Demeneghi A 2015 Apuntes MecAínica del Medio Continuo, Vol 1. 150101

131
APUNTES DE MECÁNICA DEL MEDIO CONTINUO VOLUMEN 1 Agustín Deméneghi Colina Profesor. Facultad de Ingeniería Universidad Nacional Autónoma de México México, D F, 2015

description

Apuntes Profesor Demeneghi Facultad Ingenieria. Clase para Geotecnistas Volumen 1 de 2

Transcript of Demeneghi A 2015 Apuntes MecAínica del Medio Continuo, Vol 1. 150101

Page 1: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

APUNTES DE

MECÁNICA DEL MEDIO CONTINUO

VOLUMEN 1

Agustín Deméneghi Colina Profesor. Facultad de Ingeniería Universidad Nacional Autónoma de México

México, D F, 2015

Page 2: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

ÍNDICE

Capítulo Tema Página Estado de deformación

Deformación unitaria 5

Obtención de la matriz gradiente de deformación 6 Descomposición de la matriz gradiente de deformación en el tensor deformación unitaria y en la matriz de rotación

10

Cálculo de la deformación unitaria lineal y de la deformación unitaria angular en una dirección dada

13

Cálculo de la nueva longitud y del giro que experimenta un segmento de recta, al pasa de la configuración inicial a la configuración deformada

16

Deformaciones unitarias principales 18 Representación gráfica de Mohr 21 Determinación de las deformaciones unitarias lineal y angular en una dirección. Método gráfico de Mohr

24

Estado de deformación plana 27 Círculo de Mohr para el estado de deformación plana

32

Deformación de un ángulo 36 Deformación unitaria natural 38 Roseta de deformación 39 Referencias 41

Problemas resueltos 42

Page 3: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

Capítulo Tema Página Estado de esfuerzo

Fuerzas de cuerpo y fuerzas de superficie 45

Estado de esfuerzo en planos perpendiculares a los ejes coordenados

45

Definición de esfuerzo en un plano inclinado 49 Descomposición del vector esfuerzo en vector esfuerzo normal y vector esfuerzo cortante

54

El esfuerzo como la derivada de un campo vectorial

57

Convención de signos para el estado de esfuerzo 58 Simetría del tensor esfuerzo 61 Esfuerzos principales 63 Representación gráfica de Mohr 65 Determinación de los esfuerzos normal y cortante en una dirección. Método gráfico de Mohr

69

Estado de esfuerzo plano 72 Círculo de Mohr para el estado de esfuerzo plano 77 Variación del esfuerzo con el área de la sección 84 Tensor isotrópico y tensor desviador 85 Convención de signos en mecánica de suelos 86 Aplicaciones 94 Ecuaciones de equilibrio dinámico 98 El área como un vector 101 Estado de esfuerzo en una prueba de compresión triaxial

105

Determinación de las direcciones principales de esfuerzo

107

Referencias 110 Anexo 1. Determinación de las direcciones principales en un estado de esfuerzo plano

111

Anexo 2. Determinación de los esfuerzos cortantes máximo y mínimo. Estado de esfuerzo plano

113

Capítulo Tema Página

Principios generales de la mecánica

Principio de conservación de masa 116

Principio de conservación de la cantidad de movimiento

118

Principio de conservación de la energía 122 Principio de aumento de entropía 123 Comentarios 124 Anexo 1. Fórmulas de cálculo vectorial 125

Referencias 126 Apéndices Notación índice 128 Solución de una ecuación cúbica. Método de

Cardano-Tartaglia 129

(Mc carátula apuntes 141201 (1)) (Deméneghi, Apuntes Mecánica del Medio Continuo, Vol 1. 150101)

Page 4: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

ESTADO DE DEFORMACIÓN

Agustín Deméneghi Colina

Page 5: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

MECÁNICA DEL MEDIO CONTINUO ESTADO DE DEFORMACIÓN

Agustín Deméneghi Colina*

DEFORMACIÓN UNITARIA Consideremos un cuerpo que sufre un cierto estado de deformación, pasando de la configuración inicial a la configuración deformada (figura 1).

Se define el vector desplazamiento de un punto P al vector cuyo punto inicial es P y cuyo punto terminal es P’, siendo P y P’ los puntos correspondientes a las posiciones antes y después de la deformación, respectivamente (figura 1). Se define el vector deformación de un punto P1 con respecto a otro punto P, como la diferencia entre los vectores desplazamiento s1 y s, es decir

* Profesor del Departamento de Geotecnia. División de Ingenierías Civil y Geomática. Facultad de Ingeniería. UNAM

Page 6: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

6

s = s1 - s (1) s = vector deformación Se define el vector deformación unitaria media como el cociente de s entre el tamaño del vector p, es decir m = s/p (3) Se define el vector deformación unitaria como el límite de m cuando la distancia entre los puntos P y P1 tiende a cero: u = lim s/p (4) p 0 OBTENCIÓN DE LA MATRIZ GRADIENTE DE DEFORMACIÓN Los puntos P (x,y,z) y P1 (x1,y1,z1) tienen los siguientes vectores de posición (figura 1)

zyx

p

1

1

1

1

zyx

p

El vector Δp vale

zyx

zzyyxx

ppp

1

1

1

1

Mientras que el vector dp es

dzdydx

pd

Como x, y y z son variables independientes, entonces dx = Δx, dy = Δy, dz = Δz; por lo tanto

Page 7: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

7

pzyx

dzdydx

pd

El módulo del vector Δp toma el siguiente valor

dppdp

El vector desplazamiento del punto P vale (figura 1) u s = v w El vector desplazamiento del punto P1 vale

u1

s1 = v1 w1 El vector deformación entre los puntos P y P1 u1 - u s = s1 - s = v1 - v w1 - w

u s = v (8)

w

Dividamos la ecuación 8 entre p y tomemos límites cuandop 0

lim u/p p 0

lim s/p = lim v/p (9) p 0 p 0

lim w/p p 0

Tomando en cuenta la ecuación 4 u = lim s/p = ds/dp (10) p 0 De la ecuación 9

du/dp ds/dp = dv/dp (11)

dw/dp Por otra parte

Page 8: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

8

du = (u/x)dx + (u/y)dy + (u/z)dz dv = (v/x)dx + (v/y)dy + (v/z)dz dw = (w/x)dx + (w/y)dy + (w/z)dz [Para ilustrar el concepto de diferencial de una función, tomemos como ejemplo una función u = u(x). La diferencial de la variable independiente, dx, es igual al incremento de dicha variable independiente, Δx (figura 1A). El incremento de la función, Δu, se toma sobre su curva de variación, como se muestra en la figura 1A. La diferencial de la función, du, se define

dxxudu

La diferencial de la función, du, se mide sobre la recta tangente a la curva en el punto P (figura 1A). Conforme disminuye la diferencial de la variable independiente dx, se acercan más los valores de Δu y de du. En el límite cuando dx → 0, du = Δu.]

u

du

Δu

P

x

dx =Δx(Mc deformación figuras)

xu

)(xuu

DIFERENCIAL DE UNA FUNCIÓN FIGURA 1A

Sustituyendo en las ecuaciones 10 y 11 (u/x)(dx/dp)+(u/y)(dy/dp)+(u/z)(dz/dp) u = (v/x)(dx/dp)+(v/y)(dy/dp)+(v/z)(dz/dp) (w/x)(dx/dp)+(w/y)(dy/dp)+(w/z)(dz/dp)

Page 9: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

9

u/x u/y u/z dx/dp

u = v/x v/y v/z dy/dp w/x w/y w/z dz/dp es decir u = D e (12) donde ux u = uy uz u/x u/y u/z D = v/x v/y v/z (13) w/x w/y w/z dx/dp e = dy/dp dz/dp A la matriz D se le denomina matriz gradiente de deformación (Malvern, 1969). Demos una interpretación geométrica al vector e

pp

zyx

pdzdydx

dpe

11

Observamos en esta ecuación que el vector e tiene la misma dirección y el mismo sentido del vector Δp, pero su tamaño es unitario (figura 3)

1e

Por lo anterior, el vector e mide la dirección en la que se está calculando la deformación unitaria.

Page 10: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

10

En la ecuación 13 observamos que la matriz gradiente de deformación D es la derivada del espacio vectorial del vector desplazamiento s = [u, v, w]T, con respecto al espacio vectorial del vector de posición p = [x, y, z]T. A la matriz D se le denomina en matemáticas matriz jacobiana. DESCOMPOSICIÓN DE LA MATRIZ GRADIENTE DE DEFORMACIÓN EN EL TENSOR DEFORMACIÓN UNITARIA Y EN LA MATRIZ DE ROTACIÓN De la ecuación 13 u/x u/y u/z D = v/x v/y v/z w/x w/y w/z u/x (1/2)(u/y+v/x) (1/2)(u/z+w/x) = (1/2)(v/x+u/y) v/y (1/2)(v/z+w/y) (1/2)(w/x+u/z) (1/2)(w/y+v/z) w/z 0 (1/2)(u/y-v/x) (1/2)(u/z-w/x) + (1/2)(v/x-u/y) 0 (1/2)(v/z-w/y) (1/2)(w/x-u/z) (1/2)(w/y-v/z) 0 Es decir D = E +

Page 11: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

11

donde u/x (1/2)(u/y+v/x) (1/2)(u/z+w/x) E= (1/2)(v/x+u/y) v/y (1/2)(v/z+w/y) (1/2)(w/x+u/z) (1/2)(w/y+v/z) w/z 0 (1/2)(u/y-v/x) (1/2)(u/z-w/x) = (1/2)(v/x-u/y) 0 (1/2)(v/z-w/y) (1/2)(w/x-u/z) (1/2)(w/y-v/z) 0 La matriz E se denomina tensor deformación unitaria (porque tiene propiedades invariantes relacionadas con la deformación del cuerpo) y a la matriz se denomina matriz de rotación. Consideremos por un momento que la matriz E = 0: u/x = v/y = w/z = 0 (1/2) (u/y+v/x) = 0 u/y = - v/x (1/2) (u/z+w/x) = 0 u/z = - w/x (1/2) (w/y+v/z) = 0 w/y = - v/z Se observa que cuando E = 0 y 0, únicamente se presenta rotación del elemento, comportándose éste como cuerpo rígido. Por esta razón a la matriz se le llama matriz rotacional. Consideremos ahora que E 0 y = 0: (1/2) (u/y-v/x) = 0 u/y = v/x (1/2) (u/z-w/x) = 0 u/z = w/x (1/2) (w/y-v/z) = 0 w/y = v/z Se observa que cuando = 0, la matriz E es una matriz simétrica con respecto a la diagonal principal. En este curso estudiamos la mecánica de los cuerpos deformables y no vamos a estudiar la rotación como cuerpo rígido, por lo que en el resto del curso consideraremos que la matriz rotacional = 0, y que D = E. Por lo tanto u/x u/y u/z E = v/x v/y v/z (15) w/x w/y w/z donde u/y = v/x, u/z = w/x, w/y = v/z Hagamos el siguiente cambio de notación: x = u/x, y = v/y, z = w/z xy = u/y+v/x = 2 (u/y), u/y = (1/2) xy xz = u/z+w/x = 2 (u/z), u/z = (1/2) xz yz = v/z+w/y = 2 (v/z), v/z = (1/2) yz El tensor deformación queda

Page 12: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

12

x (1/2)yx (1/2)zx E = (1/2)xy y (1/2)zy (16) (1/2)xz (1/2)yz z donde (1/2)yx = (1/2)xy, (1/2)zx = (1/2)xz, (1/2)zy = (1/2)yz En las figuras 3A y 3B se exhibe una interpretación física del tensor deformación E dado por la ecuación 15. Puesto que, para deformaciones pequeñas

etcéteraxu

xu

xu

x,lim

0

etcéterayu

yu

yu

y,lim

0

z

Delta w

Delta v Delta uDelta z

Delta u

Delta v

Delta Txz Delta wDelta u

Delta zP y

Delta v Delta w Delta v

Delta uDelta w

Delta vDelta u Delta x

Delta u

Delta vx Delta x

Delta w

Delta y Delta y

ESTADO DE DEFORMACIÓN EN DIRECCIONESPARALELAS A LOS EJES COORDENADOS

FIGURA 3A Apreciamos que la diagonal principal de la matriz E mide las deformaciones unitarias lineales de los ejes x, y y z, respectivamente (alargamiento o acortamiento de dichos ejes), mientras que los elementos fuera de la diagonal principal miden las deformaciones unitarias angulares de los ejes coordenados (giros de los mismos).

Page 13: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

13

z

Cara Delta wsuperior

Delta u

Delta z Delta w Delta w

Px

Delta u Delta u

Delta z

Cara Delta uinferior

Delta w

Delta x Delta x

(Mc Mecánica del Medio Continuo Figuras)

ESTADO DE DEFORMACIÓN EN DIRECCIONES PARALELASA LOS EJES z Y x

FIGURA 3B CÁLCULO DE LA DEFORMACIÓN UNITARIA LINEAL Y DE LA DEFORMACIÓN UNITARIA ANGULAR EN UNA DIRECCIÓN DADA Dado que E = D, de la ecuación 12 u = E e (17) El vector s se puede descomponer en los vectores sl y s, el primero paralelo a p y el segundo perpendicular a p (figura 2). El vector sl -denominado vector deformación lineal o vector deformación longitudinal- mide la deformación en la dirección de los puntos P y P1, mientras que el vector s -denominado vector deformación angular o vector deformación transversal- mide la deformación en dirección perpendicular a la de los puntos P y P1. De la figura 2 s = sl + s (2)

Page 14: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

14

Dividamos la ambos miembros de la ecuación 2 entre p y tomemos límites cuando p 0 lim s/p = lim sl /p+ lim s/p p 0 p 0 p 0 es decir u = l + (5)

ps

pu

0

lim

ps

u

psl

pl

0

lim (6)

psl

l

ps

p

0lim (7)

Page 15: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

15

ps

De acuerdo con la figura 4 l = proye = (e)/ e pero e = 1, por lo tanto l = l = e (18) l = l e (19) u = l + = u - l (20) La magnitud de se obtiene calculando .

También observamos que (figura 4) = u sen (21) Por otra parte, el módulo del producto vectorial tiene la siguiente propiedad u x e = u e sen = u sen (22) Comparando las ecuaciones 21 y 22 = u x e (23)

Page 16: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

16

También se puede hallar = empleando el teorema de Pitágoras. De la figura 4 u

2 = l2 +

2

2 = u2 - l

2 (24) = u

2 - l2 (25)

CÁLCULO DE LA NUEVA LONGITUD Y DEL GIRO QUE EXPERIMENTA UN SEGMENTO DE RECTA, AL PASAR DE LA CONFIGURACIÓN INICIAL A LA CONFIGURACIÓN DEFORMADA Sea un segmento de recta que va del punto P al punto P1, y que sufre el estado de deformación indicado en la figura 1. En la figura 2 se muestra el vector deformación s, así como sus compo-nentes: el vector deformación lineal sl y el vector deformación angular s . El vector PP1 aumenta su longitud en la configuración deformada. Su nueva longitud vale (figuras 1 y 2) P’P1’ = (PP1 + sl)2 + s

2 (26) El giro del segmento de recta es tan = s / (p + sl) (27) Para fines prácticos, se puede tomar l = sl/ p sl= l p = s/ p s = p Sustituyendo en las ecuaciones 26 y 27 P’P1’ = PP1 (1+ l)

2 + 2 (28)

Si es pequeño P’P1’ PP1 (1+ l) (28’) tan = p / (p + lp ) tan = / (1 + l) (29) Si l es pequeño: tan ; ( en radianes). Vemos que para deformaciones pequeñas, mide el giro en radianes del segmento de recta PP1, cuando pasa de la configuración inicial a la configuración deformada. Ejemplo Un prisma de base rectangular experimenta las deformaciones indicadas en la figura E-1. a) Calcular las deformaciones unitarias lineal y angular en la dirección de la diagonal AB. b) Hallar la nueva longitud y el giro que sufre la diagonal AB, después de la deformación.

Page 17: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

17

Solución a) El tensor deformación vale (ecuación 16) 0.12 0 0 E = 0 0.10 0 0 0 0.08333 0.5698 e = 0.4558 0.6838 De la ecuación 17 0.06838 u = E e = 0.04558 0.05698 De la ecuación 18 l = u e = 0.09870 De la ecuación 19 0.05624 l = l e = 0.04499 0.06749

De la ecuación 20 0.01214 = u - l = 0.00059 -0.01051 = = 0.01607 b) Aplicando la ecuación 28

Page 18: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

18

AB’= 8.775 (1+ 0.0987)2 + 0.016072 AB’= 9.642 cm Aplicando la ecuación 29 tan = / (1 + l) = 0.01462 = 0.01462 rad = 0.8378° ( Resolviendo el problema con álgebra de vectores, obtenemos

'

'cos

ABABABAB

][

6

4

5

cmAB

][

5.6

4.4

6.5

' cmAB

cmAB 7749644.8

cmAB 64209521.9'

999893129.0cos

837664.0 )

----------------------------------------------- DEFORMACIONES UNITARIAS PRINCIPALES Cuando en una dirección se presenta únicamente deformación lineal y la deformación angular vale cero, a esta dirección se le llama dirección principal, y a la deformación unitaria lineal que ocurre en dicha dirección se le denomina deformación unitaria principal. De acuerdo con la figura 5 u = E e l = l e

Page 19: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

19

Pero, en una dirección principal l = u

Por lo tanto l = E e = l e Es decir E e = l e (30) Utilizando las ecuaciones 14 y 16 x cos + (1/2)yx cos + (1/2)zx cos = l cos (1/2)xy cos + y cos + (1/2)zy cos = l cos (1/2)zx cos + (1/2)yz cos + z cos = l cos Es decir (x - l) cos + (1/2)yx cos + (1/2)zx cos = 0 (1/2)xy cos + (y - l) cos + (1/2)zy cos = 0 (31) (1/2)zx cos + (1/2)yz cos + (z - l) cos = 0 Despejemos los cosenos directores cos , cos y cos del sistema de ecuaciones 31. En este caso no es aceptable la solución trivial cos = cos = cos = 0, pues los cosenos directores deben cumplir la condición cos2 + cos2 + cos2 = 1 (32) En consecuencia, para que haya una solución diferente de la trivial, el determinante del sistema de ecuaciones 31 debe ser igual a cero x - l (1/2)yx (1/2)zx (1/2)xy y - l (1/2)zy = 0 (33) (1/2)xz (1/2)yz z - l

Page 20: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

20

Las deformaciones unitarias principales 1, 2 y 3 se obtienen desarrollando el determinante de la ecuación 33. Dado que la matriz E es una matriz simétrica, las raíces de la ecuación son tres números reales (Apostol, 1969), los cuales miden las deformaciones unitarias principales. Las direcciones principales se hallan sustituyendo cada raíz en el sistema de ecuaciones 31, empleando además la ecuación 32. Por ser la matriz E simétrica, las direcciones principales son ortogonales entre sí (Apostol, 1969). Ejemplo Dado el siguiente tensor deformación unitaria, hallar las deformaciones unitarias principales y las direcciones principales. 2 3 1 E = 3 4 2 x 10-4

1 2 3 Solución Desarrollando el determinante (ecuación 33) l

3 - 9l2 + 12l + 3 = 0

obtenemos las raíces de la ecuación: l = 7.2998x10-4

2 = 1.9148x10-4

3 = - 0.2146x10-4

Sustituyendo en el sistema de ecuaciones 31 (2-7.3) cos + 3 cos + cos = 0 (a) 3 cos + (4-7.3) cos + 2 cos = 0 (b) cos + 2 cos + (3-7.3) cos = 0 (c) Multiplicando por (-2) la ecuación a y sumándola a la ecuación b 10.6 cos - 6 cos - 2 cos = 0 (a’) 3 cos -3.3 cos + 2 cos = 0 (b) 13.6 cos -9.3 cos = 0 cos = 0.68382 cos (d) Multiplicando por (-3) la ecuación c y sumándola a la ecuación b - 3 cos - 6 cos + 12.9 cos = 0 (c’) 3 cos - 3.3 cos + 2 cos = 0 (b) - 9.3 cos + 14.9 cos = 0 cos = 0.62416 cos (e) Se debe cumplir (ecuación 32) cos2 + cos2 + cos2 = 1 (f) Sustituyendo las ecuaciones d y e en la ecuación f 0.46761 cos2 + cos2 + 0.38958 cos2 = 1 cos 1 = 0.73379 Sustituyendo en la ecuación d cos 1 = 0.50178 Sustituyendo en la ecuación e cos 1 = 0.4580 Procedemos en forma análoga para hallar las otras direcciones principales: cos 2 = - 0.3892 cos 2 = - 0.2813 cos 2 = 0.8771 cos 3 = - 0.77216 cos 3 = 0.61857 cos 3 = - 0.14539 (Se deja como ejercicio al lector verificar que las direcciones principales son ortogonales entre sí).

