Curvas conicas

16
APUNTES DT. 2º BACH. CURVAS CÓNICAS - 1 Joaquín Aroca Gomez Pág. 1 de 16 CURVAS CONICAS ESTUDIOGRÁFICODELAELIPSE 1. LA ELIPSE: PROPIEDADES MÁS IMPORTANTES DE ESTA CURVA. Dado el carácter eminentemente gráfico de este estudio se indican solamente las propiedades más importantes de las cónicas. La elipse es una curva cerrada y plana, cuyos puntos constituyen un lugar geométrico que tiene la propiedad de que la suma de distancias de cada uno de sus puntos a otros dos, fijos, F y llamados focos, es constante e igual a 2a, siendo 2a la longitud del eje mayor de la elipse. (Fig. 1). Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a. El eje menor CD se representa por 2b. Los focos están en el eje real. La distancia focal FF' se representa por 2c. Entre a, b y c existe la relación: a 2 =b 2 +c 2 La elipse es simétrica respecto de los dos ejes y, por tanto, respecto del centro O. Las rectas que unen un punto M de la curva con los focos, se llaman radios vectores r y r' y por la definición se verifica: r + r' = 2a. r F c a C D B A F C D B A P F´´ M 2a 2a Cf CCP t P O O 2a = r + 2a 2b b² + c² = (Fig. 1) (Fig. 2) La circunferencia principal C P de la elipse es la que tiene por centro el de la elipse y radio a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. (Fig. 2). Las circunferencias focales C r yC f ' de la elipse tienen por centro uno de los focos y radio 2a. La elipse se puede definir también como el lugar geométrico de los centros de circunferencias que pasan por un foco y son tangentes a la circunferencia focal del otro foco. (Fig. 4). Si tenemos un diámetro de la elipse A´B´, el diámetro conjugado con él C´D´ es el lugar geométrico de los puntos medios de todas las cuerdas paralelas al primero. Los ejes son dos diámetros conjugados y los únicos que son perpendiculares, (Fig. 3). Las tangentes en los extremos de un diámetro son paralelas a su diámetro conjugado. En la circunferencia todas las parejas de diámetros conjugados son perpendiculares. C D B A F C D B A P F´´ Cf CO O (Fig. 3) (Fig. 4) F´´´

Transcript of Curvas conicas

Page 1: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 1

Joaquín Aroca Gomez Pág. 1 de 16

CURVAS CONICAS ESTUDIO GRÁFICO DE LA ELIPSE 

 

1. LA ELIPSE: PROPIEDADES MÁS IMPORTANTES DE ESTA CURVA. 

Dado  el  carácter  eminentemente  gráfico  de  este  estudio  se  indican  solamente  las  propiedades más  importantes  de  las cónicas. La elipse es una curva cerrada y plana, cuyos puntos constituyen un lugar geométrico que tiene la propiedad de que la suma de distancias de  cada uno de  sus puntos a otros dos,  fijos, F y F´  llamados  focos, es  constante e  igual a 2a,  siendo 2a  la longitud del eje mayor de la elipse. (Fig. 1). Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a. El eje menor CD se representa por 2b. Los focos están en el eje real. La distancia focal F‐F' se representa por 2c. Entre a, b y c existe la relación: a2 = b2 + c2 La elipse es simétrica respecto de los dos ejes y, por tanto, respecto del centro O. Las rectas que unen un punto M de la curva con los focos, se llaman radios vectores r y r' y por la definición se verifica: r + r' = 2a. 

r

F´F

c

a

C

D

BAF´F

C

D

BA

P

F´´

M

2a2a

CfCf´CP

t P

OO

2a = r + r´

2a

2bb² + c² = a²

(Fig. 1) (Fig. 2)

La  circunferencia  principal  CP  de  la  elipse  es  la  que  tiene  por  centro  el  de  la  elipse  y  radio  a.  Se  define  como  el  lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes. (Fig. 2). Las circunferencias focales Cr y Cf' de la elipse tienen por centro uno de los focos y radio 2a. 

La elipse se puede definir también como el lugar geométrico de los centros de circunferencias que pasan por un foco y son tangentes a la circunferencia focal del otro foco. (Fig. 4). 

Si tenemos un diámetro de la elipse A´‐B´, el diámetro conjugado con él C´‐D´ es el lugar geométrico de los puntos medios de todas las cuerdas paralelas al primero. Los ejes son dos diámetros conjugados y los únicos que son perpendiculares, (Fig. 3). Las tangentes en los extremos de un diámetro son paralelas a su diámetro conjugado. En la circunferencia todas las parejas de diámetros conjugados son perpendiculares. 

C

D

BA

F´F

C

D

BA

P

F´´

CfCf´

O O

(Fig. 3) (Fig. 4)

F´´´

 

Page 2: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 2

Joaquín Aroca Gomez Pág. 2 de 16

2. CONSTRUCCIÓN DE LA ELIPSE POR PUNTOS A PARTIR DE LOS EJES (Fig. 5). 

Se conocen los ejes AB = 2a y CD = 2b. Con centro en C o D y radio a, se corta al eje mayor en F y F, focos de la curva. 

Se toma un punto N cualquiera en el eje mayor; con radio AN y centro en F se traza el arco 2 y con radio NB y centro en F´ se traza el arco 1; estos dos arcos se cortan en el punto M de la elipse. De esta forma, la suma de las distancias de M a F y F´es igual  a  AB  =  AN  +  NB  =  2a.  Repitiendo  esta  operación  y  tomando  otros  puntos  en  el  eje mayor  entre  F  y  F´  se  van determinando puntos de la curva que se unen con plantilla. 

