DEL CIMACIO LISO CON PILAS ............................ 55

TABLA 14. PÉRDIDA DE ENERGÍA EN CIMACIO LISO CON PILAS - EC. DE BERNOULLI ... 55

TABLA 15. CALADO CRÍTICO, RELACIÓN YC/H Y Z/YC – CIMACIO LISO CON PILAS ........ 56

TABLA 16. PARÁMETROS DEL RESALTO HIDRÁULICO-CIMACIO LISO CON PILAS ........... 56

TABLA 17. VALORES DEL COEFICIENTE DE DESCARGA- CIMACIO LISO CON PILAS ....... 56

TABLA 18. DATOS DE LABORATORIO – CIMACIO LISO CON PILAS Y ESTRECHAMIENTOS

......................................................................................................................................... 71

TABLA 19. SERIE DE CAUDALES MEDIDOS-C. CON PILAS Y ESTRECHAMIENTOS ............ 76

TABLA 20. DATOS REALES DE CALADOS-C. CON PILAS Y ESTRECHAMIENTOS ................ 80

TABLA 21. CÁLCULOS EN LA SECCIÓN 1 - C. CON PILAS Y ESTRECHAMIENTOS .............. 81

TABLA 22. PÉRDIDA DE ENERGÍA ENTRE SECCIÓN 0 Y 1 (FIGURA 27)- C. CON PILAS Y

ESTRECHAMIENTOS ................................................................................................... 81

TABLA 23. CALADO CRÍTICO, RELACIÓN YC/H Y Z/YC– C. CON PILAS Y

ESTRECHAMIENTOS ................................................................................................... 81

Page 20: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XIX

TABLA 24. PÉRDIDA DE ENERGÍA ENTRE SECCIÓN 0 Y 2 (FIGURA 27)-C. CON PILAS Y

ESTRECHAMIENTOS ................................................................................................... 81

TABLA 25. PÉRDIDA DE ENERGÍA ENTRE SECCIÓN 0 Y 3 (FIGURA ..)-C. CON PILAS Y

ESTRECHAMIENTOS ................................................................................................... 82

TABLA 26. VALORES DEL COEFICIENTE DE DESCARGA- C. CON PILAS Y

ESTRECHAMIENTOS ................................................................................................... 82

TABLA 27. COMPARACIÓN DE RESULTADOS- CIMACIOS LISOS ............................................ 83

TABLA 28. DIMENSIONES DE LOS ESCALONES DESDE ARRIBA HACIA ABAJO DEL

CIMACIO ........................................................................................................................ 93

TABLA 29. DATOS TOMADOS EN EL LABORATOTIO-CIMACIO ESCALONADO ................. 102

TABLA 30. SERIE DE CAUDALES A ENSAYAR-CIMACIO ESCALONADO ............................. 107

TABLA 31. DATOS REALES DE CALADOS-CIMACIO ESCALONADO ..................................... 111

TABLA 32. CÁLCULOS EN LA SECCIÓN 1 – CIMACIO ESCALONADO ................................... 111

TABLA 33. PÉRDIDA DE ENERGÍA ENTRE SECCIÓN 0 Y 1-ECUACIÓN DE BERNOULLI –

CIMACIO ESCALONADO .......................................................................................... 112

TABLA 34 . CALADO CRÍTICO Y RELACIÓN YC/H – – CIMACIO ESCALONADO ................. 112

TABLA 35. RADIO HIDRÁULICO SECCIÓN 1-– CIMACIO ESCALONADO .............................. 112

TABLA 36. PÉRDIDA DE ENERGÍA-ECUACIÓN DE CHANSON-C. ESCALONADO ............... 112

TABLA 37. VALORES DEL COEFICIENTE DE DESCARGA- CIMACIO ESCALONADO ......... 113

TABLA 38. VALORES DE LA LONGITUD DEL RESALTO HIDRÁULICO- CIMACIO

ESCALONADO ............................................................................................................ 113

TABLA 39. COMPARACIÓN DE RESULTADOS. C. ESCALONADOS SIN PILAS. .................... 116

TABLA 40. DATOS DE LABORATORIO. CIMACIO ESCALONADO CON PILAS ..................... 121

TABLA 41. SERIE DE CAUDALES A ENSAYARSE. CIMACIO ESCALONADO CON PILAS. . 124

TABLA 42. DATOS REALES DE CALADOS -CIMACIO ESCALONADO CON PILAS .............. 128

TABLA 43. DATOS REALES DE CALADOS CONTINUACIÓN-CIMACIO ESCALONADO CON

PILAS ............................................................................................................................ 128

TABLA 44. CÁLCULOS EN LA SECCIÓN 1 – CIMACIO ESCALONADO CON PILAS ............. 129

TABLA 45. PÉRDIDA DE ENERGÍA ENTRE SECCIÓN 0 Y 1-ECUACIÓN DE BERNOULLI –

CIMACIO ESCALONADO CON PILAS ..................................................................... 129

TABLA 46. CALADO CRÍTICO Y RELACIÓN YC/H – – CIMACIO ESCALONADO CON PILAS

....................................................................................................................................... 129

Page 21: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

XX

TABLA 47. RADIO HIDRÁULICO SECCIÓN 1-– CIMACIO ESCALONADO CON PILAS ........ 129

TABLA 48. PÉRDIDA DE ENERGÍA-ECUACIÓN DE CHANSON-C. ESCALONADO CON PILAS

....................................................................................................................................... 130

TABLA 49. VALORES DEL COEFICIENTE DE DESCARGA- CIMACIO ESCALONADO CON

PILAS ............................................................................................................................ 130

TABLA 50. LONGITUDES DEL RESALTO HIDRÁULICO CALCULADOS. C. ESCALONADO

CON PILAS ................................................................................................................... 130

TABLA 51. COMPARACIÓN DE RESULTADOS. C. ESCALONADOS CON PILAS. .................. 133

TABLA 52. COMPARACIÓN DE RESULTADOS. C. ESCALONADOS CON Y SIN PILAS. ...... 134

TABLA 53. PÉRDIDA DE ENERGÍA EN TODOS LOS CIMACIOS-EC DE BERNOULLI ........... 137

TABLA 54. COMPARACIÓN DE LA LONGITUD DEL RESALTO HIDRÁULICO-FÓRMULA DE

PAVLOSKI ................................................................................................................... 139

TABLA 55. % DE DISMINUCIÓN EN LA LONGITUD DEL RESALTO HIDRÁULICO-FÓRMULA

DE PAVLOSKI ............................................................................................................. 139

TABLA 56. COMPARACIÓN DE LA LONGITUD DEL RESALTO HIDRÁULICO-FÓRMULA DE

BAKHMETEV-MAZTKE ............................................................................................ 140

TABLA 57. % DE DISMINUCIÓN EN LA LONGITUD DEL RESALTO HIDRÁULICO-FÓRMULA

DE BAKHMETEV-MAZTKE ...................................................................................... 140

TABLA 58. VALORES DEL COEFICIENTE DE DESCARGA PARA TODOS LOS CASOS Y

CAUDALES. ................................................................................................................. 141

Page 22: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

CAPÍTULO 1

1. ANTECEDENTES

Los cimacios han resultado una solución satisfactoria cuando necesitamos de una

estructura para controlar y regular los derrames de un vaso almacenador

(embalse), o para regular el caudal que vierte sobre el mismo, es así, que se han

convertido, al pasar de los años en parte de las denominadas obras de

excedencias en proyectos hidráulicos; tales como: tomas de agua, represas

hidroeléctricas, etc.

Las obras de excedencias pueden variar debido al tipo de topografía, y por lo

tanto, la estructura de control puede ser de varias formas que dependerán mucho

del factor económico también, es así que pueden ser libres o controladas por

compuertas.

“Las superficies de las obras de excedencias deben ser resistentes a la erosión

para soportar las velocidades del agua.

La obra de excedencias debe tener la capacidad hidráulica suficiente y su

descarga estar localizada de tal suerte que no dañe ni el talud aguas debajo de la

cortina, ni el desfogue de la casa de máquinas ni cualquier otra estructura

adyacente.”1

Es por esta razón que en el presente proyecto se analizará la disipación de

energía al pie del cimacio con diferentes configuraciones en su perfil a fin de

establecer la más eficiente en términos hidráulicos y de esta manera, asegurar la

protección de las estructuras aguas abajo, además de reducir la denominada

estructura terminal que tiene por función disipar un alto porcentaje de la energía

que posee el agua al llegar a ella, como son: los cuencos amortiguadores o las

cubetas disipadoras.

1 Manual de Diseño de Obras Civiles; Comisión Federal de Electricidad, México

Page 23: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

2

Se ha escogido el cimacio tipo Creager para el análisis del presente proyecto,

ensayándolo con y sin pilas y estrechamientos entre pilas, además de modificar

su perfil con escalones.

Estudios de SORENSEN en 1985 sugieren que el diseño de canales

escalonados para la disipación de energía, fue una nueva técnica debido a la

introducción de nuevos materiales de construcción como gaviones esforzados,

pero el autor demuestra que el diseño de los canales escalonados se ha conocido

desde la antigüedad. Presas y vertederos de exceso escalonados fueron

construidos mucho antes en el medio oriente, luego esta técnica de construcción

fue difundida por el mediterráneo en tiempos del Imperio Romano.2

En los vertederos escalonados se presenta tres tipos de flujo: Flujo de escalón en

escalón (Nappe Flow), un flujo en transición y un flujo rasante (Skimming Flow), y

cada uno de estos flujos tiene un tipo de disipación de energía diferente.

Para caudales bajos se presenta el primer tipo de flujo (Nappe Flow), y para

caudales altos el segundo tipo de flujo (Skimming Flow) y siempre se presenta un

flujo en transición entre estos dos flujos.

2 H. CHANSON; Hydraulic Design of Stepped Cascades, Channels, Weirs and Spillways

Page 24: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

3

CAPÍTULO 2

2. OBJETIVOS DEL PROYECTO DE TITULACIÓN

2.1. OBJETIVO GENERAL

Diseñar, construir y ensayar cimacios con diferentes configuraciones en su perfil

a objeto de comparar las pérdidas de energía por fricción y turbulencia

producidas a través de tales modificaciones y establecer la más eficiente en

términos hidráulicos.

2.2. OBJETIVOS ESPECÍFICOS

• Determinar la disipación de energía en un cimacio con perfil liso, con y sin

pilas y estrechamientos entre pilas “flaring gate piers”.

• Determinar la disipación de energía en un cimacio con perfil escalonado,

con y sin pilas

• Calcular y comparar la longitud del Resalto Hidráulico aguas abajo al pie

del cimacio.

• Obtener curvas comparativas que relacionen la pérdida de energía con la

carga sobre el cimacio y el calado crítico para los caudales ensayados.

Page 25: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

4

CAPÍTULO 3

3. INFRAESTRUCTURA DISPONIBLE PARA LOS

ENSAYOS EXPERIMENTALES

En la presente investigación se construyeron modelos, de ciertos materiales, para

lo cual se requiere de cierta infraestructura para su construcción y montaje así

como para las pruebas a realizarse en los mismos.

3.1. INSTALACIONES Y DESCRIPCIÓN DEL

LABORATORIO

El Centro de Investigaciones y Estudios en Recursos Hídricos (CIERHI), es un

centro especializado en temas de planificación de recursos hídricos, diseño,

verificación y optimización de estructuras hidráulicas y en investigaciones y

estudios de proyectos de infraestructura hidráulica en general.

Dicho laboratorio se encuentra ubicado en el Campus Politécnico “José Rubén

Orellana” de la Escuela Politécnica Nacional con una superficie de 1200 m2

distribuido de la siguiente manera: Un taller que consta de todas las máquinas y

herramientas para la construcción y montaje de los modelos, bodegas, una sala

donde se encuentra el canal hidrodinámico, además de la red de tuberías y

accesorios que alimentan dicho canal, una sala de computo desde donde se

manipula las características electromecánicas del canal, un cuarto de bombeo

que consta de 4 bombas de impulsión con una capacidad de 200 l/s cada una con

una carga de 9.0m de columna de agua y una potencia de 60 HP.

3.1.1. SISTEMA DE RECIRCULACIÓN DE FLUJOS Y CANAL

HIDRODINÁMICO

Para realizar la recirculación de flujos el laboratorio cuenta con una cisterna de

almacenamiento de agua, que también funciona como cámara de succión, con

una capacidad de 260 m3., de los cuales 160 m3. están destinados para la

Page 26: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

5

recirculación de flujos, un tanque de carga de 2x2metros de sección por 9 metros

de altura, un tanque de carga para el canal hidrodinámico que contiene en su

interior un vertedero triangular estándar de 900 (Fotografía Nº 2) y mediante la

utilización de la curva de descarga de dicho vertedero y de un piezómetro que

mide la carga sobre el vertedero, se logra regular el caudal de entrada al canal.

Un sistema de conducción compuesto por tres tuberías de 300 mm. de diámetro

en PVC con varias tomas para distribuir el flujo, una de las cuales está dirigida al

canal hidrodinámico que tiene 25 metros de longitud con una sección rectangular

de 1metro de ancho por 0.80 metros de alto (Fotografía Nº 1), cuya pendiente

puede ser modificada electromecánicamente desde 0% a 4% mediante un

sistema de control de PLC interconectado a una computadora en la sala de

computo, que, además, permite manipular la apertura de la compuerta de

descarga que posee el canal y se encuentra al final del mismo. 3

Este sistema de elevación posee cinco pares de apoyos que contienen tornillos

de potencia en sus bases, pivotes y sistemas de transmisión y ejes motrices

unidos mediante ruedas calinas y cadenas accionadas por el motor reductor

principal.

Fotografía 1. Canal Hidrodinámico- CIERHI

3 Fuente: Garcia Alex, Becerra Edison. Estudio comparativo de la disipación de energía y distribución de presiones del flujo en rápidas escalonadas

Page 27: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

6

Fotografía 2. Tanque de carga y vertedero triangular del canal hidrodinámico – CIERHI

3.2. MÁQUINAS Y HERRAMIENTAS

• SIERRA CIRCULAR

“La sierra circular es una máquina para aserrar longitudinal o

transversalmente maderas, y también para seccionarlas. Dotada de un

motor eléctrico que hace girar a gran velocidad una hoja circular."4

• CALADORA

“Es un tipo de sierra utilizada para cortar curvas arbitrarias, como

diseños de plantilla u otras formas, en una pieza de madera,

enchapado, aglomerado, vidrio sintético, cartón, poliestireno,

fibrocemento, etc.”5

• ESCUADRA

“La escuadra de carpintero es un clásico insustituible pues con ella se

puede comprobar el escuadrado de un mueble (o de un ensamble) y

además sirve para trazar líneas perpendiculares o a 45º respecto al

canto de un tablero.”6

4 http://es.wikipedia.org/wiki/Sierra_circular 5 http://es.wikipedia.org/wiki/Sierra_de_vaivén 6 http://www.bricotodo.com/medir.htm

Page 28: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

7

• MARTILLO

“Herramienta para golpear, compuesta de una cabeza, por lo común de

hierro y un mango”7

• PISTOLA PARA SILICON

“La silicona: “Es un polímero inodoro e incoloro hecho principalmente de

silicio que guarda elasticidad después de aplicarlo y se utiliza para

pegar o sellar.”8 La pistola se usa para colocar este polímero de manera

sencilla.

• FORMÓN

“Los formones son diseñados para realizar cortes, muescas, rebajes y

trabajos artesanos artísticos de sobre relieve en madera. Se trabaja con

fuerza de manos o mediante la utilización de una maza de madera para

golpear la cabeza del formón.”9

• SIERRA MANUAL

“Se denomina sierra manual a una herramienta manual de corte que

está compuesta de dos elementos diferenciados. De una parte está el

arco o soporte donde se fija mediante tornillos tensores la hoja de sierra

y la otra parte es la hoja de sierra que proporciona el corte.”10

• TALADRO

“Los taladros son instrumentos que se utilizan para llevar a cabo la

operación de taladrar, esta operación tienen como objetivo producir

agujeros de forma cilíndrica en una pieza determinada.”11

• SIERRA DE CINTA

“La sierra de cinta o serrucho de banda es una sierra de pedal o

eléctrica, que tiene una tira metálica dentada, larga, estrecha y flexible.

7 http://www.wordreference.com/definicion/martillo 8 http://bricolaje.euroresidentes.es/doku.php?id=silicona 9 http://es.wikipedia.org/wiki/Formón 10 http://es.wikipedia.org/wiki/Sierra_manual 11 http://www.abcpedia.com/construccion/taladros.html

Page 29: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

8

La tira se desplaza sobre dos ruedas que se encuentran en el mismo

plano vertical con un espacio entre ellas.”12

• CEPILLADORA

• CANTEADORA

12 http://es.wikipedia.org/wiki/Sierra_de_cinta

Page 30: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

9

CAPÍTULO 4

4. ANÁLISIS EXPERIMENTAL DEL FLUJO EN CIMACIOS

TIPO CREAGER

4.1. INTRODUCCIÓN SOBRE LOS CIMACIOS TIPO

CREAGER DE PERFIL LISO

Este tipo de vertedero es el más usado sobretodo en presas de concreto de

suficiente longitud de corona.

La forma usual de la pared vertedora, consiste de una cara vertical o inclinada del

paramento de aguas arriba y está constituido por una cresta de control curva, la

cresta tiene esta forma con el fin de que la superficie del agua no produzca vacíos

al escurrir, provocando el fenómeno de cavitación, para esto, debe tener

aproximadamente la forma de la superficie inferior de la lámina vertiente de un

vertedor de cresta delgada.

La superficie curva descrita continúa en una rápida de alta pendiente tangente a

ella y relativamente corta donde el flujo tiene un régimen supercrítico, esta

tangente se une con una superficie curva contraria a la de la cresta, la cual debe

llegar tangente a la plantilla de un tanque amortiguador ó a un canal de descarga

que ya no es parte del vertedor sino un canal de conducción, o a un salto de

esquí.13 Como se muestra en la figura 1

13 Fuente: Manual de Diseño de Obras Civiles; Comisión Federal de Electricidad, México

Page 31: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

10

Figura 1. Ejemplo de cimacio tipo Creager

Fuente: Notas de clase. Hidráulica Aplicada. Ing. Marcelo Hidalgo

4.1.1. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS ESTRUCTURAS

4.1.1.1. Diseño

El diseño de este tipo de estructuras toma como base la ecuación general para

vertedores, cuando son con cresta libre o con pilas para compuertas, con la

condición de que éstas no estén trabajando, es decir, para que una vez superado

el nivel máximo de embalse, el agua vierta por la superficie del mismo.

La fórmula general de los vertederos es la siguiente:

23

HCLQ e= Ec. 4.1

Donde:

Q: Caudal de descarga, en m3/s

C: Coeficiente de descarga, en m1/2/s

Le: Longitud efectiva de cresta, en metros

H: Carga total sobre la cresta, en metros

La longitud de cresta es por donde escurre el caudal del vertedero, para todos los

casos la longitud efectiva de cresta viene dada por la fórmula:

( )HKNKLL ape +−= 2 Ec. 4.2

Page 32: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

11

Donde:

Le: Longitud efectiva de la cresta, en metros

L: Longitud total neta de la cresta, en metros

N: Número de pilas

Kp: Coeficiente de contracción por pilas

Ka: Coeficiente de contracción por estribo

H: Carga total sobre la cresta del vertedero, en metros

Para el presente modelo se asumieron los siguientes datos:

Q= 200 l/s (caudal máximo que pasa por el canal hidrodinámico)

C= 2 m1/2/s

Le= 1 m.

Kp= 0

Ka= 0

Se asume el valor del coeficiente de descarga (C) igual a 2, la deducción de este

coeficiente se muestra en el anexo 1.

Con estos datos se obtuvo la carga de diseño (Hd) sobre el vertedero, despejando

de la ecuación 4.1:

32

==

eCL

QHdH Ec. 4.3

mHdH 2154,012

2,0 32

=

×==

Para establecer el perfil se usaron las recomendaciones del U.S. Army Corps of

Engineers, que considera factores como son: la velocidad de llegada, la

inclinación del talud aguas arriba y la relación P/Hd.

Siendo P el desnivel entre la cresta del cimacio y el fondo del canal y Hd la carga

de diseño.

El presente modelo cae en el caso I, el cual posee un talud vertical, una relación

P/Hd ≥ 1 y velocidad de llegada despreciable.

Page 33: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

12

Se asume un eje de coordenadas X-Y; y, el perfil del cuadrante aguas abajo tiene

la ecuación:

YHdX ×= 85,085,1 2 Ec. 4.4

Donde:

X, Y: son coordenadas del sistema cartesiano que se muestra en la figura 2

Hd: carga de diseño del cimacio, en m.

Para el perfil del cuadrante aguas arriba del cimacio, se uso la ecuación 4.5.

( ) ( ) 625,0375,0

85,0

85,1

27,04315,0126,027,0

724,0 HdXHdHdHd

HdXY +−++×= Ec. 4.5

Figura 2. Ecuaciones de cálculo del cuadrante de aguas arriba y de aguas abajo, para

el sistema coordenado mostrado. Fuente: Manual de Diseño de Obras Civiles; Comisión Federal de Electricidad, México

Se dió valores a la abscisa X cada centímetro y se calculó el valor de la ordenada

con las ecuaciones 4.4 y 4.5 según corresponde, a continuación se presenta la

tabla 1, que muestra las coordenadas del vertedero.

Page 34: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

X (m) Y (m) -0.058 0.026 -0.05 0.015 -0.04 0.009 -0.03 0.005 -0.02 0.002 -0.01 0.000

0 0.000 0.01 0.000 0.02 0.001 0.03 0.003 0.04 0.005 0.05 0.007 0.06 0.010 0.07 0.013 0.08 0.017 0.09 0.021 0.1 0.026 0.11 0.031 0.12 0.036 0.13 0.042 0.14 0.049

X (m) Y (m) 0.15 0.055 0.16 0.062 0.17 0.069 0.18 0.077 0.19 0.085 0.2 0.094 0.21 0.103 0.22 0.112 0.23 0.122 0.24 0.132 0.25 0.142 0.26 0.153 0.27 0.164 0.28 0.175 0.29 0.187 0.3 0.199 0.31 0.211 0.32 0.224 0.33 0.237 0.34 0.251 0.35 0.264

X (m) Y (m) 0.36 0.278 0.37 0.293 0.38 0.308 0.39 0.323 0.4 0.338 0.41 0.354 0.42 0.370 0.43 0.387 0.44 0.404 0.45 0.421 0.46 0.438 0.47 0.456 0.48 0.474 0.49 0.493 0.5 0.511 0.51 0.530 0.52 0.550 0.53 0.570 0.54 0.590 0.55 0.610 Tabla 1. Coordena

das del cimacio

El perfil del cimacio se muestra en la figura 3

PERFIL DEL CIMACIO

0.00

0.10

0.20

0.30

0.40

0.50

0.60

-0.2 0 0.2 0.4 0.6

X

Y

Figura 3. Perfil del Cimacio Liso

Page 35: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

14

Una vez obtenidas estas coordenadas, se fijó la geometría del vertedero en

función de las dimensiones del canal (1 m. x 0,80 m.); es así que se asumió una

altura de seguridad de 3 centímetros para que el flujo no se desborde y para

alcanzar la carga de diseño de 21,54 cm., se tiene entonces que la altura del

vertedero (P) es igual a: 55,46cm.

