BOLETÍN ON-LINE vigilancia tecnológica

25
4 vigilancia tecnológica 4 o trimestre 2011 El Plan de Energías Renovables 2011-2020 prevé un considerable aumento de las plantas de biogás industrial durante los próximos años en España. De los 2600 GWh/año que se esperan producir en 2020, 1728 procederán de deyecciones ganaderas y otros residuos agroindustriales, el resto se obtendrá a partir de residuos de vertederos, residuos sólidos urbanos y lodos de depuradoras de aguas residuales. El jefe del Departamento de Biomasa y Residuos del IDAE, durante la presentación del PER 2011-2020 en Diciembre de 2011, explicó que se trata de una tecnología madura que se ha implantado poco a nivel industrial debido a las barreras existentes, entre otras, mencionó la problemática asociada a la gestión del digestato, la complejidad de la obtención de los permisos administrativos y la evacuación de la electricidad generada o la ausencia continuada de incentivos económicos de origen no energético que reconozcan los impactos medioambientales positivos que tiene la digestión anaeróbica de residuos agroindustriales (ganaderos, principalmente). El PER 2011-2020 enumera hasta diecisiete barreras en total. El plan también propone actuaciones que equilibren el potencial de generación y la tecnología disponible con la producción real. En el ámbito de las propuestas normativas, habla de la adaptación del marco legal del Régimen Especial, mediante el establecimiento de objetivos específicos y diferenciados para las tecnologías de digestión anaeróbica y la de desgasificación de vertederos, la eliminación de la limitación al uso de gas natural, permitiendo hibridaciones en cualquier proporción, y la creación de un nuevo umbral de potencia (250 kW) para el biogás procedente de digestores anaeróbicos.También habla de simplificar los trámites administrativos. Dentro de las propuestas de primas/tarifas a producción renovable, se pide estudiar y analizar el actual marco retributivo para estas instalaciones y su adaptación a las condiciones actuales y previstas dentro del nuevo PER. Éste recoge la necesidad de crear un marco económico que incentive aplicaciones no eléctricas del biogás, a fin de promover el desarrollo de tecnologías más eficientes energéticamente, como la depuración del biogás y la inyección del biometano obtenido en la red. Es necesario establecer un reconocimiento económico en función del contenido energético inyectado. SUMARIO Editorial .............................................................................................1 Tecnologías Termoquímicas ..................................................3 Tecnologías Bioquímicas .......................................................12 Tecnologías Químicas ............................................................22 SECTOR BIOMASA B O L E T Í N O N - L I N E Biogás industrial: tecnología madura con severas dificultades para su implantación

Transcript of BOLETÍN ON-LINE vigilancia tecnológica

Page 1: BOLETÍN ON-LINE vigilancia tecnológica

4vigilanciatecnológica4o trimestre 2011

El Plan de Energías Renovables 2011-2020 prevéun considerable aumento de las plantas de biogásindustrial durante los próximos años en España.De los 2600 GWh/año que se esperan producir en2020, 1728 procederán de deyecciones ganaderasy otros residuos agroindustriales, el resto se obtendráa partir de residuos de vertederos, residuos sólidosurbanos y lodos de depuradoras de aguas residuales.

El jefe del Departamento de Biomasa y Residuos delIDAE, durante la presentación del PER 2011-2020en Diciembre de 2011, explicó que se trata de unatecnología madura que se ha implantado poco anivel industrial debido a las barreras existentes,entre otras, mencionó la problemática asociada a lagestión del digestato, la complejidad de la obtenciónde los permisos administrativos y la evacuación dela electricidad generada o la ausencia continuadade incentivos económicos de origen no energéticoque reconozcan los impactos medioambientalespositivos que tiene la digestión anaeróbica de residuosagroindustriales (ganaderos, principalmente). El PER2011-2020 enumera hasta diecisiete barreras en total.

El plan también propone actuaciones que equilibrenel potencial de generación y la tecnología disponiblecon la producción real. En el ámbito de las propuestasnormativas, habla de la adaptación del marco legaldel Régimen Especial, mediante el establecimiento deobjetivos específicos y diferenciados para las tecnologíasde digestión anaeróbica y la de desgasificación de

vertederos, la eliminación de la limitación al uso degas natural, permitiendo hibridaciones en cualquierproporción, y la creación de un nuevo umbral depotencia (250 kW) para el biogás procedentede digestores anaeróbicos.También habla de simplificarlos trámites administrativos.

Dentro de las propuestas de primas/tarifas a producciónrenovable, se pide estudiar y analizar el actual marcoretributivo para estas instalaciones y su adaptación a lascondiciones actuales y previstas dentro del nuevo PER.Éste recoge la necesidad de crear un marco económicoque incentive aplicaciones no eléctricas del biogás, a finde promover el desarrollo de tecnologías más eficientesenergéticamente, como la depuración del biogás y lainyección del biometano obtenido en la red. Es necesarioestablecer un reconocimiento económico en funcióndel contenido energético inyectado.

SUMARIO

Editorial.............................................................................................1

Tecnologías Termoquímicas ..................................................3

Tecnologías Bioquímicas .......................................................12

Tecnologías Químicas ............................................................22

SECTOR BIOMASA

B O L E T Í N O N - L I N E

Biogás industrial: tecnología madura con severasdificultades para su implantación

Page 2: BOLETÍN ON-LINE vigilancia tecnológica

2

Análisis de patentesEn el cuarto trimestre de 2011 se han identificado en labase de datosWPI (World Patent Index) 740 nuevasfamilias de patentes con documentos sobre tecnologíasde conversión de la biomasa para la producción deenergía. Atendiendo a laTabla 1 puede inferirse que,aproximadamente, el 47% de las referencias encontradasestán relacionadas con tecnologías bioquímicas y el39% con termoquímicas. El 14% restante se refiere atecnologías químicas. Las tecnologías de combustióndirecta, la digestión anaeróbica y la fermentaciónde azúcares cuentan con más de ciento cincuentaresultados.

En laTabla 2 se muestran los países líderes. Cabedestacar que el 39% de los documentos identificadosse solicitaron en China y el 26% son solicitudesinternacionales de patente (PCT). A continuación,destacan EE.UU. (20%) y Japón (16%). España disponede tres referencias.

Editorial

B O L E T Í N O N - L I N E

TIPOS DETECNOLOGÍAS DE 4ºTRIM.CONVERSIÓN DE LA BIOMASA 2011

Tecnologías termoquímicas 286

Combustión directa 154

Gasificación 93

Pirólisis 39

Tecnologías bioquímicas 349

Digestión anaeróbica 191

Fermentación de azúcares 158

Tecnologías químicas (transesterificación,

Fischer-Tropsch síntesis de metanol) 105

NºTOTAL FAMILIAS DE PATENTES 740

TABLA 1. Número de familias de patentesclasificadas por tecnologías

PAÍS Nº REFERENCIAS

1 China (CN) 288

2 WO 189

3 EE.UU. (US) 151

4 Japón (JP) 116

5 Corea (KR) 32

6 EP 28

7 Canadá (CA) 19

8 Francia (FR) 16

9 Alemania (DE) 15

10 Australia (AU) 8

11 Brasil (BR) 8

TABLA 2. Ranking por países

En los apartados posteriores se recoge una selecciónde los documentos de patentes identificados en eltrimestre analizado, así como un resumen de lasnoticias más significativas, clasificados por tecnologías.

Page 3: BOLETÍN ON-LINE vigilancia tecnológica

3

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

ZILKHA BIOMASS FUELSLLC et al.

SMITH MICHAEL J et al.

MAXITROL CO

AIR LIQUIDE et al.

US2011296748

US2011290202

US2011300494

EP2392857

EE.UU.

EE.UU.

EE.UU.

Francia

METHODS FORTHE MANUFACTURE OF FUEL PELLETS ANDOTHER PRODUCTS FROM LIGNOCELLULOSIC BIOMASS. Thepresent invention is directed to a method for producing products,such as fuel pellets, from lignocellulosic biomass. Lignocellulosicbiomass having a moisture content of less than about 30% by weightis introduced into a reactor. A vacuum of less than about 500 torr isapplied to the reactor. Steam having a temperature of between about180 DEG C. and about 235 DEG C. is injected into the reactor.The biomass is maintained in the reactor between about 1 and about12 minutes. The treated biomass having a moisture content less thanabout 30% by weight is removed from the reactor. Treated biomass isformed into a pellet.

METHODANDAPPARATUS FORTHE CONVERSION OFAQUATICPLANTS INTO BIOGASES AND ELECTRICITY. A method forproducing a biogas is provided. The method includes the steps ofproviding a polyculture of aquatic plants to a growth system;continuously providing water, carbon dioxide, air and nutrients tothe polyculture contained within the growth system; growing thepolyculture for a time sufficient to produce an aquatic plant-basedbiomass; withdrawing a portion of the aquatic plant-based biomasscontained within the growth system; and treating the withdrawnaquatic plant-based biomass to produce a biogas.

CONTROL SYSTEMAND METHOD FORA SOLID FUELCOMBUSTIONAPPLIANCE. A control system for a solid fuelcombustion appliance, e.g., a wood burning stove, includes atemperature sensor for sensing an output temperature of theappliance. A controller receives the output temperature and controlsa damper associated with air flow through the stove to maintain apredetermined temperature. The system also includes a detector thatsenses certain conditions of the solid fuel, e.g., wood, that is burned bythe stove.When additional fuel is added to the appliance, the systemtemporarily encourages initial combustion of the new fuel, beforereturning to maintaining the predetermined temperature.

OXY-FUEL BURNER.Method of designing a burner for combusting fuelwith an oxidizer containing at least 23%vol O 2 , the block of theburner defining in succession a feed passage, a substantially cylindricalburner chamber having a length Lc and optionally a widening terminalsection having a length Ls, so that Lc/(Lc + Ls) > 2/3 and 30mN 0,5*(If + Iox)* [(Lc + Ls) 2 /So] 70mN, whereby If and Iox are the total fuelrespectively oxidizer injection momentum at nominal power and So isthe cross sectional area of the outlet opening of the block in the planeperpendicular to the burner axis.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

COMBUSTIÓN DIRECTA

Solicitudes de Patentes PublicadasLos datos que aparecen en la tabla corresponden a unaselección de las solicitudes de patentes publicadas por primeravez durante el trimestre analizado.

