Datos Cultivos cropwat.pdf

download Datos Cultivos cropwat.pdf

of 323

Transcript of Datos Cultivos cropwat.pdf

  • 7/25/2019 Datos Cultivos cropwat.pdf

    1/322

    ISSN

    0254-5293

    ESTUDIO FAORIEGO Y

    DRENAJE

    56

    zona radicular

    evaporacin

    transpiracin

    riego

    lluvia

    Rs

    Kc ini

    K

    Kc med

    c fin

    evapotranspiracin

    radiacin

    Evapotranspiracindel cultivoGuas para la determinacin delos requerimientos de agua de los cultivos

  • 7/25/2019 Datos Cultivos cropwat.pdf

    2/322

    Evapotranspiracindel cultivoGuas para la determinacin de

    los requerimientos de agua de los cultivos

    porRichard G. Allen

    Utah State UniversityLogan, Utah, EE.UU.Luis S. Pereira

    Instituto Superior de AgronomiaLisboa, Portugal

    Dirk Raes

    Katholieke Universiteit LeuvenLeuven, Blgica

    Martin Smith

    Servicio de Recursos, Formento y Aprovechamiento de AguasFAO

    ORGANIZACIN DE LAS NACIONES UNIDAS PARA LA AGRICULTURA

    Y LA ALIMENTACIN

    Roma, 2006

    ESTUDIO FAORIEGO Y

    DRENAJE

    56

  • 7/25/2019 Datos Cultivos cropwat.pdf

    3/322

    Las denominaciones empleadas en este producto informativo y la forma en queaparecen presentados los datos que contiene no implican, de parte de la Organizacinde las Naciones Unidas para la Agricultura y la Alimentacin, juicio alguno sobrela condicin jurdica o nivel de desarrollo de pases, territorios, ciudades o zonas,o de sus autoridades, ni respecto de la delimitacin de sus fronteras o lmites.

    ISBN 92-5-304219-2

    Todos los derechos reservados. Se autoriza la reproduccin y difusin de materialcontenido en este producto informativo para fines educativos u otros fines no comercialessin previa autorizacin escrita de los titulares de los derechos de autor, siempre quese especifique claramente la fuente. Se prohbe la reproduccin del material contenidoen este producto informativo para reventa u otros fines comerciales sin previa autorizacinescrita de los titulares de los derechos de autor. Las peticiones para obtener tal autorizacindebern dirigirse alJefe de la Subdireccin de Polticas y Apoyo en Materia de Publicacin Electrnicade la Direccin de Informacin de la FAOViale delle Terme di Caracalla, 00100 Roma, Italiao por correo electrnico a:[email protected]

    FAO 2006

  • 7/25/2019 Datos Cultivos cropwat.pdf

    4/322

    iii

    ndice

    1. Introduccin a la evapotranspiracin 1Proceso de Evapotranspiracin 1

    Evaporacin 1Transpiracin 3Evapotranspiracin 3

    Unidades 3

    Factores que afectan la evapotranspiracin 5Variables climticas 5Factores de cultivo 5Manejo y condiciones ambientales 5

    Conceptos de Evapotranspiracin 7Evapotranspiracin del cultivo de referencia (ETo) 7Evapotranspiracin del cultivo bajo condiciones estndar (ETc) 7Evapotranspiracin del cultivo bajo condiciones no estndar (ETc aj) 9

    Determinacin de la evapotranspiracin 10Medicin de ET 10ET calculada con datos meteorolgicos 13ET estimada con el tanque de evaporacin 13

    PARTE A. Evapotranspiracin de referencia (ETo) 15

    2. Ecuacin de FAO Penman-Monteith 17Necesidad de un mtodo estndar para determinar ETo 17

    Formulacin de la ecuacin de Penman-Monteith 18Ecuacin de Penman-Monteith 18Resistencia aerodinmica (ra) 20Resistencia superficial (total) (rs) 20

    Superficie de Referencia 23

    Ecuacin de FAO Penman-Monteith 24Ecuacin 24Datos 27Estimacin de datos faltantes 28

    3. Datos meteorolgicos 29Factores meteorolgicos que determinan la ET 29

    Radiacin solar 29Temperatura del aire 29Humedad del aire 30Velocidad del viento 30

    Parmetros atmosfricos 31

    Presin atmosfrica (P) 31Calor latente de vaporizacin () 31Constante psicromtrica () 31

    Temperatura del aire 32

  • 7/25/2019 Datos Cultivos cropwat.pdf

    5/322

    iv

    Humedad del aire 33Conceptos 33Medicin 35Procedimientos de clculo 35

    Radiacin 41Conceptos 41Unidades 43Medicin 45Procedimientos de clculo 45

    Velocidad del viento 55Medicin 55Relacin del viento con la altura 55

    Recoleccin de datos climticos 57Estaciones meteorolgicas 57Bases de datos agroclimticos mensuales 57

    Estimacin de datos climticos faltantes 58Estimacin de datos faltantes de humedad 58Estimacin de los datos de radiacin 59Datos faltantes de viento 63

    Datos mnimos requeridos 64

    Una ecuacin alternativa para el clculo de ETo 64

    4. Determinacin de ETo 65Ecuacin de Penman-Monteith 65

    Procedimientos de clculo 66ETocalculada para diversos perodos de tiempo 66

    Procedimientos de clculo en caso de datos faltantes 76Mtodo del tanque evapormetro 78

    Tanque evapormetro 78Coeficiente del tanque evapormetro (Kp) 79

    PARTE B. Evapotranspiracin del cultivo en condiciones estndar 87

    5. Introduccin a la evapotranspiracin del cultivo (ETc) 89Procedimientos de clculo 89

    Clculo directo 89Enfoque del coeficiente del cultivo 89

    Factores que determinan el coeficiente del cultivo 91Tipo del cultivo 91Clima 91Evaporacin del suelo 93Etapas del crecimiento del cultivo 95

    Evapotranspiracin del cultivo (ETc) 97Enfoques de los coeficientes nico y dual del cultivo 98Curva del coeficiente del cultivo 99

    Diagrama de flujo de los clculos 101

    6. ETc coeficiente nico del cultivo (Kc) 103Duracin de las etapas de crecimiento 103

  • 7/25/2019 Datos Cultivos cropwat.pdf

    6/322

    v

    Coeficientes del cultivo 109Valores tabulados de Kc 109Coeficiente del cultivo para la etapa inicial (Kc ini) 114Coeficiente del cultivo para la etapa de mediados de temporada (Kc med) 121

    Coeficiente del cultivo para el trmino de la etapa final (Kc fin) 125Elaboracin de la curva de Kc 127

    Cultivos anuales 127Curva de Kcpara cultivos forrajeros 128rboles frutales 129

    Clculo de la ETc 129Determinacin grfica del valor de Kc 129Determinacin numrica del valor de Kc 132

    Coeficientes del cultivo basados en la alfalfa como referencia 133

    Extrapolacin de valores previos de Kc 134

    7. ETc coeficiente dual del cultivo (Kc= Kcb+ Ke) 135Componente de la transpiracin (KcbETo) 135

    Coeficiente basal del cultivo (Kcb) 135Determinacin de los valores diarios de Kcb 141

    Componente de la evaporacin (KeETo) 141Procedimiento de clculo 142Lmite superior Kc max 143Coeficiente de reduccin de la evaporacin del suelo (Kr) 144Fraccin expuesta y humedecida del suelo (few) 147Clculo diario del valor de Ke 151

    Clculo de ETc 156

    PARTE C. Evapotranspiracin del cultivo en condiciones no-estndar 159

    8. ETcbajo condiciones de estrs hdrico 161Disponibilidad de agua en el suelo 161

    Agua disponible total (ADT) 161Agua fcilmente aprovechable (AFA) 162

    Coeficiente de estrs hdrico (Ks) 167

    Balance de agua del suelo 169

    Planificacin del riego 171

    Efectos de la salinidad del suelo 174Relacin productividad-salinidad 175

    Relacin productividad-estrs hdrico 176

    Relacin combinada salinidad-reduccin de la ET 177Sin estrs hdrico (Dr< AFA) 177Con estrs hdrico (Dr> AFA) 177

    Aplicacin 181

    9. ETcpara vegetacin natural, atpica y subptima 183Procedimiento de clculo 183

    Etapa inicial de crecimiento 183Etapas de mediado y final de temporada 183Condiciones de estrs hdricos 184

  • 7/25/2019 Datos Cultivos cropwat.pdf

    7/322

    vi

    Ajuste para la etapa de mediados de temporada para vegetacin escasa 184Ajuste a partir de observaciones de campo 184Estimacin de Kcb meda partir del ndice de rea foliar (IAF) 185Estimacin de Kcb meda partir de la cobertura efectiva del suelo (fc eff) 187

    Estimacin de Kcb full 189Conclusin 190

    Etapa de mediados de temporada: ajuste por control estomtico 191

    Etapa de final de temporada 192

    Estimacin de ETc ajconsiderando la productividad del cultivo 193

    10. ETcbajo distintas prcticas de manejo 195Efecto del mantillo (mulch) sobre la superficie 195

    Cobertura con plstico 195Cobertura orgnica 196

    Cultivos intercalados 197

    Vegetacin contigua 198Vegetacin solapada 199Cultivos de borde 199

    reas reducidas de vegetacin 199reas rodeadas por vegetacin que posee caractersticas

    similares de rugosidad y de humedad 200Efectos de oasis y ropa tendida 200

    Estrs ambiental inducido como prctica de manejo 202Semilla de alfalfa 203Algodn 203Remolacha azucarera 204

    Caf 204T 204Olivos 204

    11. ETcfuera de la temporada productiva 205Tipos de condiciones de la superficie del terreno 205

    Suelo descubierto 205Superficie cubierta por vegetacin muerta 205Superficie cubierta por vegetacin viva 206Superficies congeladas o cubiertas con nieve 207

    Anexos

    1. Unidades y smbolos 209

    2. Cuadros meteorolgicos 211

    3. Bases fsicas de los parmetros usadosen el clculo de la evapotranspiracin 221

    4. Anlisis estadstico de los datos climticos 227

    5. Medida y determinacin de la integridadde los datos meteorolgicos 241

    6. Correccin de datos climticos obtenidosen estaciones no-referenciales para calcular ETo 253

    7. Clculo de Kcpara el estado inicial de los cultivos anuales 2598. Ejemplo de clculo para la aplicacindel concepto de Kcen calendarios de riego 265

    Bibliografa 277

  • 7/25/2019 Datos Cultivos cropwat.pdf

    8/322

    vii

    Lista de figuras

    1. Representacin esquemtica de un estoma 2

    2. Particin de la evapotranspiracin en evaporacin y transpiracindurante el perodo de crecimiento de un cultivo anual 2

    3. Factores que afectan la evapotranspiracin con referenciaa conceptos relacionados de ET 4

    4. Evapotranspiracin del cultivo de referencia (ETo), bajo condicionesestndar (ETc) y bajo condiciones no estndar (ETc aj) 6

    5. Representacin esquemtica de la variacin diurna de los componentesdel balance de energa sobre una superficie transpirante con suficiente

    cantidad de agua en un da soleado 116. Balance de agua en el suelo de la zona radicular 12

    7. Representacin simplificada de la resistencia superficial (total)y de la resistencia aerodinmica al flujo de vapor de agua 19

    8. Representacin tpica de la variacin del ndice de rea Foliar (IAF)activo (verde) a lo largo del perodo de crecimientode un cultivo de maz 22

    9. Caractersticas del cultivo hipottico de referencia 24

    10. Ilustracin del efecto de la velocidad del viento sobre laevapotranspiracin en condiciones atmosfricas secasy calientes comparadas con condiciones hmedas y tibias 30

