bioquimica microbiana

7

Click here to load reader

Transcript of bioquimica microbiana

Page 1: bioquimica microbiana

Regulación por AMP cíclico [editar]

El microorganismo experimental utilizado por François Jacob y Jacques Monod fue la bacteria común de laboratorio, E. coli, pero muchos de los conceptos regulatorios básicos que fueron descubiertos por Jacob y Monod son fundamentales para la regulación celular en organismos. La idea clave es que las proteínas no se sintetizan cuando no se las necesita--- E. coli ahorra recursos celulares y energía evitando sintetizar las tres proteínas Lac cuando no hay necesidad de metabolizar lactosa, como por ejemplo, cuando otros azúcares como la glucosa, están presentes. La pregunta clave era cómo controla E. coli ciertos genes en respuesta a sus necesidades metabólicas?

Durante la Segunda Guerra Mundial, Monod ensayaba los efectos de las combinaciones de azúcares como fuente de nutrientes para E. coli. Descubrió que las bacterias a las cuales se las cultivaba en un medio que contenía dos azúcares diferentes generalmente mostraban dos frases de crecimiento. Por ejemplo, si se les proveía glucosa y lactosa, la primera sería metabolizada en primer lugar (fase de crecimiento I, véase la figura 2), y luego la lactosa (fase de crecimiento II). A este fenómeno se lo denomina diauxía.

Figura 2: La curva de crecimiento bifásica de Monod

El metabolismo de la lactosa no ocurre durante la primera parte de la curva de crecimiento diáuxico porque la β-galactosidasa no se sintetiza cuando hay presentes tanto glucosa como lactosa en el medio.

La explicación a este hecho dependía de la caracterización de mutaciones adicionales que afectaran a otros genes lac que no fueran explicados por el modelo clásico. Se supo de otros dos genes, cya y crp, que están mapeados lejos de lac, y cuando se encuentran mutados, resultan expresados a nivels más bajos en presencia de IPTF, e incluso en una cepa mutante para el represor o el operador. El descubrimiento del AMP cíclico en 1957 (en células eucariotas), y una década más tarde en E. coli, llevó a la demostración de que los mutantes con uno de estos genes defectuosos podían recobrar su actividad por adición de AMP cíclico al medio.

El gen cya codifica para la adenilato ciclasa, la cual produce AMP cíclico. En un mutante para cya, la ausencia de AMP cíclico hace unas diez veces más lenta la expresión de los genes lacZYA. La adición de AMP cíclico corrige los bajos niveles de expresión de Lac característicos de los mutantes para cya. El segundo gen, crp, codifica para una proteína

Page 2: bioquimica microbiana

llamada catabolite activator protein (proteína activadora de catabolitos, o CAP, por sus siglas en inglés), o catabolite repressor protein (proteína represora de catabolitos, o CRP, por sus siglas en inglés). [Es destacable que casi cuarenta años después, diferentes genetistas utilicen términos diferentes para el mismo gen, según cómo sea su sentimiento hacia los dos grupos que competían por el descubrimiento original.]

Esta regulación dual causa que la enzimas involucradas en el metabolismo de la lactosa sean fabricadas en pequeñas cantidades en presencia tanto de glucosa como de lactosa (a veces llamada leaky expression, del inglés expresión con pérdidas) debido a la inhibición de la unión de LacI al operador por parte de la lactosa, pero a concentraciones de AMPc altas y en presencia de lactosa, siempre hay niveles altos de expresión (Fase II en la Figura 2). [Leaky expression] es necesaria, de modo tal de permitir el metabolismo de algo de glucosa luego de que la fuente de glucosa haya sido agotada, pero antes de que la expresión de lac haya sido completamente activada.

En resumen:

En ausencia de lactosa, no hay producción de enzima Lac (LacI está unido al operador).

Cuando hay lactosa presente, pero también hay una fuente de carbono preferida en el medio (como la gluocsa), entonces sólo una pequeña cantidad de enzima se produce (LacI no está unido al operador).

Cuando la lactosa es la fuente preferida de carbono (por ejemplo, en ausencia de glucosa) AMPc-CAP se unen al promotor y la producción de la enzima Lac se maximiza.

Entonces, por qué hay un retraso entre las dos fases de crecimiento? En primer lugar, la proteína regulatoria CAP debe ensamblarse sobre el operón lac, lo cual se traduce en un incremento en la producción de ARNm de lac. A mayor cantidad de copias de ARNm de lac, mayor será la cantidad de copias (ver traducción) de LacZ (β-galactosidasa para metabolizar lactosa) y LacY (lactosa permeasa para el transporte de la lactosa hacia el interior de la célula). Luego de una pausa necesaria para incrementar el nivel de las enzimas metabólicas de lactosa, las bacterias entran en una nueva y rápida fase de crecimiento celular.

Dos enigmas de la represión de catabolitos relacionada a como el nivel de AMPc está en realidad acoplado a la presencia de glucosa y, en segundo lugar, por qué a las células debiera siquiera preocuparles. Luego de que la lactosa es clivada forma glucosa y galactosa (fácilmente conversible a glucosa). En términos metabólicos, la lactosa es tan buena fuente de carbono y energía como la glucosa. El nivel de AMPc está relacionado, no a la concentración de glucosa intercelular, sino a la velocidad de transporte de glucosa, la cual influencia la actividad de la adenilato ciclasa. (Además, el transporte de glucosa también lleva a la inhibición directa de la lactosa permeasa.) Sólo es posible especular acerca de por qué E. coli trabaja de esta manera. Todas las bacterias entéricas fermentan glucosa, lo que sugiere que la encuentran frecuentemente. Es posible que una pequeña diferencia en la eficiencia del transporte o el metabolismo de la glucosa vs. lactosa haga ventajoso para las células el regular al operón lac de esta manera.[cita requerida]

Page 3: bioquimica microbiana

Dinitrofenol y metabolismo

En la fosforilación oxidativa, el flujo de electrones desde el NADH y el FADH2 hasta el oxígeno conduce al bombeo de H+ desde la matriz hacia el espacio intermembranoso.

Este gradiente de H+ puede producir ATP cuando pasa a través de la ATP sintasa en la membrana mitocondrial interna.

Page 4: bioquimica microbiana

El dinitrofenol disipa el gradiente de H+, reduciendo la producción de ATP. Bajo estas codiciones, los alimentos que se comen no se usan para producir ATP, lo que hace perder peso. Sin embargo, un exceso de inhibidor puede rebajar demasiado el nivel de ATP hasta un límite incompatible con la vida. La diferencia entre la pérdida de peso y la muerte está sólo en una pequeña diferencia en la concentración de dinitrofenol, por lo que este compuesto es peligroso.

Page 5: bioquimica microbiana

2,4 Dinitrofenol

El 2,4 Dinitrofenol causa interferencia con la fosforilacion oxidatriva o con la fotofosforilacion por desacoplamiento, evitando la síntesis de ATP, actuando sobre los transportadores protónicos hidrofobicos.

Contiene un proton disociable, el cual es muy hidrofobico o muy liposoluble, transporta protones a través de la membrana,disipando el gradiente de protones,´por lo que inhibe el transporte activo.

REACCION DE LA ANTRONA

Page 6: bioquimica microbiana

Se basa en la acción hidrolizante y deshidratante de los hidratos de carbono que posee el H2SO4 concentrado,este acido cataliza la hidrólisis de los enlaces y la deshidratación a hidroximetilfurfural, los furfurales se condensan con la antrona dando un producto colorido de color verde, el cual puede ser leído a 600 nm en el espectrofotómetro.