Clasificación DE LAS ENERGIAS

36
Clasificación DE LAS ENERGIAS Convencionales También llamadas no renovables. Son aquellas que proporcionan la parte más importante de energía consumida en los piases industrializados. Estos combustibles, una vez usados no se pueden restituir. Un ejemplo de este tipo de energía es: el carbón, el petróleo, el gas natural, el uranio y el agua de una presa. Energías alternativas Son las energías que se encuentran directamente en la naturaleza y son inagotables, aunque en estos tiempos ya hay muchas que son escasas. Estas energías no contaminan al medio ambiente. Un ejemplo de este tipo de energías es: la energía solar, la eólica, la hidráulica, la de las mareas, la de las olas, la geotérmica i la de biomasa. ENERGIAS ALTERNATIVAS: Se consideran energías limpias porque no contaminan. Dependen de la inclinación del sol, la fuerza del viento, del nivel del mar... todo esto hace que no estén repartidas uniformemente por todo el planeta. También pueden contribuir a una contaminación ambiental por lo que se refiere al mal efecto visual i el espacio que ocupan. ENERGÍA SOLAR Se puede considerar el origen de casi todas las demás energías. De las energías renovables es la que tiene más futuro y la que va a durar por más tiempo y la que seguro que no se va a agotar. La aplicación principal de la energía solar es el calentamiento de agua para el uso de casa. Esto se produce gracias a unos plafones solares que se colocan en la parte superior del edificio; tienen una capa de vidrio que permite la entrada de las radiaciones del sol. Por el interior de los plafones circula agua fría, la cual se calentará a medida que las radiaciones aumenten, entonces esta agua, pasara a depositarse en un tanque.

Transcript of Clasificación DE LAS ENERGIAS

Page 1: Clasificación DE LAS ENERGIAS

Clasificación DE LAS ENERGIAS

Convencionales

También llamadas no renovables. Son aquellas que proporcionan la parte más importante de energía consumida en los piases industrializados. Estos combustibles, una vez usados no se pueden restituir. Un ejemplo de este tipo de energía es: el carbón, el petróleo, el gas natural, el uranio y el agua de una presa.

Energías alternativas

Son las energías que se encuentran directamente en la naturaleza y son inagotables, aunque en estos tiempos ya hay muchas que son escasas. Estas energías no contaminan al medio ambiente. Un ejemplo de este tipo de energías es: la energía solar, la eólica, la hidráulica, la de las mareas, la de las olas, la geotérmica i la de biomasa.

ENERGIAS ALTERNATIVAS:

Se consideran energías limpias porque no contaminan. Dependen de la inclinación del sol, la fuerza del viento, del nivel del mar... todo esto hace que no estén repartidas uniformemente por todo el planeta. También pueden contribuir a una contaminación ambiental por lo que se refiere al mal efecto visual i el espacio que ocupan.

ENERGÍA SOLAR

Se puede considerar el origen de casi todas las demás energías. De las energías renovables es la que tiene más futuro y la que va a durar por más tiempo y la que seguro que no se va a agotar.

La aplicación principal de la energía solar es el calentamiento de agua para el uso de casa. Esto se produce gracias a unos plafones solares que se colocan en la parte superior del edificio; tienen una capa de vidrio que permite la entrada de las radiaciones del sol. Por el interior de los plafones circula agua fría, la cual se calentará a medida que las radiaciones aumenten, entonces esta agua, pasara a depositarse en un tanque.

La energía solar se convierte en energía eléctrica por las células fotovoltaicas (solares).

ENERGÍA HIDRÁULICA

Se utiliza principalmente para producir energía eléctrica. La energía potencial del agua en su nivel más alto se va perdiendo a medida que el nivel del agua disminuye; el agua gana energía cinética, la cual llega a una turbina de rotación que acciona un generador y produce energía eléctrica.

En estas transformaciones siempre hay pérdidas de energía térmica.

Page 2: Clasificación DE LAS ENERGIAS

ENERGÍA DE LAS MAREAS

En lugares de la costa se puede aprovechar la energía de las olas del mar construyendo una presa o barrera. Cuando hay marea alta la presa se abre y cuando la marea baja la presa se cierra. Cuando el nivel de agua baja, se deja salir el agua que hace girar una turbina que acciona un generador y produce electricidad.

ENERGÍA EÓLICA

Esta energía se consigue obtener mediante unos aerogeneradores. La energía del viento se utiliza para hacer girar una turbina que moverá un generador para producir la electricidad. Para que esto ocurra la velocidad del viento tiene que ser entre 5 y 25m/s.

En España el parque eólico de Tarifa (Cádiz) se ha convertido en uno de los más eficaces del mundo. Tiene 250 aerogeneradores y suministra electricidad a 25.000 casas.

La energía eólica también tiene inconvenientes para el medio ambiente: muchas aves quedan atrapadas entre las turbinas y mueren, se producen alteraciones del paisaje y producen ruido.

LA BIOMASA

La biomasa es el conjunto de plantas y materiales orgánicos de los cuales podemos obtener energía. La leña está considerada una de las primeras fuentes de energía conocidas. Hoy en día es peligroso el consumo de leña como combustible ya que existe un gran peligro de deforestación de los bosques. Por eso se suele utilizar materiales orgánicos y plantas con un rápido crecimiento para el uso como combustible.