F´F

C

D

BA

O

(Fig. 5) (Fig. 6)

NR=A

N

R = BN

M

a

C

D

BA O1´ 2´ 3´

1

2

3

E

O

1

2

3

(Fig. 7)

 

3. TRAZADO DE LA ELIPSE POR HACES PROYECTIVOS A PARTIR DE LOS EJES A‐B Y C‐D (Fig. 6), O DIÁMETROS CONJUGADOS A´‐B´ Y C´‐D´ (Fig. 7). 

Se construye el rectángulo OAEC y se dividen  los segmentos OA y AE en el mismo número de partes  iguales, cuatro en  la figura. Los rayos C1, C2 y C3 se cortan respectivamente con los rayos D1´, D2´ y D3´ en puntos de la elipse. 

Se construye el paralelogramo O´A´E´C´ y se dividen los segmentos O´A´ y A´E´ en el mismo número de partes iguales, cuatro en la figura. Los rayos C´1, C´2 y C´3 se cortan respectivamente con los rayos D´1´, D´2´ y D´3´ en puntos de la elipse. 

3. TRAZADO DE LA ELIPSE POR ENVOLVENTE DE TANGENTES A PARTIR DE LOS EJES A‐B Y C‐D (Fig. 8). 

Esta construcción se funda en que la circunferencia principal (CP)de diámetro 2a y centro O es el lugar geométrico de los pies de las perpendiculares trazadas por cada foco a las tangentes. Las envolventes son, pues, las tangentes. 

Por ejemplo, se toma un punto cualquiera L de la circunferencia principal, se une con F y se traza la perpendicular t por L a F‐L; la recta tP es tangente a la elipse; repitiendo esta operación se tienen una serie de tangentes que van envolviendo la curva. 

F´F

C

D

BA O

L

P

t P

C P

(Fig. 8)

p

4. TRAZADO DE LA ELIPSE POR PUNTOS MEDIANTE LA CIRCUNFERENCIA PRINCIPAL Y LA DE DIÁMETRO 2B. (Fig. 9).

Se traza un radio cualquiera que corta en R' y R" a las dos circunferencias; por R' se traza la paralela a AB y por R" la paralela a CD, que se corta con la anterior en el punto R de la elipse. En la figura se repite esta operación numerosas veces. 

5. OTRA CONSTRUCCIÓN DE LA ELIPSE A PARTIR DE UNA PAREJA DE DIÁMETROS CONJUGADOS. (Fig. 10). 

Se conocen los diámetros conjugados A'‐B' y C´‐D'; se traza la circunferencia de diámetro A'B'; la perpendicular por Ó a A'‐B' 

corta en C´´ y D´´ a la circunferencia. Los puntos de la elipse se obtienen construyendo triángulos semejantes al O‐D´‐D´´o al O‐

C´‐C´´ , tales como el 1‐1´‐1´´ de lados paralelos a los del triángulo O‐C´‐C´´. 

 

Page 3: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 3

Joaquín Aroca Gomez Pág. 3 de 16

C

D

BA

C´1

2

3

C´´3´´

2´´1´´

2´1´

O

D´´

R´´

R

(Fig. 9) (Fig. 10)  

6. TRAZADO DE LA TANGENTE Y NORMAL EN UN PUNTO DE LA ELIPSE. (Fig. 11). 

La tangente a la elipse en un punto P de ella es la recta tP, bisectriz exterior del ángulo que forma los radios vectores PF y PF´ La 

normal a la elipse en P es la perpendicular a la tangente tP, bisectriz interior del ángulo que forma los radios vectores PF y PF ´. 

Podemos determinar la bisectriz, mediante los puntos P y P´, siendo P´ el Punto medio de F‐F´´ situado en la circunferencia 

principal (CP). 

 

7. TANGENTES A LA ELIPSE DESDE UN PUNTO EXTERIOR P. (Fig. 12). 

Sabiendo que  la circunferencia  focal es el  lugar geométrico de  los puntos simétricos del otro  foco  respecto de  las  tangentes, 

tenemos que buscar un punto de ella que, unido con F', resulte ser una cuerda de la circunferencia de centro P y radio PF'. 

Según esto, se trazan la circunferencia focal de centro F y la de centro P y radio hasta el otro foco F´ (CPF´) las cuales se cortan en 

los puntos M y N; se unen estos puntos con F' y se trazan las mediatrices de los segmentos F'‐M y F'‐N, (los puntos medios de 

F'‐M y F'‐N, 1 y 2  respectivamente están  situados  sobre  la  circunferencia principal),    las  cuales pasarán por P y  serán  las 

tangentes a la elipse. Los puntos de tangencia se obtienen al unir M y N con el foco F que es centro de la focal. 

También es resoluble por afinidad (Fig. 12‐a). 

F

C

D

BA O F´

t P

P

n PF´´

F´F

C

D

BAO

P

M

N

P1

P2

t 1

t 2

Cf

1

2

CF

a

a

(Fig. 11) (Fig. 12)

CPF´

CP

8. TANGENTES A LA ELIPSE, PARALELAS A UNA DIRECCIÓN DADA d. (Fig. 13). 

Si  las tangentes han de ser paralelas a una dirección, el punto P  la figura anterior está en el  infinito y  la circunferencia de centro P y radio hasta el foco F' (que no es centra de la focal), tiene radio infinito, convirtiéndose en una recta que pasa por F' y es perpendicular a la dirección dada. Las mediatrices de los segmentos F'‐F´´ y F'‐F´´´ son las tangentes y los puntos P1 y P2 son los de tangencia. 