-5

Q = 200 lt/s Hd = 21.54 cm

-5.58

CIMACIO CREAGER CONPERFIL LISO

P

R

e

H =

Hd

Sección 0 Sección 1

Z

Perfil del Cimacio Liso

Figura 4. Diseño de un Cimacio liso

Para unir el perfil del vertedero con el canal, se utiliza una curva circular contraria

a la de la cresta, cuyo radio se calculó con la siguiente expresión:

[ ] [ ]646,3/4,6110 ++−= HHVR 14 Ec.4.6

Donde:

R: Radio de enlace, en pies

V1: Velocidad al pie del cimacio, en pies/s

H: Carga sobre el vertedero, en pies

Para determinar este radio de enlace, se obtuvo la velocidad al pie del cimacio de

la siguiente manera:

14 Hidráulica de canales abiertos, Ven Te Chow, Julio 1982, pp. 360. Nota: Dicha ecuación es aplicable solo para unidades inglesas.

Page 36: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

15

Se calculó el calado contraído al pie de la estructura con la siguiente expresión:

59.3

1061.0−

=k

h

k

d Ec. 4.7

Donde:

d = altura del vertedero (Z), en metros. (figura 4)

k = calado crítico, en metros.

h1= calado contraído, en metros.

Esta expresión se aplica solamente si 40<k

d 15

Para lo que se debió calcular el calado crítico con la siguiente ecuación:

3

2

g

qyc = Ec. 4.8

Donde:

q = caudal unitario, en m2/s.

g = aceleración de la gravedad, en m/s2.

b

Qq = Ec. 4.9

Donde:

Q = caudal, en m3/s.

b = ancho del canal, en metros.

smq

22.0

0.1

20.0 ==

myc 16.081.9

2.03

2

==

28.316.0

5253.0 ==k

d

Entonces se tiene: 59.3

1

16.0061.0

16.0

5253.0−

=h

De donde: h1= 0.0527 m

15 Alessandro Peruginelli y Stefano Pagliara. Energy Dissipation Comparison Among Stepped Channel, Drop and Ramp Structures. (pp. 113). Hidraulics of stepped spillways. Dipartamento di Ingegneria Civile, University of Pisa, Italy.

Page 37: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

16

Con el valor del calado contraído se procedió a calcular la velocidad aguas abajo

(sección 1 figura 4) con la ecuación de continuidad:

yb

Q

A

QV

×== Ec. 4.10

Donde:

Q: Caudal, en m3/s

A: Área mojada de la sección, en m2

b: ancho de la sección, en metros

y: calado de la sección, en metros

smV 795.30527.00.1

20.01 =

×=

Una vez obtenidos los valores de H y V1, se convirtió a las unidades requeridas en

la Ec. 4.6 y se calculó el radio de enlace:

s

pies

m

pies

s

mV 45,12

1

2808,3795,31 =×=

piesm

piesmH 7067,0

1

2808,32154,0 =×=

[ ] [ ] 255,0647067,06,3/7067,04,645,12 1010 −+××+− ==R

mR 555,0=

De esta manera queda establecido todo el diseño del cimacio Creager de perfil

Liso, para proceder al siguiente paso, es decir, su construcción.

4.1.1.2. Construcción

Para la construcción del modelo se utilizaron los siguientes materiales:

• 1 Lámina de acrílico transparente de 1,55 x 2,44 m.x 6mm. de espesor.

• 1 Plancha de tabla triplex tipo C de 1,22 x 2,44 m.x.15mm.

Page 38: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

17

• Tablón

• Silicona

• Cloroformo

• Pintura de caucho

• Pernos

Se procedió a dibujar el perfil del cimacio en la tabla triplex para obtener las

paredes laterales, para luego ser cortada con la sierra de cinta y ser armada, así

se establece la forma en madera, para luego mediante un proceso de

calentamiento de la lámina de acrílico, ser moldeada con dicho perfil.

Se cortaron las caras en acrílico con la forma del perfil también. Se colocó dos

apoyos intermedios dentro del vertedor para que el mismo no fleje frente a la

presión del agua. Se pegaron y sellaron todas las uniones con cloroformo.

Para ilustrar el procedimiento de construcción del vertedero se presentan las

siguientes Fotografías:

Fotografía 3. Perfil del Cimacio en madera (Molde)

Page 39: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

18

Fotografía 4. Cimacio tipo Creager de perfil Liso

4.1.1.3. Montaje

Una vez construido el vertedero, se lo instaló en el canal Hidrodinámico en el

laboratorio del Centro de Investigaciones y Estudios en Recursos Hídricos

(CIERHI), colocándolo a una distancia tal, que permita la uniformización del flujo

antes de llegar al mismo, además de asegurarlo con pernos al piso del canal,

impermeabilizando las uniones del canal y el vertedero con silicona.

Se colocó una plancha de tabla triplex al pie del cimacio de 1 x 1 m x 2.9mm. de

dimensión, para permitir la continuidad del flujo aguas abajo.

Fotografía 5. Vertedero instalado en el canal.

Page 40: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

19

4.1.2. PLAN DE PRUEBAS EN CIMACIOS LISOS

Las pruebas a realizarse en el cimacio liso están encaminadas para obtener

series de datos con los cuales determinemos la energía remanente aguas abajo o

la pérdida de energía en dicha estructura, para lo cual se hizo pasar una serie de

caudales, empezando desde 20 l/s e incrementando el caudal en

aproximadamente 20 l/s hasta llegar al caudal de diseño de la estructura o bien

hasta cuando las condiciones físicas del canal nos lo permitan, es decir, para no

causar problemas de desbordamiento del flujo sobre el canal.

Es así que se logró medir hasta un caudal máximo de 180 l/s.

4.1.3. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL

LABORATORIO

Para realizar los ensayos en el cimacio liso, se siguió una metodología, la cual se

la repite para cada caudal a probar como se describió anteriormente.

En un principio se procedió a prender una bomba del sistema de recirculación de

flujos, luego se abrió la válvula que regula el flujo de entrada al tanque que

alimenta al canal que se encuentra al pie del mismo, y se repiten los siguientes

pasos:

• Con el uso del limnímetro mecánico de 0.1 milímetros de precisión, se

tomó los niveles “cero” del fondo del canal tanto aguas arriba y aguas abajo

ya que no son las mismas por la plancha de triplex que se colocó y se

midió también el nivel de la cresta del vertedero.

• Se calibró el caudal que pasa al canal mediante la manipulación de su

válvula de regulación y con el uso de la curva de descarga del vertedero

triangular (figura 5), cuyos valores se muestran en el anexo 2.

Page 41: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

20

CURVA DE DESCARGA

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.000 0.050 0.100 0.150 0.200 0.250 0.300

CARGA m

Qm

3/s

Figura 5. Curva de descarga del vertedero triangular estándar de 900

• Se tomó datos del calado aguas arriba de la estructura (sección de control

0), los cuales se hicieron en tres medidas a lo largo de la sección

transversal para obtener un promedio de los mismos con el uso del

limnímetro. Las mediciones se realizarán siempre perpendiculares a la

corriente del flujo. (figura 6)

• Se Tomó datos del calado aguas abajo al pie de la estructura (sección de

control 1), los cuales también se hicieron en tres medidas a lo largo de la

sección transversal para obtener un promedio de los mismos con el uso del

limnímetro.

• Se Subió la compuerta del canal para lograr que se forme un resalto

hidráulico al pie del cimacio y de esta forma medir aproximadamente la

longitud de dicho resalto, con el fin de compararlo posteriormente con las

longitudes del resalto con las demás configuraciones en el perfil del

Cimacio a ensayarse.

El resalto hidráulico es el cambio de régimen de flujo supercrítico a subcrítico,

acompañado de la correspondiente disipación de energía, razón por la cual se lo

Page 42: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

21

utiliza en las estructuras de disipación. Si tomamos una distancia L pequeñas

entre dos secciones antes y después del resalto hidráulico, se puede despreciar la

influencia de la pendiente y del rozamiento y solo quedarían las fuerzas de

presión hidrostáticas y las fuerzas inerciales.

• Repetir el procedimiento para los demás caudales.

Los puntos de medición aguas arriba se los realizaron a una distancia de 60 cm.

desde el paramento del cimacio, con el fin de que la medición no se vea afectada

por la perturbación originada por el descenso del flujo, como se muestra en la

figura 6, 7 Y 8.

Y0-1

Y0-2

Y0-3

Y1-1

Y1-2

Y1-3

87,6460 100

100

25

25

25

Figura 6. Vista en planta del área de medición en el canal-Cimacio liso

El flujo sobre el cimacio liso se presentó de una manera muy estable

aproximándose con una velocidad despreciable y acelerándose al pasar la cresta

del vertedero alcanzando un régimen de flujo supercrítico aguas abajo en todos

los caudales ensayados, no se observa ninguna perturbación ni salpicaduras,

como se ilustra en la figura 7 y se muestra en las fotografías 6 y 7.

Page 43: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

22

-5

Q = 200 lt/s Hd = 21.54 cm

-5.58

CIMACIO CREAGER CONPERFIL LISO

P

R

e

H

Sección 0

Sección 1

Yo

Y1

60 87,64 100

52,5

4

LRH

E0

Figura 7. Vista lateral del área de medición en el canal-Cimacio liso

100

80

Y1-1Y1-2Y1-3

Y0-1Y0-2Y0-3

25 25 25 25

Figura 8. Corte transversal de la sección del canal-Cimacio liso

A continuación se presenta la tabla 2, la cual contiene los valores obtenidos en el

laboratorio.

Page 44: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

23

CIMACIO DE PERFIL LISO DATOS DE LABORATORIO

Q (l/s)

Aguas Arriba Aguas Abajo Resalto Hidráulico y0 (cm) y 1 (cm) L RH (cm)

19,83 45,55 5,77

45,54 5,86 45,43 5,72

40,16 48,36 6,45

50 48,31 6,45 48,28 6,37

60,00 50,48 7,01

61 50,39 7,09 50,27 6,96

80,62 52,46 7,64

70 52,30 7,63 52,26 7,57

100,77 54,01 8,15

70 53,91 8,20 53,97 8,16

120,55 55,61 8,78

80 55,50 8,75 55,36 8,82

140,21 56,92 9,50

90 56,95 9,52 56,80 9,47

160,37 58,36 5,10

100 58,38 5,07 58,26 5,09

180,14 59,55 10,78

100 59,50 10,75 59,44 10,73

Tabla 2. Datos tomados en el Laboratorio-C. Liso sin pilas

Fotografía 6. Toma lateral del flujo sobre el Cimacio Liso

Page 45: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

24

. Fotografía 7. Toma frontal del Cimacio liso

Fotografía 8. Toma lateral del Resalto Hidráulico-Cimacio liso

Page 46: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

25

4.1.4. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS

EXPERIMENTALES

Culminados los ensayos en el laboratorio, se procedió a digitalizar los datos

obtenidos.

En primer lugar, se determinó el caudal real de la siguiente forma: se interpoló los

valores de la curva de descarga del vertedero triangular presentada en la figura 5,

con los valores medidos. Para los calados aguas arriba y aguas abajo, se restó

los valores de los niveles “cero” correspondientes y a continuación se obtuvo un

promedio entre las tres medidas tomadas.

A los valores de los calados aguas arriba se resta la altura del vertedero, de esta

forma se obtuvo la carga sobre el vertedero para cada caudal.

Se Calculó la velocidad aguas abajo con la Ec. 4.10:

by

QV

×=

11

Donde:

V1: velocidad aguas abajo, en m/s.

Q: caudal que circula por el canal, en m3/s.

y1: calado aguas abajo, en metros.

b : ancho de la sección aguas abajo, en este caso ancho del canal, en metros.

Se obtuvo la pérdida de energía mediante la igualación de la ecuación de la

energía aguas arriba (sección de control 0) y aguas abajo (sección de control 1)

del cimacio. (figura 7)

EEE ∆+= 10 Ec. 4.11

Siendo E0 y E1 la energía total en el punto correspondiente, definida como:

g

VpzE

2

2

++=γ

Ec. 4.12

Page 47: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

26

Donde:

∆E: Pérdida de energía producida en la estructura.

E: Energía total, en metros.

Z: Carga de posición, en metros.

p/γ: Carga de presión, en metros. Que es igual a la altura del vertedero P más la

carga sobre el vertedero H.

V2/2g: Carga de velocidad, en metros.

Una vez obtenidos todos estos valores, se realizó el cálculo de las energías aguas

arriba y aguas abajo, empleando la Ec. 4.12.

g

VHPzE

2

20

00 +++=

g

VyzE

2

21

111 ++=

Donde:

E0: Energía total en el punto 0, en metros.

E1: Energía total en el punto 1, en metros.

z0: Carga de posición en el punto 0, en metros.

z1: Carga de posición en el punto1, en metros.

P: altura del vertedero, en metros.

H: Carga sobre el vertedero, en metros.

y1: Calado al pie del cimacio, en metros.

V02/2g: Carga de velocidad en el punto 0, en metros.

V12/2g: Carga de velocidad en el punto 1, en metros.

Se calculó la pérdida de energía con la Ecuación de Bernoulli Ec. 4.11:

EEE ∆+= 10

Page 48: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

27

A continuación se presenta el ejemplo de cálculo completo para el caudal de 100

l/s, para luego solo mostrar los resultados en las tablas 5, 6, 7, 8 y 9 de resumen

de resultados.

La primera medición es establecer los niveles “cero” tanto aguas arriba como

aguas abajo:

Nivel cero aguas arriba: 2.1 cm.

Nivel cero aguas abajo: 4.98 cm.

Nivel de la cresta del cimacio: 57.53 cm.

Para calibrar el caudal de 100 l/s: Se abrió la válvula y se midió la carga sobre el

vertedero triangular con la ayuda del limnímetro colocado en el tanque de carga,

cuyo valor resultó ser:

3508.0=H m.

Al observar en la tabla de valores de la curva de descarga en el vertedero,

tenemos valores de H entre 0.350 y 0.351 con sus respectivos valores de caudal,

y mediante un proceso de interpolación lineal se obtuvo un valor de caudal real

que está pasando al canal hidrodinámico, el cual resultó:

slQ /77.100=

Se procedió de igual manera para los demás caudales a ensayarse, cuyos valores

se presentan en la tabla 3.

Page 49: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

28

TABLA 3 CÁLCULO DE LOS CAUDALES EN EL CANAL

Caudales Medidos Caudales de la curva de descarga H(m) Q (l/s) H(m) Q (l/s)

0.1831 19.83 0.183 19.800

0.184 20.071

0.2429 40.16 0.242 39.790

0.243 40.202

0.2852 60.00 0.285 59.899

0.286 60.425

0.3209 80.62 0.320 80.057

0.321 80.685

0.3508 100.77 0.350 100.190

0.351 100.910

0.3768 120.55 0.376 119.910

0.377 120.710

0.4003 140.21 0.400 139.951

0.401 140.827

0.4224 160.37 0.422 159.995

0.423 160.944

0.4425 180.14 0.442 179.631

0.443 180.648 Tabla 3. Serie de Caudales a ser ensayados- Cimacio liso

Una vez regulado el caudal, se midieron los calados ya descritos en la sección

anterior, cuyos valores son:

Calados aguas arriba (Yo): Se tomó la sección de control 0 ubicada a 60 cm.

aguas arriba del paramento del cimacio, se midió el calado con el limnímetro, a

este valor se añaden 17.40 cm. de una estructura de soporte en madera,

colocada para lograr medir con el limnímetro, se resta el nivel cero y se

promedian los tres valores.

cmYo 31.691.240.1701.541 =−+=

cmYo 21.691.240.1791.532 =−+=

cmYo 27.691.240.1797.533 =−+=

cmYo 26.69=

Page 50: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

29

Calados aguas abajo (Y1): La sección de control 1 se encuentra al pie del

cimacio, donde se observa que el flujo se uniformiza. Se midió el calado con el

limnímetro, se resta el nivel cero y se promediaron los tres valores.

cmY 17.398.415.811 =−=−

cmY 22.398.420.821 =−=−

cmY 18.398.416.831 =−=−

cmY 19.31 =

Se calculó el valor total de la energía en las dos secciones de control. Para esto

se obtuvo la carga sobre el vertedero H, que es igual a la carga Yo menos la

altura del vertedero P:

cmH 83.1343.5526.69 =−=

Se calculó la velocidad en la sección 1 con la ecuación 4.10:

smA

QV /16.3

032.01

101.01 =

×==

Ahora la carga de velocidad es:

mg

V509.0

81.92

16.3

2

221 =

×=

La velocidad de aproximación se considera despreciable, es así que se calculó la

energía total en el punto 0:

mHPEo 693.01383.05543.0 =+=+=

La energía en el punto 1:

mg

VYeE 569.0509.0032.0029.0

2

21

11 =++=++=

Page 51: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

30

Siendo e, el espesor de la tabla triplex colocada al pie del cimacio que resulta ser

la carga de posición.

Se obtuvo así la diferencia de energía E∆ :

mEEoE 123.0569.0693.01 =−=−=∆

Y la misma pérdida expresada en tanto por ciento:

%81.17100693.0

123.0100(%) =×=×∆=∆

Eo

EE

Se calculó el calado crítico usando la ecuación 4.8:

mg

qyc 101.0

81.9

101.03

2

3

2

===

Se obtiene la relación Hyc /

731.01383.0

101.0 ==H

yc

Y también la relación Z/yc; Siendo Z el desnivel a vencer, ilustrado en la figura 4.

cmZ 55.5288.243.55 =−=

20.5101.0

526.0 ==cy

Z

Además se calcula la longitud del resalto hidráulico con ecuaciones

experimentales propuestas se las comparara con las medidas en el laboratorio.

Se calculó en primer lugar el segundo calado conjugado del resalto hidráulico con

la siguiente expresión:

( )2

1

2 18112

1Fr

y

y

RH

RH ++−= Ec 4.13

Page 52: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

31

Donde:

RHY1 : Calado inicial del resalto hidráulico, igual al calado al pie del cimacio Y1, en

metros

RHY2 : Segundo calado conjugado o calado final del resalto hidráulico, en metros

Fr1: Número de Froude correspondiente a la sección de control 1.

El número de Froude se define como la relación de velocidad en la sección

correspondiente a la raíz cuadrada del calado por la aceleración de la gravedad.

yg

VFr

×= Ec 4.14

65.5032.081.9

16.31 =

×=Fr

( )212 1811

2

1Fryy RHRH ++−=

( ) my RH 239.065.58112

1032.0 2

2 =×++−×=

Existen varias fórmulas experimentales para calcular la longitud del resalto

hidráulico, para este cálculo se usaron dos, las cuales son

PAVLOSKI (1937) ( )129.15.2 YYL −= Ec 4.15

( ) mLRH 06.1032,0239.09.15.21 =−××=

BAKHMETEV-MAZTKE (1936) ( )125 YYL −= Ec.4.16

( ) mLRH 04.1032,0239.052 =−×=

Se calculó el coeficiente de descarga C real para cada caudal con la Ecuación

4.1, para lo cual se obtuvo primero la longitud efectiva con la ecuación 4.2.

23

HCLQ e=

Page 53: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

32

( )HKNKLL ape +−= 2

Se asume que el coeficiente Ka = 0 ya que no existen estribos, para la

determinación del coeficiente Kp, se usa la figura 9, según el tipo de pila que se

haya empleado.

Siendo µgC 23

2= , donde µ es el coeficiente adimensional de descarga. (Ver

anexo 1)

Figura 9. Coeficiente de descarga por pilas Fuente: Manual de Diseño de Obras Civiles; Comisión Federal de Electricidad, México

Finalmente se realizaron las curvas comparativas.

Page 54: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

33

4.1.4.1.Presentación de Resultados

A continuación se presentan en una forma tabulada todos los cálculos realizados

para todas las series de pruebas de los distintos caudales.

CIMACIO DE PERFIL LISO DATOS REALES

Q (l/s)

Aguas Arriba Aguas Abajo Resalto Hidráulico y0 (cm) y 1 (cm) L RH (cm)

19.83 60.81 0.80 40.16 63.62 1.44 50 60.00 65.68 2.04 61 80.62 67.64 2.63 70 100.77 69.26 3.19 70 120.55 70.79 3.80 80 140.21 72.19 4.52 90 160.37 73.63 5.09 100 180.14 74.80 5.77 100

Tabla 4. Datos reales de calados y resalto Hidráulico-Cimacio Liso

Datos: P (cm) = 55.43 e (cm) = 2.88

Vo (m/s) = 0 B (m) = 1 Z (m)= 0.526

Q (l/s) Q (m3/s) H (m) y 1 (m) V1 (m/s) V1²/2g 19.83 0.020 0.054 0.008 2.47 0.310 40.16 0.040 0.082 0.014 2.78 0.395 60.00 0.060 0.103 0.020 2.94 0.441 80.62 0.081 0.122 0.026 3.06 0.478 100.77 0.101 0.138 0.032 3.16 0.509 120.55 0.121 0.154 0.038 3.17 0.512 140.21 0.140 0.168 0.045 3.10 0.491 160.37 0.160 0.182 0.051 3.15 0.507 180.14 0.180 0.194 0.058 3.12 0.496

Tabla 5. Cálculos en la sección 1 del Cimacio Liso

Page 55: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

34

ENERGÍA

Q (l/s) Eo (m) E1 (m) ∆ E (m) ∆ E (%) 19.83 0.608 0.347 0.261 42.88 40.16 0.636 0.438 0.198 31.17 60.00 0.657 0.490 0.167 25.37 80.62 0.676 0.533 0.144 21.22 100.77 0.693 0.569 0.123 17.81 120.55 0.708 0.579 0.129 18.23 140.21 0.722 0.565 0.157 21.71 160.37 0.736 0.586 0.150 20.37 180.14 0.748 0.583 0.165 22.09

Tabla 6. Pérdida de energía en Cimacio Liso con Ec. De Bernoulli

Q (l/s) Yc (m) Yc/H Z/Yc 19.83 0.034 0.636 15.36 40.16 0.055 0.669 9.59 60.00 0.072 0.699 7.34 80.62 0.087 0.714 6.03 100.77 0.101 0.731 5.20 120.55 0.114 0.742 4.61 140.21 0.126 0.752 4.17 160.37 0.138 0.758 3.81 180.14 0.149 0.769 3.53

Tabla 7. Calado crítico, relación Yc/H y Z/Yc – Cimacio Liso

RESALTO HIDRÁULICO

Q (l/s) Fr 1 Y2CALC LRH1 LRH2 LRHmed. 19.83 8.79 0.096 0.44 0.44 40.16 7.39 0.144 0.65 0.65 0.50 60.00 6.58 0.180 0.80 0.80 0.61 80.62 6.02 0.212 0.94 0.93 0.70 100.77 5.65 0.239 1.06 1.04 0.70 120.55 5.19 0.261 1.14 1.11 0.80 140.21 4.66 0.276 1.20 1.15 0.90 160.37 4.46 0.297 1.28 1.23 1.00 180.14 4.15 0.311 1.33 1.27 1.00

Tabla 8. Parámetros del Resalto Hidráulico-Cimacio Liso

Q (l/s) H/Hd Kp Le C 19.83 0.25 0.00 1 1.59 40.16 0.38 0.00 1 1.71 60.00 0.48 0.00 1 1.83 80.62 0.57 0.00 1 1.89 100.77 0.64 0.00 1 1.96 120.55 0.71 0.00 1 2.00 140.21 0.78 0.00 1 2.04 160.37 0.85 0.00 1 2.06 180.14 0.90 0.00 1 2.11

Tabla 9. Valores del coeficiente de descarga- Cimacio Liso

Page 56: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

35

Las gráficas siguientes muestran los resultados de las tablas anteriores siguiendo

dos parámetro como son: la relación Yc/H vs. ∆E y Z/Yc vs. ∆E.

