DESCONTAMINACIÓN DE MICOTOXINAS … · Micotoxinas emergentes de Fusarium ... humana y animal. El...

193
Departament de Medicina Preventiva i Salut Pública, Ciències de la Alimentació, Toxicología i Medicina Legal Programa de doctorado con mención hacia la excelencia en Ciencias de la Alimentación DESCONTAMINACIÓN DE MICOTOXINAS EMERGENTES MEDIANTE EL PROCESADO DE ALIMENTOS Tesis Doctoral Presentada por: María Roig Pérez Dirigida por: Dr. Jordi Mañes Vinuesa Dra. Emilia Ferrer García

Transcript of DESCONTAMINACIÓN DE MICOTOXINAS … · Micotoxinas emergentes de Fusarium ... humana y animal. El...

������� ��

Departament�de�Medicina�Preventiva�i�Salut�Pública,�Ciències�de�la�Alimentació,�Toxicología�i�Medicina�Legal�

�Programa�de�doctorado�con�mención�hacia�la�excelencia�en�Ciencias�de�la�

Alimentación����

DESCONTAMINACIÓN�DE�MICOTOXINAS�

EMERGENTES�MEDIANTE�EL�PROCESADO�DE�

ALIMENTOS�

��

Tesis�Doctoral���

Presentada�por:�María�Roig�Pérez�

��

Dirigida�por:�Dr.�Jordi�Mañes�Vinuesa�Dra.�Emilia�Ferrer�García�

� �

��

��

� �

! 1

Dra. Emilia Ferrer García, professora Titular de l’Àrea de

Toxicologia i Dr. Jordi Mañes Vinuesa, Catedràtic de l’Àrea de

Nutrició i Bromatologia del Departament de Medicina Preventiva i

Salut Pública, Ciències de l’Alimentació, Toxicologia i Medicina

Legal,

INFORMEN QUE:

Maria Roig Pérez, llicenciada en Veterinaria, ha realitzat baix la

nostra direcció el treball “DESCONTAMINACIÓ DE

MICOTOXINES EMERGENTS PER MITJÀ DEL PROCESSAT D’

ALIMENTS”, i autoritzem la seua presentació per optar al títol de

Doctor.

Perquè així conste, expedim i signem el present certificat en

Burjassot, València, a Octubre 2013

Dr. Jordi Mañes Vinuesa Dra. Emilia Ferrer García

! 2

! 3

La investigación realizada ha sido financiada por el Ministerio de

Ciencia e Innovación (AGL2010-17024).

! 4

! 5

ÍNDICE

RESUMEN 3 I . INTRODUCCIÓN 1. Introducción sobre micotoxinas 11 2. Micotoxinas emergentes de Fusarium 2.1. Definición 16 2.2. Toxicidad de BEA y ENs 19 2.3. Presencia de BEA y ENs en alimentos 21 3. Descontaminación de micotoxinas 25 3.1. Procesado y tratamientos térmicos 27 3.2. Tratamientos químicos 31 3.3. Descontaminación biológica 3.3.1. Degradación por agentes biológicos 32 3.3.2. Adsorción por agentes biológicos 38 4. Legislación 4.1. Límites máximos permitidos 41 4.2. Muestreo y análisis de micotoxinas 46 4.3. Descontaminación de las micotoxinas 47 I I . OBJETIVOS 53 I I I . PLAN DE TRABAJO 57 IV. MATERIAL, MÉTODOS, RESULTADOS Y DISCUSIÓN

! 6

1. Thermal processing effect on emerging Fusarium mycotoxins present in naturally contaminated rice samples of Spain. 1.1. Introduction 61 1.2. Materials and methods 1.2.1. Chemicals and agents 64 1.2.2. Sampling procedure 65 1.2.3. Thermic treatment of rice 66 1.2.4. Mycotoxin Extraction 66 1.2.5. Analysis 67 1.2.6. Approximation to the dietary exposure of BEA and ENs in rice 69 1.3. Results and discussion 1.3.1. Method validation 70 1.3.2. Occurrence of BEA and ENs in raw samples 73 1.3.3. Reduction of emerging mycotoxins in cooked samples 80 1.3.4. Approximation to the dietary exposure of ENS and BEA in rice 86