También es resoluble por afinidad (Fig. 13‐a). 

Page 4: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 4

Joaquín Aroca Gomez Pág. 4 de 16

8. DIAMETRO CONJUGADO DE UNO DADO A´‐B´. (Fig. 14). 

Es  consecuencia  del  anterior,  los  puntos  C´  y  D´  de  tangencia  paralela  a  la  dirección  de  A´‐B´,  determinan  el  diámetro conjugado. 

(Fig. 13) (Fig. 14)

F´F

C

D

BA

O

P1

P2

t 1

t 2

Cf

1

2

F´´

F´´´t 2r

CP

F´F

C

D

BA

P

Q

1

2

t1

t2

 

(Fig. 12-a) (Fig. 13-a)

C

D

BA

O

P1

P2

t 1 t 2r

CP

P´1

P´2

BA O

P

P1

P2

C

D

P´1

P´2

t 2

t 1

t´1

t´2

t´1

t´2

 

 

9. DADA UNA ELIPSE POR UNA PAREJA DE DIÁMETROS CONJUGADOS A´‐B´ Y C´‐D´ HALLAR LOS EJES. 

Primer procedimiento: (Fig. 15). 

Por el centro O se traza la perpendicular a A'‐B' y se lleva OP = OA'; se une P con C y se traza la circunferencia de centro O1 y diámetro PC; con centro en O1 y radio O1‐O se traza la semicircunferencia ROS; uniendo O con R y S se obtienen los ejes de la elipse en posición. La magnitud de ellos es: a = OI y b = OH, que se llevan sobre cada uno de ellos respectivamente. 

Segundo procedimiento: (Fig. 16). 

Por el extremo A´ se traza  la perpendicular a C'‐D' y se  lleva OP = OC'=OD´; se une P con O y se traza  la circunferencia de centro O1 y diámetro OP; trazamos la recta A´‐ O1 y determinamos sus puntos de intersección con la circunferencia anterior 1 y 2, la dirección de los ejes queda determinada por O‐1 y O‐2 y su magnitud es A´‐1 (b, eje menor) y A´‐2 (a, eje mayor), que 

Page 5: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 5

Joaquín Aroca Gomez Pág. 5 de 16

se llevan sobre cada uno de ellos respectivamente, para determinar A‐B y C‐D. 

C

D

BA

P

S

R

O1

O

A´´

B´´

(Fig. 15)

C

D

BA O

(Fig. 16)

2

1

O1

P

Las  tangentes  a una elipse en  los puntos que  son extremos de una pareja de diámetros  conjugados,  son paralelas  a  los 

diámetros conjugados respectivos, formándose un romboide circunscrito a la elipse. Las tangentes en C´ y D' son paralelas al 

diámetro A'B' y las tangentes en A ' y B' son paralelas al diámetro C'D´. 

 

10. PUNTOS DE INTERSECCIÓN DE UNA RECIA CON UNA ELIPSE. (Fig. 17). 

Sea la recta r y la elipse dada por sus elementos, focos y vértices. Sabiendo que la elipse es el lugar geométrico de los centros de las circunferencias que  son  tangentes a  la  focal y pasan por el otro  foco, et problema  se  reduce a hallar  los  centros de estas circunferencias. 

En la figura se traza la focal del foco F (CF), de radio 2a, y se halla el simétrico F´´ del foco F´ respecto a r, se traza una circunferencia auxiliar cualquiera de centro O1 en la recta r, la cual corta a la focal en los puntos 1 y 2; la cuerda 1‐2 y la recta F´‐F´´ se cortan en el centro radical CR; desde CR, se trazan las tangentes a la focal y los puntos de tangencia T1 y T2 se unen con F dando los centros I1 y I2 en r, que son los puntos donde la recta r corta a la elipse y a la vez centros de circunferencias tangentes a la focal de F y que pasan por el otro foco F´. 

C

D

BAO

F´´

F F´

1

2

O1

CR

T1

T2

I1

I2

r

CF

(Fig. 17)  

 

Page 6: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 6

Joaquín Aroca Gomez Pág. 6 de 16

11. DETERMINACIÓN DE LOS ELEMENTOS DE UNA ELIPSE CONOCIENDO UN FOCO F, UNA TANGENTE T CON SU PUNTO DE CONTACTO T Y LA MAGNITUD 2a. (Fig. 18). 

Se une el foco F con el punto de tangencia T recta s (radio vector r) y se construye la recta s´ que forma un ángulo con la tangente igual al ángulo α que forma s con la tangente. Sobre la recta s´, que ha de contener al otro radio vector r' se lleva la diferencia 2a‐ FT y tendremos r' = TF', con lo que queda determinado el otro foco. Los puntos N y M, pies de las perpendiculares trazadas por los focos a la tangente t, son de la circunferencia principal. 

12. DETERMINACIÓN DE LOS ELEMENTOS DE UNA ELIPSE CONOCIENDO UN FOCO F´, UNA TANGENTE t Y OTRA TANGENTE t´ CON SU PUNTO DE CONTACTO T´. (Fig. 19). 