------------------------

Page 21: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

21

REPRESENTACIÓN GRÁFICA DE MOHR Consideremos el siguiente tensor deformación

1 0 0 E = 0 2 0 0 0 3 donde 1 > 2 > 3 Grafiquemos los valores de 1, 2 y 3 y tracemos los círculos indicados en la figura 8. A estos círculos se les denomina círculos de Mohr. Se puede demostrar que un punto de coordenadas P (l, ), que mide las deformaciones unitarias lineal y angular en alguna dirección dada, tiene que quedar necesariamente dentro de la zona asciurada de la figura 8 (Castillo, 1985). Procedamos a demostrar la afirmación anterior. De la ecuación 17: u = E e

cos e = cos cos

Page 22: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

22

1 cos u = 2 cos 3 cos De la ecuación 18: l = u e l = 1 cos2 + 2 cos2 + 3 cos2 (45) Aplicando la ecuación 24

2 = u2 - l

2 u

2 = l2 +

2

Pero u = 1

2 cos2 + 22 cos2 + 3

2 cos2 l

2 + 2 = 1

2 cos2 + 22 cos2 + 3

2 cos2 (46) Agrupemos las ecuaciones 45 y 46 junto con la de los cosenos directores: 1 cos2 + 2 cos2 + 3 cos2 = l 1

2 cos2 + 22 cos2 + 3

2 cos2 = l2 +

2 (47) cos2 + cos2 + cos2 = 1 Despejemos cos2 del sistema de ecuaciones 47, utilizando la regla de Cramer

1 2 3 l

2 + 2 2

2 32

1 1 1 cos2 =

1 2 3 l

2 22 3

2 1 1 1 cos2 = [l (2 + 3)(2 - 3) - 2 (l

2+2) + 2 3

2 + 3 (l

2 + 2) - 3 2

2]/[1(2 + 3)(2 - 3) - 2 l2 + 2

32 + 3 l

2 + - 3 22]

cos2 = [- l (2 + 3)(3 - 2) + (l

2+2) (3 - 2)+ 2 3 (3 - 2)]/[1(2 + 3)(2 - 3) + 1

2(3 - 2)+ 2 3 (3 - 2)] cos2 = [(l

2+2)-l(2 + 3)+ 2 3]/[(2 -1) (3 - 1)]

l

2- l(2+3)+[(2+3)/2]2+2 = -23+ [(2+3)/2]2+(2- 1)(3-1)cos2

[l-(2 + 3)/2]2+

2 = [(2-3)/2]2+(2- 1)(3-1)cos2 (48) Observamos de la ecuación 48 que l y están relacionados mediante la ecuación de un círculo, cuyas propiedades dependen de . En otras palabras, la ecuación 48 corresponde a una familia de círculos en función de ; el centro y los radios mínimo y máximo de esta familia son C [(2 + 3)/2, 0] Rmin = (2 - 3)/2 [cos = 0, = /2]

Page 23: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

23

Rmax = [(2 - 3)/2]2 + (2 - 3) (3 - 1) [cos = 1, = 0] En la figura 9 se muestra la familia de círculos .

En forma análoga se obtienen las familias de círculos y : Familia de círculos [l-(1 + 3)/2]2+

2 = [(1-3)/2]2+(1-2)(3-2) cos2 (49) C [(1 + 3)/2, 0] Rmin = [(1 - 3)/2]2 + (1 - 2) (3 - 2) [cos = 1, = 0] Rmax = (1 - 3)/2 [cos = 0, = /2] Familia de círculos [l-(2+1)/2]2+

2 = [(2-1)/2]2+(2-3)(1-3) cos2 (50) C [(2 + 1)/2, 0] Rmin = (1 - 2)/2 [cos = 0, = /2] Rmax = [(2 - 1)/2]2 + (2 - 3) (1 - 3) [cos = 1, = 0] Grafiquemos ahora el círculo de radio R = Rmin, el círculo de radio R = Rmax y el círculo de radio R = Rmin (figura 8). Dado que l y están relacionados entre sí mediante las ecuaciones 48, 49 y 50, el punto P (l, ) debe quedar en cada circunferencia , y . Dado que el círculo tiene que ser mayor o igual que el correspondiente a = /2, que el círculo tiene que ser mayor o igual que el círculo = /2, y que el

Page 24: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

24

círculo tiene que ser menor o igual que el círculo = /2, el punto P (l, ) tiene que quedar necesariamente en la zona asciurada de la figura 8. DETERMINACIÓN DE LAS DEFORMACIONES UNITARIAS LINEAL Y ANGULAR EN UNA DIRECCIÓN. MÉTODO GRÁFICO DE MOHR Consideremos que deseamos determinar el estado de deformación en la dirección dada por el vector cos e = cos

cos El procedimiento gráfico consiste en lo siguiente: a) Tracemos a partir del tensor deformación los tres círculos del plano de Mohr (figura 10). b) A partir del punto A se traza una paralela al eje ; a continuación se traza también a partir del punto

A una recta que forma un ángulo con la paralela al eje . Esta recta corta al círculo en el punto A’, y al círculo en el punto A”.

c) A partir del centro C se traza un arco de circunferencia que corte los puntos A’ y A”. d) Por el punto C se traza una paralela al eje ; a continuación se traza también a partir del punto C una

recta que forme un ángulo con la paralela al eje . Esta recta corta al círculo en el punto C’, y al círculo en el punto C”.

e) Por el centro C se traza un arco de circunferencia que corte los puntos C’ y C”. f) Las coordenadas del punto de intersección D (figura 10) de los dos arcos representan la deformación

unitaria lineal y la deformación unitaria angular, en la dirección dada por el vector e.

Page 25: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

25

Demostremos primeramente que el punto C’ (figura 10) pertenece a un círculo cuyo coseno director es cos . Con el procedimiento analítico, las deformaciones lineal y angular valen (ecuaciones 17, 18 y 23) u = E e (51) l = u e (52) = u x e (53) Como el punto C’ está en el círculo = /2, cos = 0, y el vector eC’ queda

cos eC’ = 0

cos Además, se debe cumplir cos2 + cos2 + cos2 = 1 Por lo tanto cos = sen

Sustituyendo en las ecuaciones 51 a 53 l = 1 sen2 + 3 cos2 (54) u x e = - j (1 sen cos - 3 sen cos ) = [- (1 - 3) sen cos ] j = u x e = (1 - 3) cos sen (55) Obtengamos ahora gráficamente las deformaciones lineal y angular del punto C’; de la figura 10 OE = OC + CE CC’ = CA sen OE = 1 sen2 + 3 cos2 (56) También EC’ = CC’ cos CC’ = (1 - 3) sen EC’ = (1 - 3) sen cos (57) Comparando las ecuaciones 54 y 56, y las ecuaciones 55 y 57, apreciamos que en efecto las coordenadas del punto C’ miden el estado de deformación en la dirección dada por el vector eC’. Por lo tanto, el punto C’ pertenece al círculo cuyo coseno director es cos ; cualquier circunferencia que pase por este punto, con centro en C, representará deformaciones en una dirección con coseno director cos . Procediendo en forma análoga, se demuestra que el punto A’ pertenece al círculo cuyo coseno director es cos ; cualquier circunferencia que pase por este punto, con centro en C, representará deformaciones en una dirección con coseno director cos .

Page 26: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

26

El punto de intersección de los dos arcos de circunferencia mide el estado de deformación cuyos ángulos directores son y ; ahora es diferente a /2, pues queda obligado por y . Con lo anterior, hemos demostrado que las coordenadas del punto D de la figura 10 miden: su abscisa la deformación unitaria lineal y su ordenada la deformación unitaria angular, en la dirección dada por el vector e. Ejemplo Dado el siguiente tensor deformación: 6 0 0 E = 0 3 0 x 10-3

0 0 1 hallar las deformaciones unitarias lineal y angular en la dirección dada por el vector 4 AB = 3 2 Utilizar el procedimiento gráfico de Mohr. Solución El vector unitario e en la dirección de AB vale 0.7428 e = 0.5571

0.3714 Es decir = 42°, = 56°, = 68°

Page 27: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

27

En la figura E-4 se exhibe el procedimiento gráfico para obtener el punto D, cuyas coordenadas miden las deformaciones unitarias lineal y angular en la dirección del vector e. Obtenemos de la figura E-4 l = 0.0044 y = 0.0019

----------------------- ESTADO DE DEFORMACIÓN PLANA Se define un estado de deformación plana cuando se cumple z = (1/2)xz = (1/2)yz = 0 El tensor deformación queda x (1/2)xy 0 E = (1/2)xy y 0 0 0 0 es decir x (1/2)xy E = (34) (1/2)xy y De la figura 6: cos = sen , = 90°, cos = 0, por lo tanto

Page 28: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

28

cos e = cos 0

cos e = (35) sen Aplicando la ecuación 17 u = E e x cos + (1/2)xy sen u = (1/2)xy cos + y sen Aplicando la ecuación 18 l = u e l = x cos2 + y sen2 + xy sen cos (36) Cuando la deformación unitaria lineal es de extensión, dicha deformación tiene signo positivo (ecuación 36). En cambio, si al aplicar la ecuación 36 obtenemos una cantidad negativa, la deforma-ción unitaria es de compresión. La deformación unitaria angular la hallamos empleando la ecuación 23 = = u x e (23) = (x - y)sen cos + (1/2)xy(sen2-cos2) (37) Para conocer el sentido del giro de observamos que el producto u x e es un vector perpendicular al plano xy, es decir u x e = c k (38)

Page 29: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

29

En la figura 7 apreciamos que si el giro del segmento de recta PP1 es en sentido horario c > 0, mientras que si el giro del segmento de recta PP1 es en sentido antihorario c < 0. Pero el valor de c de la ecuación 38 es la magnitud del vector x e, y la magnitud de este vector corresponde a la deformación unitaria angular de la ecuación 23 ó de la ecuación 37 –es decir, y c valen la misma cantidad–; por lo tanto, si al aplicar la ecuación 37 da positivo, la recta PP1 gira en sentido horario; en caso contrario, la recta PP1 gira en sentido antihorario.

Las ecuaciones 36 y 37 se pueden poner en función del ángulo doble 2. Empleando las identidades trigonométricas cos2 = (1 + cos 2)/2 sen2 = (1 – cos 2)/2 sen cos = (sen 2)/2 obtenemos l = (x + y)/2 + [(x - y) cos 2]/2 + (1/2)xy sen 2 (39) = [(x - y) sen 2]/2 - (1/2)xy cos 2 (40) Las deformaciones unitarias principales las hallamos de la ecuación 33 x - l (1/2)xy 0 (1/2)xy y - l 0 = 0 0 0 - l Desarrollando el determinante obtenemos que una deformación principal es l = 3 = 0. Las otras dos deformaciones principales las hallamos con la ecuación característica reducida l

2 - l (x + y) + xy – (xy/2)2 = 0 es decir

Page 30: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

30

1 = (x + y)/2 + [(x - y)/2]2 + (xy/2)2 (41) 2 = (x + y)/2 - [(x - y)/2]2 + (xy/2)2 (42) Una dirección principal es la del eje z, dado que en ella la deformación angular vale cero. Las otras dos direcciones principales las obtenemos con el sistema de ecuaciones 31 1 = ang tan (1 - x)/ (xy/2) (43) 2 = ang tan (-xy/2)/(y - 2) (44) Dado que estamos considerando = 90°, cos = 0, los resultados presentados en este inciso son únicamente válidos para calcular deformaciones paralelas al plano xy. [Hemos llamado 1 y 2 a las deformaciones unitarias principales en el plano xy, y 3 a la deformación unitaria principal paralela al eje z. Sin embargo, en el espacio 3 puede ser una deformación principal intermedia o mayor; por ejemplo, si 1 > 0 y 2 < 0, 3 resulta la deformación unitaria principal intermedia]. Ejemplo Dado el estado de deformación plana indicado en la figura E-2, calcular: a) Las deformaciones unitarias lineal y angular en la dirección del vector e ( = 30°) b) La magnitud y dirección de las deformaciones unitarias principales c) La nueva longitud y el giro que experimenta el segmento de recta PE Solución x = - 0.10/2 = - 0.05, y = 0.08/2 = 0.04 (1/2)xy = - 0.05/2 = - 0.025

Page 31: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

31

El tensor deformación queda - 0.05 - 0.025 E = - 0.025 0.04 a) Para = 30° Aplicando las ecuaciones 36 y 37 l = - 0.04915 = - 0.02647 b) Deformaciones unitarias principales Empleando las ecuaciones 41 a 44 1 = 0.04648 1 = - 75.47° 2 = - 0.05648 2 = 14.53° c) Aplicando la ecuación 28 P’P1’ = PP1 (1+ l)

2 + 2

PE’ = 2.309(1-0.04915)2+(-0.02647)2 = 2.1964 cm Usando la ecuación 29 tan = / (1+l) = - 0.02647/(1-0.04915) = -0.02784, = - 1.59° = - 0.02783 radianes

-----------------------

Page 32: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

32

Ejemplo Los puntos A y C del rombo de la figura E-3 experimentan únicamente desplazamientos lineales a = c, y los puntos B y D experimentan únicamente desplazamientos lineales b = d. Determinar la relación entre a, b, a y b, de tal forma que no cambie la distancia AB.

Solución x = a/a, y = b/b, xy/2 = 0 cos = - a/a2+b2

sen = b/a2+b2 En la dirección de la recta AB (ecuación 36) lAB = x cos2 + y sen2 = 0 Sustituyendo valores a/b = - b/a

----------------------- CÍRCULO DE MOHR PARA EL ESTADO DE DEFORMACIÓN PLANA Las deformaciones unitarias lineal y angular están dadas por (ecuaciones 39 y 40) l = (x + y)/2 + [(x - y) cos 2]/2 + (1/2)xy sen 2 (39) = [(x - y) sen 2]/2 - (1/2)xy cos 2 (40) Demostremos a continuación que l y están relacionados a través de la ecuación de un círculo. De la ecuación 39 l - (x + y)/2 = [(x - y) cos 2]/2 + (1/2)xy sen 2 (58) Elevando al cuadrado y sumando las ecuaciones 58 y 40 [l - (x + y)/2]2 +

2 = [(x - y)/2]2 + [(1/2)yx]2 (59)

La ecuación 59 es la ecuación de un círculo con centro C [(x + y)/2, 0] y radio R = [(x - y)/2]2 + [(1/2)yx]

2 (60) A este círculo se denomina círculo de Mohr, el cual se muestra en la figura 11.

Page 33: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

33

Consideremos el estado de deformación indicado en la figura 12a. El círculo de Mohr se exhibe en la figura 12b. Para hallar las deformaciones unitarias lineal y angular en la dirección del vector e (figura 12a) se emplea el procedimiento del polo de las deformaciones, que consiste en lo siguiente (Alberro, 1970): a) A partir del punto A –que representa el estado de deformación en dirección x– se traza una recta

paralela al eje x (figura 13). b) A partir del punto B –que representa el estado de deformación en dirección y– se traza una recta

paralela al eje y. c) El punto donde se intersecan ambas rectas corresponde a la posición del polo de las deformaciones. d) Para hallar el estado de deformación en una dirección definida por el vector e, que forma un ángulo

con el sentido positivo del eje x, a partir del polo se traza una recta paralela a dicha dirección. El punto donde esta recta corta a la circunferencia (punto D; figura 13) proporciona las deformaciones buscadas: su abscisa da la deformación unitaria lineal y su ordenada la deformación unitaria angular, en la dirección del vector e.

Demostremos que el estado de deformación en la dirección que forma un ángulo con el eje x está dado por el punto D del círculo de Mohr de la figura 12b, es decir, por un punto que forma un ángulo 2 con el punto A, medido a partir del centro del círculo.