2. Reduction of the enniatins A, A1, B, B1 by an in vitro degradation employing different Saccharomyces and acid lactic bacteria strains: identification of degradation products by LC-MS/MS-LIT 2.1. Introduction 89 2.2. Materials and methods 2.2.1. Chemicals 91 2.2.2. Strains and methodology 2.2.3. ENs extraction from fermented mediums 94 2.2.4. ENs degradation in food system composed

! 7

by wheat flour 95 2.2.5. ENs extraction by wheat flour 95 2.2.6. LC-MS/MS analysis of ENs 96 2.2.7. Method performance 98 2.2.8. Determination of the ENs degradation products with LC-MS/MS-LIT 100 2.3. Results and discussion 2.3.1. ENs degradation by acid lactic bacteria and Saccharomyces strains in liquid medium 101 2.3.2.ENs degradation by probiotic strains in wheat flour 106 2.3.3. LC-MS/MS-LIT identification of the ENs degradation products 111 3. Detoxification of the bioactive compounds enniatins A, A1, B, B1 employing different strains of Bacil lus subtil is 3.1. Introduction 120 3.2. Material and methods 3.2.1. Chemicals 122 3.2.2. Strains and methodology 122 3.2.3. ENs and degradation products extraction from fermented mediums 123 123 3.2.4. LC-MS/MS analysis of ENs 124 3.2.5 Method performance 126 3.2.6. Determination of the ENs degradation products with LC-MS-LIT 128 128 3.3. Results and discussion 3.3.1 ENs degradation by Bacillus subtilis strains in NB medium 129 129 3.3.2. LC-MS-LIT characterization of the ENs degradation products 133 133

! 8

4. Antibacterial activity of the emerging Fusarium mycotoxins enniatins A, A1, A2, B, B1, and B4 on probiotic microorganisms 4.1. Introduction 142 4.2. Materials and methods 4.2.1. Chemicals 143 4.2.2. Strains and culture conditions 144 4.2.3 Antimicrobial activity of the ENs 145 4.3. Results and discussion 147 V. CONCLUSIONES 155 155

VI. BIBLIOGRAFÍA 163 163

! 9

LISTA DE ABREVIATURAS ACAT: Acyl-CoA:colesterol acyltransferasa AFs: Aflatoxinas BEA: Beauvericina Caco-2: Células humanas de adenocarcinoma de colon CECT: Colección Española de Cultivos tipo DON: Deoxynivalenol EFSA: European Food Safety Authority ISPA: Istituto Delle Scienze delle Produzioni Alimentari EDI: Ingesta diaria estimada EN: Eniatinas ENA: Eniatina A ENA1:Eniatina A1 ENB: Eniatina B ENB1: Eniatina B1

FB: Fumonisinas FB1: Fumonisina B1 FB2: Fumonisina B2 GT: tracto gastrointestinal IDT: Ingesta diaria tolerable JECFA: Joint FAO/WHO Expert Committee on Food Additives HSCAS: aluminosilicatos hidratados de calcio y sodio LC-MS/MS: Cromatografía Líquida acoplada a Espectrometría de masas LIT: Trampa lineal de iones LOD: Límite de detección LOQ: Límite de cuantificación MRS: DeMan- Rogosa-Sharpe MSB: Mineral salt broth NB: Nutrient broth

! 10

NIV: Nivalenol OTA: Ocratoxina A PAT: Patulina QqQ: Triple cuadrupolo ROS: Especies reactivas de oxigeno SB: Sabouraud broth ZEA: Zearalenol

! 11

RESUMEN

! 12

Resumen

! 13

Los hongos filamentosos de los géneros Aspergillus,

Penicillium y Fusarium son responsables de producir metabolitos

tóxicos denominados micotoxinas: sustancias contaminantes de

alimentos y piensos que suponen un grave perjuicio para la salud

humana y animal. El género micotoxigénico Fusarium es el más

importante en las regiones de clima templado y países nórdicos.