    11. Presin de saturacin de vapor (e) en funcin de la temperatura:curva de e(T) 34

    12. Variacin de la humedad relativa durante un perodo de24 horas para una presin de vapor constante de 2,4 kPa 34

    13. Variacin anual de la radiacin extraterrestre (Ra) en el ecuador,a los 20 y 40 de latitud norte y sur 41

    14. Variacin anual de las horas de luz del da (N) en el ecuador,a los 20 y 40 de latitud norte y sur 42

    15. Componentes de la radiacin 44

    16. Factor de conversin para convertir la velocidad del viento medidaen cierta altura sobre el nivel del suelo a la velocidad del viento

    en la altura estndar (2 m) 5617. Relacin entre la fraccin de radiacin extraterrestre que alcanza lasuperficie de la tierra, Rs/Ra, y la diferencia de temperatura Tmax- Tminpara zonas interiores (kRs= 0.16) y para zonas costeras (kRs= 0.19) 61

    18. ETocalculada por CROPWAT 69

    19. Dos casos de localizacin del tanque de evaporacin y sus alrededores 79

    20. Valores tpicos de Kcpara diferentes cultivoscompletamente desarrollados 92

    21. Rangos extremos de Kcpara cultivos completamente desarrollados,en respuesta a variaciones climticas y meteorolgicas 92

    22. El efecto de la evaporacin sobre Kc. 94

    23. Etapas de desarrollo de diferentes cultivos 9424. Rangos tpicos esperados del valor de Kc

    para las cuatro etapas del crecimiento 97

  • 7/25/2019 Datos Cultivos cropwat.pdf

    9/322

    viii

    25. Curva generalizada del coeficiente del cultivo, correspondienteal procedimiento del coeficiente nico del cultivo 100

    26. Curvas del coeficiente del cultivo mostrando las curvas de Kcb(lnea gruesa), de la evaporacin en el suelo Ke(lnea delgada)y la curva correspondiente de Kc= Kcb+ Kecurve (lnea punteada) 100

    27. Procedimiento general para calcular ETc 102

    28. Variacin de la longitud del perodo de crecimiento del arroz(cultivar: Jaya), repartidos durante varios meses del ao,en diferentes lugares a lo largo del Ro Senegal (frica) 109

    29. Valor promedio de Kc inirelacionado con el nivel de EToy el intervalode tiempo entre riegos y/o lluvias significativas durante la etapa inicialde crecimiento, para cualquier tipo de suelo, cuando los eventos dehumedecimiento sean de ligeros a medianos (310 mm por evento) 117

    30. Valor promedio de Kc inirelacionado con el nivel de EToy el intervalode tiempo entre riegos para eventos de humedecimiento mayoreso iguales a 40 mm durante la etapa inicial para a) suelos de

    textura gruesa; b) suelos de textura mediana y fina 11831. Riego con humedecimiento parcial 120

    32. Ajuste (aditivo) al valor de Kc meddel Cuadro 12 para diferentesalturas del cultivo y valor promedio diario de la velocidad delviento (u2) para diferentes condiciones de humedad 122

    33. Rangos esperados de Kc fin 126

    34. Curva del coeficiente del cultivo 126

    35. Curva de Kcpara alfalfa destinada para heno en el sur de Idaho,Estados Unidos, utilizando valores de los Cuadros 11 y 12 yajustes a travs de las Ecuaciones 62 y 65 128

    36. Curva de Kcy valores decadales de Kcy ETcderivados del grfico,

    para el cultivo de frijol (juda) seco del ejemplo (Recuadro 15) 13237. Curva del coeficiente basal del cultivo (Kcb) para el cultivo de

    frijol seco (Ejemplo 28) usando las longitudes de las etapasde crecimiento de 25, 25, 30 y 20 das 142

    38. Coeficiente de reduccin de la evaporacin, Kr 145

    39. Determinacin de la variable fewen funcin de la fraccinde cobertura de la superficie del suelo (fc) y de la fraccinhumedecida de la superficie (fw) 148

    40. Balance de agua en la capa superior del suelo 152

    41. Factor de agotamiento (p) para diferentes nivelesde evapotranspiracin del cultivo 166

    42. Coeficiente de estrs hdrico, Ks 16743. Balance de agua en la zona radicular 169

    44. El efecto de la salinidad en el coeficiente de estrs hdrico Ks 181

    45. Diferentes situaciones de cultivos intercalados 198

    46. Curvas de Kcpara reas pequeas con vegetacin bajo efecto oasis,en funcin del ancho de la superficie con vegetacin, para condicionesde HRmin= 30%, u2= 2 m/s, altura de la vegetacin (h) = 2 m y IAF = 3 203

    47. Evapotranspiracin promedio medida durante perodos invernalessin crecimiento vegetativo, en Kimberly, Idaho, Estados Unidos 208

  • 7/25/2019 Datos Cultivos cropwat.pdf

    10/322

    ix

    Lista de Cuadros

    1. Factores de conversin para expresar evapotranspiracin 4

    2. ETopromedio para diferentes regiones agroclimticas en mm da -1 8

    3. Factores de conversin para la radiacin 45

    4. Valores generales de la velocidad del viento en trminos mensuales 63

    5. Coeficientes del tanque evapormetro (Kp) para el Tanque Clase Apara diversas localizaciones y ambientes de los tanques y variosvalores de velocidad media del viento y de humedad relativa 81

    6. Coeficientes del tanque evapormetro (Kp) para el Tanque TipoColorado para diversas localizaciones y ambientes de los tanques

    y varios valores de velocidad media del viento y de humedad relativa 817. Coeficientes del tanque evapormetro (Kp):

    Ecuaciones de regresin derivadas de los Cuadros 5 y 6 82

    8. Cocientes de evaporacin de diversos tipos de tanques y del tanquetipo Colorado para diversas condiciones climticas y ambientales 83

    9. Valores aproximados de Kc inicorrespondientes a eventos moderadosde humedecimiento (1040 mm) y texturas medias del suelo 95

    10. Criterios generales de seleccin para los procedimientos delcoeficiente nico y dual del cultivo 98

    11. Duracin de las etapas de desarrollo del cultivo para distintosperodos de siembra y regiones climticas 104

    12. Valores del coeficiente nico (promedio temporal) del cultivo Kcy alturas medias mximas de las plantas para cultivos no estresadosy bien manejados en climas sub-hmedos (HRmin 45%, u2 2 m/s)para usar en la formula de la FAO Penman-Monteith ETo 110

    13. Clasificacin de las lminas de precipitacin 115

    14. Kc inipara arroz y varias condiciones climticas 121

    15. Estimaciones empricas de datos mensuales de velocidad del viento 124

    16. Valores tpicos de HRmincomparados con HRmedpara clasificaciones climticas generales 124

    17. Coeficiente basal del cultivo Kcbpara cultivos no estresados y bienmanejados en climas sub-hmedos (HRmin 45%, u2 2 m/s)

    para ser usados en la Ecuacin de la FAO Penman-Monteith ETo 13718. Guas generales para la derivacin de Kcba partir de los valores

    de Kcincluidos en el Cuadro 12 141

    19. Caractersticas tpicas de humedad para diferentes tipos de suelo 144

    20. Valores comunes de la fraccin fw de la superficie humedecidadel suelo por riego o lluvia 149

    21. Valores comunes de la fraccin del suelo cubierta por lavegetacin (fc) y de la expuesta a la luz del sol (1-fc) 149

    22. Rangos de profundidad mxima efectiva de las races (Zr)y fraccin de agotamiento de la humedad del suelo (p)para condiciones sin estrs hdrico, para cultivos comunes 163

    23. Tolerancia a las sales de cultivos agrcolas comunes, expresada comola conductividad elctrica del extracto de saturacin del suelocorrespondiente al umbral donde la productividad del cultivo

  • 7/25/2019 Datos Cultivos cropwat.pdf

    11/322

    x

    se reduce por primera vez por debajo de la productividad potencial total(CEe umbral) y expresada como la pendiente (b) de reduccinen la productividad cuando la salinidad aumenta por encimadel CEe umbral 178

    24. Coeficientes estacionales de respuesta de la productividad,FAO No. 33, serie de Riego y Drenaje 181

    25. Reduccin aproximada del valor de Kcy de la evaporacin en lasuperficie e incrementos de la transpiracin para varios cultivoshortcolas bajo una cobertura completa de plstico, en comparacincon condiciones sin cobertura utilizando riego por goteo 196

    Lista de recuadros

    1. Captulos relacionados con el clculo de la evapotranspiracindel cultivo de referencia (ETo) presentados en este libro 8

    2. Captulos relacionados con el clculo de la evapotranspiracindel cultivo bajo condiciones estndar (ETc) presentados en este libro 9

    3. Captulos relacionados con el clculo de la evapotranspiracin delcultivo bajo condiciones no estndar (ETc aj) presentados en este libro 10

    4. Resistencia aerodinmica de la superficie de pasto de referencia 215. Resistencia superficial (total) para el cultivo de referencia (pasto) 22

    6. Derivacin de la ecuacin de FAO Penman-Monteith para el cultivohipottico de referencia 26

    7. Hoja de clculo para determinar el dficit de presin de vapor (es ea) 40

    8. Conversin de valores de energa a evaporacin equivalente 44

    9. Hoja de clculo para la radiacin extraterrestre (Ra)y la insolacin mxima (N) 49

    10. Hoja de clculo para la radiacin neta (Rn) 53

    11. Planilla para el clculo de ETo(FAO Penman-Monteith) 67

    12. Descripcin del Tanque Clase A 8413. Descripcin del tanque enterrado tipo Colorado 85

    14. Demostracin del efecto del clima en el valor de Kc medpara el cultivo de trigo desarrollado bajo condiciones de campo 123

    15. Caso de estudio: cultivo de frijol seco en Kimberly, Idaho,Estados Unidos (coeficiente nico del cultivo) 130

    16. Caso de estudio de un cultivo de frijol seco (judias) en Kimberly,Idaho, Estados Unidos (coeficiente dual del cultivo) 158