Ec de Bernoulli

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.60 0.65 0.70 0.75 0.80

Yc / H

ΔE%

Figura 10. ∆E vs. Yc/H con Ec. De Bernoulli – Cimacio Liso

Ec de Bernoulli

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.00 5.00 10.00 15.00 20.00

Z/Yc

∆E

%

Figura 11. ∆E vs. Z/Yc con Ec. De Bernoulli – Cimacio Liso

Page 57: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

36

4.1.5. CONCLUSIONES

• La pérdida de energía producida en la estructura aplicando la Ecuación de

Bernoulli, se encuentra entre el 18% al 42% para valores de Yc/H entre

0.64 y 0.77 y para valores de Z/Yc entre 3.5 y 15.4.

• Se observa en la figura 10 con la relación Yc/H vs. ∆E que al incrementar

el caudal se obtiene menor porcentaje de pérdida de energía.

• Se realizaron las gráficas que relacionan la pérdida de energía vs. la

relación Z/Yc, estas presentan la misma tendencia que las anteriores, pero

resulta importante su realización porque consideran la altura del cimacio,

que es un parámetro importante que se relaciona directamente con la

pérdida. Además es más práctico conocer la relación de pérdida de energía

con estos parámetros que van directamente relacionados al diseño como

se muestra en la figura 11.

• En lo referente a la longitud del resalto, observamos que el resultado

obtenido con las fórmulas de PAVLOSKI y BAKHMETEV-MAZTKE, son

muy similares, y al comparar estos valores con los medidos en el

laboratorio se tiene una diferencia de un 20%, esto se debe a que el resalto

fue forzado a formarse al pie de la estructura mediante la manipulación de

la compuerta del canal hidrodinámico, cuando en verdad el resalto

hidráulico en un cauce natural o artificial, depende de la curva de descarga

aguas abajo del vertedero.

• La longitud del resalto hidráulico se encuentra en un rango entre 0.30 m. a

1.30 m.

Page 58: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

37

4.2. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS

LISOS CON PILAS

4.2.1. INTRODUCCIÓN SOBRE CIMACIOS LISOS CON PILAS

Como se indicó anteriormente la selección del tipo de estructura de control

depende mucho de la topografía y del factor económico, teniendo en cuenta estos

criterios, la estructura de control puede ser libre o controlada.

Las primeras son en las que no se tienen compuertas, que fue el primer caso

analizado en este proyecto; el segundo, como su nombre lo indica poseen un

control para la descarga ejercido por compuertas de todos los tipos.

Si el caso es el segundo y se desean colocar compuertas, es necesaria la

construcción de pilas intermedias para la sujeción de las compuertas; o si por la

topografía se hacen necesarias este tipo de estructuras; esto justifica el presente

estudio de la disipación de energía en Cimacios Lisos con pilas.

4.2.2. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS ESTRUCTURAS.

4.2.2.1. Diseño

Las pilas se diseñaron para el vertedero de las primeras pruebas; es decir con

una carga de 21.54 cm. y una altura de cresta de 55.46 cm.

Para el diseño de las pilas se usó lo descrito en el “Manual de Diseño de Obras

Civiles” de la Comisión Federal de Electricidad, de México; el cual muestra los 4

tipos de pilas que más se acostumbra usar (figura 12).

.

Page 59: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

38

Figura 12. Tipos de forma de pila Fuente: Manual de Diseño de Obras Civiles; Comisión Federal de Electricidad, México

Se escogió el Tipo 3, que presenta un mejor perfil hidrodinámico, en el que no se

inducen presiones negativas; en la figura 13 se indican los parámetros de diseño

del perfil de la pila.

0,267 Hd

0,28

2 H

d

Figura 13. Parámetros de diseño de la Pila Tipo 3

La longitud de la pila depende del punto de tangencia PT del vertedero, que para

obtener sus coordenadas exactas puede usarse la figura 14 que muestra las

Page 60: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

39

coordenadas del punto de tangencia en función de la cotangente del ángulo de

inclinación (a) de dicha tangente.

Figura 14. Coordenadas del Punto de tangencia PT Fuente: Manual de Diseño de Obras Civiles; Comisión Federal de Electricidad, México En primer lugar se trazó la tangente más externa al vertedero y se midió el ángulo

de la misma con la horizontal el cual resultó de 490.

049=θ

87.0== θctga

Se entró en la figura 14 con a de 0.87 hasta cruzar con las curvas de X/Hd y

Y/Hd, y se obtuvo los valores en el eje x, los cuales resultaron:

3.1=Hd

X

8.0=Hd

Y

Page 61: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

40

La carga sobre el vertedero (Hd), como se sabe es de 21.54cm., y de las

expresiones anteriores se dedujo que el punto de tangencia PT tiene como

coordenadas las siguientes:

7.27=X

1.17=Y

El origen del sistema de coordenadas es el mismo descrito en la figura 2.

Tanto el espesor de la pila como el radio de la misma son de 0.267Hd, lo que

resulta igual a 5.8cm. La base de la pila tiene que coincidir con el perfil del

cimacio así que le corresponden las mismas coordenadas.

En la figura 15 se presentan todas las dimensiones del diseño de la pila

5,8

27,4

1,1

5

33,65,85,

8

Figura 15. Diseño de la Pila La altura de la pila queda definida por las condiciones físicas del canal de altura

de 80cm. por lo tanto, la pila tendrá en el paramento aguas arriba 25.65cm. de

altura y en la parte inferior 40.17cm., como se muestra en la figura 16.

Page 62: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

41

25,6

5

40,1

7

Figura 16. Vista lateral de la pila

4.2.2.2.Construcción

Una vez establecido el diseño con todas las dimensiones de la pila se procedió a

construir tres unidades que se colocaron en el cimacio y se usaron los siguientes

materiales:

• Tablón

• Tabla Triplex

• Clavos

• Pintura

En primer lugar se dibujó el perfil hidrodinámico en una tabla triplex de pequeño

grosor; se la clava con 3 pedazos de triplex más para obtener 4 pedazos los

cuales van a ser clavados en un prisma de tablón , para darle la forma curva que

posee, haciendo uso de la canteadora y la cepilladora manual. Como se muestra

en la fotografía 9.

Page 63: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

42

Fotografía 9. Construcción de la pila paso 1 Luego, se cortó la tabla triplex con las dimensiones de la pila, se forma primero

una caja (fotografía 10), para luego cortar la base con el perfil del cimacio.

Fotografía 10. Construcción de la pila paso 2

Page 64: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

43

Se procedió a dibujar el perfil del cimacio, y se cortó con la sierra de cinta para

finalmente pintarlo. En la fotografía 11 se muestra la pila terminada.

Fotografía 11. Pila construida Se sigue el mismo procedimiento para la construcción de las otras dos pilas.

4.2.2.3.Montaje

El montaje de las pilas resulta en este punto un paso sencillo ya que el cimacio

está instalado en el canal, y solo resta colocar las pilas. Cada vano deberá quedar

de 20.7cm. y se pegaron las pilas al cimacio con la ayuda de silicona.

Revisar que las pilas se encuentren rectas en todos los sentidos con la ayuda de

un nivel.

A continuación se encuentra la fotografía 12 y 13 que muestran las pilas ya

montadas.

Page 65: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

44

Fotografía 12. Pilas montadas vista frontal

Fotografía 13. Pilas montadas vista posterior.

4.2.3. PLAN DE PRUEBAS EN CIMACIOS LISOS CON PILAS

Las pruebas a realizarse en el cimacio liso con pilas están encaminadas para

obtener series de datos con los cuales determinemos la energía remanente aguas

abajo o la pérdida de energía en dicha estructura, de igual manera al ensayo

anterior, para lo cual se hizo pasar una serie de caudales, empezando desde 20

l/s e incrementando el caudal en aproximadamente 20 l/s hasta llegar al caudal

Page 66: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

45

de diseño de la estructura o bien hasta cuando las condiciones físicas del canal

nos lo permitan, es decir, para no causar problemas de desbordamiento del flujo

sobre el canal.

Es así que se logró medir hasta un caudal máximo aproximado de 140 l/s.

4.2.4. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL

LABORATORIO

Para realizar los ensayos en el cimacio liso con pilas, se siguió la misma

metodología del ensayo anterior.

En un principio se procedió a prender una bomba del sistema de recirculación de

flujos, luego se abrió la válvula que regula el flujo de entrada al tanque que

alimenta al canal, y se repiten los siguientes pasos:

• Con el uso del limnímetro, se tomó los niveles “cero” del fondo del canal

tanto aguas arriba como aguas abajo ya que no son las mismas por la

plancha de triplex que se colocó y se midió también el nivel de la cresta del

vertedero. Cabe recalcar que el nivel cero aguas abajo varió un poco por el

proceso de hinchamiento de la madera con el agua.

• Se calibró el caudal que pasa al canal mediante su válvula de regulación y

la curva de descarga del vertedero triangular (figura 5)

• Se tomó datos del calado aguas arriba de la estructura (sección de control

0), los cuales se hicieron en tres medidas a lo largo de la sección

transversal para obtener un promedio de los mismos con el uso del

limnímetro. Las mediciones se realizaron siempre perpendiculares a la

corriente del flujo.

Page 67: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

46

• Se tomó datos del calado aguas abajo al pie de la estructura (sección de

control 1), los cuales se hicieron solo en dos puntos de la sección

transversal, mismos que fueron en la mitad de los vanos intermedios de la

sección ya que por el efecto de las pilas el flujo se separa y se vuelve a

unir aguas abajo lo que produce perturbaciones del flujo en forma de

crestas (picos). (figura 19 y fotografía 14 )

• Se tomó datos del nivel del calado en los picos descritos anteriormente.

• Se sube la compuerta del canal para lograr que se forme un resalto

hidráulico al pie del cimacio y de esta forma medir aproximadamente la

longitud de dicho resalto. Con el fin de compararlo posteriormente con las

longitudes del resalto con las demás configuraciones en el perfil del

Cimacio a ensayarse.

• Repetir el procedimiento para los demás caudales.

Los puntos de medición aguas arriba se los realizaron a una distancia de 60 cm.

desde el paramento del cimacio, como se muestra en la figura 17.

Y0-1

Y0-2

Y0-3

Y1-1

Y1-2

YP-3

87,6460 100

100

25

25

25

20.6

85,

75

20.6

85,

7520

.68

5,7

52

0.6

8

YP-2

YP-1

13,

26

13,2

613

,26

13,2

6

X

Figura 17. Vista en planta del área de medición en el canal-Cimacio liso con pilas

Page 68: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

47

PUNTO DE TANGENCIA PT

-5-5.58

P

R

e

H

Sección 0

Sección 1

Yo

Y1 Y

2

60 87,64 100

52,

54

LRH

25,6

5

40,

171

7,13

27,69

Figura 18. Vista lateral del área de medición en el canal-Cimacio liso con pilas

El flujo se aproxima a la estructura de forma uniforme con una velocidad

despreciable, se contrae justo antes de llegar al paramento por la presencia de las

pilas y se acelera aguas abajo. El flujo se separa al finalizar las pilas y se vuelve a

juntar al pie del cimacio lo que ocasiona que se formen perturbaciones del flujo en

forma de crestas (picos), con leves salpicaduras como se observa en la figura 19

y en la fotografía 15.

20,685,75

20,75,75

20,75,75

20,68

100

80

40,1

7

Y1-1Y1-2

YP-3 YP-2 YP-1

Figura 19. Corte transversal de la sección del canal-Cimacio liso con pilas

Page 69: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

48

A continuación se presentan los datos tomados en el laboratorio en la tabla 10.

CIMACIO DE PERFIL LISO CON PILAS DATOS DE LABORATORIO

Q (l/s)

Aguas Arriba Aguas Abajo Resalto Hidráulico

y0 (cm) y1 (cm) picos (y p) cm LRH (cm)

19.88 46.39 6.40 6.75

30 46.10 6.13 7.16 46.20 6.65

40.49 49.51 6.90 7.73

40 49.40 6.78 8.54 49.31 7.62

59.79 51.94 7.33 8.55

51 51.82 7.22 8.68 51.72 8.51

79.81 53.95 7.84 9.7

53 53.93 7.69 9.24 53.82 9.57

99.76 55.81 8.29 11.24

56 55.84 8.13 11.06 55.68 11.18

120.07 57.59 8.76 14.97

68 57.55 8.72 13.11 57.41 13.51

140.04 59.18 9.39 18.10

70 59.17 9.21 13.67 59.15 15.17

Tabla 10. Datos de Laboratorio-Cimacio liso con pilas

Fotografía 14. Toma Lateral del flujo sobre el Cimacio liso con pilas

Page 70: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

49

Fotografía 15. Toma Frontal del Cimacio liso con pilas

Fotografía 16. Toma lateral del Resalto Hidráulico- Cimacio liso con pilas

Page 71: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

50

4.2.5. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS

EXPERIMENTALES

El procesamiento de los datos es idéntico al seguido en el ensayo anterior, con la

variante de las mediciones de los picos.

A continuación se presenta el ejemplo de cálculo para el caudal de 100 l/s.

La primera medición es establecer los niveles “cero” tanto aguas arriba como

aguas abajo

Nivel cero aguas arriba: 2.1 cm.

Nivel cero aguas abajo: 5.05 cm.

Nivel de la cresta del cimacio: 57.53 cm.

Para calibrar el caudal de 100 l/s: se abrió la válvula y se midió la carga sobre el

vertedero triangular, cuyo valor resultó ser:

3494.0=H m.

Al observar en la tabla de valores de la curva de descarga en el vertedero,

tenemos valores de H entre 0.349 y 0.350 con sus respectivos valores de caudal,

y mediante un proceso de interpolación lineal, se obtuvo un valor de caudal real,

el cual resultó:

slQ /76.99=

Se procedió de igual manera para los demás caudales a ensayarse, cuyos valores

se presentan en la tabla 11.

Page 72: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

51

CÁLCULO DE LOS CAUDALES EN EL CANAL

Caudales Medidos Caudales de la curva de descarga H(m) Q (l/s) H(m) Q (l/s)

0.1833 19.88 0.183 19.8

0.184 20.071

0.2437 40.49 0.243 40.202

0.244 40.617

0.2848 59.79 0.284 59.375

0.285 59.899

0.3196 79.81 0.319 79.428

0.32 80.057

0.3494 99.76 0.349 99.471

0.35 100.19

0.3762 120.07 0.376 119.91

0.377 120.71

0.4001 140.04 0.4 139.9506

0.401 140.8269

Tabla 11. Serie de Caudales a ser ensayados-Cimacio liso con pilas

Una vez regulado el caudal, se midió los calados ya descritos en la sección

anterior, cuyos valores son:

Calados aguas arriba (Yo):

cmYo 11.711.240.1781.551 =−+=

cmYo 14.711.240.1784.552 =−+=

cmYo 98.701.240.1768.553 =−+=

cmYo 08.71=

Calados aguas abajo (Y1): La sección de control 1 se encuentra al pie del

cimacio, donde se observó que el flujo se uniformiza. Se midió el calado con el

limnímetro, se restó el nivel cero y se promediaron los dos valores.

Page 73: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

52

cmY 24.305.529.811 =−=−

cmY 08.305.513.821 =−=−

cmY 16.31 =

Se calculó el valor total de la energía en las dos secciones de control. Para esto

se obtuvo la carga sobre el vertedero H.

cmH 65.1543.5508.71 =−=

Se calculó la velocidad en la sección 1 con la ecuación 4.10:

smA

QV /16.3

0316.01

0998.01 =

×==

Ahora la carga de velocidad es:

mg

V509.0

81.92

16.3

2

221 =

×=

La velocidad de aproximación se considera despreciable, es así que se calcula la

energía total en el punto 0:

mHPEo 711.01565.05543.0 =+=+=

La energía en el punto 1:

mg

VYeE 570.0509.00316.00295.0

2

21

11 =++=++=

Siendo e, el espesor de la tabla triplex colocada al pie del cimacio que resulta ser

la carga de posición.

Page 74: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

53

Se obtuvo así la diferencia de energía E∆ :

mEEoE 141.0570.0711.01 =−=−=∆

Y la misma pérdida expresada en tanto por ciento:

%787.19100711.0

141.0100(%) =×=×∆=∆

Eo

EE

Se calculó el calado crítico usando la ecuación 4.8:

mg

qyc 100.0

81.9

0998.03

2

3

2

===

Se obtuvo la relación Hyc /

642.01565.0

100.0 ==H

yc

Y también la relación Z/yc; Siendo Z el desnivel a vencer, ilustrado en la figura 4.

cmZ 50.5295.243.55 =−=

22.5100.0

525.0 ==cy

Z

Además se calcula la longitud del resalto hidráulico con ecuaciones

experimentales propuestas y se las compara con las medidas en el laboratorio.

Se calculó en primer lugar el segundo calado conjugado del resalto hidráulico con

la Ecuación 4.13:

( )2

1

2 18112

1Fr

y

y

RH

RH ++−=

Page 75: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

54

Donde:

RHY1 : Calado inicial del resalto hidráulico, igual al calado al pie del cimacio Y1, en

metros.

RHY2 : Segundo calado conjugado o calado final del resalto hidráulico, en metros.

Fr1: Número de Froude correspondiente a la sección de control 1.

Se calculó el Número de Froude en la sección 1:

68.50316.081.9

16.31 =

×=Fr

( )212 1811

2

1Fryy RHRH ++−=

( ) my RH 238.068.58112

10316.0 2

2 =×++−×=

Se calculó el valor del resalto hidráulico con las Ecuaciones 4.15 y 4.16.

( ) mLRH 05.10316,0238.09.15.21 =−××=

( ) mLRH 03.10316,0238.052 =−×=

Se obtuvo el coeficiente de descarga real para cada caudal con la Ecuación 4.1,

para lo cual obtenemos primero la longitud efectiva con la ecuación 4.2.

23

HCLQ e=

( )HKNKLL ape +−= 2

Se asumió que el coeficiente Ka = 0 ya que no existen estribos, para la

determinación del coeficiente Kp, se usó la figura 9.

Finalmente se realizaron las curvas comparativas.

Page 76: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

55

4.2.5.1.Presentación de Resultados

A continuación se presentan en una forma tabulada todos los cálculos realizados

para todas las series de pruebas de los distintos caudales.

CIMACIO DE PERFIL LISO CON PILAS DATOS REALES

Q (l/s)

Aguas Arriba Aguas Abajo Resalto Hidráulico y0 (cm) y 1 (cm) L RH (cm)

19.88 61.53 1.21 30 40.49 64.71 1.79 40

59.79 67.13 2.22 51 79.81 69.20 2.71 53 99.76 71.08 3.16 56

120.07 72.82 3.69 68

140.04 74.47 4.25 70

Tabla 12. Datos reales de calados y resalto Hidráulico Cimacio Liso con pilas

Datos:

P(cm) = 55.43

e (cm) = 2.953

V0 (m/s) = 0

B(m) = 1

Z(m) = 0.525

Q (l/s) Q (m3/s) H (m) y 1 (m) V1 (m/s) V1²/2g 19.88 0.0199 0.0610 0.0121 1.64 0.137 40.49 0.0405 0.0928 0.0179 2.27 0.262 59.79 0.0598 0.117 0.0222 2.69 0.369 79.81 0.0798 0.1377 0.0271 2.94 0.441 99.76 0.0998 0.1565 0.0316 3.16 0.509 120.07 0.1201 0.1739 0.0369 3.26 0.541 140.04 0.1400 0.1904 0.0425 3.30 0.554

Tabla 13. Cálculos en la sección 1 del Cimacio liso con pilas

ENERGÍA

Q (l/s) Eo (m) E1 (m) ∆ E (m) ∆ E (%) 19.88 0.615 0.179 0.436 70.930 40.49 0.647 0.309 0.338 52.216 59.79 0.671 0.421 0.250 37.291 79.81 0.692 0.498 0.194 28.019 99.76 0.711 0.570 0.141 19.787 120.07 0.728 0.607 0.121 16.636 140.04 0.745 0.626 0.118 15.904

Tabla 14. Pérdida de energía en Cimacio Liso con pilas - Ec. De Bernoulli

Page 77: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

56

Q (l/s) Yc (m) Yc/H Z/Yc 19.88 0.034 0.562 15.31 40.49 0.055 0.594 9.53 59.79 0.071 0.611 7.35 79.81 0.087 0.629 6.06 99.76 0.100 0.642 5.22 120.07 0.114 0.654 4.62 140.04 0.126 0.662 4.17

Tabla 15. Calado crítico, relación Yc/H y Z/Yc – Cimacio Liso con pilas

RESALTO HIDRÁULICO

Q (l/s) Fr 1 Y2CALC LRH1 LRH2 LRHmed. 19.88 4.76 0.076 0.33 0.32 0.300 40.49 5.41 0.128 0.56 0.55 0.40 59.79 5.77 0.170 0.75 0.74 0.51 79.81 5.71 0.206 0.91 0.89 0.53 99.76 5.68 0.238 1.05 1.03 0.56 120.07 5.42 0.265 1.16 1.14 0.68 140.04 5.11 0.286 1.25 1.22 0.70

Tabla 16. Parámetros del Resalto Hidráulico-Cimacio Liso con pilas

Q (l/s) H/Hd Kp Le C 19.88 0.28 0.065 0.9762 1.35 40.49 0.43 0.045 0.9750 1.47 59.79 0.54 0.032 0.9775 1.53 79.81 0.64 0.022 0.9818 1.59 99.76 0.73 0.018 0.9831 1.64 120.07 0.81 0.01 0.9896 1.67 140.04 0.88 0.005 0.9943 1.70

Tabla 17. Valores del coeficiente de descarga- Cimacio Liso con pilas

Las gráficas siguientes muestran los resultados de las tablas anteriores siguiendo

dos parámetro como son: la relación ∆E vs. Yc/H y ∆E vs. Z/Yc.

Page 78: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

57

Ec Bernoulli

0

10

20

30

40

50

60

70

80

0.55 0.57 0.59 0.61 0.63 0.65 0.67

Yc / H

ΔE%

Figura 20. ∆E vs. Yc/H con Ec. De Bernoulli – Cimacio Liso con pilas

Ec Bernoulli

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0.0 5.0 10.0 15.0 20.0

Z / Yc

∆E%

Figura 21. ∆E vs. Z/Yc con Ec. De Bernoulli – Cimacio Liso con pilas

Page 79: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

58

4.2.6. CONCLUSIONES

• La pérdida de energía producida en la estructura aplicando la Ecuación de

Bernoulli, se encuentra entre el 16% al 71% para valores de Yc/H entre

0.56 a 0.66 (figura 20) y para valores de Z/Yc entre 15.3 a 4.2 (figura 21).

• Se observa en la figura 20 con la relación Yc/H vs. ∆E que al incrementar

el caudal se obtiene menor porcentaje de pérdida de energía y la misma

tendencia se presenta con la relación de Z/Yc (figura 21).

• En lo referente a la longitud del resalto hidráulico, observamos que el

resultado obtenido con las fórmulas de PAVLOSKI y BAKHMETEV-

MAZTKE, son muy similares, y al comparar estos valores con los medidos

en el laboratorio se tiene una diferencia importante, esto se debe a que el

resalto fue forzado a formarse al pie de la estructura mediante la

manipulación de la compuerta del canal hidrodinámico, y al tenerse el

limitante de la longitud de la plancha de triplex al pie del cimacio (1.00 m.),

la medición de la longitud del resalto resultó difícil.