La basura de materia orgánica, agrícola, industrial o doméstica contienen energía que puede ser utilizada para quemar o para fermentar en ausencia de aire en biogeneradores. De ésta manera se obtiene un gas llamado biogás que se utiliza como combustible en muchos países como en China o en Europa.

ENERGÍA GEOTÉRMICA

La energía geotérmica consiste en aprovechar la energía térmica del interior de la Tierra. El interior de la Tierra es caliente como consecuencia de la fusión de las rocas. Se han encontrado rocas a más de 200ºC. El agua caliente también sale al exterior por grietas de las rocas.

La utilización de esta energía se puede hacer:

Utilizando directamente el agua caliente que sale de la Tierra y se conduce a las casas para el uso doméstico.

Page 3: Clasificación DE LAS ENERGIAS

Mediante una central geotérmica. Ésta central aprovecha el agua caliente de las rocas. Para hacerlo se introduce agua fría al interior de la Tierra, entonces se pone en contacto con las rocas calientes y se hace subir a la superficie mediante una bomba. Ésta agua será utilizada para producir electricidad.

Hay centrales geotérmicas en Japón, Italia y EUA.

ENERGIAS CONVENCIONALES O NO RENOVABLES:

Un ejemplo de este tipo de energía es: el carbón, el petróleo, el gas natural, el uranio y el agua de una presa.

La ventaja principal de las energías no renovables es que producen mucha cantidad de energía por unidad de tiempo y también que hay una distribución regular de fuentes de energía por todo el planeta.

Los inconvenientes son más problemáticos, entre los más importantes podemos destacar:

El efecto invernadero. Consiste en la elevación de temperatura que experimenta la atmósfera terrestre a causa de la presencia de ciertos gases llamados gases de invernadero, emitidos en las reacciones de combustión. Estos gases son:

Dióxido de carbono (CO2)

Vapor de agua (H20)

Metano (CH4)

Monóxido de dinitrógeno (N2O)

Ozono (O3)

Si la emisión de estos gases no se controla, se producirá dentro de

unos veinte años se producirá un aumento de 2 grados en la

temperatura del planeta. Esto causará el deshielo de los polos.

El efecto nocivo de las radiaciones: si se produce algún escape de las centrales nucleares.

Los residuos radioactivos.

PETRÓLEO

Page 4: Clasificación DE LAS ENERGIAS

Se encuentra en grandes cantidades bajo la superficie terrestre y se emplea como combustible y materia prima para la industria química. Es una energía no renovable lo que comporta bastantes problemas de contaminación y no se puede restituir. El petróleo y sus derivados se emplean para fabricar medicinas, fertilizantes, productos alimenticios, objetos de plástico, materiales de construcción, pinturas o textiles y para generar electricidad. El petróleo crudo se encuentra en cantidades comerciales en cuencas sedimentarias situadas en más de 50 países de todos los continentes. Los mayores yacimientos se encuentran en Oriente Próximo, donde se hallan más de la mitad de las reservas conocidas de crudo.

PERFORACIÓN

Los geólogos y otros científicos han desarrollado técnicas que indican la posibilidad de que exista petróleo en las profundidades. Sin embargo, el único método para confirmar la existencia de petróleo es perforar un pozo que llegue hasta el yacimiento. La primera destilación del petróleo bruto se llevó a cabo en Rusia, en el s. XVIII, y la perforación histórica que inició la carrera por el «oro negro» tuvo lugar en Pennsylvania en 1859. En muchos casos, las compañías petroleras gastan millones de dólares en perforar pozos en zonas prometedoras y se encuentran con que los pozos están secos. Durante mucho tiempo, la inmensa mayoría de los pozos se perforaban en tierra firme. Después de la II Guerra Mundial se empezaron a realizar perforaciones en aguas poco profundas desde plataformas sostenidas por pilotes apoyados en el fondo del mar. Posteriormente se desarrollaron plataformas flotantes capaces de perforar, por lo general, profundidades de 2.000 a 3.000 m, si bien en ocasiones se ha llegado incluso a los 10.000 m. Las reservas actuales localizadas se hallan, en un 25 %, en los fondos marinos, donde se efectúan perforaciones y extracciones a varios centenares de metros de profundidad por debajo del fondo. Se han encontrado importantes yacimientos de petróleo en el mar: en Estados Unidos (sobre todo en el golfo de Florida), en Europa, sobre todo en el mar del Norte, en Rusia (en el mar de Barents y el mar de Kara) y en las costas de Brasil. Es probable que la mayoría de los descubrimientos importantes de petróleo del futuro se produzcan en el mar.

TRANSPORTE Y UTILIZACION

El petróleo crudo se transporta a las refinerías mediante oleoductos, barcazas o gigantescos petroleros oceánicos. Las refinerías contienen una serie de unidades de procesado que separan los distintos componentes del crudo calentándolos a diferentes temperaturas, modificándolos químicamente y mezclándolos para fabricar los productos finales, sobre todo gasolina, queroseno, gasoil, combustible para aviones de reacción, gasóleo de calefacción, aceite pesado, lubricantes y materias primas para las plantas petroquímicas.