Si desea ampliar información sobre alguna de las patentes aquílistadas, pulse sobre el número de patente correspondientepara acceder a la información online relativa a la misma.

Page 4: BOLETÍN ON-LINE vigilancia tecnológica

4

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

MITSUBISHI HEAVY INDLTD et al.

SATAKE ENG CO LTD et al.

VOGEL PETER

WOOTTON JOHN R et al.

NYENHUIS MARKUS

WO2011145575

WO2011132481

AU2011203327

US8038743

WO2011117374

Japón

Japón

Australia

EE.UU.

Alemania

BIOMASS PULVERIZING DEVICEAND BIOMASS DEG COAL CO-COMBUSTION SYSTEM.The pulverizing device (13) is provided with afeedstock supply pipe (12), which supplies biomass feedstock (11) fromabove in the vertical direction, a pulverizing table (14) whereon thesupplied biomass feedstock is loaded, and pulverizing rollers (16) that areoperated by being linked to rotation of the pulverizing table (14) andpulverize the biomass feedstock (11) by means of pressure, a blowermeans that creates an upward current, and a separator (19) whichclassifies the pulverized biomass powder (17). The pulverizing devicecomprises a vertical rim (14a) that surrounds the pulverizing table (14)and also is provided with a first projecting ledge (31), wherein a pluralityof slits (32) is formed, which extends from the pulverizing device (13)towards the lower part of the pulverizing rollers (16) and forms aprescribed gap with the upper surface of the vertical rim (14a).

GRAIN-DRYING FACILITY. Provided is a grain-drying facility that caneffectively utilize the thermal energy of hot air generated by thecombustion of biomass in a biomass combustion furnace. The disclosedgrain-drying facility (1) includes: a biomass combustion furnace (3)provided with a heat exchanger (24) that generates hot air on the basisof the heat of combustion of biomass fuel and outside air taken in fromoutside; and a circulation-type grain drier (2) provided with a grain-drying section (7) to which the hot air generated by the biomasscombustion furnace (3) is supplied via a hot-air supply pipe (15). Thecirculation-type grain drier (2) is provided with a grain-heating section(6) including: a plurality of heating tubes (6a) provided inside a grainstorage/circulation tank (5) for heating the grains therein; and an air-exhaust fan (14) that is linked to the exhaust-side opening (6c) of eachheating tube (6a), the exhaust-side opening being located on the side ofone end of each heating tube. The circulation-type grain drier (2) alsoincludes an exhaust-hot-air supply pipe (11) that links the exhaust hot airdischarged from the biomass combustion furnace (3) with the intake-sideopening (6b) of each heating tube (6a), the intake-side opening beinglocated on the side of the other end of each heating tube.

METALLURGIC USE OF BIOMASS. An improved system for steelproduction wherein biomass is utilised as stag forming and slag foamingagent, recarburiser, reducing agent or fuel.

SYSTEMS AND METHODS FOR SUPERCRITICALWATERREFORMATION OF FUELS AND GENERATION OF HYDROGENUSING SUPERCRITICALWATER. A supercritical water reformer(SCWR) and methods for using supercritical water to converthydrocarbons, particularly hydrocarbon fuels such as diesel fuel orgasoline, into carbonaceous gases and hydrogen. The synthesis gas streamgenerated by the fuel reforming reaction can then be further refined toincrease hydrogen content, and the resultant hydrogen can be utilized topower fuel cells.

METHODANDAPPARATUS FOR DEHUSKING RAPESEED. A methodfor dehusking rapeseed comprises the following steps: providing rapeseedconsisting of rape grains having a husk portion and kernel; introducing therapeseed into an impact mill (1); mechanically breaking up the huskportions of the rapeseed in the impact mill (1); discharging the milledmaterial, consisting of broken-up husk portions and kernel portions, fromthe impact mill (1); introducing the milled material into a classifying device(2) and separating the husk portions from the kernel portions; dischargingthe husk portions and the kernel portions from the classifying device (2);introducing the husk portions into a screening device (3) for furtherseparation of residues from the husk portions; and separately discharginghusk portions and kernel portions from the classifying device (2).

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

COMBUSTIÓN DIRECTA

Page 5: BOLETÍN ON-LINE vigilancia tecnológica

5

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

NESTE OIL OYJ et al.

BANOWETZ GARY M et al.

WO2011141635

US2011220846

Finlandia

EE.UU.

METHOD OF PRODUCINGA HYDROCARBON COMPOSITION.Method of producing a hydrocarbon composition. The methodcomprises providing a biomass raw-material; gasifying the raw-materialin the presence of oxygen to produce a gas containing carbonmonoxide, carbon dioxide, hydrogen and hydrocarbons possiblytogether with inert components; separately increasing the hydrogen-to-carbon monoxide ratio of the gas to a value of about 2; feeding thegas to a Fischer-Tropsch reactor; converting in the Fischer-Tropschreactor at least a significant part of the carbon monoxide andhydrogen contained in the gas into a hydrocarbon compositioncontaining C4-C90 hydrocarbons; and recovering the hydrocarboncomposition. According to the invention, fresh external hydrogen isintroduced into the gas before feeding into the Fischer-Tropschreactor. By using external hydrogen feed, the capacity of a biomassgasification process can be increased and the need for a conventionalWater Gas Shift for producing hydrogen from carbon monoxide andsteam can be eliminated.

NON-DENSIFIED BIOMASS GASIFICATION METHODANDAPPARATUS. A non-densified feedstock is fed into a modifiedcountercurrent gasifier, and syngas and char are produced from anupper portion of the gasifier. In the preferred embodiment, propane gasis injected into a lower portion of the gasifier as unconsolidated strawfeedstock is metered into a gasifier feedstock inlet. The feedstock isconverted into syngas and char in a combustion section of the gasifier.A portion of the syngas and char is recycled within the gasifier. Afterthe syngas and char flow out of a gasifier production outlet, the char isseparated from the syngas in a cyclone separator. The syngas is used toproduce power at the facility where the syngas is produced.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

GASIFICACIÓN

TRUE BLUE MALLEE PTYLTD

AU2011100662 Australia FIRE EXTENDER BIOBLOX. Abstract Fire Extender Bioblox enablesthe complete above-ground biomass of a tree (including all leaf, stemand branch components) to be manufactured into a single compressedproduct with no additives. This product enables more efficientproduction, harvesting, processing manufacturing and transport of animproved combustion (green energy) product with superior heatgeneration characteristics (19.0 to 20.0 MJ/kg). Our experimentationand technical development has produced a brand new product thatextends burning times compared with traditional firewood. Thesuccessful incorporation of leaf material within the product is the keyelement of innovation forming the basis of this application.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

COMBUSTIÓN DIRECTA

Page 6: BOLETÍN ON-LINE vigilancia tecnológica

6

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

PACKER ENG INC

GEN ELECTRIC

EXXONMOBIL RES &ENG CO

BASF SE

US2011266500

US2011239658

US2011232162

US2011275869

EE.UU.

EE.UU.

EE.UU.

Alemania

SYSTEMAND METHOD FOR CONTROLLING CHAR IN BIOMASSREACTORS. A system and process for modulating the carbon contentof ash produced by a biomass gasification process, for example, toselected levels chosen by an operator, through the controlled injectionof steam and controlled introduction of warm air during processingof a biomass feedstock. The system and process include deliveringa carbon-containing biomass feedstock to a gasification reactorand producing a syngas and an ash from the biomass feedstock, andregulating the carbon content of the ash between a level at whichcarbon not present in the ash and a second level at which carbon ispresent in the ash. The regulating step entails selectively decreasing themoisture level of the biomass feedstock prior to the biomass feedstockbeing delivered to the gasification reactor and thereby increasing thecarbon content of the ash, or increasing a moisture level of a mixtureof the biomass feedstock, ash and gases within the gasification reactorand thereby decrease the carbon content of the ash.

SYSTEMSAND METHODS FOR FEEDSTOCK INJECTION. Systemsand methods for injection of feedstock are included. In oneembodiment, a system includes a solid fuel injector. The solid fuelinjector includes a solid fuel passage, a first gas passage, and a secondgas passage. The solid fuel passage is configured to inject a solid fuelthrough a fuel outlet in a fuel direction. The first gas passage isconfigured to inject a first gas through a first gas outlet in a first gasdirection. The second gas passage is configured to inject a second gasthrough a second gas outlet in a second gas direction. The first gasdirection is oriented at a first angle relative to the fuel direction. Thesecond gas direction is oriented at a second angle relative to the fueldirection, and the first and second angles are different from one another.

BIOMASS CONVERSION USING CARBON MONOXIDEANDWATER. A lignocellulosic biomass material is converted intoprecursors for liquid hydrocarbon transportation fuels by contactingthe biomass material with water and carbon monoxide at elevatedtemperature, typically from 280 to 350 DEG C., an elevated pressure,typically a total system pressure of 12 to 30 MPa and a CO partialpressure from 5 to 10 MPa and a weight ratio of water:biomassmaterial from 0.5:1 to 5.0:1, to dissolve the biomass material into thereaction mixture and depolymerize, deoxygenate and hydrogenate thelignocellulose biomass material, so converting the biomass material intoliquid transportation fuel precursors.

PROCESS FOR PRODUCING SYNTHESIS GASANDAT LEAST ONEORGANIC LIQUID OR LIQUEFIABLE MATERIAL OFVALUE. Thepresent invention relates to a process for producing synthesis gas andat least one organic liquid or liquefiable material of value, wherein a) abiomass starting material is provided, b) the biomass starting material issubjected to a decomposition, c) at least one aromatics-enrichedfraction C1) and at least one aromatics-depleted fraction C2) areoptionally isolated from the decomposed material obtained in step b),d) the decomposition product from step b) or the aromatics-enrichedfraction C1) from step c) is fed into a dealkylation zone and reacted inthe presence of hydrogen and/or water vapor, e) a discharge is takenfrom the dealkylation zone and subjected to a separation to give atleast one organic liquid or liquefiable material of value and at least onestream enriched in components which are more volatile than theorganic material of value, f); the stream enriched in components whichare more volatile than the organic material of value which is obtainedin step e) is at least partly used for producing synthesis gas.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

GASIFICACIÓN

Page 7: BOLETÍN ON-LINE vigilancia tecnológica

7

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

ANSAC PTY LTD et al.