• La longitud del resalto hidráulico se encuentra en un rango de 0.30m. a

1.25m.

CAPÍTULO 5

Page 80: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

59

5. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS

LISOS CON PILAS Y ESTRECHAMIENTOS ENTRE

PILAS

5.1. DESCRIPCIÓN BIBLIOGRÁFICA DE ESTUDIOS

EXPERIMENTALES REALIZADOS EN CIMACIOS

DENOMINADOS “FLARING GATE PIERS”

Se analizó el artículo de Li Guifen y Wang Lianxiang, llamado “Nuevos tipos de

disipadores de energía para mitigar efectos ambientales en la descarga de

crecidas en grandes presas”. En este artículo se analizan algunos casos para la

descarga de crecidas. Se analiza como mitigar o minimizar los impactos negativos

como la socavación del cauce del río, erosión de las márgenes, atomización del

flujo, y el daño de estructuras adyacentes.

Los disipadores de energía de saltos de esquí, son económicos y altamente

efectivos, por lo que aproximadamente el 80% de los proyectos hidráulicos en

China se construyeron con estas estructuras para disipar la energía, sin embargo,

esto es aplicable para valles amplios. Pero para proyectos en valles estrechos se

producen problemas aguas abajo, como la socavación del cauce del río y sus

márgenes debido a la trayectoria del jet, lo que produce inestabilidad en las

pendientes de las márgenes y no permite una operación segura de la casa de

máquinas.

En el proyecto Dongjiang, se usó un jet tipo hendidura con contracciones laterales

al final del jet (figura 22), este tipo de disipador produce una salida del flujo en

forma vertical, y la descarga cae en un amplia área de incidencia aguas abajo.

La relación del ancho final y el inicial, que define la contracción del jet, depende

del caudal y la carga de agua, se debe elegir una relación apropiada para el

estrechamiento, ya que relaciones demasiado pequeñas o grandes, producen

Page 81: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

60

patrones desfavorables del flujo, lo que provoca una menor eficiencia en la

disipación de energía y daños al medio circundante.

Figura 22. Vista longitudinal y en planta de un jet tipo hendidura Fuente: Li, Guifen y Wang, Lianxiang. New Type Energy Dissipaters`function of

mitigating environmental impacts of high dam flood discharging

Este tipo de disipadores permitió disminuir en un porcentaje considerable la

socavación del cauce, pero aun era necesario reforzar las estructuras aguas

abajo, proteger las márgenes y el pie de la presa, dada la efectividad de este tipo

de disipadores, se usó en al menos otros 10 proyectos.

Sin embargo, el uso de estos se limitó a valles estrechos sin estructuras

importantes a sus márgenes, ya que la disipación de los jets se producía en el

aire, y causaba una fuerte atomización.

Para disminuir los efectos de la socavación aguas abajo, se introdujo un nuevo

tipo de estructuras denominadas flaring gate piers, usadas por primera vez por

Mr. Gong Zhengying en 1970 16, que se combinó con las rápidas en jet. El uso de

estas dos estructuras de disipación combinadas, permitió disminuir la socavación

en el cauce y mejoró la disipación de energía, de tal forma que el flujo que salía al

final de la rápida se unía de manera sencilla con el agua aguas abajo en el cauce

natural, produciendo menos turbulencia. (figura 23)

16 Li, Guifen y Wang, Lianxiang. New Type Energy Dissipaters`function of mitigating environmental impacts of high dam flood discharging

Page 82: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

61

Figura 23. Esquema de estructuras de disipación- Proyecto Hidroeléctrico Yantan-China

Fuente: Li, Guifen y Wang, Lianxiang. New Type Energy Dissipaters`function of mitigating environmental impacts of high dam flood discharging

Se ha tomado también como referencia el artículo escrito por Lin Keji y Han Li del

Instituto de investigación y diseño Hidroeléctrico de Beijing llamado Vertedero

escalonado para la presa Dachaoshan de Concreto compactado con rodillo.

El cual está basado en la presa Dachaoshan, sus mecanismos de control de

cavitación y estructuras de disipación de energía que consisten en

ensanchamientos de las pilas de compuerta denominados “flaring gate piers”.

La presa Dachaoshan construida de concreto compactado con rodillo (RCC) tiene

una altura máxima de 111m. provista de 5 compuertas de 14m. de ancho por

17m. de alto, y combina el efecto de los ensanchamientos y un esquí para la

disipación de la energía. Los escalones comienzan al final de los

ensanchamientos y llegan hasta el pie del cimacio. Cada escalón es de 1.0 m. de

alto y 0.7 m. de ancho.

Se ha comprobado que los vertederos escalonados cumplen satisfactoriamente

para caudales de retorno de 500 años donde la descarga unitaria máxima es de

Page 83: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

62

113.8 m2/s, es por esto que en el presente hay pocos vertederos escalonados

con una descarga unitaria de más de 100 m2/s, ya que una descarga mayor

produce daños.

Por lo tanto para romper esta dificultad es necesario distribuir con aireación una

capa gruesa de la lámina vertiente ya que este efecto ha sido verificado para

muchos proyectos. Para esto se requiere dar una condición más favorable para la

aireación y la clave para realizar esto es introducir estos estrechamientos

denominados “flaring gate piers”.

Este estrechamiento forma una contracción del jet del flujo sobre la cresta y

cambia el flujo bidimensional a uno tridimensional.

Tomando como referencia las características hidráulicas de este tipo de

estructuras de descarga, se consideró de importancia realizar ensayos en el

laboratorio, y, comparar los resultados en relación con la disipación de energía.

5.2. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LOS

ESTRECHAMIENTOS

5.2.1. DISEÑO

De igual manera se parte del Cimacio Liso ya instalado con las pilas de los

anteriores ensayos y solo se adiciona el diseño y dimensionamiento del

estrechamiento.

Se tomó como base lo expuesto en la descripción bibliográfica, que indica que la

función de estos estrechamientos, como su nombre lo indica es reducir el área de

circulación del flujo y producir una mayor aireación. En esta bibliografía los

estrechamientos tienden a reducir el vano en una cierta proporción entre el ancho

final (be) y el inicial (bo), la que para el presente proyecto se adoptó como 0.5, es

decir que el vano quedó reducido a la mitad de su longitud.

Page 84: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

63

En la bibliografía descrita estos estrechamientos reducen la longitud del vano en

forma proporcional en cierta longitud de desarrollo y con una pendiente constante

(recta). Para el diseño de los estrechamientos utilizados en los presentes ensayos

se adoptó una reducción más bien curva, como lo es un cuarto de elipse. Esta

elipse debiera tener las dimensiones necesarias para cumplir con la relación de

reducción de ancho (be/bo).

Entonces como la dimensión de cada vano es de 20.7cm., éstos deben quedar

reducidos hasta 10.35cm., como los estrechamientos se colocaron a cada lado de

las pilas, resulta que el radio menor de la elipse que se necesita es de 5.175cm.,

lo que es igual al ancho del estrechamiento, una vez establecida esta dimensión

el radio mayor de la elipse resultó de 11.42cm. que es la longitud de desarrollo del

estrechamiento.

20,7

3

10,7

310

11,42

VISTA LATERAL VISTA FRONTAL

VISTA EN PLANTA

Figura 24. Forma y Dimensiones de los estrechamientos Como se muestra en la vista frontal de la figura 24, la sección final del

estrechamiento es rectangular hasta cierta altura, a partir de la cual se reduce

paulatinamente hasta llegar a cero, éstas dos alturas se definieron en función de

no causar un remanso en el flujo que se vierte por el cimacio es decir no

sobrepasar en un rango alto a la cresta del cimacio, es por esto que se adoptó

una altura total de 20.7cm para el estrechamiento.

Page 85: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

64

Como se observa en la vista lateral de la figura 24, el fondo del estrechamiento

debe coincidir con el perfil del cimacio, en los puntos donde se lo colocará que es

al final de las pilas.

5.2.2. CONSTRUCCIÓN

Una vez establecido el diseño con todas las dimensiones del estrechamiento se

construyeron ocho unidades que se colocaron a cada lado de las pilas y en los

bordes del canal y se emplearon los siguientes materiales:

• Tablón

• Tabla Triplex

Los estrechamientos quedaron constituidos íntegramente en una pieza de tablón

moldeado de la siguiente manera:

En primer lugar se dibujó el cuarto de elipse en un pedazo de tabla triplex que

sirvió como guía para darle la forma curva que requiere, luego se cortó un prisma

de tablón de las dimensiones necesarias para los estrechamientos y se lo moldeó

con el uso de la canteadora y el cepillo manual de igual forma que se hizo con las

pilas, este proceso se lo ilustra en la fotografía 17.

Fotografía 17. Construcción de estrechamientos - paso 1

Page 86: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

65

Luego se midió la altura desde la cual la sección del estrechamiento debe

comenzar ha reducirse hasta convertirse en cero, y realizamos el corte con mucho

cuidado en la sierra de cinta.

Fotografía 18. Construcción de estrechamientos - paso 2 Finalmente se dibujó sobre el estrechamiento la parte del perfil del cimacio con el

cual va a estar en contacto y se realizó el corte, con lo que el estrechamiento

queda concluido, y listo para instalarlo.

Fotografía 19. Construcción de estrechamientos – paso 3

Page 87: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

66

5.2.3. MONTAJE

Una vez construidos los estrechamientos se instalaron pegándolos a cada lado de

las pilas y en los bordes del canal, sobre el cimacio, con silicona, como se ilustra

en la figura 25.

5,75

5,75

11,42

5,18 5,75 5,18

10,7

310

19,4

4

25,6

5

40,1

7

10,7

3

Figura 25. Forma de instalación de los estrechamientos A continuación se muestra en las siguientes fotografías los estrechamientos ya

instalados.

Page 88: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

67

Fotografía 20. Toma frontal de los estrechamientos instalados

Fotografía 21. Toma posterior de los estrechamientos instalados

5.3. PLAN DE PRUEBAS EN CIMACIOS LISOS CON PILAS Y

ESTRECHAMIENTOS ENTRE PILAS.

Las pruebas a realizarse en el cimacio liso con pilas y estrechamientos entre pilas

son las mismas que para los ensayos anteriores, para lo cual se hizo pasar una

serie de caudales, empezando desde 20 l/s e incrementando el caudal en

aproximadamente 20 l/s hasta llegar al caudal de diseño de la estructura o bien

Page 89: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

68

hasta cuando las condiciones físicas del canal nos lo permitan, es decir, para no

causar problemas de desbordamiento del flujo sobre el canal.

Es así que se logró medir hasta un caudal máximo de 140 l/s.

5.4. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN

EL LABORATORIO.

Para realizar los ensayos en el cimacio liso con pilas y estrechamientos, se siguió

la siguiente metodología.

En un principio se procedió a prender una bomba del sistema de recirculación de

flujos, luego se abrió la válvula que regula el flujo de entrada al tanque que

alimenta al canal, y se repitieron los siguientes pasos:

• Se calibró el caudal que pasa al canal mediante su válvula de regulación y

la curva de descarga del vertedero triangular (figura 5).

• Se Tomó datos del calado aguas arriba de la estructura (sección de control

0), los cuales se hicieron en tres medidas a lo largo de la sección

transversal para obtener un promedio de los mismos.

• Se tomó datos del calado aguas abajo al pie de la estructura (sección de

control 1), en este punto se tuvo muchas dificultades al momento de tratar

de medir, porque el flujo se presentó de una manera tridimensional muy

irregular ya que se extiende tanto vertical como longitudinalmente

produciendo un jet que al caer el flujo realiza un rebote y resulta casi

imposible medir el calado del flujo al pie del cimacio (fotografías 22 y 23) ;

para solucionar el presente problema se realizaron varias alternativas como

son:

Page 90: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

69

• Medir el nivel al que llegaban los picos producidos y asumir que la carga

energética de presión y velocidad en ese punto se transforma en altura de

agua, con lo cual se establece que el nivel de los picos sería igual a la

energía total en ese punto. Esto se explicaría mediante el principio de los

vasos comunicantes que dice que en varios recipientes que contienen el

mismo flujo y están conectados, el nivel del flujo siempre llega al mismo

nivel por la presión atmosférica que soportan. Es decir, en nuestro caso el

nivel del flujo llegaría en donde la presión manométrica y la velocidad son

cero.

• Se Subió la compuerta para formar un resalto sumergido al pie del cimacio

y hasta llegar a un nivel de flujo que mantenga los picos de los rebotes a

ras del nivel del flujo, con esto se mide el calado aguas abajo del resalto

hidráulico al pie del cimacio y se obtiene la pérdida de energía total entre la

estructura y el resalto sumergido (pérdidas producidas por efecto de

estrechamientos y pilas, fricción en el cimacio y resalto hidráulico).

• A raíz de que se subió la compuerta se logró observar que un flujo principal

pasa por debajo del resalto sumergido, el cual se midió al pie del cimacio,

y con este se calculó la pérdida de energía en la estructura. Como es obvio

este calado solo se puede medir en un punto cerca del borde del canal.

• Repetir el procedimiento para los demás caudales.

Los puntos de medición se muestran en las figuras 26 27 y 28

Page 91: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

70

Y0-1

Y0-2

Y0-3

Y1-1

YP-3

87,6460 100

100

2525

25

20.6

85,

7520

.68

5,75

20.

685,

7520

.68

YP-2

YP-1

X

10,3

11,42

Figura 26. Vista en planta del área de medición en el canal-C. Liso con pilas y estrechamientos

-5-5.58

P

e

H

Sección 0 Sección 1

Yo

Y1

60 87,64 100

25,6

5

40,1

7

10,7

31

0

YP

Sección 3

Figura 27. Vista lateral del área de medición en el canal-C. Liso con pilas y estrechamientos

El flujo se aproxima de una manera estable y uniforme con velocidad

despreciable, se contrae al aproximarse a las pilas y se acelera.

Debido al estrechamiento el flujo se contrae más y se eleva sin producir remanso

aguas arriba, produciéndose la separación de la lámina de agua del perfil del

cimacio aguas abajo de la contracción. Esta lámina impacta al pie del cimacio

Page 92: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

71

ocasionando fuertes perturbaciones con macro turbulencia y salpicaduras (figura

27 y fotografías 22 y 23).

20,685,75

20,75,75

20,75,75

20,68

100

80

40,1

7

Y1

5,18 10,35 5,18

10,7

310

Figura 28. Corte Transversal del canal-C. Liso con pilas y estrechamientos

A continuación se presentan los datos tomados en el laboratorio en la tabla 18.

CIMACIO DE PERFIL LISO CON PILAS Y ESTRECHAMIENTOS DATOS DE LABORATORIO

Q (l/s)

Aguas Arriba Aguas Abajo y0 (cm) y 1 (cm) y sumerg. (y2) cm pico (y 3) cm

20.46 46.46

6.59 16.48

22.38 46.42 16.52 46.29 15.82

39.95 49.42

7.08 20.40

26.08 49.48 20.02 49.29 19.69

60.48 52.05

8.00 25.62

40.36 51.97 26.03 51.91 25.89

79.81 54.17

8.50 30.57

51.895 54.12 30.13 53.94 30.11

100.12 55.96

8.67 36.77

54.4 55.89 36.65 55.74 36.54

119.91 57.76

9.03 39.01

61.07 57.66 39.01 57.57 38.63

140.21 59.24

9.56 40.56

57.455 59.24 40.24 59.29 40.52

Tabla 18. Datos de Laboratorio – Cimacio Liso con pilas y estrechamientos

Page 93: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

72

A continuación se presentan varias fotografías del proceso en el laboratorio.

Fotografía 22. Toma frontal – C. con pilas y estrechamientos Q = 40 l/s

Fotografía 23. Toma frontal – C. con pilas y estrechamientos Q = 100 l/s

Page 94: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

73

Fotografía 24. Toma lateral – C. con pilas y estrechamientos Q = 100 l/s

Fotografía 25. Toma lateral – C. con pilas y estrechamientos Q = 80 l/s

Fotografía 26. Toma frontal resalto sumergido – C. con pilas y estrechamientos

Q = 100 l/s

Page 95: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

74

5.5. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS

EXPERIMENTALES

Culminados los ensayos en el laboratorio, se procedió a digitalizar los datos

obtenidos.

En primer lugar, se determinó el caudal real como ya se ha indicado en los

anteriores ensayos. Para los calados aguas arriba, se restó los valores de los

niveles cero correspondientes y a continuación se obtuvo un promedio entre las

tres medidas tomadas.

A los valores de calados aguas arriba se les restó la altura del vertedero, de esta

forma se obtuvo la carga sobre el vertedero para cada caudal.

Cuando se subió la compuerta y se observó el flujo principal que pasa por debajo

del resalto sumergido, se midió este calado al pie del cimacio y se lo llamó y1.

Se calcula la velocidad aguas abajo con la Ec. 4.10:

by

QV

×=

11

Una vez que tenemos todos estos valores, se realiza el cálculo de las energías

aguas arriba y aguas abajo, empleando la Ec. 4.12.

Se calculó la pérdida de energía con la Ecuación de Bernoulli Ec. 4.11:

EEE ∆+= 10

Como se explicó en la metodología, el flujo produce picos cuyo nivel se midió y se

los denominó y3; este nivel representa la carga energética total en ese punto, con

lo que:

33 EY =

Se obtiene la pérdida de energía entre la sección de control 0 y la sección de

control 3.

Page 96: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

75

Cuando se produjo el resalto sumergido, se midieron los niveles de este y se los

denominó y2, con estas medidas se calcula la velocidad en esta sección con la

ecuación 4.10.

Finalmente se calculó el nivel energético en este punto, y de igual manera se

obtuvo la pérdida entre la sección 0 y la sección 3.

Se realizaron las gráficas ∆E% vs. Yc/H y ∆E% vs. Z/Yc, con las 3 pérdidas

obtenidas. (figuras 29 y 30)

A continuación se presenta el ejemplo de cálculo completo para el caudal de

100l/s.

La primera medición es establecer los niveles “cero” tanto aguas arriba como

aguas abajo

Nivel cero aguas arriba: 2.1 cm.

Nivel cero aguas abajo: 5.05 cm.

Nivel de la cresta del cimacio: 57.53 cm.

La carga sobre el vertedero triangular colocado en el tanque de carga, resultó ser:

3499.0=H m.

Al observar en la tabla de valores de la curva de descarga en el vertedero,

tenemos valores de H entre 0.349 y 0.350 con sus respectivos valores de caudal,

y mediante un proceso de interpolación lineal, se obtuvo un valor de caudal real

que está pasando al canal hidrodinámico, el cual resulta:

slQ /12.100=

Se procedió de igual manera para los demás caudales a ensayarse, cuyos valores

se presentan en la tabla 19.

Page 97: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

76

CALCULO DE LOS CAUDALES EN EL CANAL

Caudales Medidos Caudales de la curva de descarga H(m) Q (l/s) H(m) Q (l/s)

0,1854 20,46 0,185 20,35

0,186 20,62

0,2424 39,95 0,242 39,79

0,243 40,20

0,2861 60,48 0,286 60,43

0,287 60,96

0,3196 79,81 0,319 79,43

0,320 80,06

0,3499 100,12 0,349 99,47

0,350 100,19

0,376 119,91 0,376 119,91

0,377 120,71

0,4003 140,21 0,400 139,95

0,401 140,83 Tabla 19. Serie de caudales medidos-C. con pilas y estrechamientos

Una vez regulado el caudal, se midieron los calados ya descritos en la sección

anterior, cuyos valores son:

Calados aguas arriba (Yo): Se procedió de igual manera que en los ensayos

anteriores:

cmYo 26.711.240.1796.551 =−+=

cmYo 19.711.240.1789.552 =−+=

cmYo 04.711.240.1774.553 =−+=

cmYo 16.71=

Calados aguas abajo (Y1): La sección de control 1 se encuentra al pie del

cimacio, donde se observó que el flujo principal pasa por debajo del resalto

sumergido.

cmY 62.305.567.81 =−=

Page 98: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

77

Después se calculó el valor total de la energía en las dos secciones de control.

Para esto se obtuvo la carga sobre el vertedero H, que es igual a la carga Yo

menos la altura del vertedero P:

cmH 73.1543.5516.71 =−=

Se calculó la velocidad en la sección 1 con la ecuación 4.10:

smA

QV /77.2

036.01

100.01 =

×==

Ahora la carga de velocidad es:

mg

V390.0

81.92

77.2

2

221 =

×=

La velocidad de aproximación se considera despreciable, es así que se calculó la

energía total en el punto 0:

mHPEo 712.01573.05543.0 =+=+=

La energía en el punto 1:

mg

VYeE 456.0390.0036.00295.0

2

21

11 =++=++=

Siendo e, el espesor de la tabla triplex colocada al pie del cimacio.

Se obtuvo así la diferencia de energía E∆ :

mEEoE 256.0456.0712.01 =−=−=∆

Y la misma pérdida expresada en tanto por ciento:

%98.35100712.0

256.0100(%) =×=×∆=∆

Eo

EE

Page 99: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

78

Se calcula el calado crítico usando la ecuación 4.8:

mg

qyc 101.0

81.9

100.03

2

3

2

===

Se obtuvo la relación Hyc / :

640.01573.0

101.0 ==H

yc

Y también la relación Z/yc; Siendo Z el desnivel a vencer, ilustrado en la figura 4.

cmZ 48.5295.243.55 =−=

21.5101.0

5248.0 ==cy

Z

Calado aguas abajo del resalto sumergido (Y2): se realizaron tres mediciones del

calado al final del resalto sumergido, se restó el nivel cero de aguas abajo y se las

promedia.

cmY 72.3105.577.3612 =−=−

cmY 60.3105.565.3622 =−=−

cmY 49.3105.554.3632 =−=−

cmY 60.312 =

Se calculó la velocidad en la sección 2 con la ecuación 4.10:

smA

QV /32.0

316.01

100.02 =

×==

Ahora la carga de velocidad es:

mg

V0051.0

81.92

32.0

2

222 =

×=

Page 100: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

79

La energía en el punto 2:

mg

VYeE 35.00051.0316.00295.0

2

22

22 =++=++=

Se obtuvo así la diferencia de energía E∆ :

mEEoE 36.035.0712.02 =−=−=∆

Y la misma pérdida expresada en tanto por ciento:

%73.50100712.0

36.0100(%) =×=×∆=∆

Eo

EE

Nivel de picos (Y3): Debido a la irregularidad que presenta el flujo, se realizó una

sola medida para los picos.

cmy 35.4905.54.543 =−=

Como se estableció anteriormente, la energía en el punto tres es igual al nivel del

pico.

mE 4935.03 =

Se obtuvo así la diferencia de energía E∆ :

mEEoE 218.04935.0712.03 =−=−=∆

Y la misma pérdida expresada en tanto por ciento:

%66.30100712.0

218.0100(%) =×=×∆=∆

Eo

EE

Page 101: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

80

Se calculó el coeficiente de descarga real para cada caudal con la Ecuación 4.1,

para lo cual se obtuvo primero la longitud efectiva con la ecuación 4.2.

23

HCLQ e=

( )HKNKLL ape +−= 2

Se asumió que el coeficiente Ka = 0 ya que no existen estribos, para la

determinación del coeficiente Kp, se usó la figura 9.( tabla 26)

Se realizaron las curvas con las pérdidas de energía. (figuras 29 y 30)

5.5.1. PRESENTACIÓN DE RESULTADOS

A continuación se presentan en forma tabulada los cálculos realizados para todas

las series de pruebas de los distintos caudales.