Page 34: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

34

Con el procedimiento analítico habíamos encontrado que las deformaciones unitarias valen (ecuaciones 38 y 39) l = (x + y)/2 + [(x - y) cos 2] / 2 + (½)xy sen 2 (61) = [(x - y) sen 2] / 2 - (½)xy cos 2 (62)

Page 35: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

35

Probemos que con el método gráfico de la figura 12 se llega a las deformaciones dadas por las ecuaciones 61 y 62. Las coordenadas el punto D valen (figura 12b): l = (x + y)/2 + R cos (63) = - R sen (64) Pero (figura 12b): = - 2 (65) Sustituyendo la ecuación 65 en la ecuación 63 l = (x + y)/2 + R cos ( - 2) l = (x + y)/2 + R cos cos 2 + R sen sen 2 Pero R cos = (x - y)/2 y R sen = (½)xy Por lo tanto l = (x+y)/2 + (x - y) cos 2 / 2 + (½)xysen 2 (66) Sustituyendo la ecuación 65 en la ecuación 64 = - R sen ( - 2) = - R sen cos 2 + R sen 2 cos = [(x - y) sen 2] / 2 - (½)xy cos 2 (67) Observamos que la ecuación 61 es igual a la ecuación 66, y que la ecuación 62 es igual a la ecuación 67, por lo que con los procedimientos analítico y gráfico se llega a los mismos resultados. Con esto verificamos la validez del uso del ángulo doble del método gráfico. En la figura 13 apreciamos que con el procedimiento del polo de las deformaciones se llega al mismo resultado, pues un ángulo inscrito en un círculo es igual a la mitad del ángulo medido a partir del centro del círculo. Debido a que todos los ángulos inscritos en un mismo arco son iguales, el polo se puede ubicar en cualquier punto de la circunferencia, y la única condición es que el ángulo se mida a partir del punto A, en sentido antihorario. Ejemplo Dado el siguiente estado de deformación unitaria plana: - 0.05 - 0.025 E = - 0.025 0.04 hallar: a) Las deformaciones unitarias lineal y angular en la dirección del vector e ( = 30°) b) La magnitud y dirección de las deformaciones unitarias principales Utilizar el método gráfico de Mohr

Page 36: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

36

Solución En la figura E-5a se muestra el estado de deformación unitaria del elemento, y en la figura E-5b se exhibe el círculo de Mohr correspondiente. Para hallar el polo, a partir del punto A (que representa el estado de deformación en dirección del eje x) se traza una paralela el eje x; a partir del punto B (que mide el estado de deformación en dirección del eje y) se traza una paralela al eje y (figura E-5b). El punto donde se intersecan ambas rectas es el polo de las deformaciones (figura E-5b). Para obtener las deformaciones en la dirección del vector e, a partir del polo trazamos una recta paralela a dicho vector e; el punto donde esta recta cruza a la circunferencia proporciona el estado de deformación unitaria en la dirección del vector e. Las deformaciones unitarias y las direcciones principales se obtienen en forma similar (figura E-5b). En la figura E-5b medimos l = -0.049, = -0.026 1 = 0.046, 1 = -75° 2 = -0.056, 2 = 15

----------------------- DEFORMACIÓN DE UN ÁNGULO Consideremos que el ángulo APB se deforma al ángulo A’PB’ (figura 14). Se define la deformación del ángulo APB como la suma de los ángulos a y b, es decir Deformación APB = a + b (68)

Page 37: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

37

B B'

θb

P

θa

A'

A

DEFORMACIÓN DE UN ÁNGULOFIGURA 14

Supongamos que los ángulos a y b son suficientemente pequeños, entonces a - a y b b Por lo tanto Deformación APB b - a (69) Deformación de un ángulo recto. Sea el ángulo recto APB de la figura 15. Para ángulos pequeños a v/x = xy = (1/2) xy

b u/y = yx = (1/2) yx

y y'

B Δu

θbΔy

x'

θaΔv

P Δx A x

DEFORMACIÓN DE UN ÁNGULO RECTOFIGURA 15 (Mcdef4f)

Si no se presenta rotación del cuerpo (1/2) xy = (1/2) yx. Sumando las dos ecuaciones anteriores

Page 38: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

38

xy a + b (70) Por la ecuación 68 Deformación APB xy (71) También podemos obtener la deformación del ángulo recto APB usando la ecuación 37: = (x - y)sen cos + (1/2)yx(sen2 - cos2) Para = 0 (eje x): a = -(1/2) xy Para = 90° (eje y): b = (1/2) xy (xy = yx) Aplicando la ecuación 69 Deformación APB b - a = xy (71) Por la ecuación 71 se dice que xy mide –para pequeñas deformaciones angulares- la deformación del ángulo recto APB de la figura 15. DEFORMACIÓN UNITARIA NATURAL Consideremos una barra prismática de longitud inicial Lo sometida a un esfuerzo normal de tensión, bajo el que sufre una deformación total . La deformación unitaria lineal será l = /Lo (72) A l se conoce como deformación unitaria de Cauchy. Sin embargo, se puede dar otra definición de deformación unitaria que tome en cuenta la variación gradual de la longitud de Lo a Lf. Así, para una longitud L entre Lo y Lf, el incremento de deformación unitaria es dlnat = dL/L (73) y la deformación unitaria, al pasar de Lo a Lf será Lf

lnat = dL/L = ln (Lf-Lo) = ln (Lf/Lo) (74) Lo

Como Lf = Lo + , Lf/Lo = 1 + /Lo, y lnat = ln (1 + l) (75) A la deformación lnat se le conoce como deformación unitaria natural. Fue definida por primera vez por Ludwik en 1909. Para deformaciones pequeñas, los valores de l de la ecuación 72 y de lnat de la ecuación 74 prácticamente coinciden. Sin embargo, para grandes deformaciones es preferible emplear lnat.

Page 39: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

39

Ejemplo Una barra prismática de 15 cm de longitud se somete a un esfuerzo normal de tensión y sufre una deformación de 0.3 cm. Hallar la deformación unitaria lineal de Cauchy y la deformación unitaria lineal de Ludwik. Solución Aplicando la ecuación 72 l = 0.3/15 = 0.02 (Cauchy) Usando la ecuación 75 lnat = ln (1 + 0.02) = 0.0198 (Ludwik) (La diferencia entre la deformación de Cauchy y la de Ludwik es de 1% en este caso).

----------------------- ROSETA DE DEFORMACIÓN Una roseta de deformación a 60° (equiangular) consiste en producir una relajación de esfuerzos y medir las deformaciones unitarias lineales en tres direcciones a, b y c (Alberro, 1983). Con estos tres valores se puede calcular el tensor deformación en dirección paralela a la pared. (Aun cuando se trata de un estado de esfuerzo plano, se pueden aplicar las ecuaciones corres-pondientes a un estado de deformación plana, por la presencia de algunos ceros en el tensor deformación unitaria y en el vector de dirección e). Si la dirección a coincide con el eje x, aplicando la ecuación 36 l = x cos2 + y sen2 + yx sen cos (ecuación 36) Para = 0: a = x Para = 60°: b = (1/4)x+(3/4)y + 3/4 yx Para = 120°: c = (1/4)x+(3/4)y - 3/4 yx El tensor deformación unitaria queda a (b - c)/3 E = (76) (b - c)/ 3 [2(b+c)-a]/3 (Cabe aclarar que z 0, pero al ser nulo el tercer elemento del vector e la magnitud de z no afecta los resultados del cómputo de las deformaciones unitarias). La magnitud y dirección de las deformaciones unitarias principales se obtiene empleando las ecuaciones 41 a 44. Ejemplo Los resultados de mediciones de una roseta de deformación a 60° son los siguientes: a = 0.0002, b = 0.0001, c = 0.00015 Determinar la magnitud y dirección de las deformaciones unitarias principales Solución El tensor deformación unitaria está dado por la ecuación 76. Sustituyendo valores

2 -0.28868 E = x 10-4

-0.28868 1 Aplicando las ecuaciones 41 a 44

Page 40: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

40

1 = 0.00020774, 1 = -15° 2 = 0.000092265, 2 = 75°

------------------------ Roseta a 45° En la roseta a 45° se miden las deformaciones a 0, 45° y 90°. Así

90450 ,, cba

0 ax

90 cy

Para obtener la deformación unitaria angular (1/2)γxy utilizamos εb, con α = 45°

cos2

12cos 22 sensen xyyxl

2

145cos45 sen

xycab 2

1

2

1

2

145

cabxy 2

1

2

1

El tensor deformación unitaria queda

z

ccab

caba

E

00

02

1

02

1

Ciudad Universitaria, D F, diciembre de 2014

Page 41: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

41

REFERENCIAS Alberro, J, Apuntes de Mecánica del Medio Continuo, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM, 1970 Alberrro, J, “Propiedades mecánicas de las rocas”, cap 11 del libro Presas de Tierra y Enrocamiento, de Marsal, R J y Reséndiz, D, Limusa, 1983 Apostol, T M, Calculus, Vol II, 2nd ed, Wiley, 1969 Castillo, H, Análisis y Diseño Estructural, Representaciones y Servicios de Ingeniería, 1985 Deméneghi, A, Magaña, R y Sanginés, H, Apuntes de Mecánica del Medio Continuo, Facultad de Ingeniería, UNAM, 2002 Malvern, L E, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, 1969 (Mc deformación 141201)

Page 42: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

42

Page 43: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

43

Y

B 0.04 cm

2 cm

0.02 cm

P 2 cm A X

FIGURA P-1

0.01 cm 0.03 cmY y

B

2 cm

2 cm 0.03 cmP X

0.01 cm A x

FIGURA P-2(Mcproresf)

Page 44: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

44

FIN DE ESTADO DE DEFORMACIÓN

Page 45: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

45

APUNTES DE MECÁNICA DEL MEDIO CONTINUO ESTADO DE ESFUERZO

Agustín Deméneghi Colina1

1. FUERZAS DE CUERPO Y FUERZAS DE SUPERFICIE Las cargas externas que actúan en un instante en una cierta porción de cuerpo libre dentro de un medio continuo se clasifican en dos clases: fuerzas de cuerpo y fuerzas de superficie. Las fuerzas de cuerpo actúan sobre elementos de masa o de volumen dentro del cuerpo –por ejemplo la acción de la gravedad, o fuerzas de origen magnético–. Estas son cargas de acción a distancia; usualmente se consideran por unidad de masa o en ocasiones por unidad de volumen. Las fuerzas de superficie son cargas de contacto que actúan sobre la superficie de un diagrama de cuerpo libre. Comúnmente se consideran por unidad de área de la superficie sobre la cual actúan. En mecánica, las cargas reales siempre se ejercen por un cuerpo sobre otro –posiblemente por una porción de un cuerpo actuando sobre una porción del otro–, independientemente de si ellas son fuerzas de cuerpo o de superficie. Siempre están involucrados dos cuerpos, y por la tercera ley de Newton, la carga ejercida por un cuerpo sobre otro es igual en magnitud y de sentido contrario a la fuerza ejercida por el segundo cuerpo sobre el primero. Las llamadas fuerzas de inercia, empleadas para establecer un estado de equilibrio ficticio en dinámica, no son cargas reales, puesto que no son ejercidas por cuerpos; la tercera ley de Newton no se aplica a estas fuerzas ficticias. Cuando el método de las cargas dinámicas se utiliza en mecánica del medio continuo, las cargas de inercia se incluyen como fuerzas de cuerpo (Deméneghi, Magaña y Sanginés, 1986). 2. ESTADO DE ESFUERZO EN PLANOS PERPENDICULARES A LOS EJES COORDENADOS En los siguientes párrafos consideraremos que en el entorno de un elemento de material (figura 1) existe un campo vectorial de fuerzas que es una función continua y diferenciable en dicho entorno. Así Nxx = Nx = Nx(x,y,z) Txy = Txy(x,y,z) Txz = Txz(x,y,z) Nyy = Ny = Ny(x,y,z), etcétera Sea un elemento de material sometido al sistema de cargas indicado en la figura 1. Consideremos las caras del elemento paralelas a los planos xz y yz (figura 2); para las fuerzas y áreas usaremos la siguiente convención de signos: las fuerzas son positivas si tienen el mismo sentido del eje al que son paralelas. Para las áreas utilizamos el sentido del vector normal a la cara externa: si el vector normal tiene el mismo sentido del eje al cual es paralelo, el área es positiva. Tomemos como ejemplo la cara anterior: la fuerza Nxx = Nx es positiva y el área Ax’ es también positiva, como se aprecia en la figura 2.

1 Profesor del Departamento de Geotecnia. División de Ingenierías Civil y Geomática. Facultad de Ingeniería, UNAM

Page 46: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

46

z

Delta Nzz

Delta Ay Delta Tyz Delta Nxx

Delta Txz

Delta TyxDelta Az Delta Tzy

Delta Ax Delta TzxDelta Txy

Delta Nyy

Delta TxyDelta Nyy Delta Tzx y

Delta AxDelta Tzy

Delta TyxDelta Txz

Delta Nxx Delta Ay

Delta Tyz

Delta Nzz Delta Az

x

(Mc Esfuerzo Figuras 1110)

SISTEMA DE FUERZAS ACTUANDO EN PLANOSPERPENDICULARES A LOS EJES COORDENADOS

FIGURA 1

y

Delta NyyDelta Ay ny

Delta Txy

Cara Delta Axposterior(figura 1)

Delta Tyx Delta Tyx

nx nxx

Delta Nxx Delta Nxx

Cara anterior (figura 1)Delta Ax

Delta Ay Delta Txyny

Delta Nyy

FUERZAS ACTUANDO EN PLANOS PERPENDICULARESA LOS EJES x Y y FIGURA 2

Page 47: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

47

Veamos el concepto de esfuerzo en la cara anterior del elemento. El esfuerzo normal medio xm lo obtenemos de la siguiente forma

Nxx

xxm = (1) Ax

Dado que Nxx > 0 y Ax > 0, el esfuerzo xm es positivo en la cara anterior del elemento. En la cara posterior (figura 2) el esfuerzo normal medio está dado también por la ecuación 1; como Nxx < 0 y Ax < 0, el esfuerzo xxm es también positivo. Vemos entonces que el esfuerzo normal medio xxm es positivo tanto en la cara anterior como en la cara posterior del elemento. Definamos al esfuerzo normal xx de la siguiente forma

Nxx Nxx

xx = x = lim = (2) Ax 0 Ax Ax Obtengamos a continuación el esfuerzo cortante medio yxm en la cara anterior (figura 2)

Tyx

yxm = (3) Ax

Como Tyx > 0 y Ax > 0, el esfuerzo yxm es positivo. En la cara posterior el esfuerzo cortante yxm se obtiene con la ecuación 3; como Tyx < 0 y Ax < 0, yxm es también positivo. Por lo tanto, para el sistema de fuerzas actuando en el elemento de la figura 2, los esfuerzos cortantes en las caras anterior y posterior, obtenidos ambos con la ecuación 3 son positivos. El esfuerzo cortante yx se define de la siguiente forma

Tyx Tyx

yx = lim = (4) Ax 0 Ax Ax En forma análoga, el esfuerzo cortante zx se define

Tzx Tzx

zx = lim = (5) Ax 0 Ax Ax En las caras paralelas al plano xz (figura 1) los esfuerzos yy, xy y zy, y en las caras paralelas al plano xy los esfuerzos zz, xz y yz, se obtienen usando un criterio similar al dado por las ecuaciones 2, 4 y 5. En ocasiones se grafica el estado de esfuerzo como se indica en la figura 3. Cabe aclarar sin embargo que el sentido de los esfuerzos no corresponde necesariamente al sentido de los ejes coordenados. Por ejemplo, el esfuerzo normal xx en la cara posterior del elemento de la figura 3 tiene sentido contrario al eje x, y se podría pensar que es negativo; sin embargo, como ya indicamos en párrafos anteriores, el esfuerzo xx es positivo. Por lo tanto, a los esfuerzos indicados en la figura 3 los podemos denominar esfuerzos aparentes. De hecho, el sentido de los esfuerzos aparentes corresponde en realidad al sentido de los incrementos de fuerza que actúan sobre el elemento, como se puede constatar comparando las figuras 1 y 3.

Page 48: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

48

z

Sigma zz

Tau yz Sigma xx

Tau xz

Tau yxTau zy

Tau zxTau xy

Sigma yy

Tau xySigma yy Tau zx y

Tau zy

Tau yxTau xz

Sigma xx

Tau yz

Sigma zz

x

ESFUERZOS APARENTES FIGURA 3

Page 49: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

49

Ejemplo Dado el sistema de incrementos de fuerza actuando en el elemento de la figura E-1, hallar los esfuerzos normales y cortantes en las caras de dicho elemento.

y

6 kNDelta Ay = 4 cm2 ny

8 kN

Cara Delta Ax = 4 cm2izquierda

8 kN 8 kN

nx nxx

10 kN 10 kN

Cara derechaDelta Ax = - 4 cm2

Delta Ay = - 4 cm2 ny 8 kN

6 kN(Ms Esfuerzo Figuras 1110; Mslesfzo1f)

FUERZAS ACTUANDO EN UN ELEMENTO FIGURA E-1

Solución Cara derecha x = Nx/Ax Nx/Ax = -10/4 = - 2.5 kN/cm2 xy = Tyx/Ax Tyx/Ax = -8/4 = -2 kN/cm2 Cara izquierda x = Nx/Ax Nx/Ax = 10/(-4) = -2.5 kN/cm2 xy = Tyx/Ax Tyx/Ax = 8/(-4) = -2 kN/cm2 Cara superior y = Ny/Ay Ny/Ay = -6/4 = - 1.5 kN/cm2 yx = Txy/Ay Txy/Ay = -8/4 = -2 kN/cm2 Cara inferior y = Ny/Ay Ny/Ay = 6/(-4) = - 1.5 kN/cm2 yx = Txy/Ay Txy/Ay = 8/(-4) = -2 kN/cm2

------------------------------------ 3. DEFINICIÓN DE ESFUERZO EN UN PLANO INCLINADO Consideremos un cuerpo sometido a un sistema de fuerzas, como el tetraedro mostrado en la figura 4. Las fuerzas de superficie en las caras verticales y horizontal del elemento las hemos traducido a esfuerzos, como se indica en la figura 4.

Page 50: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

50

z

C

σx ΔF n

ΔTΔz

τyx 90°

ΔAy θ ΔN

τxy τzx

σy ΔAΔAx

P Δy By

τzy τxz

τyz

Δx ΔAz

σz

A

x

FUERZAS DE SUPERFICIE SOBRE EL ELEMENTO FIGURA 4

Definimos el vector esfuerzo sm en la cara inclinada del tetraedro de la siguiente forma

AFsm

(6)

Y el vector esfuerzo s

AFs

A

0lim

(7)

En la figura 5 mostramos al vector s actuando sobre la cara inclinada del elemento.