Se hallan los puntos F1 y F2 simétricos de F´ respecto dé las tangentes t y t´; el Foco F estará en la mediatriz del segmento F1‐F2, ya que estos puntos son de la circunferencia focal de centro F´ y también estará en el otro radio vector r, que pasa por F; en  la  figura se ha construido el ángulo β  igual al α para  tener el  radio vector  r. Los puntos 1 y 2 son de  la circunferencia principal y el centro estará en la mediatriz de 1‐2 y que será el punto medio de F‐F´. Los vértices A y B se obtienen sabiendo que la suma de r y r´ es igual a 2a. 

P

F´´

r r´2a

rr´

r

a

a

a

a

F

t P

T

t

F

r

F1

F2

r r´2a = r+ r´ = r1+ r´1

r´1r1

a

a2

1b

a

A BO

CP

(Fig. 19)

O

(Fig. 18)

r´1

r1

CP

r´1

 

13. DETERMINACIÓN DE LOS ELEMENTOS DE UNA ELIPSE CONOCIENDO UN FOCO F, DOS PUNTOS M Y N Y EL EJE MAYOR 2a. (Fig. 20). 

Se hallan los puntos F´´ y F´´´ situados en FM y FN a una distancia 2a de F. los puntos de intersección de las circunferencias de centros M y N y radio MF´ y NF´´´, determinan las dos soluciones del segundo foco F´1 y F´2. Conocida la posición de los focos se determinan los ejes de las dos soluciones posibles. 

F´1

M

F´´

rM r´M

2a

rM

r´M

rM

a

a

F F´

T

t

F

r

F1

F2

r r´2a = r+ r´ = r1+ r´1

r´1r1

2c

a

2

1b

a

A BO

CP

(Fig. 21)

O1

(Fig. 20)

CF´

r1

CP

N

F´´´

F´2

rN

r´N rN

rN r´N

a

O2

ar´1

r´1

CF

13. DETERMINACIÓN DE LOS ELEMENTOS DE UNA ELIPSE CONOCIENDO UN FOCO F´, DOS TANGENTES t Y t´ Y LA DISTANCIA FOCAL 2c. (Fig. 21). 

Se hallan los puntos F1 y F2 simétricos de F´ respecto dé las tangentes t y t´; el Foco F estará en la mediatriz del segmento F1‐F2, ya que estos puntos son de la circunferencia focal de centro F´ y también estará en una circunferencia de centro F´ y radio 2c. El resto es idéntico al caso planteado en 12. 

Page 7: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 7

Joaquín Aroca Gomez Pág. 7 de 16

CURVAS CONICAS ESTUDIO GRÁFICO DE LA HIPERBOLA 

 

1. LA HIPERBOLA: PROPIEDADES MÁS IMPORTANTES DE ESTA CURVA.(Fig. 22). 

La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de las puntos cuya diferencia de distancias a otros dos fijos es constante e igual a 2a = AB, la longitud del eje real. Los puntos fijos son los focos F y F'. Tiene dos ejes perpendiculares que se cortan en el punto medio O, centro de la curva. El eje mayor AB se llama eje real y se representa por 2a; el eje menor se representa por 2b y se llama imaginario porque no tiene puntos comunes con la curva. Los focos están en el eje real. La distancia focal F‐F' se representa por 2c. Entre a, b y c existe la relación: c2 = a2 + b2. La hipérbola es simétrica respecto de los dos ejes y, por lo tanto, respecto del centro O. Las rectas que unen un punto M de la curva con dos focos, se llaman radios vectores r y r' y por la definición se verifica: r — r' = 2a. La circunferencia principal (CP) de la hipérbola es la que tiene por centro O y radio 2a. Se define como el lugar geométrico de los pies de las perpendiculares trazadas por los focos a cada una de las tangentes 1 y 2. Las circunferencias focales (CF y CF´) tienen por centros los focos F y F´ y radio 2a y contienen a los simétricos de los focos F´´ y F´´´, respecto a cada tangente . La hipérbola, como la elipse, se puede definir como el lugar geométrico de los centros de circunferencias que pasan por un foco y son tangentes a la circunferencia focal del otro foco. 

d

r´r

F´F

c

c

C

D

BA O

2a = r - r´

2a

2ba² + b² = c²

(Fig. 22)

1F´´

CF CF´CP

F´´´

P

t P

2

F´F

c

C

D

BA O

2a

2b

CP

a

(Fig. 23)

d

 

Las asíntotas de la hipérbola son las tangentes a la curva en los puntos del infinito. Estas asíntotas son simétricas respecto de los ejes y pasan por el centro de la curva, los segmentos interceptados por cualquier secante, entre los puntos de corte con la curva y con las asíntotas son iguales (Fig. 23). 

2.    CONSTRUCCIÓN DE LA HIPÉRBOLA POR PUNTOS A PARTIR DE LOS EJES. (Fig. 24). 

Los datos son: 2a = AB y 2c = FF Se toma un punto N y el simétrico N´ respecto de uno de los extremos en el eje real AB y con radios FN y F´N´ y centros en F y F´ se trazan dos arcos que se cortan en P y Q, puntos de la hipérbola; de esta forma, FN ‐ F´N´ = 2a = AB. En la figura se obtienen otros puntos de la curva tomando los puntos 1, 2, 3 y 4 del eje real. 