En los últimos años existe un interés creciente por las

denominadas micotoxinas emergentes, particulamente la

beauvericina (BEA), las eniatinas (ENs) y la fusaproliferina. Estos

compuestos se han detectado a elevadas concentraciones en

alimentos presentes en el mercado europeo en general y

mediterraneo en particular. Numerosos estudios evidencian, por

un lado, su capacidad citotóxica sobre células de mamíferos, y

por otro , los elevados niveles de exposición a los que se enfrenta

la población.

Como parte de las estrategias de prevención frente a las

micotoxinas, existen tratamientos físicos, biológicos y químicos

que reducen su presencia en alimentos o que las transforman en

metabolitos menos tóxicos. Estas estrategias se han evaluado con

el objetivo de controlar las micotoxinas consideradas tradicionales

Resumen

! 14

y pueden aplicarse a las micotoxinas emergentes de Fusarium

para reducir su concentración y/o inactivarlas.

En primer lugar, se ha evidenciado la presencia de estas

micotoxinas emergentes en arroz, un cereal básico en la

alimentación de la población española y especialmente de la

Comunidad Valenciana. Este cereal se consume tras la cocción,

por lo tanto es interesante evaluar el efecto de este tipo de

procesado para conocer la exposición real a ENs y BEA. En el

presente estudio, diversas muestras de arroz del mercado

nacional se analizarion para investigar y determinar la presencia

de las fusariotoxinas emergentes eniatina A, eniatina B, eniatina

A1, eniatina B1 y BEA, con el fin de realizar una estimación del

riesgo. Se utilizó un método analítico rápido, sensible,

reproducible y fiable para la extracción de las muestras por Ultra

Turrax, y su posterior determinación por cromatografía líquida

acoplada a espectrometría de masas (LC-MS/MS) con triple

cuadrupolo (QqQ). Las muestras de arroz se analizaron en crudo,

y tras practicarse la cocción, en condiciones similares a la del

tratamiento doméstico y en exceso de agua.

Resumen

! 15

En el 100% de las muestras analizadas se detectaron

eniatinas. Al realizar la cocción en condiciones análogas a las del

tratamiento doméstico, el comportamiento de la mayoría de las

muestras tiende a la reducción de la concentración, pero no se

produce una eliminación total en todos los casos. No obstante, la

tasa de reducción de micotoxinas suele aumentar si la cocción se

práctica en exceso de agua, y es mucho mayor si se realiza en

medio básico o ácido. En consecuencia, la ingesta de micotoxinas

emergentes estimada solo en arroz, es del mismo orden que la

Ingesta Diaria Tolerable (IDT) de las micotoxinas producidas por

el género Fusarium que representan un mayor riesgo para la

salud.

Por otro lado, los tratamientos biológicos se basan en la

acción de microorganismos que actúan biotransformando las

micotoxinas o bien reduciendo su absorción. Se emplean como

cultivos iniciadores en alimentos fermentados, o se consumen

como suplementos probióticos que tienen efectos beneficiosos

para la salud del hospedador. Se ha evaluado la degradación

mediante el empleo de distintos microorganismos. De las 37

cepas estudiadas, 9 son bacterias ácido lácticas características del

Resumen

! 16

tracto intestinal, 22 son cepas de Saccharomyces cerevisiae, y 6

son cepas de Bacillus subtilis. Las fermentaciones se llevaron a

cabo el medio de cultivo específico de cada una de las cepas

durante 48 h.

La determinación de las ENs se realizó por cromatografía

líquida acoplada a espectrometría de masas (LC-MS/MS) con

triple cuadrupolo (QqQ), mientras que la identificación de los

productos de degradación producidos tras la fermentación se

llevó a cabo mediante la técnica de cromatografía líquida

acoplada a trampa lineal de iones (LC-MS/MS-LIT).

Todas las cepas estudiadas produjeron una reducción

significativa de las ENs tras la fermentación, con una disminución

de la concentración de micotoxinas en el medio de cultivo del 5 al

99%. En la matriz alimentaria, los datos de degradación oscilaron

entre el 1,7 al 49%. Además se detectaron 5 productos de

biodegradación de la ENs.