PROBLEMAS DE CONTAMINACIÓN

En sus orígenes la industria petrolera generaba una contaminación medioambiental considerable. A lo largo de los años, bajo la doble influencia de los avances tecnológicos y el endurecimiento de las normas, se ha ido haciendo mucho más limpia. Los vertidos de las refinerías han disminuido mucho y aunque siguen produciéndose explosiones en los pozos son relativamente infrecuentes gracias a las mejoras tecnológicas. Sin embargo, resulta más

Page 5: Clasificación DE LAS ENERGIAS

difícil vigilar la situación en los mares. Los petroleros oceánicos siguen siendo una fuente importante de vertidos de petróleo.

VENTAJAS

Como la mayoría de las otras energías no renovables, se produce mucha cantidad en poco tiempo y puedes encontrar fuentes de petróleo en muchas zonas del planeta. Así que su distribución por el planeta es uniforme y regular.

Índice

1.- Introducción

2.- ¿Qué es la energía?

3.- ¿Cuales son los tipos de energía?

4.- Energía Mecánica.

5.- Energía Potencial.

6.- Energía Cinética.

7.- Energía Química.

8.- Energía Calórica.

9.- Energía Eléctrica.

10.- Energía Nuclear.

12.- Energía Solar.

13.- Energía Geotérmica.

14.- Energía Eólica.

15.- Energía Hidráulica.

16.- Fuentes de Energía Renovables.

17.- Fuentes de Energía no Renovables.

Page 6: Clasificación DE LAS ENERGIAS

18.- Energía Mareomotriz.

19.- Ejemplos gráficos.

25.- Conclusión.

26.- Bibliografía.

Introducción

La energía, como sabemos, es indispensable para la subsistencia del hombre, pero, ¿conocemos su real significado y de que manera afecta nuestra vida diaria?

En este álbum veremos los distintos tipos de energía y lo que es la energía. También sus significados y algunos dibujos, fotos y ejemplos de todos los tipos de energía.

¿Qué es la Energía?

Eficacia, poder, virtud para obrar.

Fuerza de voluntad, vigor y tesón.

Causa capaz de transformarse en trabajo mecánico.

La Energía es un concepto esencial de las ciencias. Desde un punto de vista material complejo de definir. La más básica de sus definiciones indica que se trata de la capacidad que poseen los cuerpos para producir Trabajo, es decir la cantidad de energía que contienen los cuerpos se mide por el trabajo que son capaces de realizar.

La realidad del mundo físico demuestra que la energía, siendo única, puede presentarse bajo diversas Formas capaces de Trasformarse unas a otras.

Fuentes de Energía Renovables

Las energías renovables son aquellas que llegan en forma continua a la Tierra y que a escalas de tiempo real parecen ser inagotables.

Ejemplos:

Energía Hidráulica

Energía Solar

Energía biomasa

Energía Mareomotriz

Page 7: Clasificación DE LAS ENERGIAS

Fuentes de Energía No Renovables

Son fuentes de energía no renovables aquellas que se encuentran en forma limitada en nuestro planeta y se agotan a medida que se les consume.

Ejemplos:

El carbón.

El petróleo

El Gas Natural

La energía geotérmica

La energía nuclear

Energía solar

Es la energía que llega a la Tierra proveniente de la estrella más cercana a nuestro planeta: El Sol. Esta energía abarca un amplio espectro de Radiación Electromagnética, donde la luz solar es la parte visible de tal espectro.

La energía solar es generada por la llamada Fusión Nuclear que es la fuente de vida de todas las estrellas del Universo.

El hombre puede transformar la energía solar en energía térmica o eléctrica. En el primer caso la energía solar es aprovechada para elevar la temperatura de un fluido, como por ejemplo el agua, y en el segundo caso la energía luminosa del sol transportada por sus fotones de luz, incide sobre la superficie de un material semiconductor (ej: el silicio), produciendo el movimiento de ciertos electrones que componen la estructura atómica del material. Un movimiento de electrones produce una corriente eléctrica que se puede utilizar como fuente de energía de componentes eléctricos o bien electrónicos. Es el caso del principio de funcionamiento de las calculadoras solares.

Ejemplo:

Las que reciben las pantallas solares.

Energía química

Es aquella producto de una combustión (cualquier sustancia que arde o se "quema"), reacción en la cual se combina el oxígeno del aire con la materia del cuerpo que arde. Durante la combustión se producen luz y calor. Cuando las moléculas se rompen se libera energía química.

Page 8: Clasificación DE LAS ENERGIAS

Ejemplos:

Los alimentos (sobre todo del grupo de los energéticos)

Las pilas o baterías

La gasolina

Energía potencial

La energía potencial es cuando un objeto o cuerpo no está en movimiento ( o sea en reposo)

Ejemplo:

Un columpio (que no está en movimiento)

La energía eléctrica

La energía eléctrica se produce por el movimiento de cargas eléctricas, específicamente electrones (cargas negativas que giran alrededor del núcleo de los átomos) a través de un cable conductor.Cada vez que se acciona un interruptor, se genera un movimiento de millones de electrones, los que circulan a través de un cable conductor metálico. Las cargas que se desplazan forman parte de los átomos que conforman el cable conductor. Los electrones se mueven desde el enchufe al aparato eléctrico -ya sea lavadora, radio, televisión, etcétera- lo que produce un tránsito de energía entre estos dos puntos.La energía eléctrica puede hacer funcionar distintos aparatos y se transforma en otras manifestaciones de ella. Por ejemplo, cuando la energía eléctrica llega a una enceradora, se transforma en energía mecánica, calórica y en algunos casos luminosa. Lo mismo se puede observar cuando funciona un secador de pelo o estufa.