Page 51: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

51

z

σx τ n

s

ΔAy τyx 90°

θ σ

τxy τzx

σy ΔA

P ΔAx y

τzy τxz

τyz

ΔAz σz

x

VECTOR s ACTUANDO SOBRE LA CARA INCLINADA DEL ELEMENTO FIGURA 5

Por otra parte, la fuerza ΔF tiene las componentes

z

y

x

FFF

F

Por lo tanto

AFAFAF

AFAFAF

AF

sss

s

z

y

x

z

A

y

A

x

A

A

z

y

x

0

0

0

0

lim

lim

lim

lim

(8)

Page 52: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

52

Es decir

AF

AFs xx

Ax

0lim

AF

AF

s yy

Ay

0lim

(9)

AF

AFs zz

Az

0lim

Las fuerzas de cuerpo las tomamos en cuenta con el vector

z

y

x

bbb

b

(10)

donde b está en

3mkN

La condición de equilibrio dinámico, digamos en dirección x, establece que

2

2

tummaF xx

(11)

donde m = masa del elemento ax = aceleración del centro de masa del elemento, en dirección x u = desplazamiento del centro de masa del elemento, en dirección x La masa la obtenemos con

Volm

siendo ρ la masa específica del material, en Mg/m3 Establezcamos el equilibrio dinámico del tetraedro de la figura 4 en la dirección x

2

2

3

1

3

1

tuxAxAbFAAA xxxxzxzyxyxx

(12)

Se puede demostrar

cos

cos

cos

AAAAAA

z

y

x

Page 53: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

53

donde ΔA es el área de la cara inclinada del tetraedro, y cos α, cos β y cos γ son los cosenos directores del vector normal a la cara inclinada del tetraedro. Tomando en cuenta la primera de las ecuaciones 9

AsF xx

y reemplazando en la ecuación 12

cos3

1cos

3

1coscoscos 2

2

xbtuxs xxzxyxx

En forma análoga

cos3

1cos

3

1coscoscos 2

2

ybtvys yyzyyxy

cos3

1cos

3

1coscoscos 2

2

zbtuzs zzzyzxz

Es decir

cos

cos

cos

3

1

cos

cos

cos

3cos

cos

cos

2

2

2

2

2

2

zbybxb

twz

tvy

tux

sss

z

y

x

zzyzx

yzyyx

xzxyx

z

y

x

(13)

Consideremos ahora que las dimensiones del tetraedro tienden a cero

0

0

0

zyx

La ecuación 13 queda

cos

cos

cos

zzyzx

yzyyx

xzxyx

z

y

x

sss

(14)

Es decir

nSs (15)

siendo

Page 54: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

54

z

y

x

sss

s (16)

zzyzx

yzyyx

xzxyx

S

(17)

cos

cos

cos

n (18)

Observamos que la ecuación 15 se cumple cuando las dimensiones del tetraedro de la figura 5 tienden a cero. A la matriz S se le conoce como tensor esfuerzo, y mide, físicamente, los esfuerzos existentes en tres planos mutuamente perpendiculares entre sí. El nombre de tensor esfuerzo se debe a que, como representa un fenómeno físico, tiene propiedades adicionales a una matriz común y corriente. Como se verá en los incisos siguientes, la matriz S es una matriz simétrica cuando no ocurre rotación del elemento, y posee propiedades que no varían aun cuando se cambie el sistema de coordenadas; así, por ejemplo, la suma de los elementos de la diagonal principal es siempre la misma. El tensor esfuerzo S tiene otras propiedades que no veremos porque escapan al alcance de este trabajo. 4. DESCOMPOSICIÓN DEL VECTOR ESFUERZO EN VECTOR ESFUERZO NORMAL Y VECTOR

ESFUERZO CORTANTE La fuerza F de la figura 4 la descomponemos en una fuerza normal y en una fuerza cortante a la cara inclinada del tetraedro, es decir

TNF

TN Dividimos entre el área A de la cara inclinada

AT

AN

AF

Tomamos límites cuando A → 0

AT

AN

AF

AAA

000limlimlim

Page 55: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

55

Es decir

s (19)

donde

AN

AN

A

0lim (20)

AT

AT

A

0lim (21)

En la figura 5 se exhiben los vectores s, σ y τ, actuando sobre la cara inclinada del tetraedro. [Cabe aclarar que en lo que sigue de este capítulo haremos la hipótesis de que las dimensiones de los elementos con que trabajamos son suficientemente pequeñas para que los esfuerzos medios sean aproximadamente iguales a los esfuerzos cuando el área en que se definen tiende a cero (es decir, se cumplen las aproximaciones de las ecuaciones 20 y 21). Esta hipótesis es necesaria en numerosas aplicaciones de la mecánica del medio continuo a la ingeniería.] Obtengamos a continuación los esfuerzos normal y cortante sobre un plano, en función del vector s y del vector normal al plano inclinado del elemento n. De acuerdo con la figura 5 = proyn s = (sn)/ n pero n = 1, por lo tanto = = s n (22) = n (23) s = + = s - (24) La magnitud de se obtiene calculando . También observamos que (figura 5) = s sen (25) Por otra parte, el módulo del producto vectorial tiene la siguiente propiedad s x n = s n sen = s sen (26) Comparando las ecuaciones 25 y 26 = τ = s x n (27)

Page 56: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

56

También se puede hallar = empleando el teorema de Pitágoras. De la figura 5 s2 = 2 + 2

2 = s2 - 2 (28) = s2 - 2 (29) Ejemplo Hallar los esfuerzos normal y cortante en el plano ABC de la figura E-2. Solución x ≈ 8000/(3)(5) = 533.33 kN/cm2

y ≈ 2200/(3)(4) = 183.33 kN/cm2

z ≈ 6000/(4)(5) = 300 kN/cm2

533.33 0 0 S = 0 183.33 0 [kN/cm2] 0 0 300 Las coordenadas de los puntos son A(4,0,0) B(0,5,0) C(0,0,3) AC = (-4,0,3) AB = (-4,5,0) AB x AC = 15i + 12j + 20k AB x AC = 27.73 cm

z

C 6000 kN

8000 kN

3 cm

2200 kN

2200 kN

P By

8000 kN4 cm

A 6000 kN

5 cm(Mc Esfuerzo Figuras 1110)

x

INCREMENTOS DE FUERZA SOBRE UN PRISMA EN EL ESPACIO. EJEMPLO FIGURA E-2

Page 57: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

57

n = 0.5409i + 0.4327j + 0.7212k Aplicando la ecuación 15 533.33 0 0 0.5409 s = 183.33 0 0.4327 0 0 300 0.7212 s = 288.49i + 79.3j + 216.3k Utilizando la ecuación 22 = s n = 346.4 kN/cm2 Usando la ecuación 23 = n = 187.36i + 149.8j + 249.8k Empleando la ecuación 24 = s - = 100.9i – 70.6j – 33.6k = 127.8 kN/cm2

------------------------------------ 5. EL ESFUERZO COMO LA DERIVADA DE UN CAMPO VECTORIAL Sean F el campo vectorial de una fuerza: Fx F = Fy Fz y A el campo vectorial de un área: Ax A = Ay Az Sea n el vector unitario perpendicular a cualquier área en el entorno del elemento. El esfuerzo lo definimos como la siguiente derivada (derivada direccional) F(A + hn) – F(A) s = F’ (A; n) = lim (30)

h 0 h Es decir (Apostol, 1969) s = S n donde S es la matriz jacobiana de F en A, y está dada por Fx/Ax Fx/Ay Fx/Az S = Fy/Ax Fy/Ay Fy/Az (31) Fz/Ax Fz/Ay Fz/Az

Page 58: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

58

Las ecuaciones 17 y 31 miden el mismo fenómeno físico y sus elementos representan esfuerzos actuando en planos perpendiculares a los ejes coordenados. En la figura 6 se muestran como ejemplo incrementos de fuerza –debidos a un campo vectorial- actuando en planos perpendiculares a los ejes x y y.

y

Delta FyDelta Ay ny

Delta Fx

Cara Delta Axizquierda

Delta Fy Delta Fy

nx nxx

Delta Fx Delta Fx

Cara derechaDelta Ax

Delta Ay ny Delta Fx

Delta Fy

INCREMENTOS DE FUERZA EN UN CAMPO VECTORIAL

FIGURA 6 6. CONVENCIÓN DE SIGNOS PARA EL ESTADO DE ESFUERZO El vector esfuerzo en un plano inclinado está dado por la ecuación 15. Como se trata de un vector, el esfuerzo en el plano queda definido en magnitud, dirección y sentido por el vector s de dicha ecuación 15. Sin embargo, para la formación de los elementos de la matriz S de las ecuaciones 17 ó 31, como se trata de la matriz jacobiana, usaremos la convención de signos indicada en el inciso 2, correspondiente al estado de esfuerzo en planos perpendiculares a los ejes coordenados. Ejemplo Dado el sistema de fuerzas actuando en el elemento de la figura E-3, hallar el vector esfuerzo en el plano inclinado mostrado en dicha figura. Solución Cara derecha x = -10/4 = -2.5 kN/cm2 yx = -8/4 = -2 kN/cm2 Cara izquierda x = 10/(-4) = -2.5 kN/cm2 yx = 8/(-4) = -2 kN/cm2 Cara superior

Page 59: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

59

y = -6/4 = -1.5 kN/cm2 xy = -8/4 = -2 kN/cm2 Cara inferior y = 6/(-4) = -1.5 kN/cm2 xy = 8/(-4) = -2 kN/cm2

y

6 kNΔAy = 4 cm2 ny

8 kN

ΔAx = 4 cm2n

8 kN 8 kN

nx nxx

10 kN 60° 10 kN

ΔAx = - 4 cm2

ΔAy = - 4 cm2 ny 8 kN

6 kN

FUERZAS ACTUANDO EN UN ELEMENTO FIGURA E-3

El tensor esfuerzo queda

-2.5 -2 S = [kN/cm2]

-2 -1.5 El vector normal al plano vale

cos 30° 0.866 n = =

cos 60° 0.5 Aplicando la ecuación 14

-3.165 s = [kN/cm2]

-2.482

{ Este ejemplo lo podemos resolver obteniendo la fuerza en el plano inclinado y dividiéndolo entre la magnitud del área de dicho plano (figura E-4): ΔAx = ΔA cos 30°, ΔA = 4.619 cm2 ΔAy = ΔA cos 60° = 2.309 cm2

Page 60: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

60

En la figura E-5 se muestran las fuerzas actuando en el elemento. Estableciendo el equilibrio en el mismo hallamos la fuerza ΔF

y

n

2 kN/cm2

30°x

2.5 kN/cm2ΔAx = 4 cm2

ΔA

ΔAy

2kN/cm2

1.5 kN/cm2

ESFUERZOS APARENTES FIGURA E-4

y

ΔF

8 kN

x10 kN

4.618 kN

3.464 kN

SISTEMA DE FUERZAS SOBRE EL ELEMENTO FIGURA E-5

Page 61: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

61

-14.618

ΔF = [kN] -11.464 -3.165

s = ΔF/ΔA = [kN/cm2] -2.482 }

--------------------------------------------- 7. SIMETRÍA DEL TENSOR ESFUERZO Demostremos a continuación que cuando no existe rotación del elemento, y sus dimensiones tienden a cero, el tensor esfuerzo resulta una matriz simétrica con respecto a su diagonal principal. (Cabe aclarar que el cuerpo puede estarse moviendo, incluso con cierta aceleración, lo que no puede es tener un movimiento de rotación). Consideremos un elemento sometido al estado de esfuerzo indicado en la figura 7.

z

Sigma z'

Tau yz' Sigma x

Tau xz'

Tau yx

Tau zy' dz

Tau zx

Tau xy bzSigma y'

byCM Tau xy'

Sigma y Tau zx' y

bxTau zy

Tau yx'Tau xz

Sigma x'

dxTau yz

Sigma z

dy(Mc Esfuerzo Figuras 140201)

x

ESTADO DE ESFUERZO EN UN ELEMENTO FIGURA 7

Page 62: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

62

Tomemos momentos con respecto al centroide del elemento de la figura 7: Mx = - zy dx dz dy/2 - zy’ dx dz dy/2 + zy dy dx dz/2 + yz’ dy dx dz/2 = 0 (32) Pero zy’ = zy + (zy/y) dy (33) yz’ = yz + (yz/z) dz (34) Sustituyendo en la ecuación 32 y simplificando 2zy = 2yz - (zy/y) dy + (yz/z) dz Si las dimensiones del elemento dy y dz tienden a cero zy = yz (35) Además, de las ecuaciones 33 y 34 zy’ = zy yz’ = yz Procediendo en forma análoga My’ = 0 zx = xz (36) Mz’ = 0 yx = xy (37) zx’ = zx, yx’ = yx Vemos entonces que cuando no existe rotación (es decir, cuando hay equilibrio de momentos) y las dimensiones del elemento tienden a cero, el tensor esfuerzo S es una matriz simétrica con respecto a la diagonal principal. Además, en estas condiciones, los cuatro esfuerzos cortantes (por ejemplo yx’, yx, xy’ y xy; figuras 7 y 8) sobre el elemento son iguales entre sí.

y

τxy

τyx τyx

x

τxy

ESFUERZOS CORTANTES SOBRE EL ELEMENTO

FIGURA 8

Page 63: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

63

8. ESFUERZOS PRINCIPALES Cuando en un plano se presenta únicamente esfuerzo normal y el esfuerzo cortante vale cero, a este plano se le llama plano principal. A la dirección del vector normal al plano principal se le denomina dirección principal, y al esfuerzo normal que ocurre en dicha dirección se le llama esfuerzo principal. Veamos a continuación la forma de hallar los esfuerzos y las direcciones principales. De acuerdo con la figura 9 s = S n = n Pero, en una dirección principal = s Por lo tanto = S n = n

DIRECCIÓN PRINCIPAL FIGURA 9

Es decir S n = n (38) Utilizando las ecuaciones 17 y 18 x cos + xy cos + xz cos = cos yx cos + y cos + yz cos = cos zx cos + zy cos + z cos = cos Es decir (x - ) cos + xy cos + xz cos = 0 yx cos + (y - ) cos + yz cos = 0 (39) zx cos + zy cos + (z - ) cos = 0

Page 64: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

64

Despejemos los cosenos directores cos , cos y cos del sistema de ecuaciones 39. En este caso no es aceptable la solución trivial cos = cos = cos = 0, pues los cosenos directores deben cumplir la condición cos2 + cos2 + cos2 = 1 (40) En consecuencia, para que haya una solución diferente de la trivial, el determinante del sistema de ecuaciones 39 debe ser igual a cero x - xy xz yx y - yz = 0 (41) zx zy z - Desarrollando el determinante arribamos a

0322

13 III (42)

donde

zyxI 1 (43)

222

2 yzxzxyzyzxyxI (44)

yzxzxyxyzxzyyzxzyxI 22223 (45)

A los coeficientes I1, I2 e I3 se les denomina invariantes del tensor esfuerzo S. Así, I1 es el primer invariante, I2 el segundo e I3 el tercer invariante. Los esfuerzos principales 1, 2 y 3 se obtienen desarrollando el determinante de la ecuación 41, o usando las ecuaciones 42 a 45. Dado que la matriz S es una matriz simétrica, las raíces de la ecuación son tres números reales (Apostol, 1969), los cuales miden los esfuerzos principales. Las direcciones principales se hallan sustituyendo cada raíz en el sistema de ecuaciones 39, empleando además la ecuación 40. Por ser la matriz S simétrica, las direcciones principales son ortogonales entre sí (Apostol, 1969). Ejemplo Dado el siguiente tensor esfuerzo, hallar los esfuerzos y las direcciones principales. 200 300 100 S = 300 400 200 [kPa] 100 200 300 Solución Sustituyendo en las ecuaciones 42 a 45 3 - 92 + 12 + 3 = 0 obtenemos las raíces de la ecuación: l = 729.98 kPa

2 = 191.48 kPa

3 = -21.46 kPa

Page 65: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

65

Sustituyendo en el sistema de ecuaciones 39 (2-7.3) cos + 3 cos + cos = 0 (a) 3 cos + (4-7.3) cos + 2 cos = 0 (b) cos + 2 cos + (3-7.3) cos = 0 (c) Multiplicando por (-2) la ecuación a y sumándola a la ecuación b 10.6 cos - 6 cos - 2 cos = 0 (a’) 3 cos -3.3 cos + 2 cos = 0 (b) 13.6 cos -9.3 cos = 0 cos = 0.68382 cos (d) Multiplicando por (-3) la ecuación c y sumándola a la ecuación b - 3 cos - 6 cos + 12.9 cos = 0 (c’) 3 cos - 3.3 cos + 2 cos = 0 (b) - 9.3 cos + 14.9 cos = 0 cos = 0.62416 cos (e) Se debe cumplir (ecuación 34) cos2 + cos2 + cos2 = 1 (f) Sustituyendo las ecuaciones d y e en la ecuación f 0.46761 cos2 + cos2 + 0.38958 cos2 = 1 cos 1 = 0.73379 Sustituyendo en la ecuación d cos 1 = 0.50178 Sustituyendo en la ecuación e cos 1 = 0.4580 Procedemos en forma análoga para hallar las otras direcciones principales: cos 2 = - 0.3892 cos 2 = - 0.2813 cos 2 = 0.8771 cos 3 = - 0.77216 cos 3 = 0.61857 cos 3 = - 0.14539 (Se deja como ejercicio al lector verificar que las direcciones principales son ortogonales entre sí).

------------------------------------ 9. REPRESENTACIÓN GRÁFICA DE MOHR Consideremos el siguiente tensor esfuerzo

1 0 0 S = 0 2 0 0 0 3 donde 1 > 2 > 3 Grafiquemos los valores de 1, 2 y 3 y tracemos los círculos indicados en la figura 10. A estos círculos se les denomina círculos de Mohr. Se puede demostrar que un punto de coordenadas P (, ), que mide los esfuerzos normal y cortante en alguna dirección dada, tiene que quedar necesariamente dentro de la zona asciurada de la figura 10 (Castillo, 1985).

Page 66: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

66

Procedamos a probar la afirmación anterior. De la ecuación 15: s = S n cos n = cos cos 1 cos s = 2 cos 3 cos De la ecuación 22: = s n = 1 cos2 + 2 cos2 + 3 cos2 (46) Aplicando la ecuación 28 2 = s2 - 2 s2 = 2 + 2

CÍRCULOS DE MOHR

FIGURA 10

Page 67: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

67

Pero s = 1

2 cos2 + 22 cos2 + 3

2 cos2 2 + 2 = 1

2 cos2 + 22 cos2 + 3

2 cos2 (47) Agrupemos las ecuaciones 46 y 47 junto con la de los cosenos directores: 1 cos2 + 2 cos2 + 3 cos2 = 1

2 cos2 + 22 cos2 + 3

2 cos2 = 2 + 2 (48) cos2 + cos2 + cos2 = 1 Despejemos cos2 del sistema de ecuaciones 48, utilizando la regla de Cramer

2 3 2 + 2 2

2 32

1 1 1 cos2 =

1 2 3 l

2 22 3

2 1 1 1 cos2 = [(2+3)(2-3) - 2(

2+2) + 232 + 3(

2+2) - 322]/[1(2+3)(2-3) - 2l

2 + 23

2 + 3l2 - 32

2] cos2 = [-(2+3)(3-2) + (2+2)(3-2)+ 23(3-2)]/[1(2+3)(2-3) + 1

2(3-2)+ 23(3-2)] cos2 = [(2+2)-(2+3)+23]/[(2-1)(3-1)] (49) 2-(2+3)+[(2+3)/2]2+2 = -23+[(2+3)/2]2 +(2-1)(3-1)cos2 [-(2+3)/2]2+2=[(2-3)/2]2+(2-1)(3-1)cos2 (50) Observamos en la ecuación 50 que y están relacionados mediante la ecuación de un círculo, cuyas propiedades dependen de . En otras palabras, la ecuación 50 corresponde a una familia de círculos en función de ; el centro y los radios mínimo y máximo de esta familia son C [(2+3)/2, 0] Rmin = (2-3)/2 [cos = 0, = /2] Rmax = [(2-3)/2]2 + (1-2)(1-3) [cos = 1, = 0] En la figura 11 se muestra la familia de círculos . En forma análoga se obtienen las familias de círculos y : Familia de círculos [-(1+3)/2]2+2=[(1-3)/2]2+(1-2)(3-2)cos2 (51) C [(1+3)/2, 0]

Page 68: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

68

Rmin = [(1-3)/2]2 + (1-2) (3-2) [cos = 1, = 0] Rmax = (1-3)/2 [cos = 0, = /2]

FAMILIA DE CÍRCULOS α FIGURA 11

Familia de círculos [-(2+1)/2]2+2 = [(2-1)/2]2+(2-3)(1-3) cos2 (52) C [(2+1)/2, 0] Rmin = (1-2)/2 [cos = 0, = /2] Rmax = [(2-1)/2]2 + (2-3)(1-3) [cos = 1, = 0] Grafiquemos ahora el círculo de radio R = Rmin, el círculo de radio R = Rmax y el círculo de radio R = Rmin (figura 10). Dado que y están relacionados entre sí mediante las ecuaciones 50, 51 y 52, el punto P (, ) debe quedar en cada circunferencia , y . Dado que el círculo tiene que ser mayor o igual que el correspondiente a = /2, que el círculo tiene que ser mayor o igual que el círculo = /2, y que el

Page 69: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

69

círculo tiene que ser menor o igual que el círculo = /2, el punto P (, ) tiene que quedar necesariamente en la zona asciurada de la figura 10. 10. DETERMINACIÓN DE LOS ESFUERZOS NORMAL Y CORTANTE EN UNA DIRECCIÓN.