Según la bibliografía disponible, las ENs presentan

actividad antifungica, insecticida, fitotóxica y bactericida. Por lo

Resumen

! 17

que, se realizó un bioensayo para estudiar su efecto antibiótico

sobre cepas potencialmente útiles en estrategias de prevención,

como cultivos iniciadores de la fermentación, o bien consumirse

como suplementos probióticos, y conseguir así evaluar su

robustez y viabilidad frente a estos compuestos bioactivos.

! 18

! 19

I.INTRODUCCIÓN

! 20

Introducción

! 21

1. Introducción sobre micotoxinas

Las micotoxinas son metabolitos secundarios producidos

por hongos filamentosos, principalmente de los géneros

Aspergillus, Penicillium, Alternaria y Fusarium. Son contaminantes

habituales de cereales como el trigo, cebada, maíz, avena y

arroz, y pueden provocar un amplio rango de efectos tóxicos,

como carcinogénesis, neurotoxicidad, y toxicidad reproductiva y

en el desarrollo (Martínez-Larrañaga y Anadón, 2006). Se

desconoce el número total de estos metabolitos potencialmente

tóxicos de los hongos. La micotoxicosis más antigua de la que se

tiene datos es el ergotismo, una patología descrita en la Edad

Media y causada por las alcaloides ergóticos producidos por el

hongo Claviceps Purpurea. El brote de la denominada

enfermedad X del pavo en Inglaterra en los años 60, marcó el

descubrimiento de la familia de las aflatoxinas (AFs) y el inicio de

la micotoxicología moderna.

Actualmente, se han detectado más de 300 micotoxinas en

productos de uso en alimentación humana y animal. Estos

Introducción

! 22

compuestos bioactivos son metabolizados por los animales de

producción que ingieren piensos contaminados, de forma que se

aíslan metabolitos tóxicos en productos de origen animal y

destinados a la alimentación humana. La estructura química de las

micotoxinas varía en gran medida, y por lo tanto sus propiedades

tóxicas también, por lo que no se les puede asignar un único

mecanismo o modo de acción en las células, los tejidos o los

organismos (Santini et al., 2009). En Estados Unidos de América y

Canadá, las pérdidas anuales debidas a los efectos de las

micotoxinas en las industrias forrajeras y ganaderas, son del orden

de 5000 millones de dólares/año. En los países en desarrollo,

donde los alimentos básicos son susceptibles de contaminación,

la población sufre morbilidad y muertes prematuras relacionadas

con la presencia de micotoxinas (FAO,2001).

Los géneros fúngicos Aspergillus y Penicillium, son capaces

de producir las micotoxinas pertenecientes a la familia de las AFs,

además de patulina (PAT) y ocratoxina A (OTA). El género

Fusarium, el prevalente en regiones europeas, produce

fumonisinas (FBs), zearalenona (ZEA), tricotecenos, como

Introducción

! 23

deoxynivalenol (DON) , el nivalenol (NIV), y la toxinas HT-2 y T-2,

así como las denominadas micotoxinas emergentes de Fusarium.

Las AFs son un grupo de micotoxinas cuyos compuestos

principales son la aflatoxina B1 (AFB1) , la aflatoxina B2 (AFB2), la

aflatoxina G1 (AFG1) y la aflatoxina G2 (AFG2). Las cepas

toxigénicas de Aspergillus flavus producen las de tipo B y las de

Aspergillus parasiticus las de tipo B y G (Zinedine y Mañes, 2009).

Se encuentran frecuentemente en alimentos vegetales con

apreciable contenido proteico, cultivados en regiones húmedas y

cálidas, como los cereales, frutos secos, frutas secas y especias

(Raters et al., 2008; Rojas-Durán et al., 2007). La AFB1 es el más

potente agente hepatocarcinogénico conocido en humanos y

está clasificado como agente carcinogénico de clase 1 (IARC,

2002). La aflatoxina M1 (AFM1) se encuentra en leche de vacas de

producción que han consumido piensos contaminados por AFB1.