¿De dónde se obtiene?

Actualmente, la energía eléctrica del mundo se puede producir a través de distintos medios como por

ejemplo:

Tostadora

Refrigerador

Ventilador

Plancha

Page 9: Clasificación DE LAS ENERGIAS

Tetera eléctrica

Energía nuclear

La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión nuclear (división de núcleos atómicos pesados) o bien por Fusión nuclear (unión de núcleos atómicos muy livianos. En las reacciones nucleares se libera una gran cantidad de energía, debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar en base a la relación Masa- Energía producto de la genialidad del gran físico Albert Einstein.

En relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo, la generada por la combustión del combustible fósil del metano.

Fisión Nuclear

Es una reacción nuclear que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, liberación de 2 ó 3 nuevos neutrones y de una gran cantidad de energía (200 MeV) que se transforma finalmente en calor.

Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados, produciendo una Reacción nuclear en cadena. Cabe señalar, que los núcleos atómicos utilizados son de Uranio - 235.

El proceso de la fisión permite el funcionamiento de los Reactores nucleares que actualmente operan en el mundo.

Fusión Nuclear

La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.

La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas . Ambos métodos buscan que la velocidad de las partículas aumente para así vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.

Page 10: Clasificación DE LAS ENERGIAS

Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado Plasma Físico. Este proceso es propio del Sol y las estrellas, pues se tratan de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.

El confinamiento de las partículas se logra utilizando un "Confinamiento Magnético", o bien un "Confinamiento Inercial". El Confinamiento Magnético aprovecha el hecho que el plasma está compuesto por partículas (núcleos) con carga eléctrica. Se sabe que si una de estas partículas interactúa con un Campo Magnético su trayectoria y velocidad cambian, quedando atrapadas por dicho Campo. El Confinamiento Inercial permite comprimir el plasma hasta obtener densidades de 200 a 1000 veces mayor que la de sólidos y líquidos. Cuando se logra la compresión deseada se eleva la temperatura del elemento, lo que facilita aún más el proceso de la fusión.

La fusión nuclear se puede representar por el siguiente esquema y relación de equilibrio:

2H + 2H → 3He + 1n+ 3,2 MeV

Ejemplo:

Bomba Atómica.

Energía Mecánica

Es aquella que el hombre utilizó, en un comienzo, como producto de su propio esfuerzo corporal. Luego, luego utilizo la fuerza animal, para lo que domesticó animales como bueyes, caballos y burros.

La energía mecánica engloba dos tipos de energía; la energía potencial (cuando el cuerpo está en reposo) y la energía cinética (cuando un cuerpo está en movimiento)

Ejemplo:

Tractor.

Energía Mareomotriz

Es la energía obtenida del movimiento de las mareas y las olas del mar. El Movimiento de mareas es generado por la interacción gravitatoria entre la Tierra y la Luna. Tal movimiento se utiliza para traspasar energía cinética a generadores de electricidad.

La gran dificultad para la obtención de este tipo de energía es su alto costo y el establecimiento de un lugar apto geográficamente para confinar grandes masas de agua en recintos naturales.

Ejemplos:

Page 11: Clasificación DE LAS ENERGIAS

Las olas.

Las mareas.

Energía hidráulica

Es aquella energía obtenida principalmente de las corrientes de agua de los ríos. El agua de un río se almacena en grandes embalses artificiales que se ubican a gran altura respecto de un nivel de referencia. El agua adquiere una importante cantidad de energía potencial (aquella que poseen los cuerpos que se encuentran a cierta altura). Posteriormente, el agua se deja caer por medio de ductos, por lo tanto toda su energía potencial se forma en energía cinética (aquella que posee un cuerpo gracias a su estado de movimiento). La energía cinética de las caídas de agua se aprovecha, por ejemplo, para mover turbinas generadoras de electricidad, tal es el principio de las Centrales Hidroeléctricas.

Ejemplo:

Centrales Hidroeléctricas

Energía Geotérmica

Energía contenida también en el interior de la Tierra en forma de gases. Al ser extraída se presenta en forma de gases de alta temperatura (fumarolas), en forma de vapor y agua hirviendo (geyser) y en forma de agua caliente (fuentes termales).

Ejemplos:

Las fuentes Termales

Los Geyser

Energía eólica

Esta energía es producida por los vientos generados en la atmósfera terrestre. Se puede transformar en energía eléctrica mediante el uso de turbinas eólicas que basan su funcionamiento en el giro de aspas movidas por los vientos. Bajo el mismo principio se puede utilizar como mecanismo de extracción de aguas subterráneas o de ciertos tipos de molinos para la agricultura.