F´F

C

D

BA O

2a = r - r´

(Fig. 22)

CP

P

(Fig. 23)

123

1´ 2´ 3´

4

N

d d

r´r

r

Q

C

D

B A F´F

1

2

3

4

1 2 3 4 P1´2´3´4´

M

N

T

 

Page 8: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 8

Joaquín Aroca Gomez Pág. 8 de 16

3.    CONSTRUCCIÓN DE LA HIPÉRBOLA POR HACES PROYECTIVOS. (Fig. 25). 

Se conocen 2a = AB y 2c = FF; se halla un punto cualquiera P de la curva y se construye el rectángulo AMPN; se dividen los lados MP y PN en un número cualquiera de partes iguales que se unen con los puntos A y F respectivamente. Los puntos de intersección de los rayos homónimos u homólogos de estos dos haces son puntos de la hipérbola. Así, F‐4 y A‐4 se cortan en el punto T de la curva; de la misma forma se construye la parte inferior de la curva. 

4. TRAZADO DE LA HIPÉRBOLA POR ENVOLVENTES. (Fig. 26). 

Se conocen los vértices A y B y los focos F y F'; se construye la circunferencia principal de centró O y radio a = OA = OB. Al igual que en la elipse, basta tomar puntos en la circunferencia principal, unirles con F y trazar las correspondientes perpendiculares, que son tangentes a la curva. En la figura sólo está trazada una rama. 

Las asíntotas a y a´, de la hipérbola son tangentes a ella en el infinito. Son simétricas respecto de los ejes, pasan por el centro O y por el vértice R y su simétrico S del triángulo rectángulo cuyos catetos son a y b y la hipotenusa c. 

5. TRAZADO DE LA TANGENTE Y NORMAL A LA HIPÉRBOLA EN UN PUNTO P DE ELLA. (Fig. 27). 

La tangente y la normal en un punto P de la hipérbola, al igual que en la elipse, son las bisectrices de los ángulos que forman los radios vectores r y r´, del punto P 

F´F

C

D

BA O

(Fig. 26) (Fig. 27)

C

D

B A F´F

P

F´´ P

t Pa a´

F´´

1

a

a

t P

r r´

r - r´ = 2a

CFCP

n P

b

b

O

 

6. TANGENTES A LA HIPÉRBOLA DESDE UN PUNTO EXTERIOR. (Fig. 28). 

Se traza la circunferencia focal de centro F y la circunferencia de centro el punto P, dado, y que pasa por el otro foco F'; estas dos circunferencias se cortan en  los puntos N y M que, unidos con F´ nos dan  los segmentos NF´ y MF'  las mediatrices de estos segmentos pasan por P y son las tangentes a la hipérbola. Los puntos de tangencia T1 y T2 se obtienen uniendo F con N y M hasta que corten a las tangentes. 

7. TANGENTES A LA HIPÉRBOLA PARALELAS A UNA DIRECCIÓN DADA r. (Fig. 29). 

Como en la elipse, se traza por un foco F' la perpendicular a la dirección r, la cual corta a la circunferencia focal del foco F en los puntos N y M. Las  tangentes  t y  t' son  las mediatrices de  los segmentos F'N y F'M. En  la  figura se  trazan  también  las asíntotas, que son las mediatrices de los segmentos F'Q v F'R. 

 

F´F

C

D

BA

O

(Fig. 28) (Fig. 29)

C

D

B A

tt´

F´F

T

t 1

M

1

t

r - r´ = 2a

CFCP

P

CF

N

M

t 2

CP

O

T 2T 1

1

2

N

2

Page 9: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 9

Joaquín Aroca Gomez Pág. 9 de 16

8.  TRAZADO DE LAS ASÍNTOTAS DE LA HIPÉRBOLA A PARTIR DE LA CIRCUNFERENCIA PRINCIPAL. (Fig. 30). 

Si, las asíntotas, pasan por el centro O de la curva, por lo tanto, se trata de trazar Las tangentes a la hipérbola desde un punto O. La circunferencia principal, de centro O y radio R = OA, corta a la de diámetro OF' en los puntos N y N´ y. Las rectas ON y ON´ son las asíntotas.  

También se obtienen uniendo el punto O con los puntos 1 y 2 donde corta a la circunferencia de diámetro F‐F´ (radio = c), a la perpendicular por B al eje real. El triángulo 1‐B‐O es rectángulo y sus lados son a, b y c. 

9. TRAZADO DE LA TANGENTE DE LA HIPÉRBOLA EN UN PUNTO P, EMPLEANDO LA CIRCUNFERENCIA PRINCIPAL. (Fig. 31). 

La circunferencia principal sabemos que es el lugar geométrico de los pies de las perpendiculares trazadas por el foco a cada una de las tangentes. Según esto, basta unir el punto P de la curva con F' y trazar la circunferencia de diámetro PF', la cual será tangente a la circunferencia principal en el punto M. La recta PM es la tangente a la hipérbola en el punto P. 

F´F O

(Fig. 30) (Fig. 31)

D

F´F

P

a a´

F´´

M

t P

CF

CP

n P

O

1

2

M

NCP

 

10.   TRAZADO DE  LAS  TANGENTES A  LA HIPÉRBOLA DESDE UN PUNTO  EXTERIOR P,  EMPLEANDO  LA CIRCUNFERENCIA PRINCIPAL. (Fig. 32). 

Se traza la circunferencia principal y la de diámetro PF´, las cuales se cortan en los puntos N y M que, unidos con P, nos dan las tangentes t1 y t2 Para hallar los puntos de tangencia, se une O con N y M, y por F se trazan las paralelas respectivas a ON y OM, hasta que corten a las tangentes. 

 

11.  TRAZADO  DE  LAS  TANGENTES  A  LA  HIPÉRBOLA  PARALELAS  A  UNA  DIRECCIÓN  DADA  r,  EMPLEANDO  LA CIRCUNFERENCIA PRINCIPAL. (Fig. 33). 