    17. Medicin y estimacin del IAF 186

    18. Medicin y estimacin de fc eff 187

  • 7/25/2019 Datos Cultivos cropwat.pdf

    12/322

    xi

    Lista de ejemplos

    1. Conversin de la evaporacin a partir de una unidad a otra 4

    2. Determinacin de parmetros atmosfricos 32

    3. Determinacin de la presin media de vapor de saturacin 36

    4. Determinacin de la presin real de vapor a partir de lecturasdel psicrmetro 38

    5. Determinacin de la presin real de vapor de la humedad relativa 39

    6. Determinacin del dficit de presin de vapor 39

    7. Conversin de la latitud en grados y minutos a radianes 46

    8. Determinacin de la radiacin extraterrestre 479. Determinacin de la insolacin mxima 48

    10. Determinacin de la radiacin solar con datos de insolacin real diaria 50

    11. Determinacin de la radiacin neta de onda larga 52

    12. Determinacin de la radiacin neta 53

    13. Determinacin del flujo de calor en el suelo para perodos mensuales 55

    14. Ajuste de datos de velocidad del viento a la altura estndar 56

    15. Determinacin de la radiacin solar con datos de temperatura 61

    16. Determinacin de la radiacin neta en ausencia de datos de radiacin 62

    17. Determinacin de ETocon el promedio de los datos mensuales 70

    18. Determinacin de ETocon datos diarios 7219. Determinacin de ETocon datos horarios 75

    20. Determinacin de ETocon datos faltantes 77

    21. Determinacin de ETocon datos del tanque evapormetrousando Cuadros 83

    22. Determinacin de EToa travs del uso de ecuacionesadoptadas para el tanque de evaporacin 86

    23. Estimacin del intervalo entre eventos de humedecimiento 116

    24. Determinacin grfica del valor de Kc ini 116

    25. Interpolacin entre eventos de humedecimiento ligeros y pesados 119

    26. Determinacin del valor de Kc inipara humedecimiento parcialde la superficie del suelo 120

    27. Determinacin de Kc med 125

    28. Determinacin numrica de Kc 133

    29. Seleccin y ajuste del coeficiente basal del cultivo, Kcb 136

    30. Determinacin de los valores diarios de Kcb 141

    31. Determinacin de la evapotranspiracin en un suelo descubierto 146

    32. Clculo del coeficiente del cultivo (Kcb+ Ke) bajo riego por aspersin 150

    33. Clculo del coeficiente del cultivo (Kcb+ Ke) bajo riego por surcos 151

    34. Clculo del coeficiente del cultivo (Kcb+ Ke) bajo riego por goteo 151

    35. Estimacin de la evapotranspiracin del cultivoa travs del procedimiento del coeficiente dual del cultivo 154

  • 7/25/2019 Datos Cultivos cropwat.pdf

    13/322

    xii

    36. Determinacin del agua fcilmente aprovechablepara diferentes cultivos y tipos de suelo 166

    37. Efecto del estrs hdrico en la evapotranspiracin del cultivo 168

    38. Calendario de riego para evitar situaciones de estrs hdrico 172

    39. Efecto de la salinidad del suelo en la evapotranspiracin del cultivo 18240. Aproximacin inicial del coeficiente del cultivo para la etapa

    de mediados de temporada para vegetacin escasa 185

    41. Estimacin del coeficiente del cultivo para la etapade mediados de temporada 190

    42. Estimacin del coeficiente del cultivo para la etapa de mediadosde temporada para una cobertura reducida del suelo 191

    43. Estimacin de Kcb medutilizando la cobertura del sueloy considerando la reduccin por control estomtico 192

    44. Estimacin aproximada de Ksa partir de los datos deproductividad del cultivo 194

    45. Efectos de la cobertura plstica sobre la superficie 19746. Cultivo intercalado de maz y calabacn 200

    47. Vegetacin solapada 201

  • 7/25/2019 Datos Cultivos cropwat.pdf

    14/322

    xiii

    Prefacio

    En esta publicacin se presenta una actualizacin del procedimiento para calcular laevapotranspiracin de referencia y la evapotranspiracin del cultivo a partir de datosmeteorolgicos y coeficientes del cultivo. El procedimiento, que fue presentado porprimera vez en la publicacin de la Serie de Riego y Drenaje de la FAO No. 24 LasNecesidades de Agua de los Cultivos, se denomina como el enfoque de Kc ETo,donde los efectos del clima sobre los requerimientos de agua del cultivo vienen reflejadosen la evapotranspiracin del cultivo de referencia EToy el efecto del cultivo se incorporaen el coeficiente del cultivo Kc. Otros procedimientos desarrollados en la citadapublicacin de la Serie de Riego y Drenaje de la FAO No. 24, tales como la estimacin

    de la precipitacin confiable y la precipitacin efectiva, el clculo de los requerimientosde riego y el clculo de los calendarios de riego, no se tratan en la presente publicacin,pero sern temas a considerar en publicaciones futuras de esta serie.

    Desde la aparicin de la publicacin de la Serie de Riego y Drenaje de la FAO No.24 en 1977, los avances en investigacin y la disponibilidad de clculos ms precisos deluso del agua por los cultivos han indicado la necesidad de actualizar las metodologasde la FAO para el clculo de ETo. Se encontr que el mtodo de Penman modificadode la FAO produca con frecuencia sobreestimaciones del valor de ETo, mientras queotros mtodos recomendados por la FAO, especficamente los mtodos de la radiacin,Blaney-Criddle y el mtodo del tanque de evaporacin, mostraron una correspondenciavariable con respecto a la evapotranspiracin de referencia del pasto.

    En Mayo de 1990, la FAO organiz una consulta de expertos e investigadores, con

    la colaboracin de la Comisin Internacional de Riego y Drenaje y la OrganizacinMeteorolgica Mundial, para revisar las metodologas de la FAO para la determinacinde los requerimientos de agua de los cultivos y para producir lineamientos para larevisin y actualizacin de los procedimientos utilizados.

    El panel de expertos recomend la adopcin del mtodo combinado de Penman-Monteith como el nuevo procedimiento estndar para la evapotranspiracin dereferencia e indic los procedimientos para calcular los distintos parmetros incluidosen el mtodo. Se desarroll entonces el mtodo de FAO Penman-Monteith, definiendoel cultivo de referencia como un cultivo hipottico con una altura asumida de 0,12 m,con una resistencia de la superficie de 70 s m-1y un albedo de 0,23 m, lo que asemeja ala evaporacin que ocurre en una superficie extensa de pasto verde de altura uniforme,

    creciendo activamente y bien regada. El nuevo mtodo supera las limitaciones delmtodo anterior de Penman de la FAO y produce valores que son ms consistentescon datos reales del uso de agua de los cultivos obtenidos mundialmente. Adems sehan desarrollado procedimientos y recomendaciones para la utilizacin del mtodode la FAO Penman-Monteith con datos climticos limitados, eliminando por lo tantola necesidad de utilizar otros mtodos para la estimacin de la evapotranspiracin ycreando una base consistente y transparente para una estandarizacin universal de losclculos de los requerimientos de agua de los cultivos.

    El mtodo de la FAO Penman-Monteith utiliza datos climticos estndar loscuales pueden ser fcilmente medidos o derivados de datos comnmente medidos.Todos los procedimientos de clculo han sido estandarizados en funcin de los datosmeteorolgicos disponibles y la escala de tiempo de los clculos. Los mtodos declculo, as como los procedimientos para la estimacin de datos climticos faltantes, sepresentan en esta publicacin.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    15/322

    xiv

    En el enfoque del Kc ETo, las diferencias en la vegetacin del cultivo y en laresistencia aerodinmica, con respecto al cultivo de referencia, resultan consideradasen el coeficiente del cultivo. El coeficiente Kc sirve como una integracin de todaslas diferencias fsicas y fisiolgicas entre los cultivos. Se presentan dos mtodos de

    clculo para la determinacin de la evapotranspiracin del cultivo a partir del valorde ETo. El primer enfoque integra la relacin entre la evapotranspiracin del cultivoy la evapotranspiracin del cultivo de referencia dentro de un coeficiente nico K c.En el segundo enfoque Kc se divide en dos factores que describen por separado loscomponentes de la evaporacin (Ke) y la transpiracin (Kcb). La seleccin del enfoqueapropiado de Kcdepender del propsito de los clculos y de la frecuencia de los datos(diaria, semanal, mensual, etc.) disponibles para los clculos.

    Los ltimos captulos presentan varios procedimientos que pueden ser utilizados pararealizar ajustes al coeficiente del cultivo y que toman en cuenta las desviaciones de lascondiciones de desarrollo del cultivo con respecto a las condiciones estndar, tales comola presencia de estrs hdrico y salino, baja densidad de plantas, factores ambientales y

    las prcticas de manejo del cultivo.Los ejemplos incluidos ilustran los distintos procedimientos de clculo consideradosa lo largo de la publicacin. La mayora de los clculos, principalmente todos aquellosrequeridos para el clculo de la evapotranspiracin del cultivo de referencia y el mtododel coeficiente nico del cultivo, pueden ser llevados a cabo utilizando una calculadorade bolsillo, las hojas de clculo y las numerosos cuadros incluidos en esta publicacin. Elusuario podra adems disear algoritmos de computacin, utilizando hojas de clculoelectrnicas o cualquier lenguaje de programacin.

    Los procedimientos incluidos en esta publicacin tienen como objetivo suministrarguas para los gerentes de proyectos, consultores, ingenieros de riego, agrnomos,meteorlogos y estudiantes, para la determinacin de la evapotranspiracin del cultivode referencia y la evapotranspiracin de los cultivos. Estos procedimientos pueden ser

    utilizados para determinar los requerimientos de agua de cultivos bajo riego o secano ypara calcular el consumo de agua tanto de vegetacin agrcola como vegetacin natural.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    16/322

    xv

    Agradecimientos

    Este material constituye el esfuerzo de ocho aos de deliberaciones y consultas porparte de los autores, quienes conformaron el grupo de trabajo designado para llevara efecto las recomendaciones de la consulta de expertos de la FAO llevada a cabo enMayo de 1990 en Roma. Esta consulta fue organizada para revisar los, hasta entonces,procedimientos de la FAO para la determinacin de las Necesidades de Agua de losCultivos, presentados en 1977 en la publicacin de la Serie de Riego y Drenaje de laFAO No. 24 (FAO-24), cuyos autores fueron J. Doorenbos y W. Pruitt. El enfoqueconceptual introducido en las metodologas revisadas de la presente publicacines producto del grupo de destacados expertos congregados en la reunin de 1990

    quienes han contribuido de manera importante en el desarrollo de estudios adicionalesconducidos dentro del enfoque de la publicacin. Miembros de la consulta de expertosde la FAO de 1990 incluyen Dr P. Fleming de Australia, Dr A. Perrier de Francia, DrsL. Cavazza y L. Tombesi de Italia, Drs R. Feddes y J. Doorenbos de Holanda, Dr L.S.Pereira de Portugal, Drs J.L. Monteith y H. Gunston del Reino Unido, Drs R. Allen, M.

    Jensen y W.O. Pruitt de los Estados Unidos de Amrica, Dr D. Rijks de la OrganizacinMeteorolgica Mundial y personal de la FAO.

    Muchos otros especialistas y personas pertenecientes a diferentes organizacionese institutos han aportado, en diferentes grados y en diferentes etapas, importantesrecomendaciones y contribuciones. Un agradecimiento especial por esta contribucinse debe en particular al Profesor W.O. Pruitt (retirado) de la Universidad de California,Davis y a J. Doorenbos de la FAO (retirado) los cuales fijaron los estndares y modelos

    a seguir en este trabajo a travs del trabajo predecesor de FAO-24, y para el Prof. J.L.Monteith cuyo inigualable trabajo marc las bases cientficas para la revisin de ETo. ElProf. Pruitt, a pesar de su estatus emeritus, ha contribuido permanentemente haciendodisponible datos esenciales e impartiendo recomendaciones acerca de conceptos crticos.El Dr James L. Wright del USDA, Kimberly, Idaho, contribuy igualmente al proveerdatos para diferentes cultivos obtenidos a travs de lismetros de precisin. Importantescontribuciones adicionales o revisiones en etapas crticas de esta publicacin fueronrecibidas de los Drs. M. Jensen, G. Hargreaves y C. Stockle de los Estados Unidos, DrB. Itier de Francia, y varios miembros de los grupos de trabajo tcnico de la ComisinInternacional de Riego y Drenaje (ICID) y las Sociedades Americanas de IngenierosCiviles y Agrcolas.

    Los autores agradecen a sus respectivas instituciones, Utah State University, InstitutoSuperior de Agronoma de Lisboa, Katholieke Universiteit Leuven y FAO por elgeneroso soporte del tiempo en nuestras facultades y servicios del personal durante lapreparacin de esta publicacin.

    Los autores quieren expresar su gratitud al Sr. H. Wolter (retirado), Director dela Direccin de Fomento de Tierras y Aguas por su estmulo en la preparacin deesta publicacin y a los colegas de la FAO y otras personas quienes han revisado estedocumento y realizado valiosos comentarios.