CIMACIO DE PERFIL LISO CON PILAS Y ESTRECHAMIENTOS DATOS REALES

Q (l/s)

Aguas Arriba Aguas Abajo y0 (cm) y 1 (cm) y sumerg. (y2) cm pico (y 3) cm

20,46 61,69 1,54 11,22 17,33 39,95 64,70 2,03 14,98 21,03 60,48 67,28 2,95 20,79 35,31 79,81 69,38 3,45 25,22 46,84 100,12 71,16 3,62 31,60 49,35 119,91 72,96 3,98 33,83 56,02 140,21 74,56 4,51 35,39 52,40

Tabla 20. Datos reales de calados-C. con pilas y estrechamientos

Datos:

P(cm) = 55,43

e (cm) = 2,953

V0 (m/s)= 0

B(m) = 1

Z (m) = 0,5248

Page 102: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

81

Q (l/s) Q (m3/s) H (m) y1 (m) calado principal V1(m/s) V1²/2g

20,46 0,020 0,063 0,015 1,33 0,090 39,95 0,040 0,093 0,020 1,97 0,197 60,48 0,060 0,118 0,030 2,05 0,214 79,81 0,080 0,139 0,035 2,31 0,273 100,12 0,100 0,157 0,036 2,77 0,390 119,91 0,120 0,175 0,040 3,01 0,463 140,21 0,140 0,191 0,045 3,11 0,493 Tabla 21. Cálculos en la sección 1 - C. con pilas y estrechamientos

ENERGÍA

Q (l/s) E0 (m) E1 (m) ∆ E (m) ∆ E (%)

20,46 0,617 0,135 0,482 78,14 39,95 0,647 0,247 0,400 61,78 60,48 0,673 0,273 0,400 59,38 79,81 0,694 0,337 0,357 51,46 100,12 0,712 0,456 0,256 35,98 119,91 0,730 0,532 0,198 27,09 140,21 0,746 0,567 0,178 23,91

Tabla 22. Pérdida de energía entre sección 0 y 1 (figura 27)- C. con pilas y estrechamientos

Q (l/s) Yc (m) Z/Yc Yc/H

20,46 0,035 15,02 0,558 39,95 0,055 9,61 0,589 60,48 0,072 7,29 0,608 79,81 0,087 6,06 0,621 100,12 0,101 5,21 0,640 119,91 0,114 4,62 0,648 140,21 0,126 4,16 0,659

Tabla 23. Calado crítico, relación Yc/H y Z/Yc– C. con pilas y estrechamientos

AGUAS ABAJO RESALTO SUMERGIDO

Q (l/s) Y2 (m) V2(m/s) V2²/2g E2 (m) ∆ E (m) ∆ E (%)

20,46 0,11 0,18 0,00 0,14 0,47 76,75 39,95 0,15 0,27 0,00 0,18 0,46 71,72 60,48 0,21 0,29 0,00 0,24 0,43 64,06 79,81 0,25 0,32 0,01 0,29 0,41 58,66 100,12 0,32 0,32 0,01 0,35 0,36 50,73 119,91 0,34 0,35 0,01 0,37 0,36 48,71 140,21 0,35 0,40 0,01 0,39 0,35 47,50

Tabla 24. Pérdida de energía entre sección 0 y 2 (figura 27)-C. con pilas y estrechamientos

Page 103: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

82

AGUAS ABAJO PICOS

Q (l/s) y 3 = E3 ∆ E (m) ∆ E (%)

20,46 0,173 0,444 71,91 39,95 0,210 0,437 67,50 60,48 0,353 0,320 47,52 79,81 0,468 0,225 32,48 100,12 0,493 0,218 30,66 119,91 0,560 0,169 23,23 140,21 0,524 0,222 29,72

Tabla 25. Pérdida de energía entre sección 0 y 3 (figura 27)-C. con pilas y estrechamientos

Q (l/s) H/Hd Kp Le C

20.46 0.29 0.062 0.9767 1.34 39.95 0.43 0.045 0.9750 1.45 60.48 0.55 0.031 0.9780 1.52 79.81 0.65 0.021 0.9824 1.56 100.12 0.73 0.018 0.9830 1.63 119.91 0.81 0.01 0.9895 1.65

140.21 0.89 0.004 0.9954 1.68

Tabla 26. Valores del coeficiente de descarga- C. con pilas y estrechamientos

Las gráficas siguientes muestran los resultados de las tablas anteriores siguiendo

dos parámetros como son: la relación ∆E vs. Yc/H y ∆E vs. Z/Yc

Ec. Bernoulli

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

0,54 0,56 0,58 0,60 0,62 0,64 0,66 0,68

Yc/H

ΔE

%

CALADO PRINCIPAL CALADO SUMERGIDO PICOS

Figura 29. ∆E vs. Yc/H con Ec. De Bernoulli – C. con pilas y estrechamientos

Page 104: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

83

Ec. Bernoulli

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00

Z/Yc

ΔE

%

CALADO PRINCIPAL CALADO SUMERGIDO PICOS

Figura 30. ∆E vs. Z/Yc con Ec. De Bernoulli – C. con pilas y estrechamientos

5.5.1.1.Comparación de resultados de la disipación de energía entre los

vertederos lisos

PÉRDIDA DE ENERGÍA EN VERTEDEROS LISOS-EC. BERNOULLI

Q (m3/s)

LISO LISO CON PILAS LISO CON PILAS Y ESTRECHAMIENTOS

Z/Yc ∆E%

0,020 15,36 42,88 70,93 78,14

0,040 9,59 31,17 52,22 61,78

0,060 7,34 25,37 37,29 59,38

0,800 6,03 21,22 28,02 51,46

0,100 5,20 17,81 19,79 35,98

0,120 4,61 18,23 16,64 27,09

0,140 4,17 21,71 15,90 23,91

0,160 3,81 20,37 - -

0,180 3,53 22,09 - -

Tabla 27. Comparación de resultados- Cimacios Lisos

Page 105: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

84

Ec Bernoulli-C. Lisos

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0

Z / Yc

AE%

LISO Liso+pilas Liso+pilas+estrechamientos

Figura 31. Comparación de resultados ∆E vs. Z/Yc con Ec. De Bernoulli – Cimacios

Lisos

5.6. CONCLUSIONES.

Page 106: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

85

• De las varias mediciones realizadas para obtener la pérdida de energía, se

observó que poseen una tendencia lógica e idéntica a los anteriores

ensayos, es decir que mientras aumenta el caudal la pérdida disminuye.

• Además se puede observar que la pérdida de energía obtenida, al medir el

nivel de los picos producidos y al medir el flujo principal que pasa por

debajo del resalto sumergido, es similar, con lo que se deduce que las dos

aproximaciones son válidas.

• Con la tercera medición realizada, se observó la misma tendencia

anteriormente mencionada, pero se obtuvo una pérdida ligeramente mayor

que las dos anteriores mediciones. Lo que se explica debido a que esta

medición se realizó en una sección más alejada del pie de la estructura que

las otras y al final del resalto sumergido, por lo que en esta se encuentra

también incluida la pérdida producida por el resalto.

• El porcentaje de pérdida de energía con el calado principal (y1) en la

estructura, varía entre un 24% para caudales altos a un 78% para caudales

bajos, para relaciones de Z/Yc entre 15 y 4.2. (figura 30)

• En la figura 31 y la tabla 27 se observa la comparación de resultados entre

los vertederos lisos, se aprecia que el porcentaje de disipación de energía

se incrementa del vertedero liso al vertedero liso con pilas y que aumenta

más al tener el vertedero liso con pilas y estrechamientos entre pilas, se

tiene un incremento de aproximadamente un 40% en la pérdida de energía

entre el vertedero liso y el vertedero liso con pilas y estrechamientos entre

pilas.

• La relación de be/bo de 0.5 usada para diseñar los estrechamientos, arrojó

valores de pérdida de energía aceptables, pero debería probarse con otras

relaciones de be/bo a objeto de conocer un mayor rango de pérdidas.

CAPÍTULO 6

Page 107: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

86

6. ANÁLISIS EXPERIMENTAL DE FLUJOS EN

CIMACIOS ESCALONADOS

6.1. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS

ESCALONADOS SIN PILAS

Los avances en nuevos materiales y técnicas constructivas, nos permiten en la

actualidad construir grandes canales, reservorios y presas. Por lo que asegurar

que el flujo descargue de manera efectiva es de mucha importancia. Las rápidas y

vertederos son diseñados para permitir que sobre ellos pasen grandes caudales,

y esto produce daños a las estructuras y al entorno en que se encuentran, por

esta razón es necesario disipar la energía.

La disipación de energía se realiza generalmente mediante: a) jets de agua a

grandes velocidades que pasan sobre la cresta del vertedero o por esquís

ubicados al final del vertedero o rápida, estos jets chocan en una piscina

amortiguadora ubicada aguas abajo, b) un estanque amortiguador estándar

ubicado aguas abajo del vertedero, en donde se forma un resalto hidráulico para

disipar la energía, c) o mediante la construcción de gradas en el vertedero para

ayudar a la disipación de energía.17

En las últimas décadas la introducción de nuevos materiales de construcción

como el hormigón compactado con rodillo (HCR) en la construcción de presas de

gravedad ha incrementado la construcción de estos vertederos escalonados ya

que presenta un ahorro considerable en tiempo de construcción y en la

disminución de tamaño del estanque amortiguador aguas abajo.18

En los vertederos escalonados se presenta tres tipos de flujo que dependen de la

geometría del escalón y del caudal unitario que circula sobre el mismo: Flujo de

17 Fuente: Chanson Hubert. Hydraulic Design of Stepped Cascade, Channels, weirs and spillways 18 Fuente: M. Sánchez-Juny; A. Amador; J. Dolz. Aliviaderos escalonados. Nuevas tendencias en la

construcción de aliviaderos de presas.

Page 108: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

87

escalón en escalón (Nappe Flow), flujo en transición y un flujo rasante (Skimming

Flow) y cada uno de estos flujos tiene un tipo de disipación de energía diferente.

Para caudales bajos se presenta el primer tipo de flujo (Nappe Flow), y para

caudales altos flujo rasante (Skimming Flow), presentándose un flujo en transición

entre estos dos.

En el régimen de escalón a escalón el flujo cae libremente en el escalón inferior

sucesivamente, presentando un aspecto de lámina aislada. Essery y Horner

(1978) realizaron estudios según los cuales en este régimen se puede observar

dos tipos de flujo que se basan en la manera en que el chorro golpea al siguiente

escalón:

� Flujo escalón a escalón aislado (Isolated nappe flow): este se produce

cuando todo el flujo del escalón superior golpea al escalón inferior, lo que

da como resultado la formación de un resalto hidráulico en la huella de

cada grada; este resalto hidráulico que se produce puede ser parcial o

completamente desarrollado.

� Flujo escalón a escalón parcial (Partial nappe flow): este tipo de flujo se

caracteriza porque solo una fracción del chorro del escalón superior choca

con el inferior, este flujo siempre es supercrítico.

Chanson (1996), Chamani y Rajaratnam (1999) definieron las condiciones para el

flujo en transición, del flujo grada a grada al flujo rasante, en sus investigaciones

ellos emplearon el término “inicio de flujo rasante” para definir este fenómeno, el

cual presenta grandes salpicaduras y expulsiones de gotas, este flujo se observa

muy caótico con fuertes fluctuaciones hidrodinámicas donde ya no se logra

apreciar la sucesión de caídas libres del chorro de una grada a otra ni la de un

flujo de superficie lisa.

En cambio en el régimen de flujo rasante ya no se presenta la lámina que salta de

grada a grada sino un completo sumergimiento de los escalones, con una alta

concentración de aire que fluye hacia abajo del vertedero.

Page 109: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

88

Realizando una observación del flujo rasante se aprecia claramente dos zonas en

el vertido: una lámina superior que circula sobre un fondo falso rasante a los

bordes de los escalones y una zona inferior formado por los vértices de los

escalones, creando celdas casi triangulares en las cuales el flujo queda

confinado, pero que por la elevada turbulencia que existe hay una cierta cantidad

que se intercambia con el flujo superior produciéndose un intercambio de

momento entre estas dos fases lo que produce el movimiento circular del flujo

confinado. En estas celdas triangulares se producen zonas de separación donde

se desarrollan vórtices de recirculación de eje horizontal que son los responsables

de la gran disipación de energía. (figura 32)

Existen dos criterios analíticos para definir el inicio del flujo rasante: Chanson

(1996) nos dice que el flujo rasante inicia cuando existe un total sumergimiento de

los escalones, es decir, cuando la altura de agua en la cavidad delimitada por las

aristas de los escalones y el chorro superior iguale la altura del propio escalón.

El segundo criterio lo establecieron Chamani y Rajaratnam en 1999 que

mencionan que cuando la inclinación del chorro de agua que abandona el peldaño

superior es igual a la del vertedero escalonado es el inicio del flujo rasante.

Figura 32. Flujo Rasante Fuente: A. Amador, B. Valenzano, M. Sánchez-Juny. Estudio del campo de presiones sobre un aliviadero escalonado en el paso de flujo escalón a escalón a flujo rasante.

Al presentarse el régimen de flujo rasante existen diferentes regiones de patrón

de flujo que se observan de la siguiente manera; al inicio el flujo muestra una

superficie libre, suave y cristalina (transparente) sin entrada de aire, cuando el

Fondo Falso

Vórtices de Recirculación

Page 110: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

89

espesor de esta capa se iguala al calado del flujo se define el punto de entrada de

aire en la rápida (figura 33).

Figura 33. Regiones del patrón de flujo en régimen rasante. Fuente: Omid Bozorg Haddada; Mahsa Mirmomenib; Miguel A. Mariñoc. Optimal design

of stepped spillways using the HBMO algorithm

A partir del punto de entrada de aire se desarrolla un flujo rápidamente variado,

inmediatamente aguas abajo se encuentra una zona de flujo gradualmente

variado (figura 33) para luego aguas abajo alcanzar el equilibrio entre las fuerzas

de fricción y gravedad, lo que ocasiona que tanto el calado, la velocidad y la

concentración de aire se mantengan constantes a lo largo de la rápida.

6.1.1. BREVE DESCRIPCIÓN DE ESTUDIOS REALIZADOS SOBRE LA

DISIPACIÓN DE ENERGÍA.

Page 111: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

90

A partir de las investigaciones de Poggi (1949,1956) que dirigió experimentos

sobre el flujo grada a grada y los trabajos en estructuras escalonadas de Essery y

Horner (1978), se han ido incrementando los estudios sobre rápidas y vertederos

escalonados y se han deducido diferentes ecuaciones para determinar las

pérdidas de energía en estas estructuras.

Rajaratnam (1990), Diez-Cascon (1991), Peyras (1991) y Chrisodoulou (1993),

realizaron varios experimentos sobre la disipación de energía en rápidas

escalonadas. Chamani (1994) definió una expresión para determinar la disipación

de energía para el caso de flujo escalón a escalón. Chanson (1994) dedujo las

ecuaciones para determinar la pérdida de energía para flujo grada a grada y flujo

rasante en vertederos, con compuertas de control y sin ellas.

Más tarde, Ohtsu y Yasuda (1995) determinaron que la disipación de energía

depende del número de gradas, la pendiente (θ), la altura del vertedero, el calado

crítico y el tipo de flujo.

En el régimen de flujo rasante, la pérdida de energía se produce mayormente por

la recirculación del flujo para mantener los vórtices en el fondo de los escalones.

La ecuación propuesta por Chanson (1994), para determinar la disipación de

energía, es aplicable en el caso de que se alcancen las condiciones de flujo

uniforme antes de llegar al pie del vertedero.

Ec. 6.1

Donde:

∆H: Pérdida de energía, en metros.

Hmáx (yo): Máxima carga disponible aguas arriba, en metros.

f: factor de fricción de Darcy Weisbach.

θ: ángulo de inclinación del vertedero.

dc

Hdam

sen

f

sen

f

Hmáx

H

+

××+×

×−=∆

2

3

82

1cos

81

32

31

θθ

θ

Page 112: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

91

Hdam (P): altura del vertedero, en metros.

dc (yc): calado crítico, en metros.

Donde el factor de fricción se calcula con la siguiente expresión:

Rhqw

dsengf ×

×××=

2

208 θ

Ec 6.2

Donde:

Rh: Es el radio hidráulico de la sección en metros.

qw: es el caudal unitario en m2/s.

θ : es el ángulo de inclinación del vertedero.

g: aceleración de la gravedad.

d0: Calado del flujo uniforme.

Las gradas en los vertederos escalonados causan una resistencia al flujo, una

fuerte turbulencia y mucha aireación, lo que afecta en la disipación de energía del

flujo en la estructura, y disminuye el tamaño del cuenco amortiguador aguas

abajo.

6.1.2. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS

ESTRUCTURAS.

6.1.2.1. Diseño

Para el diseño del vertedero escalonado, se usaron las recomendaciones del

artículo “The stepped spillway for the Mhlathuzane dam, Swaziland” de Uwe

Drewes y Tobias Gehrke, el cual menciona la importancia de un apropiado diseño

del comienzo de los escalones y es así que basan su diseño en las proposiciones

de los análisis realizados por Elvira García (1995)

El perfil del Cimacio es el mismo empleado para los ensayos con perfil liso, las

coordenadas de este se muestran en la Tabla 1; se mantiene el caudal de diseño,

Page 113: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

92

entonces tenemos: altura total del vertedero de 56.99cm., Q= 200 l/s y carga

sobre el vertedero hd = 21.54cm.

A partir del eje que indica el cambio de curvatura del perfil del vertedero, medimos

una distancia igual a hd/3 el cual es el punto de partida de los escalones, desde

este punto el valor de la abscisa de cada escalón está dado por las siguientes

relaciones: L1= hd/8 L2= hd/7, L3 = hd/6,5, L4 = hd/6, L5 = hd/5,5, L6 =hd/5, etc. hasta

llegar al punto de tangencia del perfil (figura 34). El valor de las ordenadas estará

dado por el perfil; es decir la altura de cada grada variará hasta alcanzar el perfil

del cimacio.

Las gradas que van luego del punto de tangencia se diseñaron usando la

pendiente del perfil, dado que el vertedero empleado en las pruebas es de

dimensiones pequeñas no se logró alcanzar el punto en el cual el perfil tiende a

mantener una pendiente constante, razón por la cual los valores de las ordenadas

varían para ajustarlos al perfil.

A continuación se muestra una figura que ilustra el perfil:

0 5 10 15 20 25 30 35 40-5-5.58

2.61

1.55

0.89

0.47

27.6945 50

53

E je del v ert edero

Eje

de

l V

ert

ed

ero

Punto de Tangencia

Figura 34. Perfil del Cimacio escalonado

Page 114: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

93

La pendiente del perfil con la que se diseñó fue con la que este termina, es decir

con un ángulo de 62.180, cuya pendiente resulta de 1.89, se probaron varias

dimensiones de escalones hasta que se optó por un escalón de 6cm. de altura por

3.17cm. de ancho al final del vertedero, como el perfil no tiene una pendiente

constante es natural que los escalones no tengan las mismas dimensiones, se

conservó constante el valor del ancho de 3.17cm. y la altura de cada grada se

ajusto al perfil del cimacio.

Las dimensiones de las gradas se muestran en la Tabla 28.

1 1.1 2.72 1.7 3.13 2.2 3.34 2.9 3.65 3.7 3.96 4.2 3.97 3.8 3.158 4.15 3.159 4.5 310 4.83 3.211 5.15 3.212 5.5 3.213 5.6 3.214 6 3.2

GRADA No.

Huella(cm)

Contrahuella(cm)

Tabla 28. Dimensiones de los escalones desde arriba hacia abajo del cimacio

Las gradas se numeraron de arriba hacia abajo del cimacio.

6.1.2.2. Construcción

Una vez establecido el diseño con todas las dimensiones se construyó el cimacio

y se emplearon los siguientes materiales:

• Tablón

• Tabla Triplex

• Clavos

• Pintura

• Lámina de acrílico transparente de 1,55 x 2,44m. x 6mm. de espesor

Page 115: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

94

Primero se dibujó el perfil en una tabla triplex, para tener los lados del vertedero y

un apoyo intermedio, se realizó el corte con el perfil del cimacio en las tablas

triplex, después se dibujó los escalones como se muestra en la fotografía 27.

Fotografía 27. Construcción Cimacio escalonado – paso 1

Teniendo en cuenta que los escalones se van a realizar en acrílico hay que

considerar el espesor del acrílico al dibujar los escalones, a continuación se corta

escalón por escalón y se obtiene el perfil escalonado (fotografía 28).

Fotografía 28. Construcción Cimacio escalonado – paso 2

Se unieron estos perfiles mediante una base y una tapa de triplex de 1 metro de

longitud (ancho del canal) para dar la forma del vertedero, como se ilustra en la

fotografía 29.

Page 116: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

95

Fotografía 29. Construcción Cimacio escalonado – paso 3

En una plancha triplex se dibujó la forma de la cresta del vertedero; con clavos se

aseguró a un tablón y con ayuda de la canteadora se dió la forma de la curva de

la cresta del vertedero para luego la clavarla y asegurarla a toda la estructura

anterior.

Fotografía 30. Construcción Cimacio escalonado – cresta del cimacio

Page 117: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

96

Fotografía 31. Construcción Cimacio escalonado – cresta del cimacio colocada

Se pintó el modelo, primero con pintura blanca y luego se le dió un acabado en

celeste.

Fotografía 32. Construcción Cimacio escalonado Con la sierra circular se cortó las láminas para las huellas y contrahuellas de las

gradas en una lámina de acrílico transparente de 1,55 x 2,44m. x 6mm. de

espesor, el largo de las gradas es el mismo que el del vertedero 1.00m.

Como se indica más adelante en la metodología, se necesita medir los calados en

las gradas de manera perpendicular a las mismas, para lo que se construyó una

estructura de soporte a fin de que el limnímetro se encuentre perpendicular al

borde de la grada, esta estructura se muestra en la fotografía 33.

Page 118: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

97

Fotografía 33. Estructura de soporte para el limnímetro- C. escalonado

6.1.2.3. Montaje

Una vez que se tiene las láminas para las gradas, y el modelo en madera este

seco, se monta el modelo en el canal y se lo aseguró con pernos y silicona,

después se pegó las gradas con silicona y se las selló con cloroformo, una a una.

Fotografía 34. Instalación del Cimacio escalonado con pernos

Page 119: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

98

Fotografía 35. Colocación de los escalones de acrílico en el Cimacio escalonado

Fotografía 36. Cimacio escalonado instalado Una vez instalado el vertedero, se colocaron 4 piezómetros aguas abajo del

vertedero con sus respectivas mangueras (fotografía 37), su distribución se

muestra en la figura 35.

Fotografía 37. Piezómetros

Page 120: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

99

6.1.3. PLAN DE PRUEBAS EN CIMACIOS ESCALONADOS SIN PILAS

Las pruebas a realizarse en el cimacio escalonado son las mismas que para los

ensayos anteriores, para lo cual se hizo pasar una serie de caudales, empezando

desde 20 l/s e incrementando el caudal en aproximadamente 20 l/s hasta llegar al

caudal máximo de 160 l/s.

6.1.4. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL

LABORATORIO.

Para realizar los ensayos en el cimacio escalonado, se siguió la siguiente

metodología:

En un principio se procedió a prender una bomba del sistema de recirculación de

flujos, luego se abrió la válvula que regula el flujo de entrada al tanque que

alimenta al canal que se encuentra al pie del mismo y se repitieron los siguientes

pasos:

• Con el uso del limnímetro, se tomó los niveles “cero” del fondo del canal

tanto aguas arriba y aguas abajo y el nivel de la cresta del vertedero.