Al igual que la energía solar se trata de un tipo de energía limpia, la cual sin embargo presenta dificultades, pues no existen en la naturaleza flujos de aire constantes en el tiempo, más bien son dispersos e intermitentes.

Page 12: Clasificación DE LAS ENERGIAS

Este tipo de energía puede ser de gran utilidad en regiones aisladas, de difícil acceso, con necesidades de energía eléctrica, y cuyos vientos son apreciables en el transcurso del año. Esta descripción se ajusta bien a ciertas zonas del sur de Chile.

Ejemplo:

Tornados

Energía cinética

Energía cinética, energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto. Las relaciones entre la energía cinética y la energía potencial, y entre los conceptos de fuerza, distancia, aceleración y energía, pueden ilustrarse elevando un objeto y dejándolo caer. Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética.

Ejemplo:

Un columpio (que está en movimiento)

Energía Calórica

La energía calórica es la energía que se transmiten dos cuerpos (u objetos) con distintas temperaturas.

Ejemplos:

Agua caliente y hielo.

¿Cuáles son los tipos de Energía?

Los tipos de energía son:

Energía Mecánica

Energía Potencial

Energía Cinética

Energía Química

Energía Calórica

Page 13: Clasificación DE LAS ENERGIAS

Energía Eléctrica

Energía Nuclear

Energía Solar

Energía Geotérmica

10- Energía eólica

11-Energía Hidráulica

12- Fuentes de energía renovables

13- Fuentes de energía no renovable

14- Energía Mareomotriz

Conclusión.

El hombre, para satisfacer sus necesidades, debe realizar una serie de trabajos. A través de la evolución de este, sus necesidades han cambiado, y por consiguiente, las maneras de realizar estos trabajos. Sin duda, entonces, la energía y su dominio es importantísima para la realización de estas tareas ya que sin ellas el ser humano no sobreviviría. Entonces, el desarrollo de las tecnologías de dominio de las energías determinarán el futuro del hombre.

Gracias a la realización de este trabajo hemos aprendido sobre la importancia de la energía, su conocimiento y dominio por parte del ser humano, para la satisfacción de las necesidades de este.

Bibliografía

Página de internet

http://www.cchen.cl/alumno/index.html#energia

2-Página de internet

http://www.icarito.cl/

3-Diccionario Sopena Aristos

Page 14: Clasificación DE LAS ENERGIAS

Este es un dibujo de cómo funciona la energía mareomotriz.

En esta foto se muestran pantallas solares; ellas reciben energía solar y así ellas transmiten energía (Energía Solar y Fuentes de energía renovables)

Page 15: Clasificación DE LAS ENERGIAS

Este es un dibujo de un esquema de turbina eólica (Energía eólica)

Este es un dibujo de Fisión Nuclear ( Energía nuclear)

Page 16: Clasificación DE LAS ENERGIAS

Este dibujo es un ejemplo de energía cinética

Este dibujo muestra un ejemplo de energía potencial

Este es el dibujo es de una Torre de alta tensión (Energía eléctrica)

Page 17: Clasificación DE LAS ENERGIAS

Esta foto es un ejemplo de Energía geotérmica y Fuentes de energía no renovables

Este dibujo es de una central Hidroeléctrica Termoeléctrica.

(Energía Hidráulica)

Page 18: Clasificación DE LAS ENERGIAS

En esta foto vemos un tractor que es un ejemplo de Energía Mecánica.

Page 19: Clasificación DE LAS ENERGIAS

Aquí vemos un ejemplo de alimento. (Energía Química)

En este dibujo podemos ver un ejemplo de Energía Calórica.

QuímicaDe Wikipedia, la enciclopedia libre(Redirigido desde Composición química)Saltar a navegación, búsqueda

Antoine Lavoisier, considerado el padre de la química moderna.

Page 20: Clasificación DE LAS ENERGIAS

Doble hélice de la molécula de ADN.

Átomo de helio.

Se denomina química (del árabe kēme (kem, كيمياء), que significa "tierra") a la ciencia que estudia la composición, estructura y propiedades de la materia, como los cambios que ésta experimenta durante las reacciones químicas y su relación con la energía. Históricamente la química moderna es la evolución de la alquimia tras la Revolución química (1733).

Las disciplinas de la química han sido agrupadas por la clase de materia bajo estudio o el tipo de estudio realizado. Entre éstas se tienen la química inorgánica, que estudia la materia inorgánica; la química orgánica, que trata con la materia orgánica; la bioquímica, el estudio de substancias en organismos biológicos; la físico-química, comprende los aspectos energéticos de sistemas químicos a escalas macroscópicas, moleculares y atómicas; la química analítica, que analiza muestras de materia tratando de entender su composición y estructura. Otras ramas de la química han emergido en tiempos recientes, por ejemplo, la neuroquímica que estudia los aspectos químicos del cerebro.