    Un agradecimiento especial a Ricardo Trezza de la Universidad de los Andes deVenezuela y a Magali Garcia de la Universidad Mayor de San Andrs de Bolivia por latraduccin al espaol. Finalmente se agradece la contribucin de Juan Antonio Sagardoyy Giovanni Muoz por la revisin final y de Simone Morini por la preparacin del textoy de su formato.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    17/322

    xvi

    Lista de ecuaciones

    1. Ecuacin del balance de energa 11

    2. Balance del agua en el suelo 12

    3. Expresin de Penman-Monteith de la ecuacin combinada 19

    4. Resistencia aerodinmica (ra) 20

    5. Resistencia (total) de la superficie (rs) 21

    6. Ecuacin FAO Penman-Monteith, escala de tiempo diaria,de diez das y mensual 25

    7. Presin atmosfrica (P) 31

    8. Constante psicromtrica () 319. Temperatura media del aire (Tmedia) 32

    10. Humedad relativa (HR) 35

    11. Presin de vapor a saturacin en funcin de la temperatura (e(T)) 36

    12. Presin de vapor a saturacin (es) 36

    13. Pendiente e(T) curva () 36

    14. Presin real de vapor obtenida de la temperatura del punto de roco (ea) 37

    15. Presin real de vapor obtenida de datos psicromtricos (ea) 37

    16. Constante psicromtrica del instrumento (psicrmetro) (psy) 37

    17. Presin real de vapor obtenida de HRmaxy HRmin(ea) 38

    18. Presin real de vapor obtenida de HRmax(ea) 3819. Presin real de vapor obtenida de RHmed(ea) 39

    20. Conversin de energa a evaporacin equivalente 43

    21. Radiacin extraterrestre para perodos diarios (Ra) 45

    22. Conversin de grados decimales a radianes 46

    23. Inverso de la distancia relativa Tierra-Sol (dr) 46

    24. Declinacin solar () 46

    25. Angulo horario al ocaso funcin arco coseno (s) 46

    26. Angulo horario al ocaso funcin arco tangente (s) 46

    27. Parmetro X de la Ecuacin 26 46

    28. Radiacin extraterrestre para perodos horarios o inferiores (Ra) 47

    29. Angulo del tiempo solar al inicio del perodo (1) 47

    30. Angulo del tiempo solar al final del perodo (2) 47

    31. Angulo del tiempo solar a la mitad del perodo () 48

    32. Correccin estacional del tiempo solar (Sc) 48

    33. Parmetro b de la Ecuacin 32 48

    34. Horas de insolacin (N) 48

    35. Radiacin solar (Rs) 50

    36. Radiacin para das despejados cerca del nivel del mar (Rso) 51

    37. Radiacin para das despejados para altitudes mayores (Rso) 5138. Radiacin neta solar o de onda corta (Rns) 51

    39. Radiacin neta de onda larga (Rnl) 52

  • 7/25/2019 Datos Cultivos cropwat.pdf

    18/322

    xvii

    40. Radiacin neta (Rn) 53

    41. Flujo de calor en el suelo (G) 54

    42. Flujo de calor en el suelo para perodos diarios o de diez das (Gday) 54

    43. Flujo de calor en el suelo para perodos mensuales (Gmes) 54

    44. Flujo de calor en el suelo para perodos mensuales si Tmes,i+1es desconocido (Gmes) 54

    45. Flujo de calor en el suelo para perodos horarioso inferiores durantes horas diurnas (Ghr) 55

    46. Flujo de calor en el suelo para perodos horarioso inferiores durantes horas nocturnas (Ghr) 55

    47. Ajuste de la velocidad del viento a la altura estndar (u2) 56

    48. Estimacin de la presin real de vapor a partir de Tmin(ea) 58

    49. Importando radiacin solar de una estacin meteorolgica cercana (Rs) 59

    50. Estimacin de la radiacin solar a partir de diferencias de temperatura

    (frmula de Hargreaves) 6051. Estimacin de la radiacin solar en islas (Rs) 62

    52. Ecuacin de evapotranspiracin de referencia de Hargreaves 1985 64

    53. Ecuacin de FAO Penman-Monteith para perodos horarios 74

    54. Presin real de vapor para perodos horarios 74

    55. Estimacin de EToa partir de datos del tanque evapormetro 79

    56. Evapotranspiracin del cultivo (ETc) 89

    57. Coeficiente dual del cultivo 99

    58. Evapotranspiracin del cultivo coeficiente nico del cultivo (ETc) 103

    59. Interpolacin para lminas infiltradas entre 10 y 40 mm 117

    60. Ajuste de Kc inipor humedecimiento parcial del suelo 11961. Lmina de riego para la porcin humedecida del suelo (Iw) 119

    62. Ajuste climtico del valor de Kc med 123

    63. Humedad relativa mnima estimada a partir de e(Troco) 124

    64. Humedad relativa mnima estimada a partir de e(Tmin) 124

    65. Ajuste climtico de Kc fin 127

    66. Interpolacin de Kcpara las etapas de desarrollo y final 132

    67. Relacin entre coeficientes del cultivo basados en el pasto y la alfalfa 133

    68. Cociente entre el Kc basado en el pasto y el Kc basado en la alfalfapara Kimberly, Idaho 134

    69. Evapotranspiracin del cultivo coeficiente dual del cultivo (ETc) 135

    70. Ajuste climtico de Kcb 136

    71. Coeficiente de la evaporacin en el suelo (Ke) 142

    72. Limite superior de la evaporacin y evapotranspiracinpara cualquier superficie cultivada (Kc max) 143

    73. Lmina mxima de agua que puede ser evaporadade la capa superficial del suelo (AET) 144

    74. Coeficiente de reduccin de la evaporacin (Kr) 146

    75. Fraccin expuesta y humedecida del suelo (few) 147

    76. Fraccin efectiva de la superficie del suelo que es cubierta

    por la vegetacin (fc) 14977. Balance diario del agua del suelo para la fraccin expuesta

    y humedecida del suelo 151

  • 7/25/2019 Datos Cultivos cropwat.pdf

    19/322

    xviii

    78. Limites del agotamiento del agua del suelodebido a la evaporacin (De) 153

    79. Agua que drena fuera de la capa superficial del suelo (DPe) 156

    80. Evapotranspiracin del cultivo ajustada por estrs hdrico

    coeficiente dual del cultivo 16181. Evapotranspiracin del cultivo ajustada por estrs hdrico

    coeficiente nico del cultivo 161

    82. Agua disponible total en la zona radicular (ADT) 162

    83. Agua fcilmente aprovechable en la zona radicular del suelo (AFA) 162

    84. Coeficiente de estrs hdrico (Ks) 169

    85. Balance de agua en la zona radicular 170

    86. Limites del agotamiento de agua en la zona radiculardebido a la evapotranspiracin (Dr) 170

    87. Agotamiento inicial (Dr,i-1) 170

    88. Percolacin profunda (DP) 17189. Productividad relativa del cultivo (Ya/Ym) determinada segn

    la salinidad del suelo (ECe) y el umbral de salinidad del cultivo 176

    90. Funcin de respuesta de la productividad del cultivo a ladisponibilidad de agua (FAO Estudio de la serie de Riegoy Drenaje No. 33) 176

    91. Coeficiente de estrs hdrico (Ks) bajo condiciones de salinidad 177

    92. Coeficiente de estrs hdrico (Ks) bajo condiciones de salinidady estrs hdrico 177

    93. Salinidad del suelo (ECe) estimada a partir de la fraccinde lavado (LF) y la calidad del agua de riego (EC iw) 181

    94. Kc ajpara cobertura reducida de las plantas 18495. Coeficiente de ajuste (a partir del IAF) 185

    96. Coeficiente de ajuste (a partir de fc) 185

    97. K(cb med) aja partir del ndice de rea Foliar 186

    98. K(cb med) aja partir de la cobertura efectiva de la superficie del suelo 187

    99. Kcb fullpara cultivos agrcolas 189

    100. Kcb fullpara vegetacin natural 189

    101. Kcb h para cobertura vegetal completa 189

    102. Ajuste por control estomtico (Fr) 191

    103. Coeficiente de estrs hdrico (Ks) estimado a partir de la funcin de

    respuesta de la productividad del cultivo a la disponibilidad de agua 194104. Coeficiente del cultivo estimado para campos con cultivos

    intercalados (Kc campo) 199

    105. Coeficiente del cultivo estimado para barreras rompevientos (Kc) 202

  • 7/25/2019 Datos Cultivos cropwat.pdf

    20/322

    xix

    Lista de los smbolosprincipales y acrnimos

    apsi coeficiente del psicrmetro [C-1]

    as fraccin de la radiacin extraterrestre que llega a la tierra en un da nublado[-]

    as+bs fraccin de la radiacin extraterrestre que llega a la tierra en un da despejado[-]

    ADT agua disponible total en la zona radicular [mm]AET agua evaporable total (sea, la lmina mxima de agua que puede ser

    evaporada de la capa superficial del suelo [mm]AFA agua fcilmente aprovechable de la zona radicular del suelo [mm]AFE agua fcilmente evaporable (sea, la lmina mxima de agua que puede ser

    evaporada sin restricciones de la capa superficial del suelo durante la etapa1) [mm]

    cp calor especfico [MJ kg-1C-1]cs capacidad calorfica del suelo [MJ m

    -3C-1]CR ascenso capilar [mm da-1]De lmina acumulada de evaporacin (agotamiento) de la capa superficial del

    suelo [mm]Dr lmina acumulada de evapotranspiracin (agotamiento) de la zona radicular

    del suelo [mm]

    d altura del plano de desplazamiento nulo [m]dr inverso de la distancia relativa Tierra-Sol [-]DP percolacin profunda [mm]DPe percolacin profunda que abandona la capa evaporante [mm]E evaporacin [mm da-1]Epan evaporacin en el tanque evapormetro [mm da

    -1]e(T) presin de vapor a saturacin a la temperatura del aire T [kPa]es presin de vapor a saturacin para un perodo determinado [kPa]ea presin real de vapor [kPa]es- ea dficit de presin de vapor con respecto a la saturacinECe conductividad elctrica del extracto de saturacin del suelo [dS m-1]

    ECe umbral conductividad elctrica del extracto de saturacin del suelo por encima dela cual empieza a disminuir la productividad del cultivo [dS m -1]

    ET evapotranspiracin [mm da-1]ETo evapotranspiracin del cultivo de referencia [mm da-1]ETc evapotranspiracin del cultivo bajo condiciones estndar [mm da-1]ETc aj evapotranspiracin del cultivo bajo condiciones no-estndar [mm da

    -1]exp[x] 2,7183 (base del logaritmo natural) elevado a la potencia xFr factor de correccin de la resistencia [-]fc fraccin de la superficie del suelo cubierta por la vegetacin (observada

    verticalmente desde arriba) [-]fc eff fraccin efectiva de la superficie del suelo cubierta por la vegetacin [-]1-fc fraccin expuesta del suelo [-]fw fraccin de la superficie del suelo humedecida por el riego o la lluvia [-]few fraccin del suelo que se encuentra expuesta y humedecida (a partir de la

    cual ocurre la mayor parte de la evaporacin) [-]

  • 7/25/2019 Datos Cultivos cropwat.pdf

    21/322

    xx

    G flujo de calor en el suelo [MJ m-2da-1]Gday flujo de calor en el suelo para perodos diarios y de diez das [MJ m-2da-

    1]Ghr flujo de calor en el suelo para perodos horarios e inferiores [MJ m-2hora-

    1]Gmes flujo de calor en el suelo para perodos mensuales [MJ m-2da-1]Gsc constante solar [0,0820 MJ m

    -2min-1]H calor sensible [MJ m-2 da-1]HR humedad relativa [%]HRhr promedio de humedad relativa horariaHRmax humedad relativa mxima diaria [%]HRmedia humedad relativa media diaria [%]HRmin humedad relativa mnima diaria [%]HWR cociente entre la altura y el anchoh altura del cultivo [m]