• Con el uso del limnímetro, se tomó los niveles “cero” del fondo de los

escalones.

• Se calibró el caudal que pasa al canal mediante su válvula de regulación y

la curva de descarga del vertedero triangular (figura 5).

• Se tomaron datos del calado aguas arriba de la estructura (sección de

control 0), los cuales se hicieron con el uso del limnímetro en tres medidas

a lo largo de la sección transversal para obtener un promedio de los

mismos. Las mediciones se realizaron siempre perpendiculares a la

corriente del flujo.

Page 121: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

100

• Observar en que escalón se produce la aireación y medir el calado en ese

escalón, la medida de este calado se la realiza de forma perpendicular al

flujo en el filo del escalón.

• Se tomaron datos del calado en las dos últimas gradas, es decir, en la

grada 12 y grada 13, de manera perpendicular a la corriente del flujo.

• Se tomaron datos del calado aguas abajo al pie de la estructura (sección

de control 1), los cuales se hicieron en tres medidas a lo largo de la sección

transversal.

• Subir la compuerta del canal para lograr que se forme un resalto hidráulico

al pie del cimacio y de esta forma medir aproximadamente la longitud de

dicho resalto.

• Se tomaron las medidas de los cuatro piezómetros colocados en el canal

aguas abajo del cimacio.

• Se repitió el procedimiento para los demás caudales.

Los puntos de medición aguas arriba se realizaron a una distancia de 60 cm.

desde el paramento del cimacio, como se muestra en la figura 35, 36 y 37.

Y0-1

Y0-2

Y0-3

Y1-1

Y1-2

Y1-3

60

100

252

52

5

2 4 6 8 10 12 14

d0-2

d0-1

P2 P3P1

20 30 30

20

58,82

Figura 35. Vista en planta del área de medición en el canal-Cimacio escalonado

Page 122: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

101

0

CIMACIO ESCALONADO

56,9

9

58,82

7,18P

H

Yo

Y1

Y2

LRH60

d0 2

d0 1

Figura 36. Vista lateral del área de medición en el canal-Cimacio escalonado

Como se mencionó anteriormente en los cimacios escalonados se presentan

diferentes tipos de regímenes, en los presentes ensayos se alcanzaron solo dos

de ellos; el régimen en transición y el rasante. El flujo en transición se observó en

el primer caudal de 20 l/s, al inicio de este se muestra una superficie libre, suave y

cristalina (transparente) sin entrada de aire y hacia aguas abajo pasa a ser un

flujo muy caótico con fuertes salpicaduras y gran aireación además se observa la

formación de vórtices en el sentido transversal del flujo en la cavidad de la grada.

Para los demás caudales se observó un flujo rasante al fondo de los escalones

llegando al final del vertedero en régimen casi uniforme que luego impacta con el

fondo del canal provocando salpicaduras y una fuerte turbulencia al pie del

cimacio (figura 36 y fotografías 38 y 39) .

Page 123: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

102

100

80

Y1-1Y1-2Y1-3

Y0-1Y0-2Y0-3

25 25 25 25

24

6

8

10

12

14

Figura 37. Corte transversal del canal-Cimacio escalonado

A continuación se presenta la tabla 29, la cual contiene los valores obtenidos en el

laboratorio.

Aguas Arriba

y0 (cm) No. Grada y a (cm)y grad. 12

(cm)y grad. 13

(cm)1 3 4 L RH (cm)

47.8447.8147.7050.4850.4550.3352.7952.7252.6154.6554.5654.3956.2956.2556.1057.9057.9057.7759.0959.1259.1460.7060.6560.59

21.97 12.70 2.00 1.70

Resalto Hidráulico

75

160.75 100

sinaireación

sinaireación

23.04

sinaireación

80

12.15

5.5010.70

11.80 6.50

544.20

5.00

5.00

5.80100.12 60

12

10

21.46

9.50

21.4680.25

43.85

7.0013.40

6.40

7.20

25.02 16.25

60.16

8.10

6.20

119.99

11.24

14.34

140.48

12

42.01

20.41

20.40

20.41

24.18 14.90

3.00

4.5011.61

7.70

22.32 13.24

Calado en gradas

40.12 10

58.39

Q (l/s)

DATOS TOMADOS EN EL LABORATORIO

20.51 -

Aireación

8

CIMACIO DE PERFIL ESCALONADO

Piezómetros

40

503.60

3.00

4.10

2.60

Tabla 29. Datos tomados en el laboratotio-Cimacio escalonado

Page 124: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

103

A continuación se presentan varias fotografías del proceso en el laboratorio.

Fotografía 38. Toma frontal-Cimacio escalonado Q=20 l/s, flujo en transición

Fotografía 39. Toma frontal-Cimacio escalonado Q=100 l/s, flujo rasante.

Fotografía 40. Toma lateral-Cimacio escalonado Q=140 l/s, flujo rasante.

Page 125: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

104

Fotografía 41. Toma lateral-Recirculación del flujo en gradas-Cimacio escalonado, flujo

rasante.

6.1.5. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS

EXPERIMENTALES

Culminados los ensayos en el laboratorio, se procedió a digitalizar los datos

obtenidos.

En primer lugar, se determinó el caudal real. Para los calados aguas arriba, restar

los valores de los niveles cero correspondientes y a continuación obtener un

promedio entre las tres medidas tomadas.

A los valores de calados aguas arriba se les restó la altura del vertedero, de esta

forma se obtuvo la carga sobre el vertedero para cada caudal.

Se midieron los calados en las dos últimas gradas (perpendiculares al flujo en el

borde de las gradas), observando que en este tramo el flujo tiende a

uniformizarse, también se midió el calado al pie del cimacio, sin embargo fue

difícil apreciar el nivel de éste debido a la alta turbulencia que se generaba

cuando el flujo impactaba con el fondo del canal, razón por la que se asumió que

el calado al pie era igual a la proyección vertical del calado de la última grada.

Recirculación del Flujo

Page 126: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

105

Se calcula la energía en la sección 1 con la ecuación 4.12, considerando que y1 =

do2 x cosθ , que es la proyección vertical del calado d0, como se ilustra en la

siguiente figura:

Y1

d0 2

d0 1

do2x

cos

Figura 38. Ilustración de los calados medidos-Cimacio escalonado Se calculó la energía en la sección 0 con la ecuación 4.12, y la pérdida de energía

entre la sección 0 y la sección 1.

Se calculó la pérdida de energía en porcentaje y el calado crítico Yc, además las

relaciones Yc/H y Z/Yc.

De igual manera que en los ensayos anteriores se determina la longitud del

resalto hidráulico formada al pie del cimacio.

Para calcular la pérdida de energía en la estructura con la ecuación 6.1 de

Chanson se calculó primero el radio hidráulico de la sección de la última grada

donde se puede apreciar un flujo casi uniforme:

bd

bd

mojadoPerímetro

mojadaAreaRh

+××

==−

20

20

2 Ec. 6.3

Page 127: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

106

A continuación se ejemplifica el cálculo completo para el caudal de 100 l/s.

La primera medición es establecer los niveles “cero” tanto aguas arriba como

aguas abajo:

Nivel cero aguas arriba: 2.7 cm.

Nivel cero aguas abajo: 2.43 cm.

Nivel de la cresta del cimacio: 59.69 cm.

Nivel cero grada 8: 56.19 cm.

Nivel cero grada 9: 48.93 cm.

Nivel cero grada 10: 39.4 cm.

Nivel cero grada 11: 29.05 cm.

Nivel cero grada 12: 17.71 cm.

Nivel cero grada 13: 8.02 cm.

La carga sobre el vertedero triangular colocado en el tanque de carga, resultó ser:

3499.0=H m.

Al observar la tabla de valores de la curva de descarga del vertedero, se obtuvo

valores de H entre 0.349 y 0.350 con sus respectivos valores de caudal, y

mediante un proceso de interpolación lineal, se obtuvo un valor de caudal real , el

cual resultó ser:

slQ /12.100=

Se procede de igual manera para los demás caudales a ensayarse, cuyos valores

se presentan en la tabla 30.

Page 128: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

107

CALCULO DE LOS CAUDALES EN EL CANAL

Caudales Medidos Caudales de la tabla H(m) Q (l/s) H(m) Q (l/s)

0.1856 20.51 0.185 20.345

0.186 20.621

0.2428 40.12 0.242 39.79

0.243 40.202

0.2855 60.16 0.285 59.899

0.286 60.425

0.3203 80.25 0.320 80.057

0.321 80.685

0.3499 100.12 0.349 99.471

0.350 100.19

0.3761 119.99 0.376 119.91

0.377 120.71

0.4006 140.48 0.400 139.95

0.401 140.83

0.4228 160.75 0.422 159.99

0.423 160.94 Tabla 30. Serie de caudales a ensayar-Cimacio escalonado

Una vez regulado el caudal, se midió los calados ya descritos en la sección

anterior, cuyos valores fueron:

Calados aguas arriba (Yo): Se procedió de igual manera que en los ensayos anteriores:

cmYo 99.707.240.1729.561 =−+=

cmYo 95.707.240.1725.562 =−+=

cmYo 80.707.240.1710.563 =−+=

cmYo 91.70=

Calado en las dos últimas gradas (do): calado perpendicular al flujo, tomado en el

borde de las dos últimas gradas.

cmd 61.471.1732.2210 =−=−

cmd 22.502.824.1320 =−=−

Page 129: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

108

Ahora calcular el valor total de la energía en las dos secciones de control, como

se dijo anteriormente, se asume que el calado al pie del vertedero y1 = do2xcosθ .

my 026.01 =

Para esto se calculó la carga sobre el vertedero H, que es igual a la carga Yo

menos la altura del vertedero P:

cmH 90.13)7.269.59(91.70 =−−=

Calcular la velocidad en la sección 1 con la ecuación 4.10:

smA

QV /92.1

0522.01

1001.01 =

×==

Ahora la carga de velocidad es:

mg

V187.0

81.92

92.1

2

221 =

×=

La velocidad de aproximación se considera despreciable, es así que se calculó la

energía total en el punto o:

mHPEo 71.0139.05699.0 =+=+=

La energía en el punto 1:

mg

VYzE 214.0187.0026.00

2

21

111 =++=++=

Obtenemos así la diferencia de energía E∆ :

mEEoE 50.0214.071.01 =−=−=∆

Page 130: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

109

Y la misma pérdida expresada en tanto por ciento:

%9.6910071.0

50.0100(%) =×=×∆=∆

Eo

EE

Se calculó el calado crítico usando la ecuación 4.8:

mg

qyc 101.0

81.9

1001.03

2

3

2

===

Se obtuvo la relación Hyc /

72.0139.0

101.0 ==H

yc

Y también la relación Z/yc; siendo Z el desnivel a vencer ilustrado en la figura 4.

cmPZ 99.56==

66.5101.0

5699.0 ==cy

Z

Se obtuvo el valor del factor de fricción f de Darcy Weisbach con la ecuación 6.2,

para lo que se calculó en primer lugar el Radio hidráulico en la sección con la

ecuación 6.3:

mRh 047.000.10522.02

00.10522.0 =+×

×=

87.0047.0100.0

0522.0º6081.982

2

=××××= senf

Con el valor de f, obtener la pérdida de energía con la ecuación 6.1.

101.0

5699.0

2

3

º608

87.0

2

1º60cos

º608

87.0

171.0

32

31

+

××+×

×−=∆

sensenH

Page 131: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

110

%71.68=∆H

Calcular la longitud del resalto hidráulico.

Se calculó en primer lugar el segundo calado conjugado del resalto hidráulico con

la Ecuación 4.13:

( )2

1

2 18112

1Fr

y

y

RH

RH ++−=

Donde:

RHY1 : Calado inicial del resalto hidráulico, igual al calado al pie del cimacio Y1, en

metros.

RHY2 : Segundo calado conjugado o calado final del resalto hidráulico, en metros.

Fr1: Número de Froude correspondiente a la sección de control 1.

Se calculó el Número de Froude en la sección 1:

79.3026.081.9

92.11 =

×=Fr

( )212 1811

2

1Fryy RHRH ++−=

( ) my RH 127.079.38112

1026.0 2

2 =×++−×=

Se obtuvo el valor del resalto hidráulico con las Ecuaciones 4.15 y 4.16.

( ) mLRH 47.0026,0127.09.15.21 =−××=

( ) mLRH 38.0026,0127.052 =−×=

Se calculó el coeficiente de descarga real para cada caudal con la Ecuación 4.1,

para lo cual se obtuvo primero la longitud efectiva con la ecuación 4.2.

Page 132: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

111

23

HCLQ e=

( )HKNKLL ape +−= 2

Se asumió que el coeficiente Ka = 0 ya que no existen estribos, para la

determinación del coeficiente Kp, se usa la figura 9.

Finalmente se realizaron las curvas comparativas.

6.1.5.1.Presentación de resultados

A continuación se presentan en forma tabulada todos los cálculos realizados para

todas las series de pruebas de los distintos caudales.

Aguas Arriba

y0 (cm) No. Grada y a (cm)y grad. 12

(cm)y grad. 13

(cm)1 3 4 L RH (cm)

20,51 62,48 8 2,20 4,26 4,68 3,00 2,00 1,70 3440,12 65,12 10 2,61 2,69 3,59 4,50 3,00 2,60 4060,16 67,41 12 2,70 2,70 3,22 6,20 4,10 3,60 5080,25 69,23 12 3,75 3,75 4,13 7,70 5,00 4,20 54

100,12 70,91 10 4,45 4,61 5,22 9,50 5,80 5,00 60119,99 72,56 5,33 6,32 10,70 6,40 5,50 75140,48 73,82 6,47 6,88 11,80 7,20 6,50 80160,75 75,35 7,31 8,23 13,40 8,10 7,00 100

Resalto HidráulicoAireación Calado en gradasQ (l/s)

CIMACIO DE PERFIL ESCALONADODATOS REALES

Piezómetros

Tabla 31. Datos reales de calados-Cimacio escalonado

Datos:

P(cm) = 56,99

V0 (m/s) = 0

B(m) = 1

Z(m) = 0,570

Q (l/s) Q (m3/s) H (m) y 1 (m) V1 (m/s) V1²/2g 20,51 0,0205 0,055 0.023 0,44 0,01 40,12 0,0401 0,081 0.018 1,12 0,06 60,16 0,0602 0,104 0.016 1,87 0,18 80,25 0,0802 0,122 0.021 1,94 0,19 100,12 0,1001 0,139 0.026 1,92 0,19 119,99 0,1200 0,156 0.032 1,90 0,18 140,48 0,1405 0,168 0.034 2,04 0,21 160,75 0,1608 0,184 0.041 1,95 0,19

Tabla 32. Cálculos en la sección 1 – Cimacio escalonado

Page 133: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

112

ENERGÍA Q (l/s) E0(m) E1 (m) ∆ E (m) ∆ E (%) 20,51 0,62 0.033 0.59 94.7 40,12 0,65 0.082 0.57 87.5 60,16 0,67 0.194 0.48 71.2 80,25 0,69 0.213 0.48 69.2 100,12 0,71 0.214 0.50 69.9 119,99 0,73 0.215 0.51 70.3 140,48 0,74 0.247 0.49 66.6 160,75 0,75 0.236 0.52 68.7

Tabla 33. Pérdida de energía entre sección 0 y 1-Ecuación de Bernoulli – Cimacio escalonado

Q (l/s) Yc (m) Yc/H Z/ Yc 20.51 0.035 0.64 16.28 40.12 0.055 0.67 10.41 60.16 0.072 0.69 7.95 80.25 0.087 0.71 6.56 100.12 0.101 0.72 5.66 119.99 0.114 0.73 5.01 140.48 0.126 0.75 4.51 160.75 0.138 0.75 4.13

Tabla 34. Calado crítico y relación Yc/H – – Cimacio escalonado

Q (l/s) RH 20.51 0.043 40.12 0.033 60.16 0.030 80.25 0.038 100.12 0.047 119.99 0.056 140.48 0.060 160.75 0.071

Tabla 35. Radio hidráulico sección 1-– Cimacio escalonado

Q (m3/s) f dc ∆ E% 0.0205 15.14 0.035 94.68 0.0401 1.82 0.055 87.08 0.0602 0.59 0.072 70.29 0.0802 0.69 0.087 68.16 0.1001 0.87 0.101 68.71 0.1200 1.06 0.114 69.03 0.1405 0.99 0.126 65.16 0.1608 1.26 0.138 67.26

Tabla 36. Pérdida de energía-Ecuación de Chanson-C. escalonado

Page 134: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

113

Q (l/s) H/Hd Kp Le C 20.51 0.26 0.07 0.977 1.63 40.12 0.38 0.05 0.976 1.77 60.16 0.48 0.039 0.976 1.83 80.25 0.57 0.036 0.974 1.92 100.12 0.65 0.025 0.979 1.97 119.99 0.72 0.016 0.985 1.98 140.48 0.78 0.013 0.987 2.06 160.75 0.85 0.009 0.990 2.06

Tabla 37. Valores del coeficiente C de descarga- Cimacio escalonado

RESALTO HIDRÁULICO Q (m3/s) y 1 (m) Fr1 Y2CALC LRH1 LRH2 LRHmed. 0.0205 0.023 0.91 0.021 - - - 0.0401 0.018 2.66 0.059 0.19 0.12 0.40 0.0602 0.016 4.70 0.099 0.39 0.34 0.50 0.0802 0.021 4.32 0.116 0.45 0.37 0.54 0.1001 0.026 3.79 0.127 0.47 0.38 0.60 0.1200 0.032 3.41 0.137 0.49 0.37 0.75 0.1405 0.034 3.51 0.155 0.56 0.43 0.80 0.1608 0.041 3.07 0.160 0.55 0.39 1.00

Tabla 38. Valores de la longitud del resalto hidráulico- Cimacio escalonado

Las gráficas siguientes muestran los resultados de las tablas anteriores siguiendo

dos parámetros como son: la relación ∆E vs. Yc/H y ∆E vs. Z/Yc, tanto para la

ecuación de Bernoulli como para la ecuación de Chanson.

Page 135: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

114

Ec Bernoulli

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

Yc / H

∆E %

Figura 39. ∆E vs. Yc/H con Ec. De Bernoulli – Cimacio escalonado

Ec Bernoulli

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0.00 5.00 10.00 15.00 20.00

Z/ Yc

∆E

%%

Figura 40. ∆E vs. Z/Yc con Ec. De Bernoulli – Cimacio escalonado

Page 136: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

115

Ec. de Chanson

45.0

55.0

65.0

75.0

85.0

95.0

105.0

0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

Yc/H

∆E%

%

Figura 41. ∆E vs. Yc/H con Ec. De Chanson – Cimacio escalonado

Ec. de Chanson

45.0

55.0

65.0

75.0

85.0

95.0

105.0

3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0

Z/Yc

∆E %

Figura 42. ∆E vs. Z/Yc con Ec. De Chanson – Cimacio escalonado

Page 137: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

116

La siguiente tabla es una comparación entre las pérdidas calculadas con la

ecuación de Bernoulli y con la ecuación de Chanson.

y1=do2*cos ∆E%

Chanson Q l/s Z/Yc Yc/H Y1 ∆E%

Bernoulli 20.51 16.28 0.64 0.0234 94.69 94.68 40.12 10.41 0.67 0.01795 87.47 87.08 60.16 7.95 0.69 0.0161 71.22 70.29 80.25 6.56 0.71 0.02065 69.22 68.16 100.12 5.66 0.72 0.0261 69.88 68.71 119.99 5.01 0.73 0.0316 70.32 69.03 140.48 4.51 0.75 0.0344 66.55 65.16 160.75 4.13 0.75 0.04115 68.73 67.26

Tabla 39. Comparación de resultados. C. escalonados sin pilas.

COMPARACION V. ESCALONADO SIN PILAS

60,0

65,0

70,0

75,0

80,0

85,0

90,0

95,0

100,0

3,00 5,00 7,00 9,00 11,00 13,00 15,00 17,00

Z/Yc

AE

%

Ec de Bernoulli Ec CHANSON

Figura 43. ∆E vs. Z/Yc con Ec. De Chanson y Ec. De Bernoulli – Cimacio escalonado

Page 138: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

117

6.1.6. CONCLUSIONES.

• Como se mencionó en la teoría, en los vertederos escalonados existen tres

tipos de flujo, flujo escalón a escalón, flujo en transición y flujo rasante, en

el presente estudio para el rango de caudales ensayados y por las

dimensiones de los escalones, se observó un flujo rasante con excepción

del primer caudal de 20 l/s que fue un flujo en transición.

• Con la ecuación de Bernoulli, se obtienen porcentajes de pérdida entre el

69% y el 95% para valores de Z/Yc entre 4.1 y 16.3, y para Yc/H entre 0.75

y 0.64 (figuras 39 y 40).

• Con la ecuación experimental de Chanson, se obtienen porcentajes de

pérdida entre el 67.3% y el 94.7% para relaciones de Z/Yc entre 4.1 y 16.3,

y para Yc/H entre 0.75 y 0.64 (figuras 41 y 42).

• Los valores de pérdida de energía obtenidos con la Ecuación de Bernoulli

son similares a los obtenidos con la Ecuación de Chanson, por lo que se

concluye que la Ecuación de Chanson interpreta las condiciones de flujo de

una manera correcta.

• Los valores del factor de fricción f de Darcy Weisbach se encuentran entre

0.6 y 1.2. No se tomaron en cuenta los factores de fricción de los dos

primeros ensayos ya que el flujo se presentaba muy irregular y con

demasiada aireación lo que no permitió visualizar claramente el espejo de

agua del flujo y las medidas realizadas resultaron poco exactas.

• Las longitudes del resalto hidráulico calculado con las ecuaciones 4.15 y

4.16, difieren en un máximo de un 30% entre ellas. (tabla 38)

Page 139: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

118

6.2. ANÁLISIS EXPERIMENTAL DE FLUJOS EN CIMACIOS

ESCALONADOS CON PILAS

El estudio de la disipación de energía en este tipo de estructura se lo realizó para

compararla con los anteriores ensayos: con el cimacio liso con pilas y el cimacio

escalonado sin pilas.

6.2.1. DISEÑO, CONSTRUCCIÓN Y MONTAJE DE LAS PILAS.

El diseño y construcción de las pilas es el mismo descrito en la sección 4.2.2.1 y

4.2.2.2.

6.2.1.1. Montaje

El montaje de las pilas se las realizó en el vertedero escalonando ya instalado en

el canal del laboratorio, se las fijó con silicona y como en la parte inferior

quedaron orificios libres producto de los escalones del vertedero, se los rellenó

con plastilina.

En las siguientes fotografías se muestra el proceso de montaje de las pilas.

Fotografía 42. Toma frontal Cimacio escalonado con pilas

Page 140: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

119

Fotografía 43. Toma posterior Cimacio escalonado con pilas.

6.2.2. PLAN DE PRUEBAS EN CIMACIOS ESCALONADOS CON PILAS

Las pruebas a realizarse en el cimacio escalonado con pilas son las mismas que

para los ensayos anteriores, para lo cual se hizo pasar una serie de caudales,

empezando desde 20 l/s e incrementando el caudal en aproximadamente 20 l/s

hasta llegar al caudal máximo de 140 l/s.

6.2.3. METODOLOGÍA DEL PROCESO EXPERIMENTAL EN EL

LABORATORIO.