Contenido

Page 21: Clasificación DE LAS ENERGIAS

[ocultar]

1 Introducción 2 Historia 3 Subdisciplinas de la química 4 Los aportes de célebres autores 5 Campo de trabajo: el átomo 6 Conceptos fundamentales

o 6.1 Partículas o 6.2 De los átomos a las moléculas o 6.3 Orbitales o 6.4 De los orbitales a las sustancias o 6.5 Disoluciones o 6.6 Medida de la concentración o 6.7 Acidez o 6.8 Formulación y nomenclatura

7 Véase también 8 Enlaces externos

Introducción

La ubicuidad de la química en las ciencias naturales hace que sea considerada como una de las ciencias básicas. La química es de gran importancia en muchos campos del conocimiento, como la ciencia de materiales, la biología, la farmacia, la medicina, la geología, la ingeniería y la astronomía, entre otros.

Los procesos naturales estudiados por la química involucran partículas fundamentales (electrones, protones y neutrones), partículas compuestas (núcleos atómicos, átomos y moléculas) o estructuras microscópicas como cristales y superficies.

Desde el punto de vista microscópico, las partículas involucradas en una reacción química pueden considerarse como un sistema cerrado que intercambia energía con su entorno. En procesos exotérmicos, el sistema libera energía a su entorno, mientras que un proceso endotérmico solamente puede ocurrir cuando el entorno aporta energía al sistema que reacciona. En la gran mayoría de las reacciones químicas hay flujo de energía entre el sistema y su campo de influencia, por lo cual podemos extender la definición de reacción química e involucrar la energía cinética (calor) como un reactivo o producto.

Aunque hay una gran variedad de ramas de la química, las principales divisiones son:

Química Orgánica Química Inorgánica Fisicoquímica

Page 22: Clasificación DE LAS ENERGIAS

Química analítica Bioquímica

Es común que entre las comunidades académicas de químicos la química analítica no sea considerada entre las subdisciplinas principales de la química y sea vista más como parte de la tecnología química. Otro aspecto notable en esta clasificación es que la química inorgánica sea definida como "química no orgánica". Es de interés también que la Química Física es diferente de la Física Química. La diferencia es clara en inglés: "chemical physics" y "physical chemistry"; en español, ya que el adjetivo va al final, la equivalencia sería:

Química física Physical Chemistry Física química Chemical physics

Usualmente los químicos son educados en términos de físico-química (Química Física) y los físicos trabajan problemas de la física química.

La gran importancia de los sistemas biológicos hace que en nuestros días gran parte del trabajo en química sea de naturaleza bioquímica. Entre los problemas más interesantes se encuentran, por ejemplo, el estudio del desdoblamiento de las proteínas y la relación entre secuencia, estructura y función de proteínas.

Si hay una partícula importante y representativa en la química es el electrón. Uno de los mayores logros de la química es haber llegado al entendimiento de la relación entre reactividad química y distribución electrónica de átomos, moléculas o sólidos. Los químicos han tomado los principios de la mecánica cuántica y sus soluciones fundamentales para sistemas de pocos electrones y han hecho aproximaciones matemáticas para sistemas más complejos. La idea de orbital atómico y molecular es una forma sistemática en la cual la formación de enlaces es entendible y es la sofisticación de los modelos iniciales de puntos de Lewis. La naturaleza cuántica del electrón hace que la formación de enlaces sea entendible físicamente y no se recurra a creencias como las que los químicos utilizaron antes de la aparición de la mecánica cuántica. Aún así, se obtuvo gran entendimiento a partir de la idea de puntos de Lewis.

Historia

Artículos principales: Historia de la química y Cronología de la química

Las primeras experiencias del hombre como químico se dieron con la utilización del fuego en la transformación de la materia, la obtención de hierro a partir del mineral y de vidrio a partir de arena son claros ejemplos. Poco a poco el hombre se dio cuenta de que otras sustancias también tienen este poder de transformación. Se dedicó un gran empeño en buscar una sustancia que transformara un metal en oro, lo que llevó a la creación de la alquimia. La acumulación de experiencias alquímicas jugó un papel vital en el futuro establecimiento de la química.

Page 23: Clasificación DE LAS ENERGIAS

La química es una ciencia empírica, ya que estudia las cosas por medio del método científico, es decir, por medio de la observación, la cuantificación y, sobre todo, la experimentación. En su sentido más amplio, la química estudia las diversas sustancias que existen en nuestro planeta así como las reacciones que las transforman en otras sustancias. Por otra parte, la química estudia la estructura de las sustancias a su nivel molecular. Y por último, pero no menos importante, sus propiedades.

Subdisciplinas de la química

La química cubre un campo de estudios bastante amplio, por lo que en la práctica se estudia de cada tema de manera particular. Las seis principales y más estudiadas ramas de la química son:[cita requerida]

Química inorgánica : Síntesis y estudio de las propiedades eléctricas, magnéticas y ópticas de los compuestos formados por átomos que no sean de carbono (aunque con algunas excepciones). Trata especialmente los nuevos compuestos con metales de transición, los ácidos y las bases, entre otros compuestos.

Química orgánica : Síntesis y estudio de los compuestos que se basan en cadenas de carbono.

Bioquímica : estudia las reacciones químicas en los seres vivos, estudia el organismo y los seres vivos.