    I lmina infiltrada de riego (neta) [mm]IAF ndice de rea foliar [m2(rea foliar) m-2(superficie del suelo)]IAFactiva ndice del rea foliar activa (soleada) [-]Iw lmina infiltrada de riego en la porcin humedecida de la superficie [mm]

    J nmero del da en el ao [-]Kc coeficiente del cultivo [-]Kc ini coeficiente del cultivo durante la etapa inicial de crecimiento [-]Kc med coeficiente del cultivo durante la etapa de mediados de temporada [-]Kc fin coeficiente del cultivo al finalizar la etapa final de crecimiento [-]Kc max valor mximo del coeficiente del cultivo (a continuacin de una lluvia o

    riego) [-]Kc min valor mnimo del coeficiente del cultivo (suelo seco sin cobertura del suelo)

    [-]Kcb coeficiente basal del cultivo [-]Kcb full coeficiente basal del cultivo durante la etapa de mediados de temporada (en

    el mximo del tamao o altura de la planta) para vegetacin con coberturacompleta del suelo de IAF > 3 [-]

    Kcb ini coeficiente basal del cultivo durante la etapa inicial de crecimiento [-]Kcb med coeficiente basal del cultivo durante la etapa de mediados de temporada [-]Kcb fin coeficiente basal del cultivo al finalizar la etapa final de crecimiento [-]Ke coeficiente de evaporacin en el suelo [-]Kp coeficiente del tanque evapormetro [-]Kr coeficiente de reduccin de la evaporacin en el suelo [-]

    Ks coeficiente de estrs hdrico [-]Ky factor de respuesta de la productividad del cultivo [-]k constante de von Karmans [0,41] [-]kRs coeficiente de ajuste para la formula de radiacin de Hargreaves [C-0,5]Lini duracin de la etapa inicial de crecimiento del cultivo [da]Ldes duracin de la etapa de desarrollo del cultivo [da]Lmed duracin de la etapa de mediados de temporada [da]Lfin duracin de la etapa de final de temporada [da]Lz longitud del centro de la zona del tiempo local [grados oeste de

    Greenwich]Lm longitud [grados oeste de Greenwich]N duracin mxima de la insolacin durante el da o el mximo nmero de

    horas de sol durante el da [hora]n duracin real de la insolacin durante el da o el nmero real de horas de

    sol durante el da [hora]

  • 7/25/2019 Datos Cultivos cropwat.pdf

    22/322

    xxi

    n/N relacin de la duracin de la insolacin o fraccin de insolacin [-]P precipitacin [mm], presin atmosfrica [kPa]p factor de agotamiento del agua en el suelo [-]R constante especfica del gas [0,287 kJ kg-1K-1]

    Ra radiacin extraterrestre [MJ m-2da-1]Rl radiacin de onda larga [MJ m-2da-1]Rn radiacin neta [MJ m

    -2da-1]Rnl radiacin neta de onda larga [MJ m-2da-1]Rns radiacin solar neta o radiacin neta de onda corta [MJ m

    -2da-1]Rs radiacin solar o radiacin de onda corta [MJ m-2da-1]Rso radiacin solar o de onda corta para cielo despejado [MJ m

    -2da-1]ra resistencia aerodinmica [s m-1]rl resistencia estomtica (total) de una hoja bien iluminada [s m

    -1]rs resistencia del cultivo o resistencia superficial (total) [s m-1]Rs/Rso fraccin de radiacin solar o fraccin de radiacin de onda corta [-]

    RO escurrimiento superficial [mm]Sc factor de correccin estacional del tiempo solar [hora]SF flujo sub-superficial [mm]SW contenido de agua en el suelo [m3(agua) m-3(suelo)]T temperatura del aire [C]TK temperatura del aire [K]TKv temperatura virtual del aire [K]Troco temperatura de roco [C]Tseco temperatura del bulbo seco [C]Tmax temperatura mxima diaria del aire [C]Tmax,K temperatura mxima diaria del aire [K]Tmedia temperatura media diaria del aire [C]

    Tmin temperatura mnima diaria del aire [C]Tmin,K temperatura mnima diaria del aire [K]Thmedo temperatura del bulbo hmedo [C]t tiempo [hora]u2 velocidad del viento a 2 m sobre la superficie del suelo [m s-1]uz velocidad del viento a una altura z m sobre la superficie del suelo [m s

    -1]W agua precipitable en la atmsfera [mm]Ya productividad real del cultivo [kg ha

    -1]Ym productividad mxima (esperada) del cultivo en ausencia de estrs hdrico o

    estrs ambiental [kg ha-1]Ze profundidad de la capa superficial del suelo sujeta al secado a travs de la

    evaporacin [m]Zr profundidad de las races [m]z altitud, altura sobre el nivel del mar [m]zh altura de las mediciones de humedad [m]zm altura de las mediciones de viento [m]zom longitud de la rugosidad para la transferencia de momentum [m]zoh longitud de la rugosidad para la transferencia de calor y vapor de agua [m] albedo [-] constante psicromtrica [kPa C-1]psy constante psicromtrica del instrumento [kPa C

    -1] pendiente de la curva de presin de vapor a saturacin [kPa C-1]SW variacin en el contenido de agua en el suelo [mm]t duracin del intervalo de tiempo [da]z profundidad efectiva del suelo [m] declinacin solar [rad]

  • 7/25/2019 Datos Cultivos cropwat.pdf

    23/322

    xxii

    cociente entre los pesos moleculares del vapor de agua/aire seco (= 0,622) ngulo medio del sol sobre el horizonte contenido de agua en el suelo [m3(agua) m-3(suelo)]FC contenido de agua en el suelo a capacidad de campo [m3(agua) m-3(suelo)]

    t valor umbral del contenido de agua en el suelo por debajo del cual se reducela transpiracin debido al estrs hdrico [m3(agua) m-3(suelo)]

    WP contenido de agua en el suelo en el punto de marchitez permanente[m3(agua) m-3(suelo)]

    calor latente de vaporizacin [MJ kg-1]ET flujo de calor latente [MJ m-2da-1]a densidad media del aire [kg m

    -3]w densidad del agua [kg m-3] Constante de Stefan-Boltzmann [4,903 10-9MJ K-4m-2da-1] latitud [rad] ngulo del tiempo solar a la mitad del perodo horario o inferior [rad]

    1 ngulo del tiempo solar al comienzo del perodo horario o inferior [rad]2 ngulo del tiempo solar al final del perodo horario o inferior [rad]s ngulo horario al ocaso [rad]

  • 7/25/2019 Datos Cultivos cropwat.pdf

    24/322

    1

    Captulo 1

    Introduccin a la

    evapotranspiracin

    Este captulo explica los conceptos y las diferencias entre evapotranspiracin del cultivode referencia (ETo), la evapotranspiracin del cultivo bajo condiciones estndar (ETc) y laevapotranspiracin del cultivo bajo varias condiciones de manejo y ambientales (ETc aj).Tambin examina los factores que afectan la evapotranspiracin, las unidades en las cualesse expresa normalmente y la manera en la cual puede ser determinada.

    PROCESO DE EVAPOTRANSPIRACINSe conoce como evapotranspiracin (ET) la combinacin de dos procesos separadospor los que el agua se pierde a travs de la superficie del suelo por evaporacin y porotra parte mediante transpiracin del cultivo

    EvaporacinLa evaporacin es el proceso por el cual el agua lquida se convierte en vapor de agua(vaporizacin) y se retira de la superficie evaporante (remocin de vapor). El aguase evapora de una variedad de superficies, tales como lagos, ros, caminos, suelos y lavegetacin mojada.

    Para cambiar el estado de las molculas del agua de lquido a vapor se requiereenerga. La radiacin solar directa y, en menor grado, la temperatura ambiente del aire,

    proporcionan esta energa. La fuerza impulsora para retirar el vapor de agua de unasuperficie evaporante es la diferencia entre la presin del vapor de agua en la superficieevaporante y la presin de vapor de agua de la atmsfera circundante. A medida queocurre la evaporacin, el aire circundante se satura gradualmente y el proceso se vuelvecada vez mas lento hasta detenerse completamente si el aire mojado circundante nose transfiere a la atmsfera o en otras palabras no se retira de alrededor de la hoja. Elreemplazo del aire saturado por un aire ms seco depende grandemente de la velocidaddel viento. Por lo tanto, la radiacin, la temperatura del aire, la humedad atmosfrica yla velocidad del viento son parmetros climatolgicos a considerar al evaluar el procesode la evaporacin.

    Cuando la superficie evaporante es la superficie del suelo, el grado de cobertura del

    suelo por parte del cultivo y la cantidad de agua disponibles en la superficie evaporanteson otros factores que afectan el proceso de la evaporacin. Lluvias frecuentes, el riegoy el ascenso capilar en un suelo con manto fretico poco profundo, mantienen mojada lasuperficie del suelo. En zonas en las que el suelo es capaz de proveer agua con velocidadsuficiente para satisfacer la demanda de la evaporacin del suelo, este proceso estdeterminado solamente por las condiciones meteorolgicas. Sin embargo, en casos enque el intervalo entre la lluvia y el riego es grande y la capacidad del suelo de conducirla humedad cerca de la superficie es reducida, el contenido en agua en los horizontessuperiores disminuye y la superficie del suelo se seca. Bajo estas circunstancias, ladisponibilidad limitada del agua ejerce un control sobre la evaporacin del suelo. Enausencia de cualquier fuente de reabastecimiento de agua a la superficie del suelo, laevaporacin disminuye rpidamente y puede cesar casi totalmente en un corto lapsode tiempo.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    25/322

    Evapotranspiracin del cultivo2

    vapor de agua

    cutcula

    clulasepidermales

    Atmsfera

    clulasdel mesfilo

    espaciointercelular

    agua

    FIGURA 1

    Representacin esquemtica de un estoma

    tiempo

    0%

    20%

    40%

    60%

    80%

    100%

    Particindelaevapotranspiracin

    transpiracin

    siembra cosecha

    IA F

    evaporacin del suelo

    ndicedelreafolia

    r(IAF)

    FIGURA 2

    Reparticin de la evapotranspiracin en evaporacin y transpiracin

    durante el periodo de crecimiento de un cultivo anual

  • 7/25/2019 Datos Cultivos cropwat.pdf

    26/322

    Captulo 1 Introduccin a la evapotranspiracin 3

    TranspiracinLa transpiracin consiste en la vaporizacin del agua lquida contenida en los tejidosde la planta y su posterior remocin hacia la atmsfera. Los cultivos pierden aguapredominantemente a travs de los estomas. Estos son pequeas aberturas en la hoja de

    la planta a travs de las cuales atraviesan los gases y el vapor de agua de la planta hacia laatmsfera (Figura 1). El agua, junto con algunos nutrientes, es absorbida por las racesy transportada a travs de la planta. La vaporizacin ocurre dentro de la hoja, en losespacios intercelulares, y el intercambio del vapor con la atmsfera es controlado por laabertura estomtica. Casi toda el agua absorbida del suelo se pierde por transpiraciny solamente una pequea fraccin se convierte en parte de los tejidos vegetales.

    La transpiracin, igual que la evaporacin directa, depende del aporte de energa, delgradiente de presin del vapor y de la velocidad del viento. Por lo tanto, la radiacin, latemperatura del aire, la humedad atmosfrica y el viento tambin deben ser consideradosen su determinacin. El contenido de agua del suelo y la capacidad del suelo deconducir el agua a las races tambin determinan la tasa de transpiracin, as como la

    salinidad del suelo y del agua de riego. La tasa de transpiracin tambin es influenciadapor las caractersticas del cultivo, el medio donde se produce y las prcticas de cultivo.Diversas clases de plantas pueden tener diversas tasas de transpiracin. Por otra parte,no solamente el tipo de cultivo, sino tambin su estado de desarrollo, el medio dondese produce y su manejo, deben ser considerados al evaluar la transpiracin.