INDIAN OIL CORP LTDet al.

GEN ELECTRIC

SHINHEUNG SYNERGYCO LTD

WO2011140610

WO2011141927

US2011277385

KR20110039835

Australia

India

EE.UU.

Corea

PROCESS ANDAPPARATUS FORTHETREATMENT OFTAR INSYNGAS. The present invention relates to a method and apparatus(10) for use in rarefying a syngas so as to improve a calorific value ofthe syngas through the reduction of a concentration of tar from thesyngas. The apparatus (10) comprises a gasification/pyrolysis means(12) such as a kiln (11), for generation of a flow of syngas from a rawmaterial, and a cracking means (14). The cracking means (14)comprising a body (42) having an insulated internal volume (44)adapted to hold a heated bed of char. The flow of syngas from the kiln(11) is directed through the cracking means (14) where it comes intocontact with the heated bed of char. Heavy long-chained carbon basedmolecules within the syngas undergo a cracking reaction and arebroken into constituent lighter carbon based molecules. The methodand apparatus of the present invention provides a rarefied output flowof syngas having an improved calorific quality and a substantiallyreduced concentration of tar.

ATWO STAGE GASIFIER FOR GENERATING SYNGAS. The presentsubject matter describes a gasification system (100) for gasifying avariety of feedstocks. A first stage gasifier (105) receives a feedstockeither from a first group of feedstocks or a second group of feedstocksor both. The first stage gasifier decomposes the received feedstock toproduce a first product. A second stage gasifier (115) is connected tothe first stage gasifier (105) for receiving the first product. In addition,the second stage gasifier (115) receives a feedstock either from a thirdgroup of feedstocks or a fourth group of feedstocks or both. Thesecond stage gasifier (115) gasifies the first product and the receivedfeedstock to produce syngas.

SYSTEMAND METHOD FOR CONVEYINGA SOLID FUEL INACARRIER GAS. Systems are provided for gasification operations.The systems may use carbonous gas as part of plant operations. Thesystems may include a gasifier and a solid fuel feeder. The solid fuelfeeder is capable of feeding solid fuel in a carbonous carrier gas to thegasifier during a startup period and also during a steady state periodof the gasifier.

APPARATUSAND METHOD OF HEAT GENERATING USINGGASIFICATION BIO MASS. A heat generating device and method forgasifying biomass are provided to improve heat generation efficiencysince inflammable gas is continuously produced by the successivepyrolysis of biomass. Constitution:A heat generating device comprisesa fuel feeder(113), a gas reaction furnace(111), a gas exhaustingtube(114), a mixing and supplying device(120), an exhaust device(130),and a combustion device(140). The fuel feeder consecutively suppliesbiomass. The inflammable gas is produced by the supply and pyrolyzeof biomass. The gas exhausting tube discharges the inflammable gasproduced in the reaction space. The mixing and supplying devicesupplies water and heated air to the biomass. An ash ejector dischargesthe ash which is generated by burning the biomass. The combustiondevice combusts the inflammable gas and produces heat.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

GASIFICACIÓN

Page 8: BOLETÍN ON-LINE vigilancia tecnológica

8

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

RAUTE OYJ

AGNI CORP et al.

UNIV IOWA RES FOUND

KIOR INC

AVELLO BIOENERGY INC

US2011290788

WO2011133190

US2011294927

US2011283601

US2011258914

Finlandia

EE.UU.

EE.UU.

EE.UU.

EE.UU.

METHODANDAPPARATUS FOR PROCESSING FRAGMENTEDMATERIAL BY PYROLYSIS. A method and an apparatus are providedfor processing fragmented material by pyrolysis, wherein the materialto be processed is fed into a processing cavity and heated therein. Inthe method, the fragmented material is continuously fed through theprocessing cavity and heated at least at the beginning of the processwith microwave energy. The apparatus comprises means for feeding thefragmented material to be processed continuously through said cavity;microwave applicator means for initiating heating of the material atthe beginning of the process; and means for collecting the pyrolysisend product.

SYSTEMS, METHODS,AND COMPOSITIONS RELATINGTOCOMBUSTIBLE BIOMATERIALS. A method for making a combustiblematerial is described. The method includes: (i) receiving one or moretypes of biomass, each of which includes an inorganic material; (ii)rupturing lignocellulose in one or more types of the biomass toproduce ruptured biomass including the inorganic material; (iii) washingthe ruptured biomass with solvent to drive the inorganic material fromthe ruptured biomass into the solvent to produce an inorganic-material-enriched solvent and an inorganic-material-depleted rupturedbiomass; (iv) pyrolyzing the inorganic-material-depleted rupturedbiomass to produce a combustible biomaterial.

BIO-OIL FORMULATIONASANASPHALT SUBSTITUTE. A bio-oilformulation, useful as an asphalt binder substitute in pavement androofing shingles, includes bio-oil and a polymer additive. The bio-oilbinder can include an asphalt additive. The bio-oil binder can beemulsified with water and a surfactant for use as a weatherproofingsealant or as an adhesive. A method for making the bio-oil binder isdisclosed.

BIOMASS PYROLYSIS CONVERSION PROCESSWITH HIGH OLEFINPRODUCTIONAND UPGRADE. Disclosed is a process for biomassconversion in a catalytic pyrolysis reactor to convert such to liquidhydrocarbons which includes conditions which favor increased olefinproduction; wherein the olefins are then upgraded alone or with theproduced bio-oil to fuel range hydrocarbons.

METHODS FOR INTEGRATED FAST PYROLYSIS PROCESSING OFBIOMASS. Methods, process, apparatus, equipment, and systems aredisclosed for converting biomass into bio-oil fractions for chemicals,materials, feedstocks and fuels using a low-cost, integrated fast pyrolysissystem. The system improves upon prior art by creating stable, bio-oilfractions which have unique properties that make them individuallysuperior to conventional bio-oil. The invention enables water and low-molecular weight compounds to be separated into a final value-addedfraction suitable for upgrading or extracting into value-added chemicals,fuels and water. Initial bio-oil fractions from the process are chemicallydistinct, have low-water content and acidity which reduces processingcosts normally associated with conventional bio-oil post-productionupgrading since fewer separation steps, milder processing conditionsand lower auxiliary inputs are required. Biochar is stabilized so that itcan be handled safely. The integrated fast pyrolysis process includesbiomass storage, preparation, pretreatment, and conversion, productrecovery and processing to create and store stable biochar and bio-oilfractions.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

PIRÓLISIS

Page 9: BOLETÍN ON-LINE vigilancia tecnológica

9

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

UNIVERSITI TEKNOLOGIMALAYSIA

ENI SPA et al.

SHEPARD BRITTON

MY142809

WO2011128741

US2011252699

Malasia

Italia

EE.UU.

BIOCOAL FROM BIOMASS. The present invention relates to a processfor converting biomass material selected from a group consisting of oilpalm shells, oil palm fibers, empty fruit bunches, dried leaves, rice husks,wood wastes and municipal solid wastes to biocoal to be utilized forfuel generation, the process comprising the steps heating the biomassmaterial in the enclosed container at a rate of 1 K/min to 25 K/min toa 10 carbonization temperature range of 180 °C to 250 °C, compressingthe biomass material using mechanical pressure in a range of 1 MPa to20 Mpa when the temperature above reaches to about 150 °C, holdinga time period of 5 to 60 minutes (depending on thickness of biocoal) ofcompressing the biomass material into biocoal when the temperaturereaches 180 °C to 250 °C and the temperature is maintained atpredetennined level between 180 °C and 250 °C and removing thebiocoal produced. as the carbonization temperatures increases from180 °C to 250 °C, there is an increase on the fixed carbon content.Higher carbonization temperature will be able to produce betterquality of biocoal. This is due to conversion of volatile matter contentto higher percentage of fixed carbon content at high carbonizationtemperature. therefore, the biocoal produced at carbonizationtemperature of 250 °C has fixed carbon content of approximately 57,volatile matter content of approximately 39, moisture content ofapproximately 3 and ash content of approximately 1.

PROCESS FORTHE PRODUCTION OF BIO-OIL FROM MUNICIPALSOLIDWASTE. A process for the production of bio-oil from municipalsolid waste, comprising the following steps: a) subjecting saidmunicipal solid waste to liquefaction obtaining a mixture including anoily-phase consisting of bio-oil, a solid phase and a first aqueous phase;b) subjecting the first aqueous phase obtained in the liquefaction stepa) to a treatment with at least one adsorbing material obtaining asecond aqueous phase; c) subjecting the second aqueous phaseobtained in the treatment step b) with at least one adsorbing materialto fermentation obtaining a biomass; d) subjecting the biomass obtainedin the fermentation step c) to said liquefaction step a). The bio-oil (orbio-crude) thus obtained can be advantageously used in the productionof biofuels which can be used as such or mixed with other fuels formotor vehicles. Alternatively, said bio-oil (or bio-crude) can be used assuch (biocombustible) or mixed with fossil combustibles (combustibleoil, coal, etc.) for the generation of electric energy or heat.

BIOCHAR RETORT KILN. Systems and methods for a biochar retortkiln are disclosed herein. A method for making biochar includes placingwaste bio mass in a cylindrical retort chamber. The retort chamberextends outwardly at a first end and a second end from a fire box.Pyrolysis is fueled by igniting the waste biomass. Syngasses are evacuatedthrough one or more holes defined by the cylindrical retort chamber,such that the syngasses are driven out of the biomass and out of theretort chamber to be consumed by a fire in the firebox. The byproductof the described method is biochar.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

PIRÓLISIS

Page 10: BOLETÍN ON-LINE vigilancia tecnológica

10

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

STADTWERKE ROSENHEIMGMBH & CO KG et al.

EXXONMOBIL RES &ENG CO

EXXONMOBIL RES &ENG CO

SHELL INT RESEARCH

WO2011134961

US2011232161

US2011233042

WO2011141546

Alemania

EE.UU.

EE.UU.