Química física : estudia los fundamentos y bases físicas de los sistemas y procesos químicos. En particular, son de interés para el químico físico los aspectos energéticos y dinámicos de tales sistemas y procesos. Entre sus áreas de estudio más importantes se incluyen la termodinámica química, la cinética química, la electroquímica, la mecánica estadística y la espectroscopía. Usualmente se la asocia también con la química cuántica y la química teórica.

Química industrial : Estudia los métodos de producción de reactivos químicos en cantidades elevadas, de la manera económicamente más beneficiosa. En la actualidad también intenta aunar sus intereses iniciales, con un bajo daño al medio ambiente.

Química analítica : estudia los métodos de detección (identificación) y cuantificación (determinación) de una sustancia en una muestra. Se subdivide en Cuantitativa y Cualitativa.

Además existen múltiples subdisciplinas, que por ser demasiado específicas, o multidisciplinares, se estudian individualmente:[cita requerida]

Química organometálica Fotoquímica Química cuántica Química medioambiental : estudia la influencia de todos los componentes químicos

que hay en la tierra, tanto en su forma natural como antropogénica. Química teórica Química computacional Electroquímica

Page 24: Clasificación DE LAS ENERGIAS

Química nuclear Petroquímica Geoquímica : estudia todas las transformaciones de los minerales existentes en la

tierra. Química macromolecular : estudia la preparación, caracterización, propiedades y

aplicaciones de las macromoléculas o polímeros. Magnetoquímica Química supramolecular Nanoquímica Astroquímica

Los aportes de célebres autores

Hace aproximadamente cuatrocientos cincuenta y cinco años, sólo se conocían doce elementos. A medida que fueron descubriendo más elementos, los científicos se dieron cuenta de que todos guardaban un orden preciso. Cuando los colocaron en una tabla ordenados en filas y columnas, vieron que los elementos de una misma columna tenían propiedades similares. Pero también aparecían espacios vacíos en la tabla para los elementos aún desconocidos. Estos espacios huecos llevaron al científico ruso Dmitri Mendeléyev a pronosticar la existencia del germanio, de número atómico 32, así como su color, peso, densidad y punto de fusión. Su “predicción sobre otros elementos como - el galio y el escandio - también resultó muy atinada”, señala la obra Chemistry, libro de texto de química editado en 1995.

Campo de trabajo: el átomo

El origen de la teoría atómica se remonta a la escuela filosófica de los atomistas, en la Grecia antigua. Los fundamentos empíricos de la teoría atómica, de acuerdo con el método científico, se debe a un conjunto de trabajos hechos por Antoine Lavoisier, Louis Proust, Jeremias Benjamin Richter, John Dalton, Gay-Lussac y Amadeo Avogadro entre muchos otros, hacia principios del siglo XIX.

Los átomos son la fracción más pequeña de materia estudiados por la química, están constituidos por diferentes partículas, cargadas eléctricamente, los electrones, de carga negativa; los protones, de carga positiva; los neutrones, que, como su nombre indica, son neutros (sin carga); todos ellos aportan masa para contribuir al peso.

Conceptos fundamentales

Partículas

Los átomos son las partes más pequeñas de un elemento (como el carbono, el hierro o el oxígeno). Todos los átomos de un mismo elemento tienen la misma estructura electrónica (responsable esta de la gran mayoría de las características químicas), pudiendo diferir en la cantidad de neutrones (isótopos). Las moléculas son las partes más pequeñas de una

Page 25: Clasificación DE LAS ENERGIAS

sustancia (como el azúcar), y se componen de átomos enlazados entre sí. Si tienen carga eléctrica, tanto átomos como moléculas se llaman iones: cationes si son positivos, aniones si son negativos.

El mol se usa como contador de unidades, como la docena (12) o el millar (1000), y

equivale a . Se dice que 12 gramos de carbono o un gramo de hidrógeno o 56 gramos de hierro contienen aproximadamente un mol de átomos (la masa molar de un elemento está basada en la masa de un mol de dicho elemento). Se dice entonces que el mol es una unidad de cambio. El mol tiene relación directa con el número de Avogadro. El número de Avogadro fue estimado para el átomo de carbono por el Químico y Físico italiano Carlo Amedeo Avogadro Conde de Quarequa e di Cerreto. Este valor, expuesto anteriormente, equivale al número de partículas presentes en 1 mol de dicha sustancia. Veamos:

1 mol de glucosa equivale a moléculas de glucosa

1 mol de Uranio equivale a átomos de Uranio

Dentro de los átomos, podemos encontrar un núcleo atómico y uno o más electrones. Los electrones son muy importantes para las propiedades y las reacciones químicas. Dentro del núcleo se encuentran los neutrones y los protones. Los electrones se encuentran alrededor del núcleo. También se dice que es la unidad básica de la materia con características propias. Está formado por un núcleo donde se encuentran protones.

De los átomos a las moléculas

Los enlaces son las uniones entre átomos para formar moléculas. Siempre que existe una molécula es porque ésta es más estable que los átomos que la forman por separado. A la diferencia de energía entre estos dos estados se le denomina energía de enlace.

Generalmente, los átomos se combinan en proporciones fijas para dar moléculas. Por ejemplo, dos átomos de hidrógeno se combinan con uno de oxígeno para dar una molécula de agua. Esta proporción fija se conoce como estequiometría.