Al igual que en los problemas anteriores, la circunferencia de diámetro PF es, ahora una recta (de diámetro infinito), la cual pasa por F´ y es perpendicular a la dirección r; esta recta corta a la circunferencia principal en N y N´ y las tangentes pasan por estos puntos y son paralelas a r. Los puntos de tangencia se obtienen como en la figura anterior. 

FO

(Fig. 32) (Fig. 33)

F´F

N

CP

O

M

N

P

CP

T2

T1

t1 t2

MT2

T1

t 2t 1r

CP

 

Page 10: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 10

Joaquín Aroca Gomez Pág. 10 de 16

(Fig. 38)

C

D

B A F´F

CP

O

t

a

M

a´a

N

c = OF

a

12. DETERMINACIÓN DE LOS DEMÁS ELEMENTOS DE UNA HIPÉRBOLA CONOCIENDO LOS FOCOS F Y F' Y UNA ASÍNTOTA a. (Fig. 34). 

La  recta  F‐F',  eje mayor,  corta  a  la  asíntota  a  en  el  centro O de  la  curva;  con  centro  en O  y  radio OF  = OF'  se  traza  la circunferencia que  corta en H y H' a  la asíntota;  las perpendiculares por estos puntos a F‐F' dan  los vértices A y B de  la hipérbola. En la figura, OA = OB = a; HB ‐ b; OH = OH' = c. 

13. DETERMINACIÓN DE LOS ELEMENTOS DE UNA HIPÉRBOLA CONOCIENDO UN FOCO F´, UNA ASÍNTOTA Y LA MAGNITUD 2a. (Fig. 35). 

Por el  foco F se traza  la perpendicular a  la asíntota y a partir de N se  lleva  la magnitud a, semieje menor, teniendo así el punto O, centro de la curva. La recta OF es el eje real y se lleva OF en OH; desde H se traza la perpendicular al eje y tenemos el vértice A del eje mayor. En la figura no se ha dibujado el simétrico de A respecto de O. 

F´F

C

D

BA O

(Fig. 34) (Fig. 35)

C

D

A B F´F

a

CP

CP

O

2a

H

a

a

N

H

 

14. DETERMINACIÓN DE  LOS  ELEMENTOS DE UNA HIPÉRBOLA  CONOCIENDO UN  FOCO  F´, UNA  TANGENTE  t  CON  SU PUNTO DE CONTACTO T Y LA MAGNITUD a. (Fig. 36). 

Situados los datos, en la figura se puede seguir con gran sencillez la construcción. 

(Fig. 36) (Fig. 37)

C

D

A BF´F

CP

O

2c

t

c

T

1

aa´

C

D

A B F´F

CP

O

2a

t

a

T

1

aa´

 

15.     DETERMINACIÓN DE  LOS  ELEMENTOS DE UNA HIPÉRBOLA CONOCIENDO UN  FOCO  F, UNA  TANGENTE  T CON  SU PUNTO DE CONTACTO T Y LA MAGNITUD c. (Fig. 37). 

Compárese  este  problema  con  el mismo  estudiado  en  la  elipse.  En  la  figura,  a  partir  de  los  dalos  se  resuelve  con  gran sencillez. 

16.      DETERMINACIÓN  DE  LOS  ELEMENTOS  DE  UNA  HIPÉRBOLA CONOCIENDO  UN  FOCO  F,  UNA  ASÍNTOTA  a  Y  UNA  TANGENTE  t.   (Fig. 38). 

Por el  foco F' se  trazan  las rectas perpendiculares a  la asíntota y a  la tangente;  los  puntos M  y  N,  son  de  la  circunferencia  principal.  La mediatriz de MN, corta a  la asíntota en O, centro de  la curva el cual unido con F nos da el eje mayor. Sobre la asíntota se toma OM = OF y por M se traza la perpendicular al eje, obteniendo el vértice A.  

Page 11: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 11

Joaquín Aroca Gomez Pág. 11 de 16

17.   PUNTOS DE INTERSECCIÓN DE UNA RECTA CON UNA HIPÉRBOLA. (Fig. 39). 

La hipérbola es el lugar geométrico de los puntos que son centros de circunferencias tangentes a una circunferencia focal y que pasan por el otro foco que no es centro de la local. Es decir los puntos de intersección de la recta r y de la hipérbola son los centros de las circunferencias tangentes a la focal de F y que pasan por los puntos F' y F´´, simétrico de F' respecto de la recia r. En la figura se resuelve este problema de tangencias ya estudiado. 

18.   PROBLEMA. (Fig. 40). 

Una hipérbola está determinada por  la distancia  focal 2c y su eje  real 2a. Determinar  los puntos de  intersección con una recta que pasa por un foco y forma un ángulo α con el eje real. 

Solución: Como  la  recta pasa por un  foco, el simétrico de él  respecto de  la  recta es él mismo  rediciéndose el problema a buscar los puntos en la recta r que son centros de circunferencias tangentes a la focal de F', que pasan por F y son tangentes a la recta perpendicular a la dada por F. Este problema se resuelve en la figura como un problema de tangencias. 