Holanda

METHODAND DEVICE FOR GASIFYING BIOMASS. In order to gasifybiomass, the raw material (12) is supplied to a gasification reactor (32)via a supply device (10), a pyrolysis unit (14), an oxidation unit (16) and areduction unit (18) being arranged in direct contact with one another insaid reactor. The raw material (12) is degassed in the pyrolysis unit (14)and is converted to the pyrolysis products. The pyrolysis products areburnt in the oxidation unit (16) while a gasification agent (44) issupplied. The oxidation products are converted to product gas (22) inthe reduction unit (18) and the product gas (22) is removed from thegasification reactor (32) via an outlet (20). At least part of the productgas (22) is used to heat the raw material (12) in the pyrolysis unit (14),the raw material (12) being completely degassed in the pyrolysis unit(14) and being completely separated to give a solid phase consisting ofcarbon and a gaseous phase consisting of the pyrolysis gases.

BIOMASS OIL CONVERSION PROCESS. Biomass pyrolysis oil isconverted into precursors for hydrocarbon transportation fuels bycontacting the oil with liquid superheated water or supercritical waterto depolymerize and deoxygenate the components of the oil and formthe transportation fuel precursors.Temperatures above 200 DEG C.and preferably above 300 DEG C. are preferred with supercriticalwater at temperatures above 374 DEG C. and pressures above 22 MPAproviding the capability for fast conversion rates.

BIOMASS CONVERSION PROCESS. Biomass is used as a co-feedfor a heavy petroleum oil coking process to improve the operationof the coking process and to utilize biomaterial for the production oftransportation fuels.The coking process may be a delayed coking processor a fluidized bed coking process and in each case, the presence of thebiomass will decrease the coke drying time so reducing coke handlingproblems in the unit besides forming a superior coke product. In thecase of a fluidized bed coking process using a gasifier for the coke, theaddition of an alkali metal salt improves the operation of the gasifier.

PROCESS FOR LIQUEFYINGA CELLULOSIC MATERIAL. A processfor liquefying a cellulosic material to produce a liquefied product, whichprocess comprises contacting the cellulosic material simultaneouslywith - an acid catalyst; - a solvent mixture containing water and a co-solvent, which co-solvent comprises one or more polar solvents andwhich co-solvent is present in an amount of more than or equal to 10%by weight and less than or equal to 95% by weight, based on the totalweight of water and co-solvent; - a hydrogenation catalyst; and - asource of hydrogen. Products obtained from the above process and useof such products to prepare biofuels.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

PIRÓLISIS

Page 11: BOLETÍN ON-LINE vigilancia tecnológica

11

DESOXIGENACIÓNTÉRMICA DE BIOMASAPARA LA PRODUCCIÓNDE BIOCOMBUSTIBLES

Investigadores de la Universidad deMaine (EE.UU.) utilizan un nuevoproceso termoquímico que norequiere el uso de catalizadores ehidrógeno para producir biocom-bustibles a partir de hidrocarburosderivados de biomasa celulósica, loque puede resultar muy útil parareducir el coste de producción.El proceso conocido como deso-xigenación térmica (TDO) puedetransformar restos forestales yotros desechos sólidos, hierbay residuos de la construcción enuna mezcla de hidrocarburos conpuntos de ebullición que compren-den los del queroseno, el gasoleoy la gasolina. Además, el productotiene propiedades que lo convier-ten en un combustible de aplicacióndirecta, con poco o ningún procesode refino.

En el procesoTDO, la biomasa setransforma primero en ácidosorgánicos. Después, se añadehidróxido de calcio para formaruna sal cálcica. La mezcla dereacción se calienta a continuacióna 450 ºC. Mediante este procedi-miento se elimina el oxígeno de labiomasa sin la necesidad de ningunafuente exterior de hidrógeno y elresultado es la obtención de unaceite de color ámbar oscuro demayor densidad energética que labiomasa original.

FABRICACIÓN DE UNPELLET INDUSTRIALA PARTIR DE MEZCLASDE BIOMASAS PARASU UTILIZACIÓN COMOCOMBUSTIBLE

El proyecto “Desarrollo de unpellet para aplicaciones industriales”(Pelet In) en el que participanPellets Asturias, HUNOSA, elInstituto Nacional del Carbón(INCAR, CSIC) y la FundaciónAsturiana de la Energía pretendeculminar en 2013 el desarrollode un pellet industrial comercialpara su utilización en industriasy centrales eléctricas, incluidas lasde carbón.

El proyecto parte de la caracteriza-ción en laboratorio de diferentesmaterias primas, su análisis decombustibilidad y de sus propieda-des reactivas. Además, se plantea lafabricación a escala semi-piloto depellets con diferentes composicio-nes hasta conseguir la composicióndefinitiva, a partir de la mezcla dediferentes biomasas y aditivos, quemejor cumpla con los requerimien-tos establecidos. Con el fin debuscar una solución que se puedaimplementar de un modo másgeneralizado, también se investigarála producción de pellets industrialesa partir de biomasas torrefactadas.

Una vez definida en el laboratoriola composición del pellet, se iniciarála fase de fabricación a escala indus-trial. La fabricación se hará encuatro campañas en las que seránecesario realizar los correspon-dientes ajustes a la cadena deproducción para conseguir un pelletcon las características necesarias.

El pellet fabricado será utilizado enla central eléctrica de La Pereda, enMieres, donde se probará a travésde la tecnología de co-combustióncon carbón. Las primeras pruebasse realizarán con caudales de

pellets entre 3 y 12 t/h durante 48horas, mientras que la últimaprueba será de larga duración, concaudales de entre 12 y 15 t/h.

Paralelamente, se realizarán estudiosde mercado para conocer las posi-bilidades de penetración de esteproducto en los mercados españoly europeo.

PLANTA DE PIRÓLISISRÁPIDA DE BIOMASADE IKERLAN

Ikerlan presentó en el 6º CongresoInternacional de Bioenergía lasventajas, aplicaciones y estado delarte del sistema de pirólisis rápidade biomasa.

Ikerlan tiene en su centro tecnoló-gico del PaísVasco una planta pilotode 20 kg/h donde experimentancon diferentes materias primasevaluando la mejor valorizaciónde los diferentes productos quese obtienen.Trabajan con unatecnología de reactor cónico delecho en surtidor, desarrolladaen la Universidad del PaísVasco.La Universidad de Zaragoza, laUniversidad Politécnica y Cartiftambién están trabajando conpirólisis rápida en España.

El objetivo principal para obtenerun máximo rendimiento de líquidoes el calentamiento rápido de labiomasa. Para ello, la biomasaalimentada encuentra un lechoisotermo a 450-500ºC en el que elcontacto vigoroso con la arenaprovoca una transferencia de calormuy alta. Las partículas de biomasadescriben un movimiento cíclico, y,una vez han reaccionado totalmen-te, salen en forma de gases ybiochar arrastrados hacia la salidadel reactor, de forma que seautorregula la masa del lecho delreactor, quedando el lecho dearena, cuya densidad es muchomayor que la del biochar.

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

Page 12: BOLETÍN ON-LINE vigilancia tecnológica

12

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

STOVER ENOS LOY et al.

CONSEJO SUPERIORINVESTIGACION

HOLZERANDRE et al.

UNIV CALIFORNIA et al.

SOLVAY

WO2011112737

ES2367731

EP2390235

WO2011143667

EP2386648

EE.UU.

España

Francia

EE.UU.

Bélgica

OPTIMIZED BIOGAS (BIOMETHANE) PRODUCTION PROCESS.The present invention relates to a process for pretreatment of afeedstock in a pretreatment tank.Various parameters, such as oxidation-reduction potential, pH, and temperature, are monitored in thepretreatment tank to determine whether the oxidation-reductionpotential, pH, and temperature are each within a predetermined range.The volume of feedstock inside the pretreatment tank is adjusted inresponse to a determination that one of the oxidation-reductionpotential, pH, and temperature of the treated material are outside thecorresponding predetermined ranges to maintain the oxidation-reduction potential, pH, and temperature of the treated material withinoperating conditions.

PROCEDIMIENTO PARA LA DISMINUCION DE LACONCENTRACION DE DIOXIDO DE CARBONO EN BIOGAS.Procedimiento para la disminución de la concentración de dióxido decarbono en biogás. Procedimiento para la producción anaeróbica demetano, en un digestor anaeróbico caracterizado porque entre un 5 yun 30 % en volumen del biogás producido es burbujeado al efluentedel digestor que comprende al menos las siguientes etapas: derivaciónde parte del biogás producido desde el lugar de almacenamiento delmismo o desde la salida del digestor.

METHODAND PLANT FORTHETREATMENT OF LIQUIDORGANICWASTE MATERIAL. The invention relates to a method anda plant for the treatment of an organic waste material in a liquid formcomprising subjecting the liquid to anaerobic fermentation in a biogasreactor resulting in a digestate and subjecting the digestate toultrafiltration and reverse osmosis wherein the digestate from thebiogas reactor is centrifuged in a centrifugation step resulting in acentrifugate liquid fraction that shows a content of dry matter lowerthan 3 %, and a centrifugate concentrate fraction, before beingsubjected to ultrafiltration and in that the centrifugate concentratefraction is returned to the biogas reactor.

HIGH RATEANAEROBIC DIGESTER SYSTEMAND METHOD. Ananaerobic digester system for producing a biogas from organic materialis disclosed. The system includes a hydrolysis reactor comprisingtherein acidogenic and hydrolytic bacterial culture for which theorganic material is a hydrolysis substrate, a biogasification reactorcomprising therein acetogenic and methanogenic bacterial culture, anda biostabilization reactor comprising therein a methanogenic bacterialculture. The operating conditions of the biostabilization reactor aretailored to increase the digestion rate and energy conversion efficiencyof the system. A method of using the system is also disclosed.

PROCESS FOR PRODUCING BIOGAS. Process for the production ofa biogas containing methane from an organic matter amenable toanaerobic digestion comprising feeding an anaerobic digester with theorganic matter, said anaerobic digester containing a digestion mediumcomprising microorganisms capable of digesting said organic matter,wherein the total inorganic carbon concentration of the digestionmedium is maintained above 9000 mg of equivalent CaCO 3 /l and thebuffering capacity is maintained above 200 mmol/l by the addition of abuffering reagent comprising sodium bicarbonate to the digestionmedium.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

DIGESTIÓN ANAERÓBICA

Page 13: BOLETÍN ON-LINE vigilancia tecnológica

13

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

NEW ENERGYTECHNOLOGIES SP Z O Oet al.

PRESECO OY et al.