MÉTODO GRÁFICO DE MOHR Consideremos que deseamos determinar el estado de esfuerzo en la dirección dada por el vector cos n = cos cos El procedimiento gráfico consiste en lo siguiente: a) Tracemos a partir del tensor esfuerzo los tres círculos en el plano de Mohr (figura 12). b) A partir del punto A se traza una paralela al eje ; a continuación se traza también a partir del

punto A una recta que forma un ángulo con la paralela al eje . Esta recta corta al círculo en el punto A’, y al círculo en el punto A”.

c) A partir del centro C se traza un arco de circunferencia que corte los puntos A’ y A”. d) Por el punto C se traza una paralela al eje ; a continuación se traza también a partir del punto C

una recta que forme un ángulo con la paralela al eje . Esta recta corta al círculo en el punto C’, y al círculo en el punto C”.

e) Por el centro C se traza un arco de circunferencia que corte los puntos C’ y C”. f) Las coordenadas del punto de intersección D (figura 12) de los dos arcos representan el esfuerzo

normal y el esfuerzo cortante, en la dirección dada por el vector n.

Page 70: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

70

PLANO DE MOHR FIGURA 12

Demostremos primeramente que el punto C’ pertenece a un círculo cuyo coseno director es cos . Con el procedimiento analítico, las deformaciones normal y cortante valen s = S n (53) = s n (54) = s x n (55) Como el punto C’ está en el círculo = /2, cos = 0, y el vector nC’ queda cos nC’ = 0 cos Además, se debe cumplir cos2 + cos2 + cos2 = 1 Por lo tanto cos = sen

Page 71: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

71

Sustituyendo en las ecuaciones 53 a 55 = 1 sen2 + 3 cos2 (56) s x n = - j (1 sen cos - 3 sen cos ) s x n = [-(1-3) sen cos ] j = (1-3) cos sen (57) Obtengamos ahora gráficamente los esfuerzos normal y cortante del punto C’; de la figura 12 OE = OC + CE CE = CC’ sen CC’ = CA sen OE = 3 + CA sen2 = 3 + (1-3) sen2 OE = 1 sen2 + 3 cos2 (58) También EC’ = CC’ cos CC’ = (1-3) sen EC’ = (1-3) sen cos (59) Comparando las ecuaciones 56 y 58, y las ecuaciones 57 y 59, apreciamos que en efecto las coordenadas del punto C’ miden el estado de esfuerzo en la dirección dada por el vector nC’. Por lo tanto, el punto C’ pertenece al círculo cuyo coseno director es cos ; cualquier circunferencia que pase por este punto, con centro en C, representará esfuerzos en una dirección con coseno director cos . Procediendo en forma análoga, se demuestra que el punto A’ pertenece al círculo cuyo coseno director es cos ; cualquier circunferencia que pase por este punto, con centro en C, representará esfuerzos en una dirección con coseno director cos . El punto de intersección D de los dos arcos de circunferencia mide el estado de esfuerzo cuyos ángulos directores son y ; ahora es diferente a /2, pues queda obligado por y . Con lo anterior, hemos demostrado que las coordenadas del punto D de la figura 12 miden: su abscisa el esfuerzo normal y su ordenada el esfuerzo cortante, en la dirección dada por el vector n. Ejemplo Dado el siguiente tensor esfuerzo: 6 0 0 S = 0 3 0 [kg/cm2] 0 0 1 hallar los esfuerzos normal y cortante en la dirección dada por el vector

Page 72: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

72

AB = 4i + 3j + 2k Utilizar el procedimiento gráfico de Mohr. Solución El vector unitario n en la dirección de AB vale n = 0.7428i + 0.5571j + 0.3714k Es decir = 42°, = 56°, = 68° En la figura E-6 se exhibe el procedimiento gráfico para obtener el punto D, cuyas coordenadas miden los esfuerzos normal y cortante en la dirección del vector n. Obtenemos de la figura E-6 = 4.4 kg/cm2 y = 1.9 kg/cm2.

CÍRCULO DE MOHR EN TRES DIMENSIONES. EJEMPLO FIGURA E-6

------------------------------------

11. ESTADO DE ESFUERZO PLANO Se presenta un estado de esfuerzo plano (en el plano xy) cuando se cumple z = xz = yz = zx = zy = 0

Page 73: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

73

El tensor esfuerzo queda x xy 0 S = yx y 0 (60) 0 0 0 De la figura 13: cos = sen , = 90°, cos = 0, por lo tanto

VECTOR NORMAL A UN PLANO FIGURA 13

cos n = cos (61) 0 Aplicando la ecuación 15 s = S n

0

cos

cos

sensen

s yyx

xyx

Usando la ecuación 22 = s n Considerando que yx = xy = x cos2 + y sen2 + 2xy sen cos (62)

Page 74: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

74

Cuando el esfuerzo normal es de tensión, dicho esfuerzo tiene signo positivo (ecuación 62). En cambio, si al aplicar la ecuación 62 obtenemos una cantidad negativa, el esfuerzo normal es de compresión. El esfuerzo cortante lo hallamos empleando la ecuación 27 = = s x n = (x - y) sen cos + xy (sen2 - cos2) (63) Para conocer el sentido de observamos que el producto s x n es un vector perpendicular al plano xy, es decir s x n = c k (64)

SENTIDO DEL ESFUERZO CORTANTE FIGURA 14

Si c > 0 el vector s x n tiene el mismo sentido del eje positivo del eje z (figura 14); en estas condiciones, el esfuerzo cortante queda a la derecha de n, es decir, produce momento positivo con su cortante paralelo asociado ’ (figura 15). Si c < 0, el vector s x n tiene sentido contrario al sentido positivo del eje z, por lo que el esfuerzo cortante queda a la izquierda de n, es decir, produce momento negativo con su cortante paralelo asociado ’ (figura 16). El valor de c de la ecuación 64 corresponde al cortante de la ecuación 63, por lo que el sentido del cortante está dado por el signo de c señalado en el párrafo anterior, de la siguiente forma: si en la ecuación 63 da positivo, su sentido será tal que provoque un momento positivo con respecto a su cortante asociado ’ (figura 15); si da negativo, su sentido será tal que produzca un momento negativo con su cortante asociado (figura 16). Las ecuaciones 62 y 63 se pueden poner en función del ángulo doble 2. Empleando las identidades trigonométricas cos2 = (1 + cos 2)/2 sen2 = (1 – cos 2)/2 sen cos = (sen 2)/2

Page 75: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

75

MOMENTO EN SENTIDO HORARIO FIGURA 15

MOMENTO EN SENTIDO ANTIHORARIO

FIGURA 16 obtenemos = (x+y)/2 + [(x-y) cos 2]/2 + xy sen 2 (65) = [(x-y) sen 2]/2 - xy cos 2 (66) Los esfuerzos principales los hallamos con la ecuación 41 x - xy 0 yx y - 0 = 0 0 0 -

Page 76: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

76

Desarrollando el determinante obtenemos que un esfuerzo principal es = 3 = 0. Los otros dos esfuerzos principales los hallamos con la ecuación característica reducida 2 - (x+y) + xy – (xy)

2 = 0 es decir 1 = (x+y)/2 + [(x-y)/2]2 + (xy)

2 (67) 2 = (x+y)/2 - [(x-y)/2]2 + (xy)

2 (68) De acuerdo con lo anterior, una dirección principal es la del eje z, dado que en ella el esfuerzo cortante vale cero. Las otras dos direcciones principales las obtenemos con el sistema de ecuaciones 33 1 = ang tan [(1-x)/xy] (69) 2 = ang tan [-xy/(y-2)] (70) Dado que estamos considerando = 90°, cos = 0, los resultados presentados en este inciso son únicamente válidos para calcular esfuerzos paralelos al plano xy. [Hemos llamado 1 y 2 a los esfuerzos principales en el plano xy, y 3 al esfuerzo principal paralelo al eje z. Sin embargo, en el espacio 3 puede ser un esfuerzo principal intermedio o mayor; por ejemplo, si 1 > 0 y 2 < 0, 3 resulta el esfuerzo principal intermedio]. Ejemplo Dado el estado de esfuerzo plano indicado en la figura E-7, calcular: a) Los esfuerzos normal y cortante en el plano inclinado 30° de la figura b) La magnitud y dirección de los esfuerzos principales c) La magnitud y dirección de los esfuerzos cortantes máximo y mínimo Solución El tensor esfuerzo queda

MPaS

000

03519

01921

a) Para = 30 + 90 = 120° Aplicando la ecuación 62 = - 4.546 MPa Utilizando la ecuación 63 = - 33.749 MPa b) Esfuerzos principales Empleando las ecuaciones 67 a 70 1 = 26.838 MPa 1 = - 17.1° 2 = - 40.838 MPa 2 = 72.9° c) max = [(x-y)/2]2 + yx

2 = 33.838 MPa

min = - [(x-y)/2]2 + yx2 = - 33.838 MPa

max = 1 + 45° = 27.92° min = 2 + 45° = 117.92° (ESFPLA9.BAS)

Page 77: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

77

y

35 MPa

19 MPa

n

19 MPa30°

21 MPax

21 MPa

19 MPa

19 MPa

35 MPa

ESTADO DE ESFUERZO PLANO. EJEMPLO FIGURA E-7

------------------------------------ 12. CÍRCULO DE MOHR PARA EL ESTADO DE ESFUERZO PLANO Los esfuerzos normal y cortante están dados por (ecuaciones 65 y 66) = (x+y)/2 + [(x-y) cos 2]/2 + xy sen 2 (71) = [(x-y) sen 2]/2 - xy cos 2 (72) Demostremos a continuación que y están relacionados a través de la ecuación de un círculo. De la ecuación 71 - (x+y)/2 = [(x-y) cos 2]/2 + xy sen 2 (73) Elevando al cuadrado y sumando las ecuaciones 73 y 72 [ - (x+y)/2]2 + 2 = [(x-y)/2]2 + xy

2 (74) La ecuación 74 es la ecuación de un círculo con centro C [(x+y)/2, 0] y radio R = [(x-y)/2]2 + xy

2 (75)

Page 78: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

78

A este círculo se denomina círculo de Mohr, el cual se muestra en la figura 17.

CÍRCULO DE MOHR PARA EL ESTADO DE ESFUERZO PLANO FIGURA 17

Consideremos el estado de esfuerzo indicado en la figura 18a. El círculo de Mohr se exhibe en la figura 18b. Para hallar los esfuerzos normal y cortante en la dirección del vector n se emplea el procedimiento del polo de los esfuerzos, que consiste en lo siguiente (Alberro, 1970): a) A partir del punto A –que representa el estado de esfuerzo en dirección x– se traza una recta

paralela al eje x (figura 19). b) A partir del punto B –que representa el estado de esfuerzo en dirección y– se traza una recta

paralela al eje y. c) El punto donde se intersecan ambas rectas corresponde a la posición del polo de los esfuerzos. d) Para hallar el estado de esfuerzo en una dirección definida por el vector n (figura 18a), que forma

un ángulo con el sentido positivo del eje x, a partir del polo se traza una recta paralela a dicha dirección. El punto donde esta recta corta a la circunferencia (punto D, figura 19) proporciona los esfuerzos buscados: su abscisa da el esfuerzo normal y su ordenada el esfuerzo cortante, en la dirección del vector n.

Demostremos que el estado de esfuerzo en la dirección que forma un ángulo con el eje x está dado por el punto D del círculo de Mohr de la figura 18b, es decir, por un punto que forma un ángulo 2 con el punto A. Con el procedimiento analítico habíamos encontrado que los esfuerzos valen (ecuaciones 71 y 72) = (x+y)/2 + [(x-y) cos 2]/2 + xy sen 2 (76) = [(x-y) sen 2]/2 - xy cos 2 (77)

Page 79: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

79

FIGURA 18 Probemos que con el método gráfico de la figura 18 se llega a los esfuerzos dados por las ecuaciones 76 y 77. Las coordenadas del punto D valen (figura 18b): = (x+y)/2 + R cos (78) = - R sen (79) Pero (figura 18b): = - 2 (80) Sustituyendo la ecuación 80 en la ecuación 78 = (x+y)/2 + R cos ( - 2) = (x+y)/2 + R cos cos 2 + R sen sen 2

Page 80: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

80

Pero R cos = (x-y)/2 y R sen = xy Por lo tanto = (x+y)/2 + [(x-y) cos 2]/2 + xy sen 2 (81) Sustituyendo la ecuación 70 en la ecuación 69 = - R sen ( - 2) = - R sen cos 2 + R sen 2 cos = [(x-y) sen 2]/2 - xy cos 2 (82) Observamos que la ecuación 76 es igual a la ecuación 81, y que la ecuación 77 es igual a la ecuación 82, por lo que con los procedimientos analítico y gráfico se llega a los mismos resultados. Con esto verificamos la validez del uso del ángulo doble del método gráfico. En la figura 19 apreciamos que con el método del polo de los esfuerzos se llega al mismo resultado, pues un ángulo inscrito en un círculo es igual a la mitad del ángulo medido a partir del centro del círculo.

POLO DE LOS ESFUERZOS FIGURA 19

Debido a que todos los ángulos inscritos en un mismo arco son iguales, el polo se puede ubicar en cualquier punto de la circunferencia, y la única condición es que el ángulo se mida a partir del punto A, en sentido antihorario.

Page 81: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

81

Ejemplo Dado el estado de esfuerzo plano mostrado en la figura E-8a, hallar: a) Los esfuerzos normal y cortante en el plano inclinado de la figura b) La magnitud y dirección de los esfuerzos principales Utilizar el método gráfico de Mohr Solución En la figura E-8b se exhibe el círculo de Mohr correspondiente. Para hallar el polo, a partir del punto A (que representa el estado de esfuerzo en dirección del eje x) se traza una paralela el eje x; a partir del punto B (que mide el estado de esfuerzo en dirección del eje y) se traza una paralela al eje y (figura E-8b). El punto donde se intersecan ambas rectas es el polo de los esfuerzos (figura E-8b). Para obtener los esfuerzos en la dirección del vector n, a partir del polo trazamos una recta paralela a dicho vector n; el punto donde esta recta cruza a la circunferencia proporciona el estado de esfuerzo en la dirección del vector n. Los esfuerzos y las direcciones principales se obtienen en forma similar. En la figura E-8b medimos = - 45 kg/cm2

= - 337 kg/cm2

1 = 268 kg/cm2, 1 = - 17° 2 = - 408 kg/cm2, 2 = 73°

Page 82: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

82

---------------------------------------

Page 83: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

83

Ejemplo Dado el estado de esfuerzo indicado en la figura E-9, obtener la dirección del plano de máximo esfuerzo cortante. ¿Qué magnitud tiene el máximo esfuerzo cortante?

Solución En la figura E-10 se muestran los círculos de Mohr correspondientes. Se aprecia que el máximo esfuerzo cortante vale max = 3 kg/cm2. De la figura E-10 obtenemos = = 45°. [Si este problema lo resolviéramos como un estado de esfuerzo plano, obtendríamos que el máximo esfuerzo cortante sería 2 kg/cm2, resultado obviamente erróneo. La paradoja estriba en que los resultados de un análisis plano son únicamente válidos para planos cuyos vectores normales son paralelos al plano xy, y en este ejemplo el máximo esfuerzo cortante queda en un plano cuyo vector normal no es paralelo al plano xy].

Page 84: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

84

------------------------------------ 13. VARIACIÓN DEL ESFUERZO CON EL ÁREA DE LA SECCIÓN Consideremos una barra de sección circular con un área inicial Ao, y sometamos esta barra a una fuerza normal de tensión P; el esfuerzo normal nominal vale i = P/Ao. Sin embargo, la aplicación del esfuerzo de tensión produce una disminución del área de Ao a Af, por lo que el esfuerzo, después de la aplicación de P vale f = P/Af. El esfuerzo f se puede hallar en función del esfuerzo nominal i = P/Ao y de la deformación unitaria longitudinal, despreciando el cambio de volumen que ocurre durante la deforma-ción, es decir, suponiendo que AoLo = AfLf Af = AoLo/Lf

donde Lo y Lf son las longitudes inicial y final de la barra, respectivamente. Pero, la deforma-ción unitaria longitudinal vale l = (Lf – Lo)/Lo = Lf/Lo - 1 Es decir, el área corregida vale

l

of

AA

1

(83)

Page 85: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

85

El esfuerzo normal, después de la aplicación de la carga, es

ff A

P (84)

f = PLf/AoLo = (P/Ao)(1+l) f = i (1+l) (85) La ecuación 84 proporciona el esfuerzo normal final –después de la aplicación de la carga- en función de la carga P y del área corregida Af. 14. TENSOR ISOTRÓPICO Y TENSOR DESVIADOR El tensor esfuerzo se puede descomponer en el tensor esfuerzo isotrópico (o volumétrico o esférico) y en el tensor esfuerzo desviador (o distorsionante) S = Sm + Sd (86) donde (Deméneghi, Magaña y Sanginés, 2000) m 0 0 Sm = 0 m 0 (87) 0 0 m m = (1/3) (x + y + z) (88) y x - m xy xz Sd = yx y - m yz (89) zx zy z - m En ocasiones, a los elementos del tensor esfuerzo desviador se les designa de la siguiente forma sx = x - m; sxy = xy sy = y - m; sxz = xz (90) sz = z - m; syz = yz sx sxy sxz Sd = syx sy syz (91) szx szy sz

Page 86: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

86

15. CONVENCIÓN DE SIGNOS EN MECÁNICA DE SUELOS En los siguientes párrafos consideraremos que en el entorno de un elemento de material (figura 20) existe un campo vectorial de fuerzas que es una función continua y diferenciable en dicho entorno. Así Nxx = Nx = Nx(x,y,z) Txy = Txy(x,y,z) Txz = Txz(x,y,z) Nyy = Ny = Ny(x,y,z), etcétera Sea un elemento de material sometido al sistema de cargas indicado en la figura 20. Consideremos las caras del elemento paralelas a los planos xz y yz (figura 21); para las fuerzas y áreas usaremos la siguiente convención de signos: las fuerzas son positivas si tienen el mismo sentido del eje al que son paralelas. Para las áreas utilizamos el sentido del vector normal a la cara externa: si el vector normal tiene el mismo sentido del eje al cual es paralelo, el área es positiva. Tomemos como ejemplo la cara anterior: la fuerza Nx es negativa y el área Ax es positiva, como se aprecia en la figura 21.

z

Delta Nz

Delta Ay Delta Tyz Delta Nx

Delta Txz

Delta TyxDelta Az Delta Tzy

Delta Ax Delta TzxDelta Txy

Delta Ny

Delta TxyDelta Ny Delta Tzx y

Delta AxDelta Tzy

Delta TyxDelta Txz

Delta Nx Delta Ay

Delta Tyz

Delta Nz Delta Az

x

(Mc Esfuerzo Figuras 140201)

SISTEMA DE FUERZAS ACTUANDO EN PLANOS PERPENDICULARES A LOS EJES COORDENADOS

FIGURA 20

Page 87: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

87

y

Delta NyDelta Ay ny

Delta Txy

Cara Delta Axposterior(figura 1)

Delta Tyx Delta Tyx

nx nxx

Delta Nx Delta Nx

Cara anterior (figura 1)Delta Ax

Delta Ay ny Delta Txy

Delta Ny

FUERZAS ACTUANDO EN PLANOS PERPENDICULARES A LOS EJES x Y y

FIGURA 21 Veamos el concepto de esfuerzo en la cara anterior del elemento. El esfuerzo normal medio xm lo obtenemos de la siguiente forma

Nx

xm = - (92) Ax

Dado que Nx < 0 y Ax > 0, el esfuerzo xm es positivo en la cara anterior del elemento. En la cara posterior (figura 21) el esfuerzo normal medio está dado también por la ecuación 92; como Nx > 0 y Ax < 0, el esfuerzo xm es también positivo. Vemos entonces que el esfuerzo normal medio xm es positivo tanto en la cara anterior como en la cara posterior del elemento. Definamos al esfuerzo normal x de la siguiente forma

Nx Nx ΔNx

x = lim - = - ≈ - (93) Ax 0 Ax Ax ΔAx Obtengamos a continuación el esfuerzo cortante medio yxm en la cara anterior (figura 21)

Tyx

yxm = - (94) Ax’

Page 88: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

88

Como Tyx < 0 y Ax > 0, el esfuerzo yxm es positivo. En la cara posterior el esfuerzo cortante yxm se obtiene con la ecuación 94; como Tyx > 0 y Ax < 0, yxm es también positivo. Por lo tanto, para el sistema de fuerzas actuando en el elemento de la figura 21, los esfuerzos cortantes en las caras anterior y posterior, obtenidos ambos con la ecuación 94 son positivos. El esfuerzo cortante yx se define de la siguiente forma

Tyx Tyx ΔTyx

yx = lim - = - ≈ - (95) Ax’ 0 Ax Ax ΔAx

En forma análoga, el esfuerzo cortante zx se define

Tzx Tzx

zx = lim - = - (96) Ax’ 0 Ax’ Ax’ En las caras paralelas al plano xz (figura 20) los esfuerzos y, xy y zy, y en las caras paralelas al plano xy los esfuerzos z, xz y yz, se obtienen usando un criterio similar al dado por las ecuaciones 93, 95 y 96. En ocasiones se grafica el estado de esfuerzo como se indica en la figura 22. Cabe aclarar sin embargo que el sentido de los esfuerzos no corresponde necesariamente al sentido de los ejes coordenados. Por ejemplo, el esfuerzo normal x en la cara posterior del elemento de la figura 22 tiene sentido contrario al eje x, y se podría pensar que es positivo; sin embargo, como ya indicamos en párrafos anteriores, el esfuerzo x es positivo. Por lo tanto, a los esfuerzos indicados en la figura 22 los podemos denominar esfuerzos aparentes. De hecho, el sentido de los esfuerzos aparentes corresponde en realidad al sentido de los incrementos de fuerza que actúan sobre el elemento, como se puede constatar comparando las figuras 20 y 22.