F´F O

(Fig. 39) (Fig. 40)

t 1

P

CF

N

M

r

CP

T 2T 1

t 2

F´´

CR

N

M

B AF´F

t 1

T 1

T 2

CR

t 2

r

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 12: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 12

Joaquín Aroca Gomez Pág. 12 de 16

CURVAS CÓNICAS ESTUDIO GRÁFICO DE LA PARÁBOLA 

1. PROPIEDADES DE LA PARÁBOLA. (Fig. 41). 

La parábola es una curva plana, abierta y de una  rama. Se define como el  lugar geométrico de  los puntos del plano que equidistan de un punto fijo F, llamado foco, y de una recta fija d, llamada directriz. Tiene un vértice V y un eje de simetría que pasa por V y por el foco y es perpendicular a la directriz. La tangente en el vértice a la curva es paralela a la directriz. El vértice, como otro punto cualquiera, equidista de  la directriz y del foco, es decir, VA = VF = p/2. Los radios vectores del punto P son PN y PF. Se  llama parámetro 2p de  la parábola, al  igual que en  la elipse y en  la parábola, a  la  longitud de  la cuerda que es perpendicular al eje en el foco. La directriz d de la curva hace de circunferencia focal de la parábola, en este caso de radio infinito. Según esto, la directriz es el lugar geométrico de los puntos simétricos del foco respecto de cada tangente. La tangente en el vértice, que es una recta, hace de circunferencia principal y se define como en las curvas anteriores. El foco equidista del punto de tangencia de una tangente y del punto donde ésta corta al eje de la curva. 

(Fig. 41) (Fig. 42)

FVA

tVd

Pr

r

tP

1

N

r

p/2 p/2

2p

FVA

tVd

I

r

r

P

e e

 

2. CONSTRUCCIÓN DE LA PARÁBOLA POR PUNTOS. (Fig. 42). 

Se conocen la directriz d, el eje y el foco. El vértice V es el punto medio del segmento AF. Se traza por un punto I del eje, la perpendicular a éste y con centro en F y radio Al = r,   se corta a dicha perpendicular, obteniendo el punto P y su simétrico, que son puntos de  la curva; se tiene así r = PF = PN según  la definición de  la curva; esta operación se repite para obtener nuevos puntos que se unen con plantilla de curvas. 

3.    CONSTRUCCIÓN DE LA PARÁBOLA POR HACES PROYECTIVOS. (Fig. 43). 

Se conocen el eje el vértice y un punto cualquiera P de la curva y se determina el punto N proyección ortogonal de P sobre la tangente de vértice; se dividen los segmentos VN y PN en un número cualquiera de partes iguales que se unen con el punto V  y paralelas al eje respectivamente. Los puntos de intersección de los rayos homónimos u homólogos de estos dos haces son puntos de la parábola.  

(Fig. 43) (Fig. 44-a)

V

tV

P

FV

tV

e

N 1´ 2´ 3´ 4´ 5´

1

2

3

4

5

P

(Fig. 44-b)

P

e I V e

1

2

3

4

5

6

7

1

2

3

4

5P

(Fig. 44-c)

t P

t P´

t P

t Q

Q

e

 

Page 13: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 13

Joaquín Aroca Gomez Pág. 13 de 16

4. CONSTRUCCIÓN DE LA PARÁBOLA POR ENVOLVENTES.  

Método 1. (Fig. 44‐a). 

Sabiendo que la tangente tv en el vértice es la circunferencia principal de la curva, basta, como en la elipse, tomar puntos de ella, tal como el N unirle con el foco F y por N trazar la perpendicular a F; esta recta t es tangente a la curva. Repitiendo esta operación se obtienen rectas tangentes que envuelven a la curva y que a la vez la van construyendo. 

Método 1. (Fig. 44‐b ; Fig. 44‐c ). 

Conociendo dos tangentes y sus puntos de contacto, construcción según figuras. 

5. TRAZADO DE LA TANGENTE Y DE LA NORMAL EN UN PUNTO M DE LA PARÁBOLA. (Fig. 45). 

La tangente tM en un punto M de la parábola es la bisectriz de los radios vectores MN y MF; la normal n es perpendicular a la tangente. 

6. TANGENTES A LA PARÁBOLA DESDE UN PUNTO EXTERIOR. (Fig. 46). 

Sea el punto P; se traza  la circunferencia de radio PF y centro en P,  la cual corta a  la directriz, que en  la parábola hace de circunferencia focal de radio infinito, en los puntos M y N. Las mediatrices de los segmentos MF y NF son las tangentes t1 y t2. Los puntos de tangencia Ti y T2 se obtienen trazando por M y N  los radios vectores que son paralelos al eje. Las tangentes halladas cortan a la tangente en el vértice tv en los puntos 1 y 1 que son los pies de las perpendiculares trazadas por el foco de las tangentes. 

(Fig. 45) (Fig. 46)

FVA

tVd

M

t M

1

N

FV

tVd

T1

e e

a

a

n M

T2

P

1

2

t 1

t 2

M

N

 

7. TANGENTE A LA PARÁBOLA PARALELA A UNA DIRECCIÓN DADA. (Fig. 47). 

La tangente ha de ser paralela a la dirección r; por el foco se traza la perpendicular a r, la cual corta en M a la directriz d y en N a la tangente en el vértice tv, La tangente pasa por el punto N y su punto de tangencia es T, en la paralela por M al eje de la curva. 

(Fig. 47) (Fig. 48)

FVA

tVd

T

t

N

M

FV

tVd

A

e e

a

a

n M

B

1

2

t A

t B

r

F´V´e´

 

Page 14: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 14

Joaquín Aroca Gomez Pág. 14 de 16

8. DETERMINACIÓN DE LOS ELEMENTOS DE UNA PARÁBOLA, CONOCIENDO LA DIRECTRIZ D Y DOS PUNTOS A Y B DE LA CURVA. (Fig. 48). 

Por A y B se trazan las perpendiculares a la directriz d y con los arcos de radios AA´ y BB´ se determina el foco F o F´ en su punto de intersección. La perpendicular por F a d es el eje e, quedando también definido el vértice V. Existen dos soluciones determinadas por los dos focos posibles F y F´. 