VEOLIAWATERSOLUTIONS &TECHNOLGIES SUPPORTet al.

WO2011136671

WO2011128513

WO2011130392

Polonia

Finlandia

Francia

A METHOD FOR PRODUCING BIOGAS INA PROCESS OFANAEROBIC METHANE FERMENTATION OF ORGANIC SLUDGEINA FERMENTATIONTANKANDA CATALYST FOR SUCHAMETHOD.The invention relates to a method for producing biogas in aprocess of anaerobic methane fermentation of organic sludge in afermentation tank. In order to obtain high yield of biogas productionand to render a biogas production independent on a composition oforganic sludge being processed, the method comprises the steps of:a) measuring contents of biogas, methane and optionally metals in thefermentation tank; b) determining a proportion of constituents andamount of a fermentation catalyst comprising a mixture of a methanol,glycerol and optionally further additive constituents and a moment foradding such a catalyst on the basis of the measurements carried out inthe previous steps a); c) adding the previously determined catalyst tothe fermentation tank in the previously determined moment;d) introducing fresh organic sludge into the fermentation tank, whereinat least one first cycle of steps a)-c) is carried out until a state ofstabilization of biogas production is achieved and then at least onesecond cycle of steps a)-c) is carried out. In the first cycle the catalystcomprises methanol in amount of 20 to 25 % by wt, glycerol in amountup to 5 % by wt., fatty acids in amount up to 5 % by wt. and water,whereas in the second cycle after achieving a state of stabilization ofbiogas production it comprises methanol in amount of 10 to 15 % bywt., glycerol in amount of 20 to 25 % by wt., fatty acids in amount of 3to 10 % by wt. and water.

AWASTE REFINING METHOD.The present invention relates to therefining of municipal solid waste (MSW) to produce methane using ananaerobic digestion process for the treatment of the biodegradablefraction of MSW.The method according to the invention comprisessteps, wherein a) municipal solid waste (MSW) is fed to a pretreatmentwherein a biodegradable fraction is separated therefrom and recovered;b) the biodegradable fraction from step a) is fed to an anaerobicdigestion process, wherein biogas and a liquid reject is produced,and the biogas containing methane is recovered; and c) at least afraction of the remaining part of the waste from step a) wherefroma biodegradable fraction has been separated is pyrolyzed in a pyrolysisunit.

ANAEROBIC MEMBRANE BIOREACTOR FORTREATINGAWASTESTREAM. A waste stream having anaerobically biodegradablecomponents is fed to an anaerobic reactor where the componentsreact with microorganisms to biodegrade the components and producebiomass and biogas. Mixing occurs in select portions of the anaerobicreactor, particularly the bottom and top portions of the reactor.Relatively heavy solids settle to the bottom and are mixed with themixed liquor while relatively light or fine solids float to the top portionof the anaerobic reactor where they are mixed with the mixed liquor.This leaves an intermediate or middle portion of the anaerobic reactorwhere the concentration of solids is relatively lower compared to theconcentration of solids in the upper or lower portion of the anaerobicreactor.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

DIGESTIÓN ANAERÓBICA

Page 14: BOLETÍN ON-LINE vigilancia tecnológica

14

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

XUWENHUI et al.

JOO SUNG-HO

CARBON CONTROLSYSTEMS INC et al.

WO2011127801

US2011250678

WO2011120149

China

Corea

Canadá

METHANE GENERATORWITH PROTUBERANT COVER. A methanegenerator with protuberant cover comprises a cover with concavecavity for collecting and depositing methane. The opening at theconcave cavity of said cover is submerged in methane liquid so as tomake the concave cavity hermetically form a cavity for collecting anddepositing methane. The top of said cover protrudes upwardly forminga shape with small upper part and large lower part. The externalsurface of said cover is connected with lifting ears. The methanegenerator comprises also a knighthead impenetrating the lifting ears;said knighthead is used for fixing the cover on methane tank. Themethane generator has the advantages of simple structure and lowmanufacture costs, and is suitable for batch product. The cover forcollecting and depositing methane can also be designed according tothe size of methane tank, and is especially suitable for being set incountry dung storing pool for collecting methane. There are clearancesbetween the cover and the wall of methane tank, and materials can befed to methane tank or dregs can be discharged through the clearance,which is convenient in use. So the methane generator with protuberantcover has better practicability, and is especially suitable for spreadingand using in country.

SYSTEM FOR PRODUCING GAS FROM ORGANICWASTE. Asystem for producing gas from organic waste includes a pretreatmentunit, which crushes organic waste; an oxidation unit, which oxidizes thecrushed organic waste in an oxidation bath; an oxidation unit, whichconverts the oxidized organic waste into fluid by anaerobic digestion;and a stabilization unit, which divides the fluid into gas and liquidfertilizer when the fluid is supplied into a fluid-stabilizing bath. Theoxidation bath has a transparent safety window, a coupler, a first pipecoupled to the coupler and connected to the oxidation pump, a secondpipe, a pit formed in a bottom of the oxidation bath. An inorganic-material-discharging unit has one side seated in the pit and the otherside exposed from above. A mixer is coupled to a lower inside wall ofthe oxidation bath corresponding to the pit, and includes first bladescoupled to a mixing motor.

ANAEROBIC DIGESTION PROCESS MONITORING DEVICEANDMETHODTHEREOF. Disclosed herein are a device and a method forextracting individual organic acids,TotalVolatile Fatty Acids (VFA),ammonium (NH4 +), buffering inorganic carbon compounds orhydrogen carbonate (HCO3 -) to determine their concentrations andthe trends of said concentrations in an active anaerobic digestion (AD)process. The determination of said concentrations in real-time allowsthe AD operator to run the AD at optimal efficiency and ensure thattheVFA and NH4 + concentrations do not reach toxic levels. A ratioof the concentration of total organic acids to the total inorganic carboncan be used to determine the performance of the digester.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

DIGESTIÓN ANAERÓBICA

Page 15: BOLETÍN ON-LINE vigilancia tecnológica

15

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

METAWATER CO LTD et al.

AGROBICS LTD et al.

WO2011122056

WO2011117864

Japón

Israel

METHANE FERMENTATIONTREATMENT METHOD.Disclosed is amethane fermentation treatment method which enables the highlyefficient methane fermentation treatment of an organic waste materialhaving a low nitrogen concentration. Specifically disclosed is a methanefermentation treatment method comprising supplying an organic wastematerial having a ratio of the COD concentration to the nitrogenconcentration (i.e., a COD/N ratio) of 50 or more to a methanefermentation vessel to cause the methane fermentation of the organicwaste material, removing predetermined amounts of portions of theresulting fermentation liquor one after another from the methanefermentation vessel, separating each of the removed portions into aseparated sludge and a separated solution, and redelivering at least aportion of the separated sludge to the methane fermentation vessel,wherein the concentration of ammonia nitrogen in the fermentationliquor contained in the methane fermentation vessel is measureddirectly or indirectly and the amount of the separated sludge to beredelivered to the methane fermentation vessel is so controlled thatthe concentration of ammonia nitrogen exceeds a predetermined value.

COMPOSITIONS OF MATTERAND USESTHEREOF INTHETREATMENT OFWASTE MATERIALS. Disclosed are compositionsof matter comprising at least one anaerobic degrading microorganism,particulate active carbon and a polymeric solid support wherein theanaerobic degrading microorganism and particulate active carbon areentrapped in the polymeric support and processes for preparing thesame. The disclosed compositions of matter are used in processes ofanaerobic degradation of waste materials resulting in high yields ofbiogas production.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

DIGESTIÓN ANAERÓBICA

PARDI ZOLTAN

CASTORTREVORPERCIVAL

RO123351

US2011287502

Rumania

EE.UU.

ETHYL ALCOHOLANHYDRATION PROCESS. The invention relatesto a process for ethyl alcohol anhydration by fermentation. Accordingto the invention, the process is characterized in that, after thefermentation process, the fermentation mass is filtered, in oneembodiment, by centrifugation and the resulting alcoholic solution,having a concentration of 20...60% alcohol, is treated with excesscalcium carbide for water removal, thereby obtaining an alcoholfor industrial use containing traces of water. The installation claimedby the invention consists of a reactor provided inside with a basketfor the calcium carbide and an inlet for the supply of alcohol solution,an outlet for the discharge of alcohol, an outlet for the discharge ofslime, an outlet for the acetylene formed through the reactionbetween the calcium carbide and the water in the alcohol solution,some fermentation vessels and a centrifugation filter.

METHODSANDAPPARATUS FOR PROCESSING CELLULOSICBIOMASS. Embodiments of the present invention are directed toapparatus and methods for the substantially continuous processingof cellulosic biomasses with a supercritical, critical or near critical fluidto produce ethanol, bio-fuels and high value end products.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

FERMENTACIÓN DE AZÚCARES

Page 16: BOLETÍN ON-LINE vigilancia tecnológica

16

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

HONDA MOTOR CO LTDet al.

GEVO INC et al.

DAVID PETER R

WO2011142426

WO2011140560

US2011269185

Japón

EE.UU.

EE.UU.

METHOD FOR PRODUCING SACCHARIFICATION PRE-PROCESSED MATERIAL OF LIGNOCELLULOSE-BASED BIOMASS,AND SACCARIFICATION PRE-PROCESSING DEVICE USING SAME.Disclosed is a method that is for producing a saccharification pre-processed material and that obtains a saccharification pre-processedmaterial from which lignin has been sufficiently dissociated whenpreprocessing lignocellulose-based biomass by means of aqueousammonia. Further disclosed is a pre-processing device using same. Thesaccharification pre-processing device (1) is provided with: a processingmeans (2) that mixes a substrate and 20-30 mass% aqueous ammoniaat a mass ratio substrate:aqueous ammonia of 1:0.7-1:1.3, obtaining asubstrate mixture, heats the obtained substrate mixture, holding at atemperature of 25-100 DEG C for 1-100 hours, dissociates lignin fromthe substrate or causes the swelling of the substrate, obtaining anammonia-containing saccharification pre-processed material, anddissociates ammonia from the obtained ammonia-containingsaccharification pre-processed material, obtaining a saccharificationpre-processed material; and an aqueous ammonia supply means (4)that supplies aqueous ammonia to the processing means (2).