Page 89: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

89

z

Sigma z'

Tau yz' Sigma x

Tau xz'

Tau yx

Tau zy' dz

Tau zx

Tau xy bzSigma y'

byCM Tau xy'

Sigma y Tau zx' y

bxTau zy

Tau yx'Tau xz

Sigma x'

dxTau yz

Sigma z

dy(Mc Esfuerzo Figuras 140201)

x

ESFUERZOS APARENTES FIGURA 22

Consideremos un cuerpo sometido a un sistema de fuerzas, como el tetraedro mostrado en la figura 23. Las fuerzas de superficie en las caras verticales y horizontal del elemento las hemos traducido a esfuerzos, como se indica en la figura 23. Definimos el vector esfuerzo sm en la cara inclinada del tetraedro de la siguiente forma

AFsm

(97)

Y el vector esfuerzo s

A

FsA 0lim

(98)

Page 90: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

90

z

σx ΔF n

ΔT

ΔAy τyx 90°

θ ΔN

τxy τzx

σy ΔA

P ΔAx y

τzy τxz

τyz

ΔAz σz

x

SISTEMA DE FUERZAS SOBRE EL TETRAEDRO FIGURA 23

En la figura 24 mostramos al vector s actuando sobre la cara inclinada del elemento. Por otra parte, la fuerza ΔF tiene las componentes

z

y

x

FFF

F

Por lo tanto

AFAFAF

AFAFAF

AF

sss

s

z

y

x

z

A

y

A

x

A

A

z

y

x

0

0

0

0

lim

lim

lim

lim

(99)

Page 91: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

91

z

σx τ n

s

ΔAy τyx 90°

θ σ

τxy τzx

σy ΔA

P ΔAx y

τzy τxz

τyz

ΔAz σz

x

VECTOR s ACTUANDO SOBRE LA CARA INCLINADA DEL ELEMENTO FIGURA 24

Es decir

AF

AFs xx

Ax

0lim

AF

AF

s yy

Ay

0lim

(100)

AF

AFs zz

Az

0lim

Las fuerzas de cuerpo las tomamos en cuenta con el vector

z

y

x

bbb

b

(101)

Page 92: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

92

donde b está en

3mkN

La condición de equilibrio dinámico, por ejemplo en dirección x, establece que

2

2

tummaF xx

(102)

donde m = masa del elemento ax = aceleración del centro de masa del elemento, en dirección x u = desplazamiento del centro de masa del elemento, en dirección x La masa la obtenemos con

Volm

siendo ρ la masa específica del material, en Mg/m3 Establezcamos el equilibrio dinámico del tetraedro de la figura 23 en la dirección x

2

2

3

1

3

1

tuxAxAbFAAA xxxxzzxyyxxx

(103)

Se puede demostrar

cos

cos

cos

AAAAAA

z

y

x

donde ΔA es el área de la cara inclinada del tetraedro, y cos α, cos β y cos γ son los cosenos directores del vector normal a la cara inclinada del tetraedro. Tomando en cuenta la primera de las ecuaciones 100

AsF xx

y reemplazando en la ecuación 103

cos3

1cos

3

1coscoscos 2

2

xbtuxs xxzxyxx

En forma análoga

cos3

1cos

3

1coscoscos 2

2

ybtvys yyzyyxy

cos3

1cos

3

1coscoscos 2

2

zbtuzs zzzyzxz

Page 93: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

93

Es decir

cos

cos

cos

3

1

cos

cos

cos

3cos

cos

cos

2

2

2

2

2

2

zbybxb

twz

tvy

tux

sss

z

y

x

zzyzx

yzyyx

xzxyx

z

y

x

(104)

Consideremos ahora que las dimensiones del tetraedro tienden a cero

0

0

0

zyx

La ecuación 104 queda

cos

cos

cos

zzyzx

yzyyx

xzxyx

z

y

x

sss

(105)

Es decir

nSs (106)

siendo

z

y

x

sss

s (107)

zzyzx

yzyyx

xzxxx

S

(108)

cos

cos

cos

n (109)

Observamos que la ecuación 106 se cumple cuando las dimensiones del tetraedro de la figura 24 tienden a cero.

Page 94: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

94

16. APLICACIONES Tensión diagonal en vigas de concreto Bajo ciertas condiciones, la aplicación de esfuerzo cortante en un medio ocasiona que se presenten esfuerzos de tensión en algunas direcciones (Deméneghi, Magaña y Sanginés, 2000). Este fenómeno es especialmente importante en una viga de concreto, debido a que su resistencia a la tensión es baja para fines prácticos. Para ilustrar lo anterior, consideremos una viga de concreto reforzado simplemente apoyada y obtengamos el diagrama de fuerza cortante a lo largo de la viga (figura 25). Obtengamos el estado de esfuerzo en una sección ligeramente a la derecha del apoyo M. En el punto D –a la mitad de la sección- los esfuerzos normales horizontal y vertical son de muy baja magnitud, por lo que los consideramos nulos; además, en mecánica de materiales se demuestra que en el punto D ocurre el máximo esfuerzo cortante, cuya magnitud es (3/2)(V/A), donde V es la fuerza cortante y A = bh el área de la sección. Para el estado de esfuerzo en el punto D, tracemos el círculo de Mohr, encontremos el polo de los esfuerzos y localicemos el plano donde ocurre el máximo esfuerzo de tensión (figura 26). Se observa que este plano tiene una inclinación de 45° con respecto a la horizontal (figura 26).

FIGURA 25

Page 95: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

95

CÍRCULO DE MOHR FIGURA 26

Por lo anterior, debido a un esfuerzo cortante de magnitud (3/2)(V/A) en dirección vertical, que actúa en el punto D (figura 25), se produce un esfuerzo de tensión en un plano inclinado a 45° con respecto a la horizontal de igual magnitud (3/2)(V/A). A este fenómeno se le conoce como tensión diagonal y puede ocasionar problemas de comportamiento en materiales de baja resistencia a la tensión, como el concreto. En la práctica se acostumbra, en vigas de concreto, usar refuerzo transversal a base de estribos de acero, para tomar estos esfuerzos de tensión. Empuje de tierras Otra de las aplicaciones del conocimiento del estado de esfuerzo es la relativa al cálculo del empuje de tierras sobre muros de retención (Deméneghi, Magaña y Sanginés, 2000). Consideremos un muro de retención como el indicado en la figura 27, el cual soporta un relleno de arena seca de peso volumétrico d. El estado de esfuerzo en un elemento dentro de la masa de suelo se muestra en la figura 28. La presión vertical vale pv = dz, donde z es la profundidad a la que se encuentra el elemento. En mecánica de suelos se observa que la presión horizontal ph es proporcional a pv, es decir ph = Kopv, donde Ko es el coeficiente de proporcionalidad, el cual se denomina coeficiente de presión de tierra en reposo. Sin embargo, se ha observado que con frecuencia los muros de contención sufren un cierta cedencia que ocasiona una disminución de la presión horizontal (en la figura 27 el muro se desplazaría hacia la derecha). Más aún, experimentalmente se ha determinado que es común que este desplazamiento sea suficiente para que el suelo alcance un estado plástico de equilibrio.

Page 96: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

96

EMPUJE DE TIERRAS FIGURA 27

En mecánica de suelos se acepta que una arena tiene una ley de resistencia en la que la resistencia al corte es linealmente proporcional al esfuerzo normal (figura 29), es decir s = = tan donde = tan = coeficiente de fricción interna del suelo

ESTADO DE ESFUERZO EN EL ELEMENTO DE SUELO

FIGURA 28

Page 97: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

97

LEY DE RESISTENCIA AL CORTE DE UNA ARENA FIGURA 29

Debido a que en una masa de suelo se presentan en general esfuerzos de compresión, se utiliza en mecánica de suelos una convención de signos diferente a la que hemos venido usando. Por lo tanto, en mecánica de suelos los esfuerzos normales de compresión se consideran positivos y los de tensión negativos. En el inciso 15 se detalla esta convención de signos, que será la que usaremos en los siguientes párrafos. El estado de esfuerzo de la figura 28 se muestra en la figura 29. Por la cedencia del muro la presión horizontal ph disminuye hasta que el círculo de Mohr toca la línea de resistencia del suelo (figura 29). Aceptemos que la presión activa pa es proporcional a pv: pa = Kapv, donde Ka = coeficiente de presión activa del suelo. En el triángulo ODC de la figura 30

(pv - Kapv)/2 sen = -

(pv + Kapv)/2

1 - Ka

sen = 1 + Ka

1 – sen Ka = 1 + sen

Page 98: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

98

DETERMINACIÓN DEL EMPUJE ACTIVO

FIGURA 30 Valuemos la inclinación del plano de falla. El polo se encuentra en el punto B de la figura 30. Además, el triángulo ADC es un triángulo isósceles, puesto que dos de sus lados son iguales al radio del círculo de Mohr, por lo tanto 2 + 90° - = 180° = 45° + /2 la cual es la inclinación del plano de falla. El conocimiento de la presión activa pa = Kapv es importante en la práctica, porque es la que se emplea con frecuencia para valuar el empuje de tierras sobre muros de retención. 17. ECUACIONES DE EQUILIBRIO DINÁMICO Consideremos un elemento sometido a fuerzas de contacto y a fuerzas de cuerpo, como se muestra en la figura 31. Las fuerzas de cuerpo las tomamos en cuenta con el vector (figura 31)

z

y

x

bbb

b

(110)

donde b mide una fuerza por unidad de volumen, con unidades

3mkN

Page 99: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

99

Utilicemos la segunda ley de Newton en la dirección x

2

2

xummaF xx

Así

2

2

''''

xudzdydxdzdydxb

dydxdzdxdzdydydxdzdxdzdy

x

xzxyxxzxyx

(111)

Pero

dxx

xxx

'

dyyxy

xyxy

'

dzzxz

xzxz

'

Reemplazando en la ecuación 111

2

2

xudzdydxdzdydxbdzdydx

zdzdydx

ydzdydx

x xxzxyx

2

2

xub

zyx xxzxyx

(112a)

Page 100: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

100

z

Sigma z'

Tau zy' Sigma x

Tau zx'

Tau xy

Tau yz' dz

Tau xz

Tau yx bzSigma y'

byCM Tau yx'

Sigma y Tau xz' y

bxTau yz

Tau xy'Tau zx

Sigma x'

dxTau zy

Sigma z

dy(Mc Esfuerzo Figuras 1110)

x

ELEMENTO SOMETIDO A FUERZAS DE CONTACTO Y FUERZAS DE CUERPO FIGURA 31

Operando en forma análoga:

2

2

yvb

zyx yyzyyx

(112b)

2

2

zwb

zyx zzzyzx

(112c)

-------------------- Hagamos

2

2

'xubb xx

(113)

La ecuación 112a queda

0'

xxzxyx bzyx (114)

Procediendo en forma análoga para las direcciones y y z, arribamos al siguiente sistema de ecuaciones

Page 101: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

101

0'

xxzxyx bzyx (114)

0'

yyzyxy bzyx

(115)

0'

zzzyzx b

zyx

(116)

donde

2

2

'xubb xx

(117)

2

2

'yvbb yy

(118)

2

2

'zwbb zz

(119)

Las ecuaciones 114 a 116 son válidas para un medio continuo formado por cualquier tipo de material, y se deben cumplir en todo fenómeno perteneciente a la física newtoniana. 18. EL ÁREA COMO UN VECTOR Consideremos el tetraedro de la figura 32 y definamos el vector área ΔA de la cara inclinada del mismo de la siguiente forma

yxzxzy

AAA

A

z

y

x

2

1 (120)

El módulo del vector ΔA es

222

2

1 zyzxyxAA (121)

yxzxzy

AAA

2

1 (122)

Page 102: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

102

Probemos a continuación que el vector área ΔA tiene la misma dirección que el vector normal n a la cara inclinada del tetraedro. En efecto (figura 32)

ACABACABn

A(Δx, 0, 0), B(0, Δy,0), C(0,0, Δz)

z

C

σx ΔF n

ΔTΔz

τxy 90°

ΔAy θ ΔN

τyx τxz

σy ΔAΔAx

P Δy By

τyz τzx

τzy

Δx ΔAz

σz

A

x

TETRAEDRO SOMETIDO A UN ESTADO DE ESFUERZO

FIGURA 32

0

yx

AB

z

xAC 0

Page 103: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

103

kyxjzxizyzx

yxkji

ACAB

0

0

yxzxzy

ACAB

222 yxzxzyACAB (123)

yxzxzy

yxzxzyyxzxzy

yxzxzyn

222222

2

12

11

Tomando en cuenta la ecuación 121

yxzxzy

An

2

1 (124)

Comparando las ecuaciones 122 y 124

AAn

(125)

Observamos que el vector ΔA tiene la misma dirección que el vector normal n a la cara inclinada del tetraedro. Designemos al vector normal n por sus cosenos directores

cos

cos

cos

n (126)

Pero, de acuerdo con la ecuación 124

Page 104: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

104

AAAAAA

yx

zx

zy

An

z

y

x

2

12

12

1

1 (127)

Comparando las ecuaciones 126 y 127

AAx

cos

cosAAx (128)

En forma análoga

cosAAy (129)

cosAAz (130)

Demostremos a continuación que el área de la cara inclinada del tetraedro es igual al módulo del vector área ΔA. En efecto, el área de un triángulo, ΔA’, cuyos lados son los vectores AB y AC (figura 32) vale

ACABA 2

1'

Pero, de acuerdo con la ecuación 123

222

2

1

2

1' yxzxzyACABA

Habíamos obtenido el módulo del vector ΔA, con la ecuación 121

222

2

1 zyzxyxAA (121)

Observamos que el área de la cara inclinada del tetraedro, ΔA’, es igual al módulo, ΔA, del vector área ΔA. Podemos entonces afirmar que el vector área ΔA, dado por la ecuación 120

yxzxzy

AAA

A

z

y

x

2

1

representa en forma vectorial al área de la cara inclinada del tetraedro de la figura 32.

Page 105: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

105

19. ESTADO DE ESFUERZO EN UNA PRUEBA DE COMPRESIÓN TRIAXIAL El estado de esfuerzo en una prueba de compresión triaxial es como el que se muestra en la figura 33. El tensor esfuerzo queda

2

1

3

00

00

00

S

σ1

σ2

σ3 σ3

y

σ2

x

zσ1

ESTADO DE ESFUERZO EN UNA PRUEBA DE COMPRESIÓN TRIAXIAL FIGURA 33

Hallemos el vector esfuerzo en un plano cuyo vector normal está contenido en el plano xy (figura 34)

0

cos

0

cos

cos

cos

cos

cos

senn

El vector esfuerzo s en el plano inclinado de la figura 34 vale

nSs

Page 106: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

106

y

n

αx

VECTOR NORMAL n FIGURA 34

Es decir

0

cos

1

3

sens

El esfuerzo normal

ns

21

23 cos sen (131)

Y el esfuerzo cortante

ns

cos13 sen (132)

Para un estado de esfuerzo plano obtuvimos las siguientes expresiones para el cálculo de σ y τ (ecuaciones 62 y 63) = x cos2 + y sen2 + 2xy sen cos (62) = (x - y) sen cos + xy (sen2 - cos2) (63)

Page 107: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

107

Las ecuaciones 131 y 132 son iguales a las ecuaciones 62 y 63, con σx = σ3 y σy = σ1. Por lo tanto, para la obtención del estado de esfuerzo en planos inclinados en una prueba de compresión triaxial, podemos aplicar lo estudiado para el estado de esfuerzo plano, utilizando σx = σ3 y σy = σ1 20. DETERMINACIÓN DE LAS DIRECCIONES PRINCIPALES DE ESFUERZO Habíamos establecido que en una dirección principal se debe cumplir (ecuaciones 39) (x - ) cos + xy cos + xz cos = 0 yx cos + (y - ) cos + yz cos = 0 (64) zx cos + zy cos + (z - ) cos = 0 Despejemos los cosenos directores cos , cos y cos del sistema de ecuaciones 64. En este caso no es aceptable la solución trivial cos = cos = cos = 0, pues los cosenos directores deben cumplir la condición cos2 + cos2 + cos2 = 1 (65) En consecuencia, para que haya una solución diferente de la trivial, el determinante del sistema de ecuaciones 64 debe ser igual a cero x - xy xz yx y - yz = 0 (66) zx zy z - Para determinar las direcciones principales de esfuerzo, consideremos que los cosenos directores de una dirección principal están dados por (Durelli et al, 1958)

KCBA

coscoscos

(67)

donde

zzy

yzyA (68)

zzx

yzyxB (69)

zyzx

yyxC

(70)

K es una constante, diferente de cero, la cual determinamos en los siguientes párrafos. La ecuación 66 queda

0 xzxyx CBA (71)

Page 108: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

108

Mientras que la primera ecuación del sistema de ecuaciones 64 toma la forma

0 CKBKAK xzxyx

Es decir

0 xzxyx CBA

que es idéntica a la ecuación 71. Por lo tanto, las ecuaciones 67 cumplen con la condición establecida de que el determinante de la expresión 66 debe ser igual a cero. La magnitud de K se obtiene sustituyendo en la ecuación 65

0222222 KCKBKA

222

1

CBAK

(72)

y

222cos

CBAA

(73)