9. DETERMINACIÓN DE LOS ELEMENTOS DE UNA PARÁBOLA CONOCIENDO EL FOCO Y DOS TANGENTES. (Fig. 49). 

Se hallan los puntos simétricos del foco F respecto a las dos tangentes F´ y F´´, F´F´´ determinan la directriz; la tangente en el vértice V pasa por los puntos N1  y N2, pies de las perpendiculares trazadas por el foco a las tangentes. 

(Fig. 49) (Fig. 50)

FVA

tVd

N1

FV

tVd

A

e e

B

t A

t B

t

t

F´´

N2

d´tV´

A´´

B´´

1

2

 

10. CONSTRUCCIÓN DE LA PARÁBOLA CONOCIENDO EL FOCO F Y DOS PUNTOS A Y B DE LA CURVA. (Fig. 50). 

Se necesita buscar dos puntos 1 y 2 desde los cuales se vean los segmentos FB y FA bajo un ángulo recto. Estos puntos son los de contacto de la tangente común trazada a las dos semicircunferencias de diámetros FB y FA. La recta 1‐2 es la tangente en el vértice tv. Las rectas B‐2 y A‐1 son las tangentes a la curva en B y A. El eje pasa por F y es perpendicular a tV, la directriz d pasa por los puntos equidistantes de F respecto de 1 y 2. Existen dos soluciones posibles. 

11. CONSTRUCCIÓN DE LA PARÁBOLA CONOCIENDO LA DIRECTRIZ D Y DOS TANGENTES t1 Y t2. (Fig. 51). 

Las tangentes t1 y t2 cortan a la directriz en los puntos N y M; con vértices en estos puntos se construyen ángulos iguales al α y al β el punto de intersección de los lados de estos ángulos es el foco F, la perpendicular por F a d es el eje y el vértice V es el punto medio de FS. Esta construcción se funda en que si unimos F con 1 y 2 puntos pies de las perpendiculares trazadas por el foco a las tangentes, los triángulos MFA y NFB son isósceles. 

(Fig. 51) (Fig. 52)

FV

tVd t1

M

F

CR

tVd

A

e e

a

B

1

2

t A

t B

N

t2

a

b

b

S

1

2

T1

T2

A

B

r

T

 

12. PUNTOS DE INTERSECCIÓN DE UNA RECTA CON UNA PARÁBOLA. (Fig. 52). 

El procedimiento es el mismo que para  las otras cónicas ya estudiadas. Con centro en un punto O de  la recta r, se traza  la circunferencia que pase por F y que pasará también por el simétrico F´ de F respecto a r, desde el punto Cr, centro radical, se traza la tangente O‐T y este segmento se lleva sobre la directriz, obteniendo los puntos A´ y B´; las paralelas al eje por A´ y B´ dan los puntos de intersección A y B de la recta r con la parábola. 

Page 15: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 15

Joaquín Aroca Gomez Pág. 15 de 16

ANEXO 1 

TRANSFORMACIONES HOMOLOGICAS DE UNA CIRCUNFERENCIA. 

Consideremos de la homología conocidos el vértice V, el eje e y una de las rectas limite l. 

CASO 1: La circunferencia no tiene ningún punto en la recta limite. Se transforma en una elipse. El centro de la elipse O´ se determina  como  homologo  del  polo  O  de  la  recta  limite  respecto  de  la  circunferencia  dada.  Para  determinar  los  ejes seguimos el siguiente proceso: Determinamos el punto M proyección ortogonal de V sobre su polar respecto de  la circunferencia ( M y N conjugados). La mediatriz del segmento VM en su  intersección con  la recta  limite determina el centro O´´ de una circunferencia   de radio O´´V que a su vez determina en la recta limite los puntos 1 y 2. Los segmentos interceptados por las tangentes desde 1 y 2, AB y CD se transforman por homología en los ejes A´B´ y C´D´. 

V

O

M

O´´

N

1 2

C

D

B

A

e (eje)

l (recta limite)

 

CASO 2: La circunferencia es tangente a la recta limite. Se transforma en una parábola. La perpendicular por V a la dirección V2 determina el punto 1 en la recta limite. La homologa de la polar de 1 se transforma en el eje de la parábola y el punto de tangencia A en A´ vértice de la parábola. Para determinar la directriz d y el foco F utilizamos una tangente y la tangente de vértice según figura adjunta.  

V

e (eje)

l (recta limite)

A

tA´

t

21

d

F

e

P=P´

tP

tP´

  

Page 16: Curvas conicas

APUNTES DT. 2º BACH. CURVAS CÓNICAS - 16

Joaquín Aroca Gomez Pág. 16 de 16

CASO 3: La circunferencia es secante a la recta limite. Se transforma en una hipérbola. Los puntos de corte 1 y 2 determinan 

la dirección de las asíntotas homologas de las tangentes en 1 y 2. Las bisectrices de V1 y V2 determinan la dirección de los 

ejes 3 y 4 y las tangentes desde 3 los vértices A´ y B´ homólogos de A y B. 

 

 

V

e (eje)

l (recta limite)1 243

A

B

OO´

a´2a2

a´1

a1 e