RENEWABLE JET FUEL BLENDSTOCK FROM ISOBUTANOL.Thepresent invention in its various embodiments is directed to methodsfor preparing a renewable jet fuel blendstock, and blendstocks preparedby such methods, comprising fermenting a biomass-derived feedstockto form one or more C2-C6 alcohols such as isobutanol, catalyticallydehydrate and oligomerize the alcohols to form higher molecularweight olefins (e.g., C8-C16 olefins), hydrogenating at least a portionof the higher molecular weight olefins to form a renewable jet fuelblendstock comprising C12 and C16 alkanes which meet or exceed therequirements of ASTM D7566 - 10a for hydroprocessed synthesizedparaffinic kerosene (SPK).

COMPOSITIONSAND METHODS FOR PRODUCINGFERMENTATION PRODUCTSAND RESIDUALS. The presentinvention provides compositions and methods designed to increasevalue output of a fermentation reaction that yields a first product,intended for commercialization, such as ethanol, and a fermentationresidual used, for example, as animal feed. The methods involve usingmicroorganisms in the fermentation process that have been modifiedso as to yield a residual having greater value that a residual produced inthe process by a microorganism not so modified. In particular, thepresent invention contemplates using microorganisms in a fermentationprocess that have been modified to increase production of a nutrient,such as an essential amino acid, thereby reducing the need tosupplement the nutrient in the animal's diet. The present invention alsoprovides a modified fermentation residual of higher commercial value.Also provided in the present invention are complete animal feeds,nutritional supplements comprising the subject ferment residuals.Further provided by the present invention is a method of performingfermentation, a modified fermentative microorganism and a geneticvehicle for modifying such microorganism.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

FERMENTACIÓN DE AZÚCARES

Page 17: BOLETÍN ON-LINE vigilancia tecnológica

17

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

SHREE RENUKA SUGARSLTD et al.

DSM IP ASSETS BV

SANNYTONY et al.

UNIV EWHA INDCOLLABORATION et al.

WO2011135588

WO2011131674

US2011269200

WO2011132836

Índia

Holanda

EE.UU.

Corea

A CONTINUOUS PROCESS FORTHE PREPARATION OFALCOHOL.This invention provides a process for producing alcohol by continuousfermentation of fermentable substrate; fermentation being carried outin plurality of fermenters; fermented liquor being separated into ayeast enriched liquid being recirculated to fermenter to maintain thedesirable yeast concentration in the fermenter; and a yeast-free liquidfed to distillation columns to obtain alcohol vapour, which being fedto condenser to obtain the alcohol with desired concentration;simultaneously obtaining the spent wash from distillation stage which isre-circulated to the fermenter. The process is characterized by utilizationof portable water, reduction of water input, utilization of yeast in activeafter one cycle and achieving highly concentrated spent wash at the endof the process.;The process achieves the desirable alcohol concentrationby continuous production by facilitating the maintenance of yeast levelsin the fermenters.

PROCESS FORTHE PRODUCTION OF CELLSWHICHARE CAPABLEOF CONVERTINGARABINOSE. The invention relates to a process forthe production of cells which are capable of converting arabinose,comprising the following steps: a) Introducing into a host strain thatcannot convert arabinose, the genes AraA, araB and araD, this cell isdesignated as constructed cell; b) Subjecting the constructed cell toadaptive evolution until a cell that converts arabinose is obtained, c)Optionally, subjecting the first arabinose converting cell to adaptiveevolution to improve the arabinose conversion; the cell produced in stepb) or c) is designated as first arabinose converting cell; d) Analysing thefull genome or part of the genome of the first arabinose converting celland that of the constructed cell; e) Identifying single nucleotidepolymorphisms (SNP's) in the first arabinose converting cell; and f) Usingthe information of the SNP's in rational design of a cell capable ofconverting arabinose; g) Construction of the cell capable of convertingarabinose designed in step f).

INCREASED ETHANOL PRODUCTION BY GENETIC ENGINEERINGOF MICROORGANISMSTO EXPRESS HEMOGLOBIN. The presentdisclosure describes novel bacterial strains which express a pyruvatedecarboxylase gene and at least one alcohol dehydrogenase gene from abacteria of the genus Zymomonas and also express a hemoglobin genefrom a bacteria of the genusVitreoscilla. The present disclosure furtherdescribes methods for producing fermentation products with amicroorganism which expresses a pyruvate decarboxylase gene and atleast one alcohol dehydrogenase gene from a bacteria of the genusZymomonas and also express a hemoglobin gene from a bacteria of thegenusVitreoscilla. Further the present disclosure describes methods forincreasing production of a fermentation product comprising geneticallyengineering a microorganism which expresses a xylose isomerase gene toalso express a hemoglobin gene from a bacteria of the genusVitreoscilla.

ETHANOL-RESISTANTYEAST GENE,AND USETHEREOF. The presentinvention relates to a gene involved in ethanol resistance, a yeast straintransformed by using the same, and a use thereof. The yeast strain of thepresent invention can grow in a high concentration of ethanol, preferablyin 6-15% ethanol, and can grow in high osmotic conditions, preferably in30-40% glucose or sucrose. The present invention will be used in a moreeffective production of ethanol by inventing a strain showing resistanceto a high concentration of glucose and ethanol. In addition, the strain willbe practical as a super-strain of highly efficient ethanol production, havingresistance to various stresses generated in a bioethanol productionprocess.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

FERMENTACIÓN DE AZÚCARES

Page 18: BOLETÍN ON-LINE vigilancia tecnológica

18

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

ETH ZUERICH et al.

UNIV RIO DE JANEIRO

INBICONAS et al.

AMERICAN PROCESS INC

WO2011128060

WO2011127545

WO2011125056

US8030039

Suiza

Brasil

Dinamarca

EE.UU.

PROCESS FORTHE DIRECT PRODUCTION OF FERMENTATIONPRODUCTS FROM BIOMASSES INA BIOFILM REACTOR. A densebut oxygen permeable membrane separates the oxygen supplycompartment from the fermentation compartment, which contains allmicroorganisms, a nutrient medium and the pretreated lignocellulose.The oxygen, necessary for the growth and the activity of the aerobiccellulolytic enzymes producing microorganisms is solely transportedfrom the oxygen supply compartment through the membrane, whichleads to an oxygen gradient within the biofilm growing on themembrane. The oxygen rich zone of the biofilm lies on the membranewhereas the biofilm further away from the membrane as well as thesurrounding nutrient medium are oxygen depleted. In the aerobicbiofilm the extra-cellular enzymes are produced in situ and arereleased into the nutrient medium where they hydrolyse the celluloseand hemicellulose into soluble monosugars, which are then convertedto the desired fermentation product by suitable microorganisms in theanaerobic zones of the reactor. The process can be run in batch modeas well as in a continuous mode.

METHOD FOR PRODUCING ETHANOL FROM RESIDUALBIOMASS FROMTHE CELLULOSE INDUSTRY. The present inventionpertains to the field of chemical engineering, and its main subjectmatter is a method for producing ethanol from residual biomass fromthe cellulose industry. The biomass is processed in a single reactionvessel in which enzymatic hydrolysis and fermentation (saccharification)occur simultaneously in an advantageous manner. The invention alsorelates to the ethanol produced by the method described.

RAPIDAND LOW COST ENZYMATIC FULL CONVERSION OFLIGNOCELLULOSIC BIOMASS. Methods are provided for improvedprocessing of lignocellulosic biomass in bioethanol production. Fiberfraction of hydrothermally pretreated lignocellulosic biomass is subjectto separate hydrolysis and fermentation (SHF) or prehydrolysed andsubject to simultaneous saccharification and fermentation (SSF) at highinitial loadings of cellulase enzymes, > 15 FPU/g DM or preferably > 17FPU/ g DM.The cellulase enzymes are subsequently recycled and usedin subsequent hydrolysis cycles along with a lower dose supplementationof fresh enzyme. Loss of enzyme activity between hydrolysis cycles isoffset by improved overall process advantage.

METHOD FORTHE PRODUCTION OF FERMENTABLE SUGARSAND CELLULOSE FROM LIGNOCELLULOSIC MATERIAL. A methodfor the production of fermentable sugars and high viscosity cellulosefrom lignocellulosic material in a batch or continuous process isprovided. Lignocellulosic material is fractionated in a fashion thatcellulose is removed as pulp, cooking chemicals can be reused, ligninis separated for the production of process energy, and hemicellulosesare converted into fermentable sugars, while fermentation inhibitorsare removed. High yield production of alcohols or organic acids canbe obtained from this method using the final reaction step.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

FERMENTACIÓN DE AZÚCARES

Page 19: BOLETÍN ON-LINE vigilancia tecnológica

19

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

VALAGRO CARBONERENOUVELABLE POITOUCHARENTES et al.

POET RES INC et al.

GENENCOR INT

WO2011124815

WO2011116320

US2011223639

Francia

EE.UU.

EE.UU.

METHOD FOR OBTAININGA FERMENTABLE PRODUCT FROMPOLLUTED LIGNO-CELLULOSIC BIOMASS. The invention relates toa method for obtaining a fermentable product intended for theproduction of metabolites by fermentation, characterised in that saidmethod includes the following steps: a) detoxification of a pollutedligno-cellulosic raw material including at least one polluting component;solid-liquid extraction in order to extract the polluting component (s)from the ligno-cellulosic raw material by solubilisation using at leastone solvent; recovery of the cleaned ligno-cellulosic raw material; b)pre-treatment of the cleaned ligno-cellulosic raw material bydefibration; c) enzymatic hydrolysis of the pre-treated ligno-cellulosicraw material in the presence of cellulose, and obtaining a fermentableproduct; d) optional purification of the resulting fermentable product.;The invention also relates to the use of the resulting fermentableproduct for producing metabolites by fermentation, as well as to aspecific method for producing ethanol from the fermentable product.

SYSTEM FORTREATMENT OF BIOMASSTO FACILITATETHEPRODUCTION OF ETHANOL. A method for treating biomass to besupplied to a fermentation system for the production of a fermentationproduct is disclosed. The method comprises the steps of pretreatingthe biomass into pre-treated biomass; separating the pre-treatedbiomass into a first component comprising glucan and a secondcomponent comprising sugars; providing a combined componentcomprising at least a portion of the first component and at least aportion of the second component; and treating the combinedcomponent of the pre-treated biomass into a treated componentcomprising glucose by application of an enzyme formulation. A systemfor treating biomass to be supplied to a fermentation system for theproduction of a fermentation product is also disclosed. The systemcomprises an apparatus configured to pre-treat the biomass; aseparator configured to separate the pre-treated biomass; and a vesselconfigured to contain a combined component.