Orbitales

Page 26: Clasificación DE LAS ENERGIAS

Diagrama espacial mostrando los orbitales atómicos hidrogenoides de momento angular del tipo d (l=2).Artículos principales: Orbital atómico y orbital molecular

Para una descripción y comprensión detalladas de las reacciones químicas y de las propiedades físicas de las diferentes sustancias, es muy útil su descripción a través de orbitales, con ayuda de la química cuántica.

Un orbital atómico es una función matemática que describe la disposición de uno o dos electrones en un átomo. Un orbital molecular es análogo, pero para moléculas.

En la teoría del orbital molecular la formación del enlace covalente se debe a una combinación matemática de orbitales atómicos (funciones de onda) que forman orbitales moleculares, llamados así por que pertenecen a toda la molécula y no a un átomo individual. Así como un orbital atómico (sea híbrido o no) describe una región del espacio que rodea a un átomo donde es probable que se encuentre un electrón, un orbital molecular describe una región del espacio en una molécula donde es más factible que se hallen los electrones.

Al igual que un orbital atómico, un orbital molecular tiene un tamaño, una forma y una energía específicos. Por ejemplo, en la molécula de hidrógeno molecular se combinan dos orbitales atómicos uno s ocupados cada uno por un electrón. Hay dos formas en que puede presentarse la combinación de orbitales: aditiva y subtractiva. La combinación aditiva produce la formación de un orbital molecular que tiene menor energía y que tiene, aproximadamente, forma ovalada, mientras que la combinación subtractiva conduce a la formación de un orbital molecular con mayor energía y que genera un nodo entre los núcleos.

De los orbitales a las sustancias

Page 27: Clasificación DE LAS ENERGIAS

Los orbitales son funciones matemáticas para describir procesos físicos: un orbital solo existe en el sentido matemático, como pueden existir una suma, una parábola o una raíz cuadrada. Los átomos y las moléculas son también idealizaciones y simplificaciones: un átomo sólo existe en vacío, una molécula sólo existe en vacío, y, en sentido estricto, una molécula sólo se descompone en átomos si se rompen todos sus enlaces.

En el "mundo real" sólo existen los materiales y las sustancias. Si se confunden los objetos reales con los modelos teóricos que se usan para describirlos, es fácil caer en falacias lógicas.

Disoluciones

Artículo principal: Disolución

En agua, y en otros disolventes (como la acetona o el alcohol), es posible disolver sustancias, de forma que quedan disgregadas en las moléculas o iones que las componen (las disoluciones son transparentes). Cuando se supera cierto límite, llamado solubilidad, la sustancia ya no se disuelve, y queda, bien como precipitado en el fondo del recipiente, bien como suspensión, flotando en pequeñas partículas (las suspensiones son opacas o traslúcidas).

Se denomina concentración a la medida de la cantidad de soluto por unidad de cantidad de disolvente.

Medida de la concentración

Artículo principal: Concentración

La concentración de una disolución se puede expresar de diferentes formas, en función de la unidad empleada para determinar las cantidades de soluto y disolvente. Las más usuales son:

g/l (Gramos por litro) razón soluto/disolvente o soluto/disolución, dependiendo de la convención

% p/p (Concentración porcentual en peso) razón soluto/disolución % V/V (Concentración porcentual en volumen) razón soluto/disolución M (Molaridad) razón soluto/disolución N (Normalidad) razón soluto/disolución m (molalidad) razón soluto/disolvente x (fracción molar) ppm (Partes por millón) razón soluto/disolución

Acidez

Artículo principal: pH

Page 28: Clasificación DE LAS ENERGIAS

El pH es una escala logarítmica para describir la acidez de una disolución acuosa. Los ácidos, como el zumo de limón y el vinagre, tienen un pH bajo (inferior a 7). Las bases, como la sosa o el bicarbonato de sodio, tienen un pH alto (superior a 7).

El pH se calcula mediante la siguiente ecuación:

donde es la actividad de iones hidrógeno en la solución, la que en soluciones diluidas

es numéricamente igual a la molaridad de iones Hidrógeno que cede el ácido a la solución.

una solución neutral (agua ultra pura) tiene un pH de 7, lo que implica una concentración de iones hidrógeno de 10-7 M

una solución ácida (por ejemplo, de ácido sulfúrico)tiene un pH < 7, es decir que la concentración de iones hidrógeno es mayor que 10-7 M

una solución básica (por ejemplo, de hidróxido de potasio) tiene un pH > 7, o sea que la concentración de iones hidrógeno es menor que 10-7 M

Formulación y nomenclatura

La IUPAC, un organismo internacional, mantiene unas reglas para la formulación y nomenclatura química. De esta forma, es posible referirse a los compuestos químicos de forma sistemática y sin equívocos.

Mediante el uso de fórmulas químicas es posible también expresar de forma sistemática las reacciones químicas, en forma de ecuación química. Por ejemplo:

Véase también

Portal:Química. Contenido relacionado con Química. Absorción Biología Catalizador Dinámica molecular Farmacia Filosofía de la química Física IUPAC Lista de compuestos Matemáticas Propiedades periódicas Química (etimología)

Page 29: Clasificación DE LAS ENERGIAS

Sustancia química