La PAT es una lactona insaturada producida por algunas

cepas de Aspergillus, Penicillium y Byssochlamys, se encuentra en

frutas y vegetales, especialmente en manzanas y productos

derivados y produce disfunción renal, estrés oxidativo, e

Introducción

! 24

interferencia en la reproducción (Fuchs et al,. 2008; Topcu et al.,

2010).

La OTA es producida principalmente por Aspergillus y

Penicillium, y tiene efectos nefrotóxicos, hepatocarcinogénicos y

genotóxicos al interaccionar con ácidos nucleicos e interferir con

la síntesis proteica. Está clasificada como 2B o posible

carcinogénico para la especie humana (IARC, 2002). Se encuentra

principalmente en uva, vinos, cereales, cacao y café (La Pera et

al., 2008). Se ha asociado a la nefropatía endémica de los

Balcanes en Yugoslavia y tumores en riñon (Bryden et al., 2012).

Las FBs son un grupo de micotoxinas producidas por

Fusarium verticilliodes y Fusarium Proliferatum, y son

contaminantes frecuentes en maíz y productos derivados. Se han

descrito 28 FBs, que se clasifican en 4 series: A, B, C y D, siendo

FB1 y FB2 las que principalmente contaminan alimentos. Se

asocian a enfermedades de animales domésticos como la

leucoencefalomalacia equina, y el síndrome de edema pulmonar.

En humanos se ha relacionado con el incremento de cáncer de

esófago en ciertas regiones de Africa del Sur y de China. Están

Introducción

! 25

consideradas como posibles agentes carcinogénicos 2B (IARC,

2002) (Hartinger and Woll, 2011).

La ZEA se asocia a desordenes reproductivos en animales

de producción y síndromes hiperestrogénico en humanos.

También tiene efectos hepatotóxico, immunotóxico y genotóxico

(Zinedine et al., 2007).

Los Tricotecenos son una familia de compuestos

químicamente relacionados producidos por varias especies de los

géneros Fusarium, Myrothecium, Trichoderma, Trichothecium,

Cephalosporium, Vertinimonosporium y Stachybotrys. Son

moléculas de peso molecular medio, y tienen en común un

esqueleto tetracíclico y un grupo 12,13-epóxido en su estructura;

este radical juega un papel importante en su toxicidad. Se

clasifican en varios grupos en función de su estructura química,

DON y NIV pertenecen al grupo B y las toxinas HT-2 y T-2 al

grupo A. Estos compuestos presentan actividad citotóxica e

inmunodepresiva. Sus fuentes principales son el trigo, la cebada y

el maíz (He et al., 2010).

Introducción

! 26

2. Micotoxinas Emergentes de Fusarium

2.1. Definición !

El género Fusarium es más prevalente en las regiones frías

y templadas, frente a Aspergillus y Penicillium, que proliferan más

en zonas cálidas y tropicales. Este género es responsable de

producir más de 35 micotoxinas (Gutleb et al., 2002). Las

micotoxinas consideradas tradicionales de Fusarium son: FBs, ZEA

y los tricocetenos, anteriormente referenciadas. Sin embargo, las

especies del hongo Fusarium también producen otro grupo de

compuestos bioactivos menos conocidos llamados micotoxinas

emergentes: las eniatinas (ENs) entre las que se encuentran

eniatina A (ENA), eniatina B (ENB), eniatina A1 (ENA1), eniatina B1

(ENB1), la beauvericina (BEA) y la fusaproliferina (FUS). Fusarium

avenaceum, es la especie más prevalente en los países nórdicos, y

no produce micotoxinas consideradas como tradicionales, sino

emergentes (Jestoi, 2008). Respecto a su presencia en alimentos,

se han hallado elevados índices de contaminación por

micotoxinas emergentes en diferentes sustratos, con contenidos

elevados, que alcanzan en algunos casos, el orden de mg/kg

(Ritieni et al., 1997, Uhlig et al., 2006; Meca et al., 2010d;

Introducción

! 27

Mahnine et al., 2011; Sifou et al. 2011; Serrano et al., 2012c;

Tolosa et al., 2013).