PROCESS FOR CONVERSION OF GRANULAR STARCHTOETHANOL.The present invention concerns a method of producingglucose from a granular starch substrate comprising, contacting a slurrycomprising granular starch obtained from plant material with an alpha-amylase at a temperature below the starch gelatinization temperatureof the granular starch to produce oligosaccharides and hydrolyzing theoligosaccharides to produce a mash comprising at least 20% glucoseand further comprising fermenting the mash to obtain ethanol.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

FERMENTACIÓN DE AZÚCARES

Page 20: BOLETÍN ON-LINE vigilancia tecnológica

20

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

HIDRÓLISIS ENZIMÁTICADE RESIDUOSAGROALIMENTARIOSLIGNOCELULÓSICOS

El grupo de investigación AGR-203de la Universidad de Cádiz (UCA)ha puesto en marcha el proyecto“Hidrólisis enzimática de residuosagroalimentarios lignocelulósicospara bio-refineria”, enmarcado enel programa científico ceiA3, quepretende producir enzimas a bajocoste, a través de una fermentaciónen estado sólido, para facilitar laprodución de bioetanol. Los resi-duos agrícolas de partida son elorujo de uva, la cáscara de lanaranja, la paja de trigo y lacascarilla del arroz.

Este tipo de fermentaciones suelenser mucho más económicas ypresentan menor riesgo de conta-minación que las que se realizan encultivos sumergidos. Se centra enel hecho de que el sustrato delcual se alimenta el microorganismo(en este caso un tipo de hongo) esun sólido, por ejemplo, un residuoagrícola. El hongo crece directa-mente sobre el sustrato sólido,formando una película sobre él.Los residuos deben de recibirpreviamente algún tipo de pre-tratamiento (ultrasonidos, irradia-ciones o microondas), ya que esnecesario que se degrade previa-mente el sólido para facilitar elcrecimiento del hongo y queacceda mejor al interior de lospolímeros.

Los científicos de la UCA quierenprobar qué sucede al trabajarcon el orujo de uva, la cáscarade la naranja, la paja de trigo y lacascarilla del arroz combinadoscon tres microorganismos diferen-tes, mediante fermentaciones en

estado sólido. Están interesados enestablecer cuál es el hongo másadecuado, es decir, el que producemayor cantidad de enzimas y conmejores actividades, para digerirluego esos mismos residuos yobtener azúcares fermentablesdestinados a la producción debioetanol.

PRODUCCIÓN DEBIOCOMBUSTIBLES APARTIR DE ÁLAMOS

Un equipo científico de la Univer-sidad de Purdue (Indiana, EE.UU.)ha iniciado un proyecto de investi-gación de cinco años de duraciónpara evaluar la viabilidad de algunasespecies de álamo como materiaprima para la producción debioetanol.

Este tipo de árboles se han señala-do como potenciales materiasprimas en la categoría de biomasaforestal para la producción debiocombustibles por las siguientesrazones: crecen rápidamente, pro-ducen más volumen de biomasaque la mayoría de los cultivos decampo, se pueden prorrogarde forma vegetativa, son cultivosplurianuales que podrían norequerir tantos cuidados como loscultivos anuales del tipo del maíz yla soja y, a diferencia de los cultivosde campo, los álamos puedenrecolectarse en cualquier épocadel año y enviarse directamente alas fábricas de etanol, evitandoselos productores las operacionesde secado y almacenamiento.

Este estudio analizará sesenta ynueve variedades de álamo y surendimiento con diferentes suelosy climas, enfermedades e insectos yregímenes de fertilización y riego.

También se analizarán aspectosrelacionados con la plantaciióny la recolección.

OBTENCIÓN DEHIDRÓGENO A PARTIRDEL BIOGÁS GENERADOEN VERTEDEROS

La empresa Konectia,“spin off ” dela Universidad de Cádiz, es coordi-nadora del proyecto ”Obtenciónde hidrógeno a partir de biogas”.El objetivo del proyecto es crearun sistema compacto que permitagenerar una fuente de energíalimpia y eficiente como es el hidró-geno en los distintos vertederosde Andalucía.

Los Residuos Sólidos Urbanos(RSU) acumulados en los vertede-ros son una fuente importante deproducción de metano. En esteproyecto el metano se sometea un reformado catalítico queconsiste en una sucesión dereacciones químicas en presenciade un catalizador de manera queel metano reacciona con agua paraproducir hidrógeno y monóxidode carbono. Posteriormente, elhidrógeno se purifica eliminando elmonóxido con ayuda de una seriede etapas físicas, químicas y bioló-gicas que permiten eliminar losdistintos contaminantes presentesen el biogás.

La etapa fundamental de la depura-ción es la eliminación del ácidosulfhídrico, que se depura medianteuna tecnologóa optimizada porKonectia y que consiste en el usode bacterias específicas y que estápatentado por la UCA.

El hidrógeno obtenido puede sercomprimido y almacenado hasta suposterior utilización.

Page 21: BOLETÍN ON-LINE vigilancia tecnológica

21

UTILIZACIÓN DE AGUASUPERCRÍTICA PARAPRODUCIR ETANOL

Renmatix, una start-up con sedeen Kennesaw, en el Estado deGeorgia (EE.UU.) está usando aguasupercrítica, es decir agua sometidaa altas presiones y temperatura,para transformar astillas de maderaen azúcar que, a continuación,puede fermentarse para fabricarbiocombustibles y otros productosquímicos. Bajo estas condiciones, lacelulosa se disuelve y se convierterápidamente en moléculas deazúcar. Las reacciones tardansegundos, comparadas con otrosprocesos que tardan varios días.Debido a la alta velocidad de lareacción, un pequeño equipopuede producir una gran cantidad

de azúcar, lo que contribuiría areducir los costes de capital. Laempresa afirma que el procesopuede producir azúcar al mismoprecio que partiendo de la caña deazúcar, algo que ya se está usandopara producir biocombustiblesrentables en Brasil. Una vez creadoel azúcar, se puede fabricar etanolusando la misma tecnología que enuna planta convencional.

Por ahora, Renmatix solo haprobado la tecnología a pequeñaescala, usando una planta capaz deprocesar tres toneladas de astillasde madera al día.

Sin embargo, trabajar con aguasupercrítica presenta sus retos. Losmateriales susceptibles de utiliza-ción con agua supercrítica sonlimitados, así como la existencia

de reacciones extremadamenterápidas puede conducir a la forma-ción de productos derivados nodeseados. En proyectos anteriores,el agua supercrítica produjo ladeshidratación de parte del azúcargenerado, resultando compuestoscapaces de envenenar la levaduraque se usa para convertir el azúcaren etanol y el proceso presentabaun rendimiento relativamente bajo.Estas limitaciones parecen habersido superadas en las investigacio-nes desarrolladas por Renmatix.

Descomponer la hemicelulosaproduce otro tipo de azúcarllamado xilosa, que no funcionacon la fermentación convencional,pero que se puede usar paraalgunos biocombustibles avanzadosy para procesos bioquímicos.

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

Page 22: BOLETÍN ON-LINE vigilancia tecnológica

22

Tecnologías Químicas

B O L E T Í N O N - L I N E

HITACHI PLANTTECHNOLOGIES LTD et al.

HUFFMAN GERALD P

OLD DOMINIONUNIVERSITY RESFOUNDATION

NESTE OIL OYJ

WO2011148981

US2011294906

US2011289830

EP2390341

Japón

EE.UU.

EE.UU.

Finlandia

METHOD FOR PRODUCING BIOFUEL. Disclosed are a series ofprocesses for producing a biofuel, which include a technique whereincarbon dioxide serving as a carbon source is converted into a biomassby photosynthesis by photosynthetic microorganisms and theproduction of a biofuel is carried out after that. Specifically disclosed isa method for producing a biofuel, which is characterized by comprising:a culture step (S1) wherein photosynthetic microorganisms thataccumulate a fat or oil and a carbohydrate in the cells thereof arecultured in a broth; a fat or oil conversion step (S2) wherein thecarbohydrate accumulated in the cells of the photosyntheticmicroorganisms, which have been cultured in the broth, is convertedinto a fat or oil; an extraction step (S3) wherein the oil or fat isextracted from the cells of the photosynthetic microorganisms; and amodification step (S4) wherein the extracted fat or oil is modified.

INCORPORATION OF CATALYTIC DEHYDROGENATION INTOFISCHER-TROPSCH SYNTHESISTO LOWER CARBON DIOXIDEEMISSIONS. A method for producing liquid fuels includes the steps ofgasifying a starting material selected from a group consisting of coal,biomass, carbon nanotubes and mixtures thereof to produce a syngas,subjecting that syngas to Fischer-Tropsch synthesis (FTS) to producea hyrdrocarbon product stream, separating that hydrocarbon productstream into C1-C4 hydrocarbons and C5+ hydrocarbons to be usedas liquid fuels and subjecting the C1-C4 hydrocarbons to catalyticdehydrogenation (CDH) to produce hydrogen and carbon nanotubes.The hydrogen produced by CDH is recycled to be mixed with thesyngas incident to the FTS reactor in order to raise the hydrogen tocarbon monoxide ratio of the syngas to values of 2 or higher, which isrequired to produce liquid hydrocarbon fuels. This is accomplished withlittle or no production of carbon dioxide, a greenhouse gas. The carbonis captured in the form of a potentially valuable by-product, multi-walledcarbon nanotubes (MWNT), while huge emissions of carbon dioxideare avoided and very large quantities of water employed for thewater-gas shift in traditional FTS systems are saved.

PRODUCTION OF GLYCEROL-RELATED PRODUCTS FROMAHIGHTEMPERATURE REACTION.Disclosed are processes forproducing glycerol related products. One process comprisesintroducing a biomass and an alkylation reagent to a substantiallyoxygen free environment, hydrolyzing at a temperature at or above200 DEG C. one or more lipid glycerides in the biomass, methylatingone or more fatty acids in the biomass with methyl groups from thealkylation reagent, wherein the hydrolyzing and methylating occurcontemporaneously and separating resulting biodiesel and methylatedglycerol-related products from a residue of the biomass by condensation.