222cos

CBAB

(74)

222cos

CBAC

(75)

Las expresiones 73 a 75 proporcionan los cosenos directores de la dirección principal que se está calculando. Ejemplo Dado el siguiente tensor esfuerzo, hallar los esfuerzos y las direcciones principales. 200 300 100 S = 300 400 200 [kPa] 100 200 300 Solución Sustituyendo en las ecuaciones 42 a 45 3 - 92 + 12 + 3 = 0 obtenemos las raíces de la ecuación: l = 729.98 kPa

2 = 191.48 kPa

3 = -21.46 kPa

Page 109: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

109

Dirección principal mayor, l = 729.98 kPa. Reemplazamos en las ecuaciones 68 a 70:

kPaA 80.10188498.729300200

20098.729400

kPaB 0.14899498.729300100

200300

kPaC 0.92998200100

98.729400300

Aplicamos las ecuaciones 73 a 75

5018.0929981489948.101884

8.101884cos

2221

En forma análoga

7338.0cos 1

4580.0cos 1

La dirección principal queda dada por

4580.0

7338.0

5018.0

1n

Procedemos en forma similar para las direcciones principales intermedia y menor 2 = 191.48 kPa

8771.0

2813.0

3892.0

2n

3 = -21.46 kPa

1444.0

6184.0

7725.0

3n

Ciudad Universitaria, D F, diciembre de 2014

Page 110: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

110

REFERENCIAS Alberro, J, Apuntes de la clase Mecánica del Medio Continuo, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM, 1970 Apostol, T M, Calculus, Vol II, 2nd ed, Wiley, 1969 Castillo, H, Análisis y Diseño Estructural, Representaciones y Servicios de Ingeniería, 1985 Deméneghi, A, Magaña, R y Sanginés, H, Apuntes de Mecánica del Medio Continuo, Facultad de Ingeniería, UNAM, 2000 Durelli, A J, Philips, E A y Tsao, C H, Introduction to the Theoretical and Experimental Analysis of Stress and Strain, McGraw-Hill, New York, 1958 Malvern, L E, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, 1969 (Mc esfuerzo 141201)

FIN DE ESTADO DE ESFUERZO

Page 111: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

ANEXO 1 DETERMINACIÓN DE LAS DIRECCIONES PRINCIPALES EN UN

ESTADO DE ESFUERZO PLANO

Agustín Deméneghi Colina*

* Profesor del Departamento de Geotecnia. División de Ingenierías Civil y Geomática. Facultad de Ingeniería. UNAM

El esfuerzo cortante está dado por = [(x - y)/2] sen 2 - xy cos 2 (1) En un plano principal el esfuerzo cortante vale cero. Sustituyendo en la ec 1 tan 2 = 2xy / (x - y) (2) La ec 2 proporciona la dirección del vector normal a un plano principal, pero ¿se trata de la dirección principal mayor o menor en el plano? Para responder a esta pregunta, obtengamos los valores extremos del esfuerzo normal , dado por = (x+y)/2 + [(x-y) cos 2]/2 + xy sen 2 (3) Derivando con respecto al ángulo (d/d) = -(x - y) sen 2 + 2xy cos 2 (4) (d2/d2) = -2(x - y) cos 2 - 4xy sen 2 (5) Para obtener la dirección del máximo esfuerzo normal igualamos la ec 4 a cero - (x - y) sen 2 + 2xy cos 2 = 0 tan 2 = 2xy / (x - y) (6) Las ecs 2 y 6 son iguales, por lo que la dirección del vector normal al plano principal corresponde a la dirección del máximo esfuerzo normal, es decir, a la dirección de un esfuerzo principal. Para saber si se trata del esfuerzo principal mayor o del esfuerzo principal menor, debemos revisar el signo de la segunda derivada dada por la ec 5. Para esto, pongamos el ángulo 2 en función de 2xy y de (x - y), como se muestra en la fig 1. Así sen 2 = 2xy / a

cos 2 = (x - y) / a siendo a = (x - y)

2 + 4 xy2 > 0

Reemplazando en la ec 5 (d2/d2) = [-2(x - y)

2 - 8xy2] / a (7)

Dado que a > 0, la segunda derivada de en la ec 7 es siempre negativa, pues -2(x - y)

2 - 8xy2 < 0

Cuando la segunda derivada de una función es negativa, la función alcanza un máximo. Por lo tanto, el ángulo 2 dado por la ec 6 proporciona siempre el máximo de , es decir, arroja el valor del esfuerzo principal mayor. Así tan 21 = 2xy / (x - y) (8) Al aplicar la ec 8 debemos verificar en qué cuadrante cae el ángulo 21. Distinguimos cuatro casos: a) (x - y) > 0, 2xy > 0; el ángulo 2=1 queda

en el primer cuadrante y 0 < 21 < /2 b) (x - y) < 0, 2xy > 0; el ángulo 21 queda

en el segundo cuadrante y /2 < 21 < c) (x - y) < 0, 2xy < 0; el ángulo 21 queda

en el tercer cuadrante y < 21 < 3/2 d) (x - y) > 0, 2xy < 0; el ángulo 21 queda

en el cuarto cuadrante y 3/2 < 21 < 2 El ángulo 22 de la dirección principal menor se obtiene sumando al ángulo 21 22 = 21 + 2 = 1 + /2 (9)

Page 112: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

112

En efecto, notamos que sen (2 + ) = - sen 2, cos (2 + ) = - cos 2 Reemplazando en la ec 5 (d2/d2)2+ = 2(x - y) cos 2 + 2xy sen 2 (d2/d2) = [2(x - y)

2 + 8xy2] / a (10)

La segunda derivada de la ec 10 es siempre positiva, y por lo tanto arroja la dirección del mínimo esfuerzo normal. En consecuencia, el valor de 2 dado por la ec 9 mide la dirección principal menor, en el estado de esfuerzo plano. Ejemplo Dado el siguiente tensor esfuerzo, en un estado de esfuerzo plano 210 -190 S = [kPa] -190 -350 calcular las direcciones de los esfuerzos principales. Solución (x - y) = 210 - (-350) = 560 kPa > 0 2xy = 2(-190) = -380 kPa < 0 Reemplazando en la ec 8 tan 21 = 2xy / (x - y) = -380/560 = - 0.67857 El ángulo 21 queda en el cuarto cuadrante (caso d) 21 = 5.6870 rad 1 = 2.8435 rad = 162.92° Como medimos una dirección, también 1 = -17.08° Aplicando la ec 9 2 = 1 + /2 = 2.8435 + /2 = 4.4143 rad = 252.92° Como medimos una dirección, también 2 = 72.92° Ciudad Universitaria, D F, octubre de 2002 (Mcdirprapl 141201)

Page 113: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

ANEXO 2 DETERMINACIÓN DE LOS ESFUERZOS CORTANTES MÁXIMO Y MÍNIMO

ESTADO DE ESFUERZO PLANO Agustín Deméneghi Colina*

* Profesor del Departamento de Geotecnia. División de Ingenierías Civil Y Geomática. Facultad de Ingeniería. UNAM

El esfuerzo cortante está dado por = [(x - y)/2] sen 2 - xy cos 2 (1) Derivando con respecto al ángulo (d/d) = (x - y) cos 2 + 2xy sen 2 (2) (d2/d2) = - (x - y) sen 2 + 2xy cos 2 (3) (d2/d2) = (y - x) sen 2 + 2xy cos 2 (4) Para obtener la dirección del máximo esfuerzo cortante igualamos la ec 2 a cero (x - y) cos 2 + 2xy sen 2 = 0 - (y - x) cos 2 + 2xy sen 2 = 0 tan 2 = (y - x) / 2xy (5) Podemos poner el ángulo 2 en función de 2xy y de (y - x), como se muestra en la fig 1. Así sen 2 = (y - x) / a cos 2 = 2xy / a siendo a = (y - x)

2 + 4 xy2 > 0

Reemplazando en la ec 4 (d2/d2) = [2(y - x)

2 + 8xy2] / a (6)

Dado que a > 0, la segunda derivada de en la ec 6 es siempre positiva, pues 2(y - x)

2 + 8xy2 > 0

Cuando la segunda derivada de una función es positiva, la función alcanza un mínimo. Por lo

tanto, el ángulo 2 dado por la ec 5 proporciona siempre el mínimo de . Al aplicar la ec 5 debemos verificar en qué cuadrante cae el ángulo 2. Distinguimos cuatro casos: a) (y - x) > 0, 2xy > 0; el ángulo 2 queda

en el primer cuadrante y 0 < 2 < /2 b) (y - x) > 0, 2xy < 0; el ángulo 2 queda en

el segundo cuadrante y /2 < 2 < c) (y - x) < 0, 2xy < 0; el ángulo 2 queda en

el tercer cuadrante y < 2 < 3/2 d) (y - x) < 0, 2xy > 0; el ángulo 2 queda en

el cuarto cuadrante y 3/2 < 2 < 2 Con la ec 5 se calcula la dirección del vector normal al plano de mínimo esfuerzo cortante. La dirección correspondiente al máximo de se obtiene sumando al ángulo 2 que da el mínimo, es decir 2’ = 2 + ’ = + /2 (7) En efecto, notamos que sen (2 + ) = - sen 2, cos (2 + ) = - cos 2 Reemplazando en la ec 4 (d2/d2)2+ = - (y - x) sen 2 - 2xy cos 2 (d2/d2)2+ = [-2(y - x)

2 - 8xy2] / a (8)

La segunda derivada de la ec 8 es siempre negativa, y por lo tanto el esfuerzo cortante calculado con la ec 1 usando la dirección dada por el ángulo ’ de la ec 7 arroja el valor máximo del esfuerzo cortante.

Page 114: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

114

Ejemplo Dado el siguiente tensor esfuerzo 210 -190 S = kPa -190 -350 calcular la magnitud y dirección de los esfuer-zos cortantes máximo y mínimo. Solución (y - x) = -350 – 210 = -560 kPa < 0 2xy = 2(-190) = -380 kPa < 0 Reemplazando en la ec 5 tan 2 = (y - x) / 2xy = -560/-380 = 1.4737 El ángulo 2 queda en el tercer cuadrante (caso c) 2 = 4.1163 rad = 2.05815 rad = 117.92° Como medimos sólo la dirección (y no el sentido) del vector normal al plano de mínimo esfuerzo cortante, también = 117.92 – 180 = -62.08° Reemplazando en la ec 1 = [(x - y)/2] sen 2 - xy cos 2 = (560/2)(-0.82754) – (-190)(-0.56141) = -338.38 kPa (mínimo) Aplicando la ec 7 ’ = + /2 = 3.6289 rad = 207.92° Como medimos sólo la dirección del vector normal al plano de máximo esfuerzo cortante, también ’ = 207.92 – 180 = 27.92° Sustituyendo en la ec 1 = (560/2)(0.82754) – (-190)(0.56141) = 338.38 kPa (máximo) Ciudad Universitaria, D F, mayo de 2002 (Esfcortmax 141201,esfcortmax)

Page 115: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

PRINCIPIOS GENERALES DE LA MECÁNICA

Agustín Deméneghi Colina

Page 116: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

116

MECÁNICA DEL MEDIO CONTINUO PRINCIPIOS GENERALES DE LA MECÁNICA

Agustín Deméneghi Colina*

Observando los fenómenos de la naturaleza, se han encontrado leyes que son generales para toda clase de materiales. Entre estas leyes o principios generales más importantes se encuentran los siguientes: 1) Principio de conservación de masa 2) Principio de conservación de la cantidad de movimiento 3) Principio de conservación de energía 4) Principio de aumento de entropía En los siguientes parágrafos estudiaremos las leyes anteriores. 1. PRINCIPIO DE CONSERVACIÓN DE MASA Esta ley enuncia lo siguiente: en el interior de un volumen de control no se presenta ni creación ni destrucción de masa. Se entiende por volumen de control un cierto volumen establecido a un sistema de referencia fijo en el espacio –el cual es útil para seguir el movimiento de los fluidos-. Por lo tanto, el principio expresa que si existen cambios de masa en dicho volumen, éstos serán consecuencia de un flujo de masa a través de la superficie de control. Entre los años de 1775 y 1780 Lavoisier estableció las bases de la química como ciencia cuantitativa, al probar que en una reacción química la masa total permanece inalterada. Por ejemplo, una ecuación química balanceada es una expresión de la ley de la conservación de la masa (Castellan, 1987). Consideremos un volumen fijo Vc fijo en el espacio, limitado por la superficie Sc, como se muestra en la figura 1 (Levi, 1980). Si un medio de densidad llena dicho volumen en el tiempo t, la masa total dentro de Vc vale M = Vc dV (1) La densidad depende de la posición y del tiempo = (x,y,z,t) (2) La rapidez de incremento de la masa total dentro del volumen es M/t = Vc (/t) dV (3) Si no hay creación ni destrucción de masa dentro de Vc, la variación de la masa de la ecuación 1 debe ser igual a la rapidez de entrada de masa a través de la superficie Sc. La salida de volumen (por unidad de tiempo) por el elemento dS es (vndS), donde vn = vn es la componente normal –hacia fuera- de la velocidad; la salida de masa por unidad de tiempo es (vndS). En consecuencia, la velocidad de entrada de la masa a través de Sc está dada por (Malvern, 1969)

* Profesor del Departamento de Geotecnia. División de Ingenierías Civil y Geomática. Facultad de Ingeniería. UNAM

Page 117: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

117

Sc (- vn) dS = - Sc (vn) dS

El teorema de la divergencia, o teorema de Gauss, establece que Sc (vn) dS = Vc (v) dV Por lo tanto Sc (- vn) dS = Vc (v) dV (4) Igualando la ecuación 4 con la ecuación 3 Vc [/t + (v)] dV = 0 (5) La ecuación 5 es válida para cualquier elección del volumen Vc, por lo tanto, la cantidad entre corchetes debe ser cero en cualquier condición, es decir /t + (v) = 0 (6) /t + div (v) = 0 (7) Considerando que /t + div(v) = /t + (vx/x) + (vy/y) + (vz/z) + (/x) vx + (/y) vy + (/z) vz = /t + (/x)vx + (/y)vy + (/z)vz + div v = (d/dt) + div v Reemplazando en la ecuación 6 (d/dt) + div v = 0 (8) La ecuación 7 ó la ecuación 8, cualquiera de ellas, es conocida como la ecuación de continuidad, la cual se usa con frecuencia en mecánica de fluidos.

Page 118: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

118

Si el material es incompresible –es decir, que tiene una densidad constante- la ecuación de continuidad se transforma en v = 0 (9) O bien div v = 0 (10) Esta es la condición de incompresibilidad, la cual es importante en hidráulica y en las teorías de plasticidad (Malvern, 1969). [Cabe aclarar que la ley de conservación de masa no se cumple para ciertos fenómenos que ocurren dentro del núcleo del átomo. Así, cuando se suma la masa de los neutrones y protones que forman un núcleo dado, siempre se obtiene un número mayor que la masa que realmente tiene ese núcleo; es decir, durante la formación de un núcleo se presenta una pérdida neta de masa. A manera de ejemplo, el defecto de masa en la formación de un deuterón (núcleo del hidrógeno-2) es de 0.0025 uma (1 uma = 1.66 x 10-24 g); la energía que se forma por la “desaparición” de esta cantidad de masa, utilizando la fórmula de Einstein E = mc2, es de 3.73 x 10-13 J (Garritz y Chamizo, 1994). Conviene señalar que la masa no se conserva en las reacciones del núcleo del átomo, pero sí la suma de la masa y energía. Esto significa que cualquier pérdida de masa da origen a la aparición de energía en una cantidad equivalente (Maron y Prutton, 1996).] 2. PRINCIPIO DE CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO Esta ley expresa que la rapidez de variación con respecto al tiempo de la cantidad de movimiento de un sistema mecánico es igual a la resultante de las fuerzas exteriores actuantes (Deméneghi, Magaña y Sanginés, 1986). Una variante de este principio, cuando la masa del sistema es constante, es la segunda ley de Newton. Consideremos un volumen de control Vc (figura 1) y las fuerzas que aparecen en su interior cuando el medio está en equilibrio dinámico (Levi, 1980). La resultante de las fuerzas actuantes en todo el volumen de control vale R = Vc f dV + Sc S n dS (11) Si cada partícula del medio posee una velocidad v, a cada elemento dV puede asociarse una cantidad de movimiento v dV, y al volumen total la siguiente cantidad de movimiento Vc v dV La rapidez de variación de esta cantidad de movimiento vale (/t) Vc v dV = Vc [(v)/t] dV La cantidad de movimiento irá modificándose debido a la masa que entra o sale por la superficie de control Sc. El volumen que cruza un elemento por unidad de tiempo es (vn) dS, y el flujo de masa vale (vn) dS. La variación de este flujo con el tiempo se halla integrando sobre la superficie la masa (vn) dS que cruza cada elemento dS por cada segundo, multiplicada por la velocidad local v

Page 119: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

119

Sc v (vn) dS Por consiguiente, la variación con el tiempo de la cantidad de movimiento vale Vc [(v)/t] dV + Sc v (vn) dS (12) De acuerdo con el principio de la conservación de la cantidad de movimiento, las ecuaciones 11 y 12 deben ser iguales, es decir (Levi, 1980) Vc [(v)/t)] dV + Sc v (vn) dS = Vc f dV + Sc S n dS (13) De acuerdo con el teorema de Gauss (ecuación A.2, anexo 1): Sc S n dS = Vc div S dV (14) donde (ecuación A.1) div S = Si/x + Sj/y + Sk/z (15) Considerando que la cantidad v (v ) es una función vectorial lineal, se pueden aplicar las ecuaciones A.2 y A.1 del anexo 1 Sc v (vn) dS = Vc div v (v ) dV =Vc {(/x)[v(vi)]+(/y)[v(vj)]+(/z)[v(vk)]}dV = Vc {[(v)/x]vx + [(v)/y]vy + [(v)/z]vz} dV + Vc v div v dV (16) Reemplazando las ecuaciones 14, 15 y 16 en la ecuación 13 Vc { (v)/t + [(v)/x] vx + [(v)/y] vy + [(v)/z] vz} dV + Vc v div v dV = Vc f dV + Vc div S dS Pero, dada una función g, se cumple que dg/dt = g/t + (g/x)vx + (g/y)vy + (g/z)vz Por lo tanto Vc [ d(v)/dt + v div v - f – div S ] dV = 0 Esta integral tiene que anularse, independientemente del volumen de control que se elija, por lo tanto la función integranda deber ser nula, es decir d(v)/dt + v div v - f – div S = 0 (17) También (dv/dt) + v (d/dt) +v div v - f – div S = 0 Sea a = dv/dt = aceleración

Page 120: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

120

a + v (d/dt + div v) = f + div S Tomando en cuenta la ecuación 8 a = f + div S (18) Una variante de la ley de la conservación de la cantidad de movimiento es el principio de la conservación del momento de la cantidad de movimiento, el cual establece que en un sistema material la variación con respecto al tiempo de dicho momento es igual a la resultante de los momentos de todas las fuerzas actuantes sobre el sistema. Estos momentos se toman con respecto a un mismo punto O, fijo en relación con el volumen de control (Levi, 1980). Sea (figura 1) r = xi + yj + zk El vector de posición del elemento de volumen o de superficie de control, centrado en el punto P(x,y,z) con respecto al punto O tomado como origen. Un razonamiento similar al expuesto en los párrafos anteriores, nos lleva a la ecuación del momento de la cantidad de movimiento, análoga a la ecuación 13 (Levi, 1980): Vc r x [(v)/t)] dV + Sc r x v (vn) dS = Vc r x f dV + Sc r x S n dS (19) Utilizando las ecuaciones A.2 y A.1 del anexo 1 Sc r x S n dS = Vc div (r x S) dV = Vc { (/x)[r x S i] + (/y) [r x S j] + (/z) [r x S k] } dV = Vc [ (r/x) x S i + (r/y) x S j + (r/z) x S k ] dV + Vc r x { [(S i)/x] + [(S j)/y] + [(S k)/z] } = Vc [ i x S i + j x S j + k x S k ] dV + Vc (r x div S) dV Procediendo en forma análoga, y considerando que la cantidad r x v (v ) es una función vectorial lineal, se pueden aplicar las ecuaciones A.2 y A.1 del anexo 1 Sc r x v(vn) dS = Vc div r x v(v ) dS =Vc[(r/x)xv(vi)+(r/y)xv(vj)+(r/z)xv(vk)] dV + Vc r x {(/x)[v(vi)] + (/y)[v(vj)] + (/z)[v(vk)]} dV = Vc [(r/x)xvvx + (r/y)xvvy + (r/z)xv vz] dV + Vc r x {[(v)/x] vx + [(v)/y] vy + [(v)/z] vz + (v) div v} dV La primera integral del segundo miembro es nula, porque (r/x) x v vx + (r/y) x v vy + (r/z) x v vz = (vx i + vy j + vz k) x v = v x v = 0 Sustituyendo en la ecuación 19

Page 121: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

121

Vc r x [d(v)/dt) + v div v - f - div S] dV = Vc [ i x Si + j x Sj + k x Sk ] dV La integral del primer miembro vale cero, por la ecuación 17, por lo tanto i x Si + j x Sj + k x Sk = 0 (20) Multipliquemos escalarmente la ecuación 20 por el vector i i (j x Sj) + i (k x Sk) = 0 Es decir Sj i x j + Sk i x k = 0 Sj k = Sk j (21) En forma análoga, multiplicando escalar-mente la ecuación 20 por los vectores j y k, respectivamente, arribamos a Sk i = Si k (22) Si j = Sj i (23) En el capítulo de estado de esfuerzo habíamos hallado que el tensor esfuerzo vale x yx zx S = xy y zy xz yz z

yx Sj = y

yz Sj k = yz

zx Sk = zy

z Sk j = zy Sustituyendo en la ecuación 21: zy = yz Procediendo en forma similar con las ecuaciones 22 y 23 arribamos a que zx = xz y yx = xy. Por lo anterior, la simetría del tensor esfuerzo se debe al principio de la conservación del momento de la cantidad de movimiento. En consecuencia, la simetría del tensor esfuerzo debida al equilibrio de momentos de un elemento en condiciones estáticas, es un caso particular de la ley de conservación del momento de la cantidad de movimiento.