La metodología del proceso en el laboratorio fue exactamente la misma seguida

que para el vertedero escalonado descrita en la sección 6.1.3. Se tomaron las

mismas medidas de los calados aguas arriba, en los escalones, aguas abajo y las

lecturas de los piezómetros. Se formó el resalto hidráulico y se midió su longitud.

A continuación se muestran figuras y fotografías que ilustran este proceso de

medición.

Page 141: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

120

Y0-1

Y0-2

Y0-3

Y1-1

Y1-2

Y1-3

60

100

25

2525

2 4 6 8 10 12 14

d0-2

d0-1

P2 P3P1

20 30 30

10,3

58,82

20.6

85,

7520

.68

5,75

20.

685

,75

20.6

8

Figura 44. Vista en planta del área de medición. Cimacio escalonado con pilas.

0

CIMACIO ESCALONADOCON PILAS

56,

99

58,82

PH

Yo

Y1

Y2

LRH60

d0 2

d0 1

25,6

5

40,

17

Figura 45. Vista lateral del área de medición. Cimacio escalonado con pilas

El patrón de flujo observado en estos ensayos es ligeramente similar al ensayo

anterior, observándose flujo en transición en el primer caudal de 20 l/s,

mostrándose una superficie libre y cristalina (transparente) al inicio del vertedero

sin entrada de aire, luego hacia aguas abajo el flujo se vuelve caótico, irregular

con fuertes salpicaduras y gran aireación además se observa la formación de

vórtices en el sentido transversal del flujo en la cavidad de la grada.

Page 142: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

121

Para los demás caudales se observó la formación de un régimen de flujo rasante

desde el inicio de las gradas y hacia aguas abajo a pesar de la separación del

flujo en horizontal desde el extremo terminal de las pilas, provocando gran

turbulencia con salpicaduras, formando fuertes perturbaciones con crestas (

fotografías 44 y 45).

Se presentan también los datos obtenidos en el laboratorio.

Aguas Arriba Aguas Abajoy0 No. Grada y a y grad. 12 y grad. 13 1 3 4 y 1 L RH

48.67 5.3548.58 5.4148.55 5.1951.74 5.0951.74 4.9851.69 5.1654.19 5.5154.12 5.6954.03 5.4856.31 5.9556.20 5.8356.08 5.9358.09 6.9258.01 6.6857.87 7.2259.91 6.6859.78 6.8959.75 7.3061.40 7.6761.41 7.4961.40 8.05

20.74

Calado en gradas

CIMACIO DE PERFIL ESCALONADO CON PILASDATOS DE LABORATORIO

Piezómetros

21.12 12.03

20.65 7 4.26 11.52

60.32 8 60.16 22.14

80.25 8 44.71 22.40

119.91 9 54.63 23.84

15.63

13.75

14.57

5.80

6.60

8.80

10.40

12.40139.51 11 34.98 24.25

5.50

Q (l/s)

Aireación

40.66 7 5.34

99.97 10 44.71 23.17

92

12.15

13.04

100

704.50

75

8.30

27

60

Resalto Hidráulico

40

1.90

3.20

6.50

7.00 7.10

3.80

3.00

5.70

1.70

4.00

2.80

3.80

6.20

Tabla 40. Datos de Laboratorio. Cimacio escalonado con pilas

Fotografía 44. Toma frontal. Cimacio escalonado con pilas Q = 20 l/s

Page 143: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

122

Fotografía 45. Toma frontal. Cimacio escalonado con pilas Q = 140 l/s

Fotografía 46. Toma lateral. Cimacio escalonado con pilas.

Page 144: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

123

6.2.4. PROCESAMIENTO Y ANÁLISIS DE LOS RESULTADOS

EXPERIMENTALES.

El procesamiento de los datos al igual que la metodología en el laboratorio es

idéntica que para el cimacio escalonado.

A continuación se ejemplifica el cálculo completo para el caudal de 100 l/s.

La primera medición es establecer los niveles “cero” tanto aguas arriba como

aguas abajo:

Nivel cero aguas arriba: 2.7 cm.

Nivel cero aguas abajo: 2.43 cm.

Nivel de la cresta del cimacio: 59.69 cm.

Nivel cero grada 8: 56.19 cm.

Nivel cero grada 9: 48.93 cm.

Nivel cero grada 10: 39.4 cm.

Nivel cero grada 11: 29.05 cm.

Nivel cero grada 12: 17.71 cm.

Nivel cero grada 13: 8.02 cm.

La carga sobre el vertedero triangular colocado en el tanque de carga, resultó ser:

3497.0=H m.

Al observar la tabla de valores de la curva de descarga del vertedero, se obtuvo

valores de H entre 0.349 y 0.350 con sus respectivos valores de caudal, y

mediante un proceso de interpolación lineal, se obtuvo un valor de caudal real que

está pasando al canal hidrodinámico, el cual resultó:

slQ /97.99=

Se procedió de igual manera para los demás caudales a ensayarse, cuyos valores

se presentan en la tabla 41.

Page 145: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

124

CÁLCULO DE LOS CAUDALES EN EL CANAL

Caudales Medidos Caudales de la tabla H(m) Q (l/s) H(m) Q (l/s)

0,1861 20,65 0,186 20,621

0,187 20,899

0,2441 40,66 0,244 40,617

0,245 41,034

0,2858 60,32 0,285 59,899

0,286 60,425

0,3203 80,25 0,320 80,057

0,321 80,685

0,3497 99,97 0,349 99,471

0,350 100,19

0,376 119,91 0,376 119,91

0,377 120,71

0,3995 139,51 0,399 139,0775

0,400 139,9506 Tabla 41. Serie de caudales a ensayarse. Cimacio escalonado con pilas.

Una vez regulado el caudal, se midieron los calados ya descritos en la sección

anterior, cuyos valores son:

Calados aguas arriba (Yo): Se procedió de igual manera que en los ensayos

anteriores:

cmYo 79.727.240.1709.581 =−+=

cmYo 71.727.240.1701.582 =−+=

cmYo 57.727.240.1787.573 =−+=

cmYo 69.72=

Calado en las dos últimas gradas (do): calado perpendicular al flujo, tomado en el

borde de las dos últimas gradas.

cmd 46.571.1717.2310 =−=−

cmd 73.502.875.1320 =−=−

Page 146: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

125

Se calculó el valor total de la energía en las dos secciones de control, como se

indicó anteriormente se asume que el calado al pie del vertedero y1 = do2xcosθ .

my 029.01 =

Para esto se obtuvo la carga sobre el vertedero H, que es igual a la carga Yo

menos la altura del vertedero P:

cmH 70.15)7.269.59(69.72 =−−=

Se calculó la velocidad en la sección 1 con la ecuación 4.10:

smA

QV /74.1

057.01

100.01 =

×==

Ahora la carga de velocidad es:

mg

V16.0

81.92

74.1

2

221 =

×=

La velocidad de aproximación se considera despreciable, es así que se calculó la

energía total en el punto 0:

mHPEo 73.0157.05699.0 =+=+=

La energía en el punto 1:

mg

VYzE 184.016.0029.00

2

21

111 =++=++=

Se obtuvo así la diferencia de energía E∆ :

mEEoE 54.0184.073.01 =−=−=∆

Page 147: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

126

Y la misma pérdida expresada en tanto por ciento:

%7.7410073.0

54.0100(%) =×=×∆=∆

Eo

EE

Se calculó el calado crítico usando la ecuación 4.8:

mg

qyc 101.0

81.9

100.03

2

3

2

===

Obtenemos la relación Hyc /

64.0157.0

101.0 ==H

yc

Y también la relación Z/yc; siendo Z el desnivel a vencer, ilustrado en la figura 4.

cmPZ 99.56==

66.5101.0

5699.0 ==cy

Z

Se calculó el valor del factor de fricción f de Darcy Weisbach con la ecuación 6.2,

para lo que se obtuvo en primer lugar el Radio hidráulico en la sección con la

ecuación 6.3:

mRh 051.000.1057.02

00.1057.0 =+×

×=

15.1051.0100.0

057.0º6081.982

2

=××××= senf

Con el valor de f, se calculó la pérdida de energía con la ecuación 6.1.

%03.73=∆H

101.0

57.0

2

3

º608

15.1

2

1º60cos

º608

15.1

1573.0

32

31

+

××+×

×−=∆

sensenH

Page 148: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

127

Calcular la longitud del resalto hidráulico.

Se calculó en primer lugar el segundo calado conjugado del resalto hidráulico con

la Ecuación 4.13:

( )2

1

2 18112

1Fr

y

y

RH

RH ++−=

Donde:

RHY1 : Calado inicial del resalto hidráulico, igual al calado al pie del cimacio Y1, en

metros.

RHY2 : Segundo calado conjugado o calado final del resalto hidráulico, en metros.

Fr1: Número de Froude correspondiente a la sección de control 1.

Se calculó el Número de Froude en la sección 1:

29.3029.081.9

74.11 =

×=Fr

( )212 1811

2

1Fryy RHRH ++−=

( ) my RH 120.029.38112

1029.0 2

2 =×++−×=

Se obtuvo el valor del resalto hidráulico con las Ecuaciones 4.15 y 4.16.

( ) mLRH 50.0029,0120.09.15.21 =−××=

( ) mLRH 46.0029,0120.052 =−×=

Se calculó el coeficiente de descarga real para cada caudal con la Ecuación 4.1,

para lo cual se obtuvo primero la longitud efectiva con la ecuación 4.2.

23

HCLQ e=

( )HKNKLL ape +−= 2

Page 149: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

128

Se asumió que el coeficiente Ka = 0 ya que no existen estribos, para la

determinación del coeficiente Kp, se usa la figura 9.

Finalmente se realizaron las curvas comparativas.

6.2.4.1.Presentación de resultados

A continuación se presentan en forma tabulada todos los cálculos realizados para

todas las series de pruebas de los distintos caudales.

CIMACIO DE PERFIL ESCALONADO CON PILAS

DATOS REALES Q

(l/s) Aguas Arriba Aireación Calado en gradas

y0 No. Grada ya y grad. 12 y grad. 13

20,65 63,30 7 2,05 3,03 3,50 40,66 66,42 7 3,13 3,41 4,01 60,32 68,81 8 3,97 4,43 4,13 80,25 70,90 8 4,72 4,69 5,02 99,97 72,69 10 5,31 5,46 5,73 119,91 74,51 9 5,70 6,13 6,55 139,51 76,10 11 5,93 6,54 7,61 Tabla 42. Datos reales de calados -Cimacio escalonado con pilas

CIMACIO DE PERFIL ESCALONADO CON PILAS DATOS REALES

Q (l/s)

Aguas Abajo Piezómetros Resalto Hidráulico y1 1 3 4 y conj. L RH

20,65 2,88 2,80 1,70 1,90 6,11 27 40,66 2,64 3,80 3,20 3,00 11,42 40 60,32 3,13 6,20 4,00 3,80 11,18 60 80,25 3,47 8,30 5,70 4,50 15,33 70 99,97 4,51 8,80 5,80 5,50 17,30 75 119,91 4,52 10,40 6,60 6,50 22,77 92 139,51 5,30 12,40 7,00 7,10 24,31 100

Tabla 43. Datos reales de calados continuación-Cimacio escalonado con pilas

Datos:

P(cm) = 56,99

V0 (m/s) = 0

B(m) = 1

Z(m) = 0,570

Page 150: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

129

Q (l/s) Q (m3/s) H (m) y 1 (m) V1 (m/s) V1²/2g 20.65 0.0206 0.063 0.018 0.59 0.02 40.66 0.0407 0.094 0.020 1.01 0.05 60.32 0.0603 0.118 0.021 1.46 0.11 80.25 0.0802 0.139 0.025 1.60 0.13 99.97 0.1000 0.157 0.029 1.74 0.16 119.91 0.1199 0.175 0.033 1.83 0.17 139.51 0.1395 0.191 0.038 1.83 0.17

Tabla 44. Cálculos en la sección 1 – Cimacio escalonado con pilas

ENERGÍA Q (l/s) E0 (m) E1 (m) ∆ E (m) ∆ E (%) 20.65 0.63 0.035 0.60 94.4 40.66 0.66 0.072 0.59 89.1 60.32 0.69 0.129 0.56 81.2 80.25 0.71 0.155 0.55 78.1 99.97 0.73 0.184 0.54 74.7 119.91 0.75 0.204 0.54 72.7 139.51 0.76 0.209 0.55 72.5

Tabla 45. Pérdida de energía entre sección 0 y 1-Ecuación de Bernoulli – Cimacio escalonado con pilas

Q (l/s) Yc (m) Yc/H Z/ Yc 20,65 0,035 0,56 16,21 40,66 0,055 0,59 10,32 60,32 0,072 0,61 7,93 80,25 0,087 0,62 6,56 99,97 0,101 0,64 5,66 119,91 0,114 0,65 5,02 139,51 0,126 0,66 4,54

Tabla 46. Calado crítico y relación Yc/H – – Cimacio escalonado con pilas

Q (l/s) RH 20,65 0,033 40,66 0,037 60,32 0,038 80,25 0,046 99,97 0,051 119,91 0,058 139,51 0,066

Tabla 47. Radio hidráulico sección 1-– Cimacio escalonado con pilas

Page 151: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

130

Q (m3/s) f dc ∆ E % dc/H 0.021 6.39 0.035 94.27 0.557 0.041 2.45 0.055 88.55 0.585 0.060 1.22 0.072 80.12 0.608 0.080 1.21 0.087 76.70 0.625 0.100 1.15 0.101 73.03 0.641 0.120 1.17 0.114 70.70 0.648 0.140 1.34 0.126 70.39 0.657

Tabla 48. Pérdida de energía-Ecuación de Chanson-C. escalonado con pilas

Q (l/s) H/Hd Kp Le C 20.65 0.29 0.062 0.977 1.33 40.66 0.44 0.040 0.977 1.44 60.32 0.55 0.031 0.978 1.52 80.25 0.65 0.020 0.983 1.57 99.97 0.73 0.018 0.983 1.63 119.91 0.81 0.011 0.988 1.65 139.51 0.89 0.005 0.994 1.68

Tabla 49. Valores del coeficiente C de descarga- Cimacio escalonado con pilas

RESALTO HIDRÁULICO Q (l/s) Fr 1 Y2CALC LRH1 LRH2 LRHmed. 20.65 1.42 0.028 0.09 0.00 27 40.66 2.29 0.056 0.21 0.18 40 60.32 3.25 0.085 0.35 0.32 60 80.25 3.22 0.102 0.42 0.39 70 99.97 3.29 0.120 0.50 0.46 75 119.91 3.23 0.134 0.56 0.51 92 139.51 3.00 0.144 0.59 0.53 100

Tabla 50. Longitudes del resalto hidráulico calculados. C. escalonado con pilas

Las gráficas siguientes muestran los resultados de las tablas anteriores siguiendo

dos parámetros como son: la relación ∆E vs. Yc/H y ∆E vs. Z/Yc, tanto para la

ecuación de Bernoulli como para la ecuación de Chanson.

Page 152: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

131

Ec Bernoulli

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0.55 0.57 0.59 0.61 0.63 0.65 0.67

Yc/H

∆E%

Figura 46. ∆E vs. Yc/H con Ec. De Bernoulli – Cimacio escalonado con pilas

Ec Bernoulli

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Z/Yc

∆E%

Figura 47. ∆E vs. Z/Yc con Ec. De Bernoulli – Cimacio escalonado con pilas

Page 153: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

132

Ec. De Chanson

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0.55 0.57 0.59 0.61 0.63 0.65 0.67

Yc/H

∆E

%

Figura 48. ∆E vs. Yc/H con Ec. De Chanson – Cimacio escalonado con pilas

Ec. De Chanson

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Z/Yc

∆E

%

Figura 49. ∆E vs. Z/Yc con Ec. De Chanson – Cimacio escalonado con pilas

Page 154: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

133

La siguiente tabla es una comparación entre las pérdidas calculadas con la

ecuación de Bernoulli y con la ecuación de Chanson.

ECUACIÓN DE

BERNOULLI CHANSON y1=do2*cos

∆E% Q l/s z/yc yc/h Y1 ∆E%

20.65 16.21 0.56 0.018 94.43 93.66 40.66 10.32 0.59 0.020 89.09 85.84 60.32 7.93 0.61 0.021 81.20 82.07 80.25 6.56 0.62 0.025 78.09 74.13 99.97 5.66 0.64 0.029 74.71 70.94 119.91 5.02 0.65 0.033 72.68 67.56 139.51 4.54 0.66 0.038 72.49 62.66

Tabla 51. Comparación de resultados. C. escalonados con pilas.

COMPARACION V. ESCALONADO CON PILAS

65,0

70,0

75,0

80,0

85,0

90,0

95,0

100,0

3,00 5,00 7,00 9,00 11,00 13,00 15,00 17,00

Z/Yc

AE

%

Ec de Bernoulli Ec CHANSON

Figura 50. Comparación de pérdida de energía entre ec. de Bernoulli y ec. De Chanson.

C. escalonado con pilas

Page 155: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

134

PÉRDIDA DE ENERGÍA CIMACIOS ESCALONADOS

60,0

65,0

70,0

75,0

80,0

85,0

90,0

95,0

100,0

3,0 5,0 7,0 9,0 11,0 13,0 15,0 17,0Z/Yc

ΔE

%

C. Escalonado sin pilas Ec. De Bernoulli C. Escalonado sin pilas Ec Chanson

C. Escalonado con pilas Ec Bernoulli C. Escalonado con pilas Ec Chanson

Figura 51. Comparación de pérdida de energía entre Ec. de Bernoulli y Ec. De

Chanson. C. escalonado con y sin pilas

COMPARACIÓN DE RESULTADOS VERTEDEROS ESCALONADOS

Z/Yc

∆ E (%)

C. ESCALONADO SIN PILAS C. ESCALONADO CON PILAS

ECUACIÓN DE BERNOULLI

ECUACIÓN DE CHANSON

ECUACIÓN DE BERNOULLI

ECUACIÓN DE CHANSON

16,28 94,7 94,7 94,4 94,3

10,41 87,5 87,1 89,1 88,6

7,95 71,2 70,3 81,2 80,1

6,56 69,2 68,2 78,1 76,7

5,66 69,9 68,7 74,7 73,0

5,01 70,3 69,0 72,7 70,7

4,51 66,6 65,2 72,5 70,4

4,13 68,7 67,3 - -

Tabla 52. Comparación de resultados. C. escalonados con y sin pilas.

Page 156: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

135

6.2.5. CONCLUSIONES.

• Como se mencionó en la teoría, en los vertederos escalonados existen tres

tipos de flujo: flujo escalón a escalón, flujo en transición y flujo rasante, en

el presente estudio para el rango de caudales ensayados y por las

dimensiones de los escalones, se observó un flujo rasante con excepción

del primer caudal de 20 l/s que fue un flujo en transición.

• Con la ecuación de Bernoulli, se obtienen porcentajes de pérdida de

energía entre el 72.5% y el 94.4% para valores de Yc/h entre 0.56 y 0.66 y

para valores de Z/Yc entre 4.5 a 16.2 (figuras 46 y 47).

• Con la ecuación experimental de Chanson, se obtienen porcentajes de

pérdida entre el 70.4% y el 94.3%. Pérdida que resulta similar que

aplicando la ecuación de Bernoulli. (figuras 48 y 49).

• En la tabla 52 se puede apreciar que los porcentajes de pérdida de energía

tanto con la Ecuación de Bernoulli como con la Ecuación de Chanson son

muy similares, además se observa que existe un mayor porcentaje de

disipación en el caso del vertedero escalonado con pilas.

• Los valores del factor de fricción f de Darcy Weisbach se encuentran entre

1.22 y 1.34. No se tomaron en cuenta los factores de fricción de los dos

primeros ensayos ya que flujo se presentaba muy irregular y con

demasiada aireación que no permitía visualizar claramente el espejo de

agua del flujo y las medidas realizadas resultaron poco exactas.

• En cuanto a la longitud del resalto hidráulico calculados con la ecuación

4.15 y 4.16, éstas difieren en un poco rango con un máximo del 10%

estando en un promedio entre 0.20 m hasta 0.55m.

Page 157: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

136

CAPÍTULO 7

7. ANÁLISIS COMPARATIVO DE LOS RESULTADOS

OBTENIDOS.

7.1. COMPARACIÓN DE RESULTADOS DE DISIPACIÓN DE

ENERGÍA EN LAS DIFERENTES CONFIGURACIONES

DEL PERFIL DEL CIMACIO TIPO CREAGER

Ec. Bernoulli

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

0,55 0,60 0,65 0,70 0,75 0,80

Yc /H

AE%

l iso l iso + pi lasliso+pilas+estrechamiento escalonadoescalonado + pi las

con do2/cosθ = y1

Figura 52. Curvas comparativas de pérdida de energía ∆ E vs. Yc/H-Ec Bernoulli

Page 158: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

137

15,360 42,88 70,93 78,14 94,7 94,4

9,590 31,17 52,22 61,78 87,5 89,1

7,340 25,37 37,29 59,38 71,2 81,2

6,030 21,22 28,02 51,46 69,2 78,1

5,200 17,81 19,79 35,98 69,9 74,7

4,610 18,23 16,64 27,09 70,3 72,7

4,170 21,71 15,90 23,91 66,6 72,5

3,810 20,37 - - 68,7 -

3,530 22,09 - - - -

VERTEDERO LISO CON

PILAS Y ESTRECHAMIENTOS

VERTEDERO

ESCALONADO

V. ESCALONADO

CON PILAS

PÉRDIDA DE ENERGÍA CON LA ECUACIÓN DE BERNOULLI

∆ E (%)Z/Yc VERTEDERO LISO

SIN PILAS

VERTEDERO LISO

CON PILAS

Tabla 53. Pérdida de Energía en todos los Cimacios-Ec de Bernoulli

Ec Bernoulli

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0

Z / Yc

AE%

LISO Liso+pilasLiso+pilas+estrechamientos EscalonadoEscalonado+pilas

Figura 53. Curvas comparativas de pérdida de energía ∆ E vs. Z/Yc-Ec Bernoulli

Page 159: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

138

Comparación de Resultados

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

0,55 0,60 0,65 0,70 0,75 0,80

Yc /H

ΔE

%

l iso Ec. Bernoulli l iso + pilas Ec Bernoulli

l iso+pilas+estrechamiento Ec. Bernoulli escalonado Ec Bernoulli

escalonado + pilas Ec Bernoulli escalonado Ec. Chanson

escalonado+pilas Ec Chanson

Figura 54. Curvas comparativas de pérdida de energía ∆ E vs. Yc/H-Ec Bernoulli, Ec Experimental y Ec Chanson

Comparación de Resultados

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00

Z/Yc

ΔE%

l iso Ec. Bernoull i liso + pilas Ec Bernoull i

l iso+pilas+estrechamiento Ec. Bernoull i escalonado Ec Bernoull i

escalonado + pilas Ec Bernoull i escalonado Ec. Chanson

escalonado+pilas Ec Chanson

Figura 55. Curvas comparativas de pérdida de energía ∆ E vs. Z/Yc-Ec Bernoulli, Ec Experimental y Ec Chanson

Page 160: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

139

7.2. COMPARACIÓN DE LA LONGITUD DE RESALTO

HIDRÁULICO.