    Evapotranspiracin (ET)La evaporacin y la transpiracin ocurren simultneamente y no hay una manerasencilla de distinguir entre estos dos procesos. Aparte de la disponibilidad de aguaen los horizontes superficiales, la evaporacin de un suelo cultivado es determinadaprincipalmente por la fraccin de radiacin solar que llega a la superficie del suelo.Esta fraccin disminuye a lo largo del ciclo del cultivo a medida que el dosel del cultivo

    proyecta ms y ms sombra sobre el suelo. En las primeras etapas del cultivo, el aguase pierde principalmente por evaporacin directa del suelo, pero con el desarrollo delcultivo y finalmente cuando este cubre totalmente el suelo, la transpiracin se convierteen el proceso principal. En la Figura 2 se presenta la evapotranspiracin dividida ensus dos componentes (evaporacin y transpiracin) en relacin con el rea foliar porunidad de superficie de suelo debajo de l. En el momento de la siembra, casi el 100%de la ET ocurre en forma de evaporacin, mientras que cuando la cobertura vegetal escompleta, ms del de 90% de la ET ocurre como transpiracin.

    UNIDADESLa evapotranspiracin se expresa normalmente en milmetros (mm) por unidad de

    tiempo. Esta unidad expresa la cantidad de agua perdida de una superficie cultivada enunidades de altura de agua. La unidad de tiempo puede ser una hora, da, 10 das, meso incluso un completo perodo de cultivo o un ao.

    Como una hectrea tiene una superficie de 10 000 m2 y 1 milmetro es igual a 0,001m, una prdida de 1 mm de agua corresponde a una prdida de 10 m 3 de agua porhectrea. Es decir 1 mm da-1es equivalente 10 m3ha-1da-1.

    La altura del agua se puede tambin expresar en trminos de la energa recibida porunidad de rea. Esto ltimo se refiere a la energa o al calor requerido para vaporizar elagua. Esta energa, conocida como el calor latente de vaporizacin (), es una funcinde la temperatura del agua. Por ejemplo, a 20C, tiene un valor de cerca de 2,45 MJKg-1. Es decir 2,45 MJ son necesarios para vaporizar 1 kilogramo 0,001 m3de agua.Por lo tanto, un aporte de energa de 2,45 MJ por m 2 puede vaporizar 0,001 m 1milmetro de agua, y entonces 1 milmetro de agua es equivalente a 2,45 MJ m -2. Laevapotranspiracin expresada en unidades del MJ m-2da-1 se representa por ET, elflujo del calor latente.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    27/322

    Evapotranspiracin del cultivo4

    El Cuadro 1 resume las unidades usadas para expresar la evapotranspiracin y losfactores de conversin entre ellas.

    CUADRO 1

    Factores de conversin para expresar evapotranspiracin

    Altura de agua volumen por unidad de rea energa por unidad de rea *

    mm da-1 m3 ha-1 da-1 l s-1 ha-1 MJ m-2da-1

    1 mm da-1 1 10 0,116 2,45

    1 m3 ha-1 da-1 0,1 1 0,012 0,245

    1 l s-1 ha-1 8,640 86,40 1 21,17

    1 MJ m-2da-1 0,408 4,082 0,047 1

    * Para el agua con una densidad de 1 000 kilogramos m-3 y a 20 C.

    EJEMPLO 1

    Conversin de la evaporacin a partir de una unidad a otra

    En un da de verano, la energa solar neta recibida en un lago alcanza 15 MJ por metro cuadrado por da.Si el 80% de la energa se usa para evaporar el agua, cual es el valor de la altura de agua evaporada?

    De Cuadro 1:

    Por lo tanto:

    1 MJ m-2da-1 =

    0,8 x 15 MJ m -2da-1 = 0,8 x 15 x 0,408 mm da -1 =

    0,408

    4,9

    mm da-1

    mm da-1

    La tasa de evaporacin ser de 4,9 mm da -1

    factores

    de cultivo

    variablesclimticas

    ET

    T

    E

    ETo

    ETc

    ET

    manejo ycondicionesambientales c aj

    FIGURA 3

    Factores que afectan la evapotranspiracin con referencia a conceptos relacionados de ET

  • 7/25/2019 Datos Cultivos cropwat.pdf

    28/322

    Captulo 1 Introduccin a la evapotranspiracin 5

    FACTORES QUE AFECTAN LA EVAPOTRANSPIRACINEl clima, las caractersticas del cultivo, el manejo y el medio de desarrollo sonfactores que afectan la evaporacin y la transpiracin. Los conceptos relacionadosa la ET y presentados en la Figura 3 se describen en la seccin sobre conceptos de

    evapotranspiracin.

    Variables climticasLos principales parmetros climticos que afectan la evapotranspiracin son la radiacin, latemperatura del aire, la humedad atmosfrica y la velocidad del viento. Se han desarrolladovarios procedimientos para determinar la evaporacin a partir de estos parmetros. Lafuerza evaporativa de la atmsfera puede ser expresada por la evapotranspiracin delcultivo de referencia (ETo). La evapotranspiracin del cultivo de referencia (ETo) representala prdida de agua de una superficie cultivada estndar. La ETo se describe ms adelante eneste Captulo y en los Captulos 2 y 4 en forma ms detallada.

    Factores de cultivoEl tipo de cultivo, la variedad y la etapa de desarrollo deben ser considerados cuandose evala la evapotranspiracin de cultivos que se desarrollan en reas grandes y bienmanejadas. Las diferencias en resistencia a la transpiracin, la altura del cultivo, larugosidad del cultivo, el reflejo, la cobertura del suelo y las caractersticas radicularesdel cultivo dan lugar a diferentes niveles de ET en diversos tipos de cultivos aunque seencuentren bajo condiciones ambientales idnticas. La evapotranspiracin del cultivobajo condiciones estndar (ETc) se refiere a la demanda evaporativa de la atmsferasobre cultivos que crecen en reas grandes bajo condiciones ptimas de agua en elsuelo, con caractersticas adecuadas tanto de manejo como ambientales, y que alcanzanla produccin potencial bajo las condiciones climticas dadas.

    Manejo y condiciones ambientalesLos factores tales como salinidad o baja fertilidad del suelo, uso limitado de fertilizantes,presencia de horizontes duros o impenetrables en el suelo, ausencia de control deenfermedades y de parsitos y el mal manejo del suelo pueden limitar el desarrollodel cultivo y reducir la evapotranspiracin. Otros factores que se deben considerar alevaluar la ET son la cubierta del suelo, la densidad del cultivo y el contenido de aguadel suelo. El efecto del contenido en agua en el suelo sobre la ET est determinadoprimeramente por la magnitud del dficit hdrico y por el tipo de suelo. Por otra parte,demasiada agua en el suelo dar lugar a la saturacin de este lo cual puede daar elsistema radicular de la planta y reducir su capacidad de extraer agua del suelo por lainhibicin de la respiracin.

    Cuando se evala la tasa de ET, se debe considerar adicionalmente la gama deprcticas locales de manejo que actan sobre los factores climticos y de cultivoafectando el proceso de ET. Las prcticas del cultivo y el mtodo de riego puedenalterar el microclima, afectar las caractersticas del cultivo o afectar la capacidad deabsorcin de agua del suelo y la superficie de cultivo. Una barrera rompevientos reducela velocidad del viento y disminuye la tasa de ET de la zona situada directamentedespus de la barrera. El efecto puede ser significativo especialmente en condicionesventosas, calientes y secas aunque la evapotranspiracin de los mismos rboles podracompensar cualquier reduccin en el campo. La evaporacin del suelo de un huerto conrboles jvenes, en donde los rboles estn ampliamente espaciados, puede ser reducidausando un sistema de riego por goteo bien diseado. Los goteros aplican el aguadirectamente al suelo cerca de los rboles, de modo en que dejan la mayor parte de lasuperficie del suelo seca, limitando las prdidas por evaporacin. El uso de coberturas,especialmente cuando el cultivo es pequeo, es otra manera de reducir substancialmentela evaporacin del suelo. Los anti-transpirantes, tales como estimulantes del cierre de

  • 7/25/2019 Datos Cultivos cropwat.pdf

    29/322

    Evapotranspiracin del cultivo6

    los estomas, o los materiales que favorecen el reflejo del suelo, reducen las prdidasde agua del cultivo y por lo tanto la tasa de transpiracin. Cuando las condiciones decampo difieran de las condiciones estndar, son necesarios factores de correccin paraajustar ETc(ETc aj). Estos factores de ajuste reflejan el efecto del ambiente y del manejo

    cultural de las condiciones de campo.

    x =ETo

    estrs hdrico y ambiental

    RadiacinTemperaturaVientoHumedad

    clima

    + =

    x =

    cultivo dereferencia

    (pasto) ETo

    ETc

    ETc aj

    ETo

    Kcfactor

    Ksx Kcajustado

    pasto bien regado

    cultivo bien regadocondiciones agronmicas ptimas

    FIGURA 4

    Evapotranspiracin del cultivo de referencia (ETo), bajo condiciones estndar (ETc)

    y bajo condiciones no estndar (ETc aj)

  • 7/25/2019 Datos Cultivos cropwat.pdf

    30/322

    Captulo 1 Introduccin a la evapotranspiracin 7

    CONCEPTOS DE EVAPOTRANSPIRACINEl concepto de evapotranspiracin incluye tres diferentes definiciones:evapotranspiracin del cultivo de referencia (ETo), evapotranspiracin del cultivobajo condiciones estndar (ETc), y evapotranspiracin del cultivo bajo condiciones no

    estndar (ETc aj) (Figura 4). ETo es un parmetro relacionado con el clima que expresa elpoder evaporante de la atmsfera. ETc se refiere a la evapotranspiracin en condicionesptimas presentes en parcelas con un excelente manejo y adecuado aporte de agua yque logra la mxima produccin de acuerdo a las condiciones climticas. ETc requieregeneralmente una correccin, cuando no existe un manejo ptimo y se presentanlimitantes ambientales que afectan el crecimiento del cultivo y que restringen laevapotranspiracin, es decir, bajo condiciones no estndar de cultivo.

    Evapotranspiracin del cultivo de referencia (ETo)La tasa de evapotranspiracin de una superficie de referencia, que ocurre sinrestricciones de agua, se conoce como evapotranspiracin del cultivo de referencia, y se

    denomina ETo. La superficie de referencia corresponde a un cultivo hipottico de pastocon caractersticas especficas. No se recomienda el uso de otras denominaciones comoET potencial, debido a las ambigedades que se encuentran en su definicin.

    El concepto de evapotranspiracin de referencia se introdujo para estudiar lademanda de evapotranspiracin de la atmsfera, independientemente del tipo ydesarrollo del cultivo, y de las prcticas de manejo. Debido a que hay una abundantedisponibilidad de agua en la superficie de evapotranspiracin de referencia, los factoresdel suelo no tienen ningn efecto sobre ET. El relacionar la ET a una superficieespecfica permite contar con una referencia a la cual se puede relacionar la ET de otrassuperficies. Adems, se elimina la necesidad de definir un nivel de ET para cada cultivoy periodo de crecimiento. Se pueden comparar valores medidos o estimados de ETo endiferentes localidades o en diferentes pocas del ao, debido a que se hace referencia a

    ET bajo la misma superficie de referencia.Los nicos factores que afectan ETo son los parmetros climticos. Por lo tanto,

    ETo es tambin un parmetro climtico que puede ser calculado a partir de datosmeteorolgicos. ETo expresa el poder evaporante de la atmsfera en una localidady poca del ao especficas, y no considera ni las caractersticas del cultivo, ni losfactores del suelo. Desde este punto de vista, el mtodo FAO Penman-Monteith serecomienda como el nico mtodo de determinacin de ETo con parmetros climticos.Este mtodo ha sido seleccionado debido a que aproxima de una manera cercana la ETode cualquier localidad evaluada, tiene bases fsicas slidas e incorpora explcitamenteparmetros fisiolgicos y aerodinmicos. Adems, se han desarrollado procedimientospara la estimacin de los parmetros climticos faltantes.