Page 122: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

122

3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA La primera ley de la termodinámica establece el principio de conservación de la energía, es decir, ésta ni se crea ni se destruye. En otras palabras, esta ley se formula diciendo que para una cantidad dada de una forma de energía que desaparece, otra forma de la misma aparecerá en una cantidad igual a la cantidad desaparecida. Otro enunciado de este principio es el siguiente: para que la energía se conserve en un proceso, el flujo de calor q más el de trabajo T que atraviesan la frontera de un sistema, deben ser iguales al cambio en la energía interna o energía térmica U (Garritz y Chamizo, 1994). Consideremos el destino de cierta cantidad de calor q agregada al sistema de la figura 2; por la primera ley de la termodinámica q + T = U q = U – T

El trabajo hecho sobre el contorno del sistema vale T = - W h Por lo tanto q = U + W h La presión sobre el sistema vale p = W/A, donde A = área de la base, y el incremento de volumen es V = A h. Sustituyendo q = U + p V Al segundo miembro de esta ecuación, es decir, a la suma del incremento de energía térmica y del producto de la presión por el incremento de volumen se conoce como el cambio de entalpía H del sistema. Así H = U + p V

Page 123: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

123

Observamos que en un proceso a presión constante, el cambio de entalpía es igual al incremento en energía interna más cualquier trabajo de presión-volumen realizado; de aquí que a presión constante H mide el calor absorbido al pasar del estado inicial al final, con tal que sólo se efectúe trabajo debido al producto p V (Maron y Prutton, 1996). En el caso general, la entalpía H se define como H = U + pV Por otra parte, apreciamos que el cambio de entalpía es igual a la cantidad del calor que entra o sale de un sistema; en la definición de entalpía se toma en cuenta que en un proceso puede haber otro destino para el calor: la realización de trabajo (Garritz y Chamizo, 1994). La validez de la ley de conservación de la energía se ha establecido directamente por muchas experiencias cuidadosas y estrictas o indirectamente por miles de resultados experimentales que la confirman. La primera ley de la termodinámica es el enunciado más general de la ley de conservación de energía; no se conoce ninguna excepción a ella (salvo los cambios dentro del núcleo del átomo). Es una generalización de la experiencia y no es posible obtenerla por otros principios (Castellan, 1987). Cabe señalar que en el planteamiento de cualquier problema de mecánica de fluidos, además de imponerse una condición de equilibrio dinámico entre esfuerzos y deformaciones, hay que exigir que se respete el primer principio de la termodinámica (Levi, 1980). Desde el punto de vista histórico, la interconvertibilidad entre calor y energía mecánica fue conocida por Carnot en 1832. Fue establecida inequívocamente y verificada experimentalmente por Joule en 1843 y 1845 (Malvern, 1969). [Como indicamos al final del inciso 1, en los cambios que ocurren dentro del núcleo del átomo, se puede presentar una “desaparición” de masa, que se transforma en energía según la ecuación de Einstein: E = mc2; sin embargo, conviene precisar que aunque la masa no se conserva, sí lo hace la suma de la masa y energía (Maron y Prutton, 1996).] 4. PRINCIPIO DE AUMENTO DE ENTROPÍA La termodinámica es el estudio de los cambios (o transferencias) de energía que acompañan a los procesos físicos y químicos. La información termodinámica permite predecir si una reacción en particular puede llevarse a cabo en condiciones específicas; si el proceso puede ocurrir se dice que es espontáneo; cuando no puede ocurrir en determinadas condiciones es de tipo no espontáneo. La experiencia indica que en los cambios espontáneos el universo tiende hacia el estado de mayor desorden. La función de estado termodinámica entropía, S, mide el grado de desorden de un sistema. Mientras mayor sea el desorden, mayor será su entropía. La segunda ley de la termodinámica establece que la entropía del universo (no necesariamente de un sistema) aumenta durante un proceso espontáneo (Whitten et al, 1992). El cambio de entropía se define como S = H/T donde H = cambio en la entalpía T = temperatura absoluta

Page 124: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

124

Esta ecuación dice que la entropía de un sistema crece si su entalpía también crece (se agrega calor a presión constante), pero crecerá más si la temperatura del sistema es menor (Garritz y Chamizo, 1994). Por otra parte, cualquier proceso que se conduce de forma que en cada etapa la fuerza impulsora es sólo infinitesimalmente mayor que la opuesta y que puede invertirse al incrementar éste un infinitésimo, se denomina proceso reversible, y otro que no satisface estos requisitos se dice irreversible. Hablando con propiedad, los procesos reversibles son imposibles en la naturaleza, ya que exigirían para su realización un tiempo infinito, y en consecuencia todos los procesos naturales deben ser irreversibles. De cualquier manera, el concepto de reversibilidad es tan valioso teórica y prácticamente, que se justifica su empleo. Además, a la reversibilidad puede uno acercarse muy estrechamente (Maron y Prutton, 1996). El incremento de entropía que tiene lugar en un ciclo irreversible es el resultado de la conversión de trabajo en calor. Al finalizar el ciclo, la sustancia que realiza el trabajo, al regresar a su estado inicial, no experimenta cambio de ninguna naturaleza. 5. COMENTARIOS El ingeniero civil utiliza con frecuencia los principios generales de la mecánica, pero no siempre se refiere a ellos en forma explícita. Por ejemplo, la ecuación de continuidad en hidráulica (gasto = área por velocidad en cualquier sección), en la que la masa del agua se considera incompresible, es una manifestación del principio de conservación de masa. Como ya lo mencionamos en el inciso 2, la segunda ley de Newton corresponde al principio de conservación de la cantidad de movimiento, cuando la masa del cuerpo es constante. Asimismo, la igualdad de los esfuerzos cortantes en un elemento de material en equilibrio (en una viga, en el suelo, etcétera) es un caso particular del principio de conservación del momento de la cantidad de movimiento. En hidráulica, la transformación de energía potencial en energía cinética en la ecuación de Bernoulli es un resultado del principio de conservación de energía; aún la transformación de energía en calor (denominado “pérdidas de energía”) en la ecuación de Bernoulli pertenece a la ley de conservación de energía, pues ésta no se pierde, sino que se convierte en calor. Este fenómeno a su vez cae dentro del principio del aumento de entropía, pues esta disipación de energía se debe al incremento de entropía en el universo. En ingeniería sísmica se presentan vibraciones que dan lugar a fenómenos de respuesta elástica y de disipación de energía. En la respuesta elástica la energía de deformación se transforma en energía cinética, lo cual es una consecuencia del principio de conservación de energía. La disipación de energía, que es una manifestación del principio de aumento de entropía, se considera usualmente proporcional a la velocidad del movimiento. Por lo anterior, las leyes o principios generales de la mecánica se emplean con frecuencia en la profesión de ingeniería civil, y constituyen una parte importante de los fundamentos de esta disciplina.

Page 125: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

125

ANEXO 1 FÓRMULAS DE CÁLCULO VECTORIAL

Presentamos a continuación algunas expresiones útiles de cálculo vectorial para la mecánica del medio continuo. Funciones vectoriales lineales Se denominan funciones vectoriales lineales u homografías vectoriales a aquellos operadores que transforman vectores en vectores, y operan linealmente sobre ellos. Si H es una función vectorial lineal, u y v dos vectores y m un escalar, entonces (Levi, 1980) H u es un vector H (u + v) = H u + H v H (mu) = m H u Si u = uxi + uyj + uzk Se tiene que H u = ux Hi + uy Hj + uz Hk Teorema de la divergencia para funciones vectoriales lineales Se define la divergencia de una función vectorial lineal H de la siguiente forma div H = Hi/x + Hj/y + Hk/z (A.1) Con las definiciones anteriores, el teorema de Gauss queda (Levi, 1980) Vc div H dV = Sc H n dS (A.2) Demostremos a continuación la ecuación A.2. El teorema de Gauss para vectores establece que Vc div u dV = Sc (u n) dS (A.3) Aplicando esta ecuación a los vectores uxi, uyi y uzi, respectivamente, obtenemos Vc (ux/x) dV = Sc ux (in) dS Vc (uy/x) dV = Sc uy (in) dS Vc (uz/x) dV = Sc uz (in) dS Multiplicando las igualdades anteriores por i, j y k, respectivamente, y sumándolas Vc (u/x) dV = Sc u (in) dS Aplicando la ecuación A.3 a los vectores vxj, vyj y vzj, y después a los vectores wxk, wyk y wzk, obtenemos Vc (u/x) dV = Sc u (in) dS Vc (v/y) dV = Sc v (jn) dS (A.4) Vc (w/z) dV = Sc w (kn) dS Además n = nxi + nyj + nzk = (in)i + (jn)j + (kn)k

Page 126: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

126

H n = (in) Hi + (jn) Hj + (kn) Hk Sean u = Hi v = Hj w = Hk Reemplazando estas expresiones en el sistema de ecuaciones A.4 y sumando miembro a miembro Vc [(Hi/x) + (Hj/y) + (Hk/z)] dV = Sc H n dS Considerando la ecuación A.1 arribamos a Vc div H dV = Sc H n dS que es justamente la ecuación A.2 (Levi, 1980). México, D F, julio de 2011 REFERENCIAS Castellan, G W, Fisicoquímica, Addison-Wesley Iberoamericana, 1987 Deméneghi, A, Magaña, R y Sanginés, H, Apuntes de Mecánica del Medio Continuo, Facultad de Ingeniería, UNAM, 1986 Garritz, A y Chamizo, J A, Química, Addison-Wesley Iberoamericana, 1994 Levi, E, Elementos de Mecánica del Medio Continuo, Limusa, 1980 Malvern, L E, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, 1969 Maron, S H y Prutton, C F, Fundamentos de Fisicoquímica, Limusa Noriega Editores, 1996 Whitten, K W, Gailey, K D y Davis, R E, Química General, 3ra ed, Mc-Graw Hill, 1992 (Principios Generales de la Mecánica 141201)

Page 127: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

127

Fin de Principios Generales de la Mecánica

Page 128: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

128

NOTACIÓN ÍNDICE

Agustín Deméneghi Colina* Convención de suma En coordenadas cartesianas, cuando el mismo subíndice ocurra dos veces en un término, a dicho subíndice se le dan todos los valores posibles y los resultados se suman. (El símbolo Σ se omite). Por ejemplo (en tres dimensiones) aiai = a1

2 + a22 + a3

2 akk = a11 + a22 + a33 aj2b3j = a12b31 + a22b32 + a32b33 Ejemplos La traza de una matriz cuadrada es la suma de los elementos de la diagonal. Así, sea la matriz A = aij; su traza es akk, es decir Tr A = akk = a11 + a22 + a33 El producto punto de dos vectores a y b

iibaba

La divergencia de un vector v

i

izyx

xv

zv

yv

xvvdiv

δ de Kronecker La δ de Kronecker se define de la siguiente forma

qpsiqpsi

pq __0

__1

* Profesor del Departamento de Geotecnia. División de Ingenierías Civil y Geomática. Facultad de Ingeniería. UNAM

Ejemplos Si los vectores i1, i2 e i3, forman un conjunto ortonormal, entonces la propiedad de que son mutuamente perpendiculares entre sí se puede expresar

pqqp ii

También se pueden obtener las siguientes identidades

kkmnmn

nmnm

mnmn

mm

TTuu

3

3

Símbolo de permutación

.3,2,1__

___,,__1;3,2,1___

__3,2,1__,,__1;_____0

deimparnpermutacióunasonrnmcuando

deparnpermutacióunaosonrnmcuando

igualessonsubíndicesdoscuando

emnr

Por ejemplo e123 = e231 = e312 = 1 e132 = e213 = e321 = -1 e112 = e122 = e222 = 0, etcétera (Notación índice)

Page 129: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

SOLUCIÓN DE UNA ECUACIÓN CÚBICA MÉTODO DE CARDANO-TARTAGLIA

Agustín Deméneghi Colina*

* Profesor del Departamento de Geotecnia. División de Ingenierías Civil y Geomática. Facultad de Ingeniería. UNAM

Presentamos a continuación el método de Cardano-Tartaglia para la solución de la siguiente ecuación cúbica Sea x3 + ax2 + bx + c = 0 (1) Hagamos y = x + a/3 x = y – a/3 (2) Sustituyendo en la ec 1 (y – a/3)3 + a(y – a/3)2 + b(y – a/3) + c = 0 y3 + (-a2/3 + b) y + 2a3/27 – ab/3 + c = 0 (3) Sean p = (-a2/3 + b) (4) q = 2a3/27 – ab/3 + c (5) La ec 3 queda y3 + p y + q = 0 (6) Supongamos que la solución de la ec 6 está dada por y = u + v (7) (u + v)3 + p (u + v) + q = 0 u3 + 3u2v + 3uv2 + v3 + p (u + v) + q = 0 u3 + v3 + 3uv (u + v) + p (u + v) + q = 0 u3 + v3 + (u + v) (3uv + p) + q = 0 (8) Puesto que hemos empleado dos incógnitas u y v, para una simple incógnita y, podemos establecer una condición para ellas (Rider, 1963). Si establecemos la siguiente condición 3uv + p = 0 (9)

la ec 8 queda u3 + v3 + q = 0 (10) Despejando v de la ec 9 y reemplazándola en la ec 10 u3 – p3/(27u3) + q = 0 u6 + q u3 – p3/27 = 0 (11) Esta expresión es una ecuación cuadrática en u3. Su solución es

2742

323 pqqu

Tomemos

2742

323 pqqu (12)

De la ec 10

2742

323 pqqv (13)

La solución de la ec 12 depende del signo del radical. Sea = q2/4 + p3/27 (14) Distinguimos dos casos: a) > 0 Las raíces están dadas por

3

2

qu (15)

Page 130: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

130

3

2

qv (16)

De las ecs 7 y 2 y1 = u + v, x1 = y1 – a/3 (17) Dado que 1 = 1 (cos 0° + i sen 0°) = 1 cis 0°

3 1 1 [cos (0°+120°k) + i sen (0°+120°k)] k = 0,1,2

k = 0: 3 1 1

k = 1: 3 1 1 (cos 120° + i sen 120°)

3 1 -1/2 + ( 3 /2) i

k = 2: 3 1 1 (cos 240° + i sen 240°)

3 1 -1/2 – ( 3 /2) i Las raíces y2 y y3 son

y2 = (-1/2) (u+v) + ( 3 /2) (u-v) i (18)

y3 = (-1/2) (u+v) – ( 3 /2) (u-v) i (19) y x2 = y2 – a/3 (20)

x3 = y3 – a/3 (21) b) < 0 Para u3: parte real X = -q/2, parte imaginaria Y

=

= ang tan (Y/X) = ang tan [ /(-q/2)] (22) 0 < < 180°

R = 22 YX = q2/4 - = q2/4 – q2/4 – p3/27

R = 27

3p (23)

u3 = R (cos + i sen ) = R cis (24) Aplicando el teorema de De Moivre (Rider, 1963), las tres raíces del número complejo u3 valen

uk = 3 R cis (/3 + 120°k) k = 0,1,2

uk = 3

p cis (/3 + 120°k) (25)

Procediendo en forma análoga para v3: parte

real X = -q/2, parte imaginaria Y = -

vk = 3

p cis (-/3 + 120°k) (26)

Dado que y = u + v (ec 7)

yk = uk + vk = 2 3

p cos (/3 + 120°k) (27)

k = 0,1,2 Ejemplo Hallar las raíces de la siguiente ecuación cúbica x3 – 9x2 + 12x + 3 = 0 Solución a = -9, b = 12, c = 3 Reemplazando en las ecs 4, 5 y 14 p = -(-9)2/3 + 12 = -15 q = 2(-9)3/27 – (-9)(12)/3 + 3 = -15 = (-15)3/27 + (-15)2/4 = -68.75 Sustituyendo en la ec 22 = ang tan { -(-68.75) / [-(-15)/2]} = 47.8696° Reemplazando en la ec 27 yk = 2 [-(-15)/3] cos (47.8696°/3 + 120°k) yk = 4.4721 cos (15.9565° + 120°k) (a) Sustituyendo valores de k en la ec a, y utilizan-do la ec 2 k = 0: yo = 4.2998, xo = yo – a/3 = 7.2998 k = 1: y1 = -3.2146, x1 = y1 – a/3 = -0.2146 k = 2: y2 = -1.0852, x2 = y2 – a/3 = 1.9148

Page 131: Demeneghi A 2015  Apuntes MecAínica del Medio Continuo, Vol 1. 150101

131

Referencia Rider, P M, College Algebra, Macmillan, 1963 (Ecubica 130701)