El compuesto bioactivo BEA fue aislado por primera vez en

1969 a partir del hongo entomopatogénico Beauverina bassiana.

Las ENs se descubrieron en el año 1947, en cultivos de Fusarium

orthoceras Appl. Wr Var. Enniantum que luego se denominó

Fusarium oxysporum. Estas micotoxinas son depsipéptidos

cíclicos. Consisten en aminoácidos alternos con ácido 2-hidroxi-3-

metilbutanoico. En la BEA, los tres aminoácidos son N-metil-

fenilalaninas (Hamill et al. 1969), mientras que en el caso de las

ENs de tipo A y B, los residuos de aminoácidos son N-metil-

valinas o isoleucinas, o bien mezclas de éstas. Las distintas

subunidades están unidas por enlaces peptídicos y enlaces éster

intramoleculares (lactonas), formando un depsipéptido. Su

estructura molecular es muy similar, lo que indica que los

mecanismos de toxicidad serán también comunes. Las estructuras

de estas fusariotoxinas están recogidas en la figura 1 (Jestoi,

2008). BEA y ENs son compuestos lipofílicos con baja solubilidad

en agua. En su estructura presentan grupos hidrofílicos (amidas y

carbonil éster) e hidrofóbicos (fenil, isopropil, sec-butil y metil),

Introducción

! 28

que hacen la posible la extracción con varios disolventes con

distinta polaridad y les confiere características particulares. Al ser

hidrofóbicos, se incorporan fácilmente a las membranas

biológicas, creando canales selectivos que permiten el transporte

de cationes mono y divalentes a través de la membrana

plasmática, lo que desencadena cambios en la homeostasis de la

célula (Tedjiotsop et al., 2010).

Figura 1. Estructura de las micotoxinas BEA y ENA, ENA1, ENB,

ENB1

Introducción

! 29

2.2. Toxicidad de BEA y ENs

En las últimas décadas, se han publicado numerosos

estudios in vitro acerca del potencial citotóxico de BEA, FUS y

ENs. Existen pocos ensayos de toxicidad in vivo de fusariotoxinas

emergentes. BEA y ENs tienen acción citotóxica frente a

numerosas líneas celulares de mamíferos, interaccionando con la

membrana plasmática, incrementando el calcio intracelular, e

induciendo apoptosis (Lin et al., 2005; Ferrer et al., 2009; Hyun et

al, 2009). Estas fusariotoxinas inhiben la acyl-CoA:colesterol

acyltransferasa (ACAT) y, afectan al metabolismo mitocondrial.

BEA tiene efecto inotropo y cronotropo negativo en corazones

aislados de cobaya (Lee et al. 2010). Esta toxina provoca muerte

celular en líneas de células cancerígenas humanas; pues al

estimular el flujo de calcio extracelular hacia la célula, destruye las

células de leucemia humana CCRF CEM (Chen et al, 2006).

Prosperini (et al.,2013a) ha descrito el efecto de esta micotoxina

en células humanas de adenocarcinoma de colon (Caco-2) en las

que se observan producción de especies reactivas de oxígeno

(ROS) de forma dosis dependiente, así como inducción de la

apoptosis e disminución del potencial de membrana mitocondrial.

Introducción

! 30

Además, la BEA tiene efecto antibiótico frente a varias especies

patógenas de tracto gastrointestinal como Escherichia coli,

Salmonella entérica, Shygella dysenteriae, Listeria

monocytogenes, Yersinia enterocolitica, Clostridium perfringens,

Pseudomona aeruginosa y Staphylococcus aereus (Meca et al.,

2010c).

Las ENs forman canales que permiten el flujo de calcio

hacia la célula, presentan actividad antibiótica e insecticida.

Además, se asocian a enfermedades de las plantas que cursan

con necrosis. La citotoxicidad frente a hepatocitos de carcinoma

humano HepG2 y células de fibroblasto de pulmón MRC-5 de las

ENs es comparable a la del deoxinivalenol (DON) en el ensayo

BrdU, basado en medir la síntesis de DNA (Ivanova et al. 2006).