LONGITUD DEL RESALTO HIDRÁULICO FÓRMULA DE PAVLOSKI

Q m3/s C. LISO

m C. LISO+PILAS

m C. ESCALONADO

m C. ESCALONADO

+PILAS m

0,02 0,44 0,33 - 0,09

0,04 0,65 0,56 0,19 0,21

0,06 0,80 0,75 0,39 0,35

0,08 0,94 0,91 0,45 0,42

0,10 1,06 1,05 0,47 0,50

0,12 1,14 1,16 0,49 0,56

0,14 1,20 1,25 0,56 0,59

0,16 1,28 - 0,55 -

Tabla 54. Comparación de la longitud del resalto hidráulico-fórmula de PAVLOSKI

% DE DISMINUCIÓN LONGITUD DEL R. H FÓRMULA DE PAVLOSKI

Q m3/s C. LISO

m C. LISO+PILAS

% C. ESCALONADO

% C. ESCALONADO

+PILAS %

0,02 0,44 24,40 - 79,99

0,04 0,65 12,88 70,41 66,97

0,06 0,80 6,13 51,28 56,14

0,08 0,94 3,17 52,23 54,84

0,10 1,06 0,40 55,06 52,94

0,12 1,14 -1,83 56,74 51,45

0,14 1,20 -4,59 53,07 51,05

0,16 1,28 - 56,94 -

Tabla 55. % De disminución en la longitud del resalto hidráulico-Fórmula de

PAVLOSKI

Page 161: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

140

LONGITUD DEL RESALTO HIDRÁULICO FÓRMULA DE BAKHMETEV-MAZTKE

Q m3/s C. LISO

m C. LISO+PILAS

m C. ESCALONADO

m C. ESCALONADO

+PILAS m

0,02 0,44 0,32 - 0,05

0,04 0,65 0,55 0,12 0,18

0,06 0,80 0,74 0,34 0,32

0,08 0,93 0,89 0,37 0,39

0,10 1,04 1,03 0,38 0,46

0,12 1,11 1,14 0,37 0,51

0,14 1,15 1,22 0,43 0,53

0,16 1,23 - 0,39 -

Tabla 56. Comparación de la longitud del resalto hidráulico-fórmula de

BAKHMETEV-MAZTKE

% DE DISMINUCIÓN LONGITUD DEL R. H FÓRMULA DE BAKHMETEV-MAZTKE

Q m3/s C. LISO

m C. LISO+PILAS

% C. ESCALONADO

% C. ESCALONADO

+PILAS %

0,02 0,44 27,65 - 88,56

0,04 0,65 14,82 81,98 72,56

0,06 0,80 7,04 57,90 59,62

0,08 0,94 3,59 59,58 58,22

0,10 1,06 0,35 63,71 56,06

0,12 1,14 -2,23 66,68 54,49

0,14 1,20 -5,57 62,83 54,32

0,16 1,28 - 68,58 -

Tabla 57. % De disminución en la longitud del resalto hidráulico-Fórmula de

BAKHMETEV-MAZTKE

Page 162: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

141

7.3. COMPARACIÓN DEL COEFICIENTE DE DESCARGA

COEFICIENTE DE DESCARGA

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

3.00 6.00 9.00 12.00 15.00 18.00

Z/Yc

C

liso liso+pilas liso+pilas+estrecham.

escalonado escalonado+pilas

Figura 56. Curvas comparativas del coeficiente de descarga vs Z/Yc

COEFICIENTE DE DESCARGA

Q m3/s C. LISO C. LISO +

PILAS C. LISO + PILAS + estrecham.

C. ESCALONADO C. ESCALONADO

+ PILAS

0.02 1.59 1.35 1.34 1.63 1.33

0.04 1.71 1.47 1.45 1.77 1.44

0.06 1.83 1.53 1.52 1.83 1.52

0.08 1.89 1.59 1.56 1.92 1.57

0.10 1.96 1.64 1.63 1.97 1.63

0.12 2.00 1.67 1.65 1.98 1.65

0.14 2.04 1.70 1.68 2.06 1.68

0.16 2.06 2.06

Tabla 58. Valores del coeficiente de descarga para todos los casos y caudales.

Page 163: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

142

CAPÍTULO 8

8. CONCLUSIONES Y RECOMENDACIONES.

8.1. CONCLUSIONES

• En los vertederos lisos se obtuvieron porcentajes de pérdida en un rango

de 22% al 42.9% para valores de Z/Yc entre 3.5 y 15.4. (figura 11)

• En los vertederos lisos con pilas el porcentaje de pérdida de energía esta

en el rango de 15.9% a 70.9% para valores de Z/Yc entre 4.2 y 15.3. (figura

21 )

• Para los vertederos lisos con pilas y estrechamientos entre pilas el

porcentaje de pérdida se encuentra entre 23.9% y 78.1% para valores de

Z/Yc entre 4.1 y 15. (figura 30)

• Al comparar los porcentajes de pérdida entre los vertederos lisos con las

diferentes configuraciones ensayadas (sin pilas, con pilas y con pilas y

estrechamientos), se observó que las tendencias son similares, y que el

porcentaje de pérdida se incrementa del vertedero liso al liso con pilas y

aún más con el vertedero liso con pilas y estrechamientos, obteniéndose

porcentajes de pérdida entre el 23.9% al 78.1% para valores de Z/Yc en un

rango de 4.1 a 15, siendo los vertederos lisos con pilas y estrechamientos

la configuración más eficiente en la disipación de energía en vertederos

lisos.

• En la comparación entre las configuraciones de todos los vertederos lisos

se puede apreciar que la pérdida de energía tiende a mantenerse

constante alrededor de un 20% para valores de Z/Yc menores a 4.

Page 164: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

143

• Para los vertederos escalonados con y sin pilas se observa que tanto la

ecuación de Bernoulli y la ecuación propuesta por Chanson proporcionan

valores de pérdida similares, es decir cualquiera de las dos puede ser

usada como una buena aproximación.

• Para los vertederos escalonados sin pilas se tuvieron porcentajes de

disipación de energía entre 68.7% y 94.7% para valores de Z/Yc entre 4.1 y

16.3 con la Ecuación de Bernoulli. (figura 40)

• Para los vertederos escalonados la estructura más eficiente resultó aquella

en que se colocaron pilas con un porcentaje de pérdida entre el 72.5% al

94.4% para valores de Z/Yc entre 4.5 a 16.2 con la Ecuación de Bernoulli.

(figura 47)

• Se deduce de las conclusiones anteriores que si se colocan

estrechamientos entre las pilas en un vertedero escalonado, la pérdida de

energía en esta estructura superaría a todas las anteriores, siempre y

cuando se logre que la lámina de agua que se contrae por efecto del

estrechamiento no se desprenda del perfil del cimacio y se ajuste al mismo.

Esta característica del flujo no fue observada con la relación be/bo= 0.5 por

lo contrario la lámina de agua se desprendió del perfil luego del

estrechamiento, impactando casi al pie del vertedero dada la poca altura de

la estructura por las limitaciones del tamaño del canal hidrodinámico.

• De la gráfica comparativa (figura 53) entre todos los vertederos, se

deduce que el más eficiente en lograr una mayor disipación de energía, es

el vertedero escalonado con pilas.

• En los vertederos escalonados sin pilas se tuvieron valores del factor de

fricción f de Darcy Weisbach entre 0.6 y 1.2. (tabla 36)

• En los vertederos escalonados con pilas se tuvieron valores del factor de

fricción f de Darcy Weisbach entre 1.22 y 1.34. (tabla 48)

Page 165: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

144

• Para comparar el porcentaje de disminución del resalto hidráulico, se

tomaron como base las longitudes obtenidas con el vertedero liso sin pilas,

con las cuales se concluyó que el porcentaje de reducción de la longitud

del resalto en el vertedero liso con pilas se encuentra entre el 0% para los

caudales altos y el 24% para caudales bajos, con la fórmula de PAVLOSKI,

y entre 0% y 27% con la fórmula BAKHMETEV-MAZTKE.

• El porcentaje de reducción de la longitud del resalto en el vertedero

escalonado sin pilas se encuentra entre el 57% para los caudales altos y el

70.4% para caudales bajos, con la fórmula de PAVLOSKI, y entre 68.6% y

82% con la fórmula BAKHMETEV-MAZTKE.

• El porcentaje de reducción de la longitud del resalto en el vertedero

escalonado con pilas se encuentra entre el 51.1% para los caudales altos y

el 80% para caudales bajos, con la fórmula de PAVLOSKI, y entre 54.3% y

88.6% con la fórmula BAKHMETEV-MAZTKE.

• Con respecto al coeficiente de descarga se observó que en el primer

cimacio llega hasta un valor máximo de 2.06 igual que en el Cimacio

escalonado, el cual resultó ligeramente mayor al coeficiente de diseño

asumido que fue igual a 2.

• El coeficiente de descarga se ve disminuido por las estructuras colocadas

a lo largo de todos los ensayos, es así que llego hasta un valor de 1.70 con

las pilas colocadas en el cimacio liso y a 1.68 en el cimacio escalonado.

Page 166: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

145

8.2. RECOMENDACIONES

• Con los resultados de este estudio, se recomienda seguir con las

investigaciones en vertederos de mayor altura y mayor número de gradas.

• También se recomienda realizar el estudio con vertederos escalonados con

estrechamientos entre pilas.

• Tener mucho cuidado en los calados medidos ya que de ellos dependen

los resultados, en especial los calados en los escalones que deben

realizarse perpendicularmente al flujo.

• Se recomienda realizar un estudio sobre los efectos producidos aguas

abajo, al colocar estructuras como los flaring gate piers, que provocan una

fuerte atomización del agua, y proponer soluciones para controlar el daño

de estructuras cercanas a las márgenes.

• Se deberían realizar ensayos en los que se varíe la relación de contracción

be/bo en los estrechamientos entre pilas, y así conseguir parámetros para

un diseño óptimo de estas estructuras, así como también para conseguir

que la lámina de agua luego del estrechamiento no se desprenda del perfil

del cimacio.

Page 167: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

146

9. ANEXOS

Anexo 1. Coeficiente de Descarga

Para determinar el coeficiente de descarga de un vertedero rectangular se emplea

la ecuación general:

23

23

2hbgQ ×××= µ

En varios países donde se usan unidades del sistema inglés, se acostumbra

agrupar los términos µ×g23

2 , en un solo término denominado C, de donde:

23

hbCQ ××=

Para obtener el valor de µ, tenemos distintas fórmulas, que se muestran el

siguiente cuadro:

Autor Fórmula Límites de aplicación Observaciones

Sociedad de

Ingenieros y

Arquitectos

Suizos

(1924)

(Ref. b*)

(Fórmula

SIAS)

Hamilton-

Smith

El primer límite de

aplicación es el más

importante.

Para h/b> 0,13 tiene

mayor precisión que la

fórmula SIAS.Para vertederos sin

contracciones laterales los

límites son:

Para h/b ≤ 0,13, es más

precisa que la de Hegly

Si B(h + w) < 10 bh, se

deberá reemplazar en la

Ec. General el valor de h

por h’ donde:

Donde:

es la velocidad de llegada

Hegly

(Ref. a*)

(1921)

+

+

×

+

−−=

22

55,01

0041,0045,06075,0

wh

h

B

b

hB

bBµ

mwm

mbm

mhm

13,120,0

00,250,0

60,010,0

≤≤≤≤≤≤

( )

+

+

×

+−+

+=

22

22

5,01

6,11000

3615,3037,0578,0

wh

h

B

b

h

Bb

B

lateralesnescontraccio

decasoelenw

h

mw

Bb

mh

1

30,0

3,0

80,0025,0

≥≤≤≤

1

30,0

80,0025,0

≤≤≤

w

h

wm

mhm

−=

B

b

101616,0µ

5,0

)2(2

.

30,0

30,0

60,0075,0

−≤

≤≤

≤≤

b

h

hBb

wh

wm

bm

mhm

+=

g

Vhh

24,1'

20

( )

+=

whB

QV0

Page 168: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

147

Autor Fórmula Límites de aplicación Observaciones

Rehbock

(1929)

(Ref. b*)

Vale solo para vertederos

sin contracciones

laterales.

Es muy precisa y de las

más utilizadas, por su

sencillez.

V0 = velocidad de llegada

n = 2 en vertederos con

contracciones laterales.

n = 0 en vertederos sin

contracciones laterales.

Francis

(Ref. c*)

+

−=2

32

02

32

0

2211,01623,0

gh

V

gh

V

b

hnµ

hb

mwm

mbm

mhm

3

50,160,0

00,340,2

50,018,0

≥≤≤≤≤≤≤

( )whB

QV

+=0

23

0011,01

0011,00813,06035,0

+

++=hw

1

06,0

30,0

80,001,0

≥≥≤≤

w

h

mw

mb

mhm

Fórmulas experimentales para determinar el coeficiente de gasto µ aplicable a la

ecuación general de gasto para vertederos rectangulares con contracciones

laterales o sin ellas.

Para el caso de vertederos sin contracciones se debe considerar b = B en las

fórmulas.

a* J. Smetana: Hydraulika; Ceskoslovenska Akademie, VĔD; Praga (1957)

b* J. Koženy: Hydraulik; Springer Verlag,Viena (1953)

c* A. Lencastre: Manuel d’hydraulique générale; Eyrolles, París (1961)

Se muestra el cálculo del coeficiente µ:

Hegly Hegly

C = m = 1,87B = b = 1 mh = 0,2154 mw = 0,5543 m

µ = µ = µ = µ = 0,6332

Cálculo de el coeficiente de gasto µ Cálculo del Coeficiente C

+

+

×

+

−−=

22

55,01

0041,0045,06075,0

wh

h

B

b

hB

bBµ

µgmC 23

2==

Page 169: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

148

Sociedad de Ingenieros y Arquitectos Sociedad de Ingenieros y ArquitectosSuizos (Fórmula SIAS) Suizos (Fórmula SIAS)

B = b = 1 mh = 0,2154 m C = m = 1,90w = 0,5543 mh / w = 0,3886h / b = 0,2154

µ = µ = µ = µ = 0,6420

Hamilton - Smith Hamilton - Smith

B = b = 1 mh = 0,2154 mw = 0,5543 mh ≤ w/2 = 0,2772b ≤(B-2h)= 0,56920,5≥h/b = 0,2154 C = m = 1,64

µ = µ = µ = µ = 0,5544

Cálculo de el coeficiente de gasto µ Cálculo del Coeficiente C

( )

+

+

×

+−+

+=

22

22

5,01

6,11000

3615,3037,0578,0

wh

h

B

b

h

Bb

B

−=

B

b

101616,0µ

µgmC 23

2==

µgmC 23

2==

Page 170: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

149

Francis Francis

n = 0 en vertederos sin contracciones laterales

B = b = 1 mh = 0,2154 mQ = 0,2 m³/sw = 0,5543 mn = 0V0 = 0,2598 m/s3h = 0,6462

Rehbock Rehbock

h/w ≤ 1h = 0,2154 mw = 0,5543 mh/w = 0,3886 C = m = 1,89

µ = µ = µ = µ = 0,6408

n = 2 en vertederos con contracciones

Nocumplecon loslimites

Cálculo de el coeficiente de gasto µ Cálculo del Coeficiente C

+

−=2

32

02

32

0

2211,01623,0

gh

V

gh

V

b

hnµ

( )whB

QV

+=0

23

0011,01

0011,00813,06035,0

+

++=hw

hb

mwm

mbm

mhm

3

50,160,0

00,340,2

50,018,0

≥≤≤≤≤≤≤

µgmC 23

2==

µgmC 23

2==

Page 171: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

150

Anexo 2. Valores de la curva de descarga del verted ero triangular

estándar de 90 0

CARGA CAUDAL CARGA CAUDAL m l/s - 90O m l/s - 90O

0.050 0.803 0.100 4.4200.051 0.843 0.101 4.5300.052 0.884 0.102 4.6410.053 0.926 0.103 4.7540.054 0.970 0.104 4.8690.055 1.015 0.105 4.9850.056 1.061 0.106 5.1030.057 1.108 0.107 5.2220.058 1.156 0.108 5.3440.059 1.206 0.109 5.467

0.060 1.257 0.110 5.5920.061 1.309 0.111 5.7190.062 1.362 0.112 5.8470.063 1.417 0.113 5.9770.064 1.473 0.114 6.1080.065 1.530 0.115 6.2420.066 1.588 0.116 6.3770.067 1.648 0.117 6.5140.068 1.710 0.118 6.6530.069 1.772 0.119 6.793

0.070 1.836 0.120 6.9350.071 1.901 0.121 7.0790.072 1.967 0.122 7.2240.073 2.035 0.123 7.3720.074 2.105 0.124 7.5220.075 2.176 0.125 7.6730.076 2.248 0.126 7.8270.077 2.322 0.127 7.9820.078 2.397 0.128 8.1390.079 2.473 0.129 8.298

0.080 2.551 0.130 8.4580.081 2.630 0.131 8.6210.082 2.710 0.132 8.7850.083 2.792 0.133 8.9510.084 2.876 0.134 9.1190.085 2.961 0.135 9.2890.086 3.048 0.136 9.4610.087 3.136 0.137 9.6340.088 3.225 0.138 9.8100.089 3.316 0.139 9.987

0.090 3.409 0.140 10.1670.091 3.503 0.141 10.3480.092 3.598 0.142 10.5320.093 3.696 0.143 10.7170.094 3.795 0.144 10.9040.095 3.895 0.145 11.0930.096 3.997 0.146 11.2840.097 4.101 0.147 11.4760.098 4.206 0.148 11.6710.099 4.312 0.149 11.867

CARGA CAUDAL CARGA CAUDAL m l/s - 90O m l/s - 90O

0.150 12.066 0.200 24.7190.151 12.267 0.201 25.2080.152 12.471 0.202 25.3390.153 12.676 0.203 25.6520.154 12.883 0.204 25.9690.155 13.093 0.205 26.2880.156 13.304 0.206 26.6100.157 13.517 0.207 26.9340.158 13.732 0.208 27.2610.159 13.950 0.209 27.590

0.160 14.169 0.210 27.9210.161 14.391 0.211 28.2540.162 14.614 0.212 28.5880.163 14.840 0.213 28.9240.164 15.067 0.214 29.2640.165 15.297 0.215 29.6070.166 15.529 0.216 29.9530.167 15.763 0.217 30.3010.168 15.999 0.218 30.6510.169 16.237 0.219 31.004

0.170 16.477 0.220 31.3590.171 16.719 0.221 31.7170.172 16.964 0.222 32.0770.173 17.210 0.223 32.4390.174 17.459 0.224 32.8030.175 17.709 0.225 33.1680.176 17.963 0.226 33.5350.177 18.219 0.227 33.9070.178 18.478 0.228 34.2820.179 18.378 0.229 34.659

0.180 19.001 0.230 35.0390.181 19.265 0.231 35.4210.182 19.531 0.232 35.8060.183 19.800 0.233 36.1390.184 20.071 0.234 36.5820.185 20.345 0.235 36.9740.186 20.621 0.236 37.3690.187 20.899 0.237 37.7660.188 21.180 0.238 38.1660.189 21.463 0.239 38.568

0.190 21.748 0.240 38.9730.191 22.034 0.241 39.3800.192 22.322 0.242 39.7900.193 22.612 0.243 40.2020.194 22.906 0.244 40.6170.195 23.203 0.245 41.0340.196 23.501 0.246 41.4540.197 23.802 0.247 41.8770.198 24.106 0.248 42.3020.199 24.411 0.249 42.730

Page 172: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

151

Los demás anexos se presentan en el CD adjunto de anexos.

Anexo 3. Procesamiento de datos Cimacio liso

Anexo 4. Procesamiento de datos de Cimacio liso con pilas

Anexo 5. Procesamiento de datos Cimacio liso con pi las y

estrechamientos

Anexo 6. Procesamiento de datos Cimacio escalonado

Anexo 7. Procesamiento de datos Cimacio escalonado con pilas

Anexo 8. Comparación de resultados

Anexo 9. Vista Lateral, Vista en Planta y Corte Tra nsversal del Cimacio

Liso sin pilas.

Anexo 10. Vista Lateral, Vista en Planta y Corte T ransversal del Cimacio

Liso con pilas.

Anexo 11. Vista Lateral, Vista en Planta y Corte T ransversal del Cimacio

Liso con pilas y estrechamientos.

Anexo 12. Vista Lateral, Vista en Planta y Corte T ransversal del Cimacio

Escalonado.

Anexo 13. Vista Lateral, Vista en Planta y Corte T ransversal del Cimacio

Escalonado con pilas.

Nota: Los Anexos 9, 10, 11, 12 y 13 se presentan ta mbién en planos.

Page 173: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

152

10. REFERENCIAS BIBLIOGRÁFICAS

• Amador, A., Valenzano, B., Sánchez-Juny, M., Pomares, J., Dolz, J.

Octubre 2002. Estudio del campo de presiones sobre un aliviadero

escalonado en el paso de flujo escalón a escalón a flujo rasante. Memorias

del XX Congreso Latinoamericano de Hidráulica.

• Comisión Federal de Electricidad de México (1981). Obras de Excedencia.

Manual de Diseño de Obras Civiles Hidrotecnia A.2.10 (pp 142).:

México,.Obras de Excedencia .

• Chanson, Hubert (1994); Hydraulic Design of Stepped Cascades,

Channels, Weirs and Spillways, 1.a ed., s.l., pp 261.

• Drewes, Uwe y Gehrke, Tobias. The Stepped Spillway for the Mhlathuzane

dam, Swaziland. Hydraulics of Stepped Spillways.

• Espinosa, Juan Carlos y Mera, Juan Carlos (Octubre 2007). Análisis

experimental de disipación de energía, distribución de presiones y

resistencia al flujo de una rápida con fondo escalonado con relación altura

(h) – longitud de grada (l) de h/l 0.10. Tesis EPN, Quito.

• García, Alex Y Becerra, Edison (Agosto 2006). Estudio comparativo de la

disipación de energía y distribución de presiones del flujo en rápidas

escalonadas libres y con tabiques. Tesis EPN, Quito, pp 169.

• García, Víctor Elviro y Pérez, Luis Balairon. Recrecimiento de la presa de

la Breña. Estudio en modelo reducido del aliviadero escalonado.

• INTERNET: http://es.wikipedia.org/

• Keji, Lin y Li, Han (Septiembre 2001). Stepped Spillway for Dachaoshan

RCC Dam., Memorias del XXIX IAHR Congress pp. 88 – 93.

Page 174: 5. análisis experimental de flujos en cimacios lisos con pilas y ...

153

• Krochin, Sviatoslav. Diseño Hidráulico (1986) 3a ed., Quito – Ecuador, pp.

429.

• Li, Guifen y Wang, Lianxiang (Octubre 2006). New Type Energy

Dissipaters`function of mitigating environmental impacts of high dam flood

discharging. Memorias del Symposium internacional de estructuras

hidráulicas, ciudad de Guayana – Venezuela.

• Lucio y Andrade (Abril 2005). Análisis de las características del flujo y de la

disipación de la energía en rápidas escalonadas instaladas en un canal de

laboratorio. Tesis EPN, Quito.

• Peruginelli Alessandro y Pagliara Stefano. Energy Dissipation Comparison

Among Stepped Channel, Drop and Ramp Structures. (pp. 113). Hidraulics

of stepped spillways. Dipartamento di Ingegneria Civile, University of Pisa,

Italy.

• Sánchez-Juny; Amador, A., Dolz, J. Aliviaderos escalonados. Nuevas

tendencias en la construcción de aliviaderos de presas. Universitat

Politécnica de Catalunya, pp. 10

• Sotelo, Gilberto. Hidráulica General (1997), México, editorial Limusa, pp.

560

• Ven Te Chow. Hidráulica de canales abiertos (1982)