    El Cuadro 2 muestra rangos tpicos de valores de ETo en diferentes regionesagroclimticas. Estos valores pretenden familiarizar al usuario, sin recomendar suaplicacin directa. El clculo de la evapotranspiracin del cultivo de referencia sepresenta en la Parte A de este manual (Recuadro 1).

    Evapotranspiracin del cultivo bajo condiciones estndar (ETc)La evapotranspiracin del cultivo bajo condiciones estndar se denomina ETc, y serefiere a la evapotranspiracin de cualquier cultivo cuando se encuentra exento deenfermedades, con buena fertilizacin y que se desarrolla en parcelas amplias, bajoptimas condiciones de suelo y agua, y que alcanza la mxima produccin de acuerdoa las condiciones climticas reinantes.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    31/322

    Evapotranspiracin del cultivo8

    La cantidad de agua requerida para compensar la prdida por evapotranspiracin delcultivo se define como necesidades de agua del cultivo. A pesar de que los valores de laevapotranspiracin del cultivo y de las necesidades de agua del cultivo son idnticos,sus definiciones conceptuales son diferentes. Las necesidades de agua del cultivo serefieren a la cantidad de agua que necesita ser proporcionada al cultivo como riego oprecipitacin, mientras que la evapotranspiracin del cultivo se refiere a la cantidadde agua perdida a travs de la evapotranspiracin. La necesidad de riego bsicamenterepresenta la diferencia entre la necesidad de agua del cultivo y la precipitacin efectiva.El requerimiento de agua de riego tambin incluye agua adicional para el lavado desales, y para compensar la falta de uniformidad en la aplicacin de agua. El clculo delas necesidades de agua de riego no se incluye en este libro, pero ser tema central deun futuro libro dentro de la Serie Riego y Drenaje.

    CUADRO 2

    ETopromedio para diferentes regiones agroclimticas en mm da-1

    Regiones

    Temperatura promedio durante el da (C)

    Templada~10C

    Moderada20C

    Caliente> 30C

    Trpicos y subtrpicos

    - hmedos y subhmedos

    - ridos y semiridos

    2 - 3

    2 4

    3 - 5

    4 - 6

    5 - 7

    6 - 8

    Regiones templadas

    - hmedas y subhmedas

    - ridas y semiridas

    1 - 2

    1 3

    2 - 4

    4 - 7

    4 - 7

    6 - 9

    RECUADRO 1

    Captulos relacionados con el clculo de evapotranspiracindel cultivo de referencia (ETo) presentados en este libro

    PARTE A

    Captulo 2 Ecuacin Penman-Monteith de la FAO:

    Este captulo explica al usuario la importancia de estandarizar el mtodo de clculo de ETo a partir de

    datos meteorolgicos. El mtodo FAO Penman-Monteith se recomienda como el nico mtodo para

    determinar ETo. Se describen el mtodo y las definiciones correspondientes de la superficie de referencia.

    Captulo 3 Datos Meteorolgicos:

    El mtodo Penman-Monteith de la FAO requiere datos de radiacin, temperatura del aire, humedad

    atmosfrica y velocidad del viento. En este captulo se presentan procedimientos de clculo paraderivar parmetros climticos de los datos meteorolgicos con los que se cuente. Tambin se presentan

    procedimientos para estimar valores faltantes de variables meteorolgicas existentes con el fin de

    calcular ETo. Con estos procedimientos es posible estimar la ETocon el mtodo FAO Penman-Monteith

    bajo cualquier circunstancia, an cuando no se cuenten con todos los datos climticos.

    Captulo 4 Determinacin de ETo:

    Se describe el clculo de ETode acuerdo a la ecuacin FAO Penman-Monteith, con distintos intervalos

    de tiempo, a partir de los principales parmetros meteorolgicos y tambin en casos de datos faltantes.

    Tambin se presenta la determinacin de la EToa partir de la evaporacin del tanque Clase A.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    32/322

    Captulo 1 Introduccin a la evapotranspiracin 9

    La evapotranspiracin del cultivo puede ser calculada a partir de datos climticos

    e integrando directamente los factores de la resistencia del cultivo, el albedo y laresistencia del aire en el enfoque de Penman-Monteith. Debido a que todava existeuna considerable falta de informacin para los diferentes cultivos, el mtodo dePenman-Monteith se utiliza solo para la estimacin de la tasa de evapotranspiracindel cultivo estndar de referencia (ETo). La relacin ETc/EToque puede ser determinadaexperimentalmente para diferentes cultivos y es conocida como Coeficiente del Cultivo(Kc), y se utiliza para relacionar ETca ETode manera que ETc= Kcx ETo.

    Las diferencias en la anatoma de las hojas, caractersticas de los estomas, laspropiedades aerodinmicas, e incluso el albedo, ocasionan que la evapotranspiracindel cultivo difiera de la evapotranspiracin del cultivo de referencia bajo las mismas

    condiciones climticas. Debido a variaciones en las caractersticas del cultivo durantelos diferentes periodos de crecimiento, para un determinado cultivo, Kccambia desdela siembra hasta la cosecha. El clculo de la evapotranspiracin del cultivo bajocondiciones estndar (ETc) se presenta en la parte B de este manual (Recuadro 2).

    Evapotranspiracin del cultivo bajo condiciones no estndar (ETc aj)La evapotranspiracin del cultivo bajo condiciones no estndar (ETc aj) se refiere a la

    evapotranspiracin de cultivos que crecen bajo condiciones ambientales y de manejodiferentes de las condiciones estndar. Bajo condiciones de campo, la evapotranspiracinreal del cultivo puede desviarse de ETcdebido a condiciones no ptimas como son lapresencia de plagas y enfermedades, salinidad del suelo, baja fertilidad del suelo ylimitacin o exceso de agua. Esto puede resultar en un reducido crecimiento de lasplantas, menor densidad de plantas y as reducir la tasa de evapotranspiracin pordebajo de los valores de ETc.

    RECUADRO 2

    Captulos relacionados con el clculo de evapotranspiracindel cultivo bajo condiciones estndar (ETc) presentados en este libro

    PARTE B

    Captulo 5 Introduccin a la evapotranspiracin del cultivo:

    Este captulo presenta al usuario el enfoque de Kcx ETo para el clculo de la evapotranspiracin del

    cultivo. El efecto de las caractersticas que distinguen a los cultivos de campo del cultivo de referencia

    se integran en el coeficiente Kc. Se hace una distincin entre dos mtodos de determinacin de Kc

    de acuerdo a los objetivos planteados, precisin requerida, disponibilidad de datos climticos, y el

    intervalo de tiempo dentro del cual se van a realizar las estimaciones.

    Captulo 6 - ETc Coeficiente nico del cultivo (Kc):

    Este captulo presenta el primer mtodo de clculo de la evapotranspiracin del cultivo, en el cual ladiferencia entre la evapotranspiracin del cultivo y la superficie de referencia se combina en un nico

    coeficiente (Kc).

    Captulo 7 ETcParticin del coeficiente del cultivo (Kc= Kcb+ Ke):

    Este captulo presenta un segundo mtodo de clculo de la evapotranspiracin del cultivo. K cse divide

    en dos coeficientes separados, uno para la transpiracin del cultivo (el coeficiente basal del cultivo K cb)

    y otro para la evaporacin del suelo (Ke).

  • 7/25/2019 Datos Cultivos cropwat.pdf

    33/322

    Evapotranspiracin del cultivo10

    La evapotranspiracin del cultivo bajo condiciones no estndar se calcula utilizandoun coeficiente de estrs hdrico Kso ajustando Kca todos los otros tipos de condicionesde estrs y limitaciones ambientales en la evapotranspiracin del cultivo. El ajuste deETcpara el estrs hdrico, y para las limitaciones ambientales y de manejo se presenta

    en la Parte C de este manual (Recuadro 3).

    DETERMINACIN DE LA EVAPOTRANSPIRACINMedicin de ETLa evapotranspiracin no es simple de medir. Para determinarla experimentalmentese requieren aparatos especficos y mediciones precisas de varios parmetrosfsicos o el balance del agua del suelo en lismetros. Los mtodos experimentalesde campo, son en general caros, exigiendo precisin en las mediciones, y puedenser completamente realizados y analizados apropiadamente slo por personal deinvestigacin suficientemente preparado. A pesar de que estos procedimientos no sonapropiados para mediciones de rutina, siguen siendo importantes para la evaluacin de

    las estimaciones de ET obtenidas con otros mtodos indirectos.

    Mtodos de balance de energa y microclimticosLa evaporacin de agua requiere cantidades relativamente altas de energa, ya sea en laforma de calor sensible o de energa radiante. Por ello, el proceso de evapotranspiracines controlado por el intercambio de energa en la superficie de la vegetacin y eslimitado por la cantidad de energa disponible. Debido a esta limitacin, es posiblepredecir la evapotranspiracin aplicando el principio de conservacin de energa. Laenerga que llega a la superficie debe ser igual a la energa que sale de la superficie en elmismo periodo de tiempo.

    RECUADRO 3

    Captulos relacionados a la evapotranspiracindel cultivo bajo condiciones no estndar (ETc aj) presentados en este libro

    PARTE C

    Captulo 8 - ETcbajo estrs hdrico

    Este captulo presenta la reduccin en la transpiracin inducida por estrs hdrico o por salinidad existente

    en la solucin del suelo. La evapotranspiracin resultante se calcula utilizando un coeficiente de estrs

    hdrico, Ks, que describe el efecto de las condiciones de estrs hdrico en la transpiracin del cultivo.

    Captulo 9 ETc para vegetacin natural, atpica y no-prstina:

    Se presentan los procedimientos que pueden ser utilizados para hacer ajustes a Kc tomando en cuenta

    condiciones de crecimiento diferentes a las estndar. Estos procedimientos tambin pueden ser

    utilizados para determinar Kcpara cultivos agrcolas que no se cubren en los cuadros de la Parte B.

    Captulo 10 ETcbajo varias prcticas de manejo:

    Este captulo presenta varios tipos de prcticas de manejo que pueden causar que los valores de Kcy ETc

    se desven de las condiciones estndar descritas en la Parte B. Se presentan procedimientos de ajuste para

    superficies cubiertas, cultivos intercalados, reas pequeas de cultivo, y manejo de estrs inducido.

    Captulo 11 ETcdurante periodos no cultivados:

    Este captulo describe procedimientos para describir ETcdurante periodos no cultivados bajo varios

    tipos de condiciones de superficie.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    34/322

    Captulo 1 Introduccin a la evapotranspiracin 11

    Todos los flujos de energa deben ser considerados cuando se deriva una ecuacinde balance de energa. La ecuacin para una superficie de evaporacin se puede escribir

    como:

    Rn G - ET H = 0 (1)

    donde Rn es la radiacin neta, H es el calor sensible, G es el flujo de calor del suelo, yET es el flujo de calor latente. Los distintos trminos pueden ser positivos o negativos.Cuando Rn es positiva, proporciona energa a la superficie y cuando G, ET y H sonpositivos retiran energa de la superficie (Figura 5).