Las ENs actúan como ionóforos altamente selectivos para el

potasio, aumentando la captación de potasio en la mitocondria y

alterando su homeostasis (Tonshin et al., 2010). Estudios

comparativos de las distintas ENs: A, A1, B, B1, B4 y J3, han

demostrado de la EN A1 es la más citotóxica frente a células

hepáticas e intestinales Caco2, Hep G2 y HT 29 (Meca et al.

2011). La citotoxicidad de las ENs se debe a que generan ROS,

Introducción

! 31

daño oxidativo, apoptosis y necrosis. Además, ENA, ENA1 y ENB1

producen daños a nivel de ADN celular (Prosperini et al., 2013b).

Los ensayos para evaluar la bioaccesibilidad a partir de la

digestión in vitro de muestras contaminadas con ENs, han

demostrado que, tras la digestión en el tubo digestivo, casi el 50

% de la concentración inicial está disponible para interactuar con

los tejidos humanos (Prosperini et al., 2013c).

2.3. Presencia de BEA y ENs en alimentos

De acuerdo a los estudios realizados por Serrano et al.,

(2012a, 2012b, 2013) la población española está expuesta a la

contaminación por ENs, BEA y FUS, debido a la presencia de

estos contaminantes en alimentos, como alimentos infantiles y

pasta. En este sentido, los resultados obtenidos muestran que de

las 45 formulas infantiles analizadas, 47 y 20 % resultaron estar

contaminadas por ENs y FUS respectivamente, siendo ENB1 la

micotoxina presente en un mayor número de muestras con

valores de hasta 42 mg/kg. En el caso de las muestras de pasta,

se detectó la presencia simultánea de dos o más micotoxinas en

el 65 % de las muestras. Los resultados mostraron altas

frecuencias de contaminación en pasta. Los valores de BEA

Introducción

! 32

oscilaron entre 0.10 y 21 µg/kg, FUS desde 0.05 a 8 µg/kg. Los

valores de ENs oscilaron entre 0.25 y 979 µg/kg. En otro estudio

realizado en frutos secos y de cáscara, 49 de las 74 muestras

analizadas resultaron estar contaminadas por ENs y BEA, siendo

el valor más elevado 1,4 mg/Kg de ENA (Tolosa et al., 2013). En

muestras de cereales del mercado español en el que se analizaron

6 fusariotoxinas emergentes ENs A, A1, B, B1 y BEA, la más

frecuentemente hallada fue ENA1, en el 73 % de las muestras, con

un valor máximo de 814 mg/kg en una muestra de arroz. El resto

de ENS presentaron un prevalencia muy inferior, por debajo del

10 % de las muestras. BEA se halló en el 32 % de las muestras,

con un valor máximo de 9,3 mg/kg (Meca et al., 2010d).