PROCESS AND MICROORGANISMS FOR PRODUCTION OFLIPIDS. The present invention provides a process for producing lipidsfor biofuel or lubricant and Streptomyces bacteria used in the process.The process comprises cultivating bacterial cells of the genusStreptomyces in a medium comprising organic waste(s) or residue(s)or mixtures thereof as carbon and/or nutrient source(s), recoveringlipids from the cells of said bacteria or from the cultivation medium,and using the recovered lipids or a fraction thereof as biofuel and/orlubricant, or as a starting material for biofuel and/or lubricantproduction. In addition, in one aspect the invention provides productsobtained by using the process according to this disclosure.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

TECNOLOGÍAS QUÍMICAS

Page 23: BOLETÍN ON-LINE vigilancia tecnológica

23

Tecnologías Químicas

B O L E T Í N O N - L I N E

LURGI GMBH et al.

SENESCOTECHNOLOGIESINC et al.

NOF CORP

TARGETED GROWTH INC

UNIV EAST CHINASCIENCE &TECH et al.

WO2011144192

WO2011133866

US2011258909

US2011250659

WO2011116568

Alemania

EE.UU.

Japón

EE.UU.

China

PROCESS FOR PRODUCTION OF BIODIESEL. A process forcontinuous production of biodiesel from vegetable oils or animal fatsby transesterification with methanol or ethanol to give crude fattyacid alkyl esters, subsequent washing with water in a wash column toremove water-soluble impurities, subsequent drying by vaporizationof the water content and subsequent removal of steryl glycosides byadsorption onto calcium bentonite, wherein the adsorption column (s)used is/are regenerated in a first step, for desorption of the sterylglycosides, by rinsing with a mixture consisting of fatty acid alkyl estersand methanol or ethanol, and in a subsequent second step, for removalof methanol residues, by rinsing with fatty acid alkyl esters or withgaseous nitrogen or carbon dioxide.

TRANSGENICALGAEWITH ENHANCED OIL EXPRESSION.Thepresent invention provides transgenic algal cells that produce anincreased amount of oil, methods of making transgenic algal cells, andmethods of obtaining biofuel from the transgenic algal cells.

FLOW IMPROVER FOR BIODIESEL FUELS. A flow improver forbiodiesel fuels, comprising an [alpha]-olefin polymer with a weightaverage molecular weight of 50,000 to 500,000 that is obtained bypolymerization of an [alpha]-olefin mixture (C), wherein the mole ratio(A)/(B) of an [alpha]-olefin (A) with 10 carbon atoms and an [alpha]-olefin (B) with 14 to 18 carbon atoms is (A)/(B)=10/90 to 60/40.

MODIFIED PHOTOSYNTHETIC MICROORGANISMS FORPRODUCING LIPIDS. This disclosure describes genetically modifiedphotosynthetic microorganisms, e.g., Cyanobacteria, that containone or more exogenous genes encoding a phospholipase and/orthioesterase, which are capable of producing an increased amountof lipids and/or fatty acids. This disclosure also describes geneticallymodified photosynthetic microorganisms that contain one or moreexogenous genes encoding a diacyglycerol acyltransferase, aphosphatidate phosphatase, and/or an acetyl-CoA carboxylase, whichare capable of producing increased amounts of fatty acids and/orsynthesizing triglycerides, as well as photosynthetic microorganismcomprising mutations or deletions in a glycogen biosynthesis orstorage pathway, which accumulate a reduced amount of glycogenunder reduced nitrogen conditions as compared to a wild typephotosynthetic microorganism.

PROCESS FOR PREPARING BIODIESEL CONTAINING NOBYPRODUCT GLYCEROL. A process for preparing biodieselcontaining no byproduct glycerol comprises: mixing transesterificationreagent with animal-vegetable fat at a temperature between 20 and 100DEG C for 2 to 32 hours under the action of catalyst, wherein themolar ratio of the transesterification reagent to the animal-vegetablefat is 2: 1 -30: 1 and the addition amount of the catalyst is 1-30 wt.%of the animal-vegetable fat; filtering to remove the catalyst; distilling toremove the excessive transesterification reagent; and obtaining thebiodiesel product. The catalyst is easy to be separated, need no washingand produce no wastewater. It is possible to reuse the catalyst. Thetransesterification reaction using the fat and the transesterificationreagent can produce the product which can be directly used as fuels.The reaction produces no byproduct glycerol and improves theutilization rate of raw materials.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

TECNOLOGÍAS QUÍMICAS

Page 24: BOLETÍN ON-LINE vigilancia tecnológica

NESTE OIL INAUGURAUNA MACRO-PLANTADE BIODIÉSEL ENROTTERDAM

Neste Oil inaugura en Diciembreen Rotterdam una planta deproducción de biodiésel. La plantase caracteriza por su elevadovolumen de producción y la granvariedad de productos de partidautilizados (cultivos energéticos,residuos agroalimentarios, aceitesde algas y vegetales usados y grasasanimales). Con esta instalación,Neste Oil es propietaria de dos delas mayores instalaciones producto-ras de biocarburantes del mundo.La otra está en Singapur y presentalas mismas características.

Como la planta asiática, la deRotterdam también producebiodiésel con la tecnología NExBTL,patentada por la compañíafinlandesa.

Según datos aportados por NesteOil, la planta, que se acerca alconcepto de biorrefinería, tieneuna capacidad de producción anual

de 800000 toneladas y ha conlle-vado una inversión de 670 millonesde euros. El sistema NExBTLadmite una amplia variedad deaceites vegetales, subproductos delrefino de aceites vegetales (porejemplo, estearina), así como aceitesusados y grasas que cumplen conlos estrictos criterios de sostenibi-lidad incluidos en el Directiva deEnergías Renovables de la UE.Entre esas materias primas tambiénestá el aceite de algas, graciassobre todo a los estudios que lacompañía finlandensa desarrollajunto a varios organismos deinvestigación holandeses.

La información de Neste Oilañade que la producción estáreconocida por el ISCC(International Sustainability andCarbon Certification), uno de lossiete primeros esquemas decertificación de sostenibilidadde biocarburantes aprobadospor la Comisión Europea.

Con la factoría de Rotterdam, queemplea a 150 personas, Neste Oilsuma anualmente una capacidad

de producción de dos millonesde toneladas de biocarburantes.A las mencionadas de Singapur yHolanda, se añaden dos plantas enla refinería de Porvoo, en Finlandia,que entraron en funcionamientoen 2007 y 2009 y tienen unacapacidad total de 380000toneladas anuales.

IDENTIFICACIÓN DEMICROALGASPRECURSORAS DEBIODIÉSEL

La compañía biotecnológicaespañola Biomar MicrobialTechnologies ha identificado seisalgas susceptibles de ser utilizadascomo precursoras de biodiésel,cultivadas con sales y luz solar y sinmodificación genética.

Esta empresa cuenta con la mayorcolección de compuestos marinosútiles de toda Europa, recopiladadurante los últimos quince años,con más de 58000 extractos y1500 compuestos de caldos defermentación disponibles para ser

24

Tecnologías Químicas

B O L E T Í N O N - L I N E

TRANS BIO DIESEL LTDWO2011107977 Israel A PROCESS FORTHE ENZYMATIC SYNTHESIS OF FATTYACIDALKYL ESTERS. Disclosed are an enzymatic batchwise or continuousprocess for the production of fatty acid alkyl esters for use in thebiofuels, food and detergent industries and a system therefor. Theprocess utilizes enzymes immobilized on a hydrophobic resin mixedwith a fatty acid source and an alcohol or alcohol donor in thepresence of an alkaline or mild alkaline aqueous buffer, or in thepresence of water solution. The production process for fatty acid alkylesters is carried out by transesterification or esterificationsimultaneously or sequentially. The biocatalyst activity is maintainedwith no significant activity losses in multiple uses and also avoids theaccumulation of glycerol and water by-products or other hydrophiliccompounds on the biocatalyst

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDOTÉCNICO

TECNOLOGÍAS QUÍMICAS

Page 25: BOLETÍN ON-LINE vigilancia tecnológica

25

Tecnologías Químicas

B O L E T Í N O N - L I N E

Boletín elaborado con la colaboración de:

Montalbán, 3. 2º Dcha.28014 MadridTel: 91 781 00 76E-mail: [email protected]

Paseo de la Castellana, 7528071 MadridTel: 91 349 53 00Email: [email protected]

Avda Complutense 22.28040 MadridTel: 91 346 08 99e-mail: [email protected]

utilizados en ensayos clínicos condiferentes aplicaciones dentro delsector de los biocombustibles, laalimentación y la salud.

Los primeros ensayos para producirbiodiésel se realizaron en ellaboratorio, y, posteriormente,el cultivo se trasladó a piscinas de400 litros en las instalacionesde Biomar, obteniéndose biodiésela partir de los aceites que surgende la conversión de la biomasade microalgas en un proceso detransesterificación. La produccióna gran escala se podrá realizar,previsiblemente, aumentando ladisponibilidad del espacio decultivo de dichas microalgas, faseen la que, actualmente, se estábuscando un colaborador.

RÉCORD DEPRODUCCIÓN DEBIODIÉSEL EN CANDEIAS

La planta de biodiésel que la em-presa estatal brasileñal PetrobrasBiocombustibles posee enCandeias, en el estado de Bahía, alnordeste del país, y es su principalunidad del parque productor delmencionado biocarburante, registróen Noviembre un nuevo récordmensual, con 13.86 millones delitros de biodiésel. La marcaanterior era de Marzo pasado,cuando fueron producidos 10.63millones de litros.

La unidad también registró unnuevo récord diario, con unaproducción de 570 mil litros el 26

de Noviembre. "El último Récorddiario ocurrió el 1 de Octubre,con 565 mil litros producidos enun único día", destacó la compañíaen un comunicado.

De acuerdo con Petrobras, launidad de Candeais comenzó aoperar con capacidad de producir57 millones de litros de biodiéselpor año, oferta elevada a 217.2millones de litros de biocombus-tible por año después de algunosajustes en los procesos y obras deduplicación.

Entre plantas propias y comparti-das, Petrobras Biocombustiblestiene capacidad total para produciraproximadamente 700 millones delitros al año.