    En la Ecuacin 1, solamente se consideran flujos verticales y se ignora la tasa netade energa que se transfiere horizontalmente por adveccin. Por lo tanto la ecuacinse aplica solamente a superficies grandes y extensas de vegetacin homognea. La

    ecuacin est restringida a cuatro componentes: Rn, ET, H y G. No se consideranotros trminos de energa, tal como el calor almacenado y liberado de la planta, o laenerga utilizada en actividades metablicas. Estos trminos solo utilizan una pequeafraccin de la radiacin solar diaria y pueden ser considerados despreciables cuando secomparan con los otros cuatro componentes.

    El flujo de calor latente (ET) representa la fraccin de la evapotranspiracin quepuede ser derivada de la ecuacin del balance de energa si todos los otros componentesson conocidos. La radiacin neta (Rn) y el flujo de calor del suelo (G) pueden sermedidos o estimados en funcin de parmetros climticos. Por el contrario la medicindel calor sensible (H) es compleja y sus valores no pueden obtenerse fcilmente. Ladeterminacin de H incluye mediciones precisas de los gradientes de temperatura porencima de la superficie.

    Otro mtodo para estimar la evapotranspiracin es el mtodo de transferenciade masa. Este enfoque considera los movimientos verticales de pequeas cantidadesde aire (remolinos) por encima de una amplia superficie homognea. Los remolinos

    0 6 12 18 24

    tiempo (horas)

    Rn

    ET

    H

    GEne

    rgia

    entrante/saliente

    FIGURA 5

    Representacin esquemtica de la variacin diurna de los componentes del balance de energa

    sobre una superficie transpirante con suficiente cantidad de agua en un da soleado

  • 7/25/2019 Datos Cultivos cropwat.pdf

    35/322

    Evapotranspiracin del cultivo12

    transportan la materia (vapor de agua) y la energa (calor, momentum) desde y haciala superficie de evapotranspiracin. Asumiendo condiciones de equilibrio y que loscoeficientes de transferencia de los remolinos para el vapor de agua son proporcionalesa aquellos para el calor y el momentum, la evapotranspiracin puede ser calculada a

    partir de los gradientes verticales de la temperatura del aire y vapor de agua usando larelacin de Bowen. Otros mtodos de observaciones directas, utilizan gradientes develocidad del viento y de vapor de agua. Estos mtodos y otros como el de la covarianzade remolinos, requieren medidas precisas de la presin de vapor, y de la temperaturadel aire o velocidad del viento a diferentes niveles sobre la superficie. Por lo tanto suaplicacin se restringe principalmente, a situaciones de investigacin.

    Balance de agua en el sueloLa evapotranspiracin tambin puede determinarse midiendo varios componentes delbalance de agua en el suelo. El mtodo consiste en evaluar los flujos de agua que entrany salen de la zona radicular del cultivo dentro de un determinado periodo de tiempo

    (Figura 6). El riego (R) y la precipitacin (P) proporcionan agua a la zona radicular.Parte de R y P pueden perderse por escurrimiento superficial (ES), y percolacinprofunda (D) la cual eventualmente recargar la capa fretica. El agua tambin puedeser transportada hacia la superficie mediante capilaridad (C) desde la capa freticasub-superficial hacia la zona de races o ser incluso transferida horizontalmente porflujo sub-superficial hacia dentro (FSin) o fuera (FSout) de la zona radicular (FS).Sin embargo, excepto bajo condiciones de pendientes pronunciadas, normalmente losvalores de FSin y FSout son mnimos y pueden no ser considerados. La evaporacindel suelo y la transpiracin del cultivo pueden agotar el agua de la zona radicular. Sitodos los otros flujos aparte de la evapotranspiracin (ET) pueden ser evaluados, laevapotranspiracin se puede deducir a partir del cambio en el contenido de agua en elsuelo (SW) a lo largo de un periodo de tiempo:

    ET = R + P - ES - D + C FS SW (2)

    evaporacin

    flujosubsuperficial

    flujosubsuperficial

    transpiracin riego

    lluvia

    percolacinprofundaascencincapilar

    escorrenta

    zona radicular

    FIGURA 6

    Balance de agua en el suelo de la zona radicular

  • 7/25/2019 Datos Cultivos cropwat.pdf

    36/322

    Captulo 1 Introduccin a la evapotranspiracin 13

    Algunos flujos como el flujo sub-superficial, la percolacin profunda y la capilaridaddesde la capa fretica son difciles de medir y pueden no considerarse en periodos cortosde tiempo. El mtodo del balance de agua en el suelo generalmente solo puede darestimaciones de ET para periodos largos de tiempo del orden de una semana o diez das.

    LismetrosSi se asla la zona radicular del cultivo y se controlan los procesos que son difciles demedir, los diversos trminos en la ecuacin del balance de agua en el suelo se puedendeterminar con apreciable exactitud. Esto se hace en lismetros que son tanquesaislados llenados con suelo disturbado o no disturbado en los que el cultivo crecey se desarrolla. En lismetros de pesaje de precisin, la evapotranspiracin se puedeobtener con una exactitud de centsimos de milmetro, donde la prdida de agua esmedida directamente por el cambio de masa y perodos pequeos tales como una horapueden ser considerados. En lismetros de drenaje, la evapotranspiracin es medida porun perodo dado, restando la cantidad de agua de drenaje, recogida en el fondo de los

    lismetros, de la cantidad total de agua ingresada.Un requerimiento de los lismetros es que la vegetacin dentro e inmediatamentefuera del lismetro sea idntica (la misma altura e ndice de rea foliar). Este requisito nose ha respetado normalmente en muchos estudios de lisimetra y ha dado lugar a datosseriamente desviados y poco representativos de ETcy Kc.

    Como los lismetros son difciles de manejar y caros de construir y adems suoperacin y mantenimiento requieren de especial cuidado, su uso se restringenormalmente a trabajos investigativos.

    ET calculada con datos meteorolgicosDebido a la dificultad de obtener mediciones de campo precisas, ET se calculacomnmente con datos meteorolgicos. Una gran cantidad de ecuaciones empricas o

    semi-empricas se han desarrollado para determinar la evapotranspiracin del cultivo ode referencia utilizando datos meteorolgicos. Algunos de los mtodos son solamentevlidos para condiciones climticas y agronmicas especficas y no se pueden aplicarbajo condiciones diferentes de las que fueron desarrolladas originalmente.

    Numerosos investigadores han analizado el funcionamiento de los varios mtodos delclculo para diversas localidades. Como resultado de una Consulta de expertos llevadaa cabo en mayo de 1990, el mtodo FAO Penman-Monteith se recomienda actualmentecomo el mtodo estndar para la definicin y el clculo de la evapotranspiration dereferencia, ETo. La ET del cultivo bajo condiciones estndar se determina utilizandolos coeficientes de cultivo (Kc) que relacionan la ETccon la ETo. La ET de superficiescultivadas bajo condiciones no estndar se ajusta mediante un coeficiente de estrs

    hdrico (Ks) o modificando el coeficiente de cultivo.

    ET estimada con el tanque de evaporacinLa evaporacin de una superficie libre de agua, proporciona un ndice del efectointegrado de la radiacin, la temperatura del aire, la humedad del aire y del viento en laevapotranspiracin. Sin embargo, diferencias entre la superficie de agua y las superficiescultivadas producen diferencias significativas entre la prdida de agua de una superficielibre de agua y una superficie cultivada. El tanque ha probado su valor prctico y hasido utilizado con xito para estimar la evapotranspiracin de referencia observando laprdida por evaporacin de una superficie de agua y aplicando coeficientes empricospara relacionar la evaporacin del tanque con ETo. El procedimiento se presenta en elCaptulo 4.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    37/322

  • 7/25/2019 Datos Cultivos cropwat.pdf

    38/322

    15

    Parte A

    Evapotranspiracin

    de referencia (ETo)

    Esta parte del libro incluye los aspectos relacionados con la evapotranspiracin dela superficie de referencia, denominada evapotranspiracin del cultivo de referenciao evapotranspiracin de referencia y simbolizada como ETo. La superficie dereferencia es un cultivo hipottico de pasto, con una altura asumida de 0,12 m,con una resistencia superficial fija de 70 s m-1y un albedo de 0,23. La superficie dereferencia es muy similar a una superficie extensa de pasto verde, bien regada, de altura

    uniforme, creciendo activamente y dando sombra totalmente al suelo. La resistenciasuperficial fija de 70 s m-1implica un suelo moderadamente seco que recibe riego conuna frecuencia semanal aproximadamente.

    La ETo se puede calcular utilizando datos meteorolgicos. Como resultado de unaconsulta de expertos realizada en mayo de 1990, el mtodo de FAO Penman-Monteithahora se recomienda como el nico mtodo estndar para la definicin y el clculo dela evapotranspiracin de referencia. El mtodo de FAO Penman-Monteith requieredatos de radiacin, temperatura del aire, humedad atmosfrica y velocidad del viento.En esta parte (Captulo 3) se presentan los procedimientos de clculo necesarios paraderivar estos parmetros climticos de los datos meteorolgicos, as como, para estimarlas variables faltantes requeridas para calcular ETo. Los procedimientos de clculopresentados en este libro permiten la determinacin de ETo con el mtodo de FAO

    Penman-Monteith bajo casi todas las circunstancias, incluyendo los casos en que faltendatos climticos.

    La ETotambin se puede estimar tambin de la evaporacin del tanque evapormetroClase A. Los tanques han probado su valor prctico y han sido utilizados con xito paraestimar EToobservando la evaporacin del tanque y aplicando coeficientes empricospara relacionar la evaporacin del tanque con la ETo. Sin embargo, para la aplicacinde este mtodo se deben tomar ciertas precauciones y debe estar garantizado un buenmanejo del tanque.

  • 7/25/2019 Datos Cultivos cropwat.pdf

    39/322

  • 7/25/2019 Datos Cultivos cropwat.pdf

    40/322

    17

    Captulo 2

    Ecuacin de FAO Penman-Monteith

    Este captulo muestra al usuario la importancia de contar con un mtodo estndarpara el clculo de la evapotranspiracin de referencia (ETo) en base a informacinmeteorolgica. El mtodo de FAO Penman-Monteith se recomienda como el nicomtodo para determinar la evapotranspiracin de referencia ETo. En este captulo sedescriben el mtodo, su derivacin, los datos meteorolgicos requeridos y la definicincorrespondiente de la superficie de referencia.

    NECESIDAD DE UN MTODO ESTNDAR PARA DETERMINAR ETO

    Durante los ltimos 50 aos se han desarrollado una gran cantidad de mtodos ms omenos empricos por numerosos cientficos y especialistas en todo el mundo, con el finde estimar la evapotranspiracin a partir de diferentes variables climticas. A menudolas ecuaciones estaban sujetas a rigurosas calibraciones locales pero demostraron tenerlimitada validez global. Por otra parte, probar la exactitud de los mtodos bajo nuevascondiciones es laborioso y necesita mucho tiempo y dinero. A pesar de ello, los datosde evapotranspiracin son necesarios con antelacin al planeamiento de proyectos opara programar calendarios de riego. Para cubrir esta necesidad, algunas guas fuerondesarrolladas y publicadas en el Documento N 24 de la Serie FAO Riego y DrenajeNecesidades de agua de los cultivos. En este documento, y con el fin de adecuarse alas necesidades de usuarios con diversa disponibilidad de datos, se presentaron cuatromtodos para calcular la evapotranspiracin del cultivo de referencia (ETo): Blaney-

    Criddle, radiacin, Penman modificado y el mtodo del tanque de evaporacin. Elmtodo de Penman modificado se consider qu