La presencia de estos contaminantes en muestras crudas

de cereales también se ha evaluado en otras zonas del arco

mediterráneo como Marruecos y Túnez. En un estudio a partir de

maíz, trigo y cebada marroquí se ha visto que el cereal más

frecuentemente contaminado por ENs es la cebada con un 87,5 %

de muestras positivas. El nivel más elevado de ENs totales se

encontró en una muestra de maíz con un valor de 445 mg/Kg,

que correspondió su totalidad a EN A1. Del mismo modo que en

Introducción

! 33

el estudio de Meca et al., (2010d), EN A1 fue la más frecuente,

detectándose en el 39 % de las muestras. En arroz procedente de

Marruecos, la contaminación más elevada fue hallada en una

muestra de la región de Kenitra con 449 mg/Kg de ENA1 y 465

mg/kg para el valor total de ENs. La ENB fue la más

frecuentemente encontrada, (30 % del total de las muestras) con

niveles que variaron de 4,4 a 26 mg/kg. Los porcentajes de

contaminación del total de las muestras con ENs totales, BEA y

FUS fueron 50%, 75,7% y 4,3% respectivamente. En relación a la

concurrencia de estas fusariotoxinas, los resultados han indicado

que el 54 % de las muestras estaban contaminadas con al menos

dos tipos de micotoxinas objeto de estudio y que el 30 %

contenían tres tipos (Sifou et al., 2011). En este estudio se ha

comprobado que el arroz es un buen sustrato para el crecimiento

de Fusarium y la producción de micotoxinas. En el caso de 51

muestras de comerciales de cereales crudos (trigo, cebada, maíz y

sorgo) y productos derivados (cuscus y pasta) procedentes de

supermercados tunecinos, el 96 % de las muestras estaban

contaminadas por ENS. En cuanto a la distribución de las

muestras positivas, la ENA1 fue la más frecuente, en el 92 % de

los casos, con niveles que variaron desde 11 a 480 mg/kg. La

Introducción

! 34

concentración máxima de ENs totales fue 683 mg/kg en una

muestra de sorgo. Los resultados analíticos mostraron además

que ninguna muestra estaba contaminada por BEA y FUS

(Oueslati et al., 2011).

En un estudio de fusariotoxinas en derivados de cereales

(harina, cereales para el desayuno y snacks) de la República

Checa, se detectaron ENs en el 97 % de las muestras, con valores

que oscilan de 20-2532 µg/kg, seguidas de ENB con una

incidencia del 91% (concentraciones entre 13 y 941 µg/kg) y

ENB1, con una incidencia del 80% (valores de 8 a 785 µg/kg).

ENA1 fue hallada solamente en el 44% de los casos con

concentraciones que oscilaron de 8 a 851 µg/kg (Malachova et al.,

2011).

Por otro lado, la presencia de estas fusariotoxinas

emergentes también se ha estudiado en cereales (avena, cebada

y trigo) de países del Norte de Europa como Noruega o

Finlandia. El ratio de concentración generalmente encontrado fue

ENB > ENB1 > ENA1 > ENA. En Noruega, la concentración más

elevada de ENB hallada en trigo fue de 5,8 mg/Kg, con valores

Introducción

! 35

de BEA aproximadamente 50 veces inferiores. En Finlandia los

cereales alcanzaron valores de EN B de hasta 18 mg/Kg, junto a

trazas de BEA (Uhlig et al. 2007).

3. Descontaminación de micotoxinas

Para prevenir y controlar los efectos nocivos de las

micotoxinas sobre la salud humana y animal podemos emplear

distintas estrategias:

! Evitar la contaminación en el campo, en la cosecha y

durante el posterior almacenamiento

! Descontaminar los alimentos o piensos mediante

procesado, tratamientos físicos, agentes biológicos o

químicos.

! Inhibir la absorción de las micotoxinas presentes a través

del tracto gastrointestinal, (Halász et al., 2009)

La primera estrategia para la prevención de las micotoxicosis

es actuar en las fases iniciales de la contaminación. La rotación de

cultivos es un método eficaz para reducir la contaminación de los

cereales en invierno por cepas de Fusarium.

Introducción

! 36

Para reducir el inóculo en el campo, deberían emplearse en

rotación cultivos diferentes que no sean huéspedes de estos

hongos, como las patatas, remolacha, hortalizas y alfalfa. Por otro

lado, debe elegirse la variedad o el híbrido de cereal resistente al

hongo o en su defecto, más adecuado para las condiciones del

suelo y climáticas, a efectos de reducir el estrés y conseguir un

cultivo menos sensible a las micosis. La modificación de las

prácticas agrícolas y las condiciones ambientales influencian la

concentración de las micotoxinas de Fusarium FBs en maíz (Ariño

et al., 2009; Herrera et al., 2010). El estrés vegetal debe evitarse

controlando la sequía, el frío y las carencias de nutrientes.

También es conveniente la aplicación de fungicidas para controlar

la infestación (Recomendación de la Comisión Europea

2006/583/CE).

En ocasiones y a pesar de la aplicación de buenas prácticas

agrícolas la contaminación con micotoxinas es inevitable. En ese

caso, deben emplearse métodos de detoxificación que cumplan

con los siguientes requisitos:

Introducción

! 37

1. Tener capacidad para destruir, inactivar o eliminar la

micotoxina sin producir o generar residuos tóxicos,

carcinogénicos o mutagénicos.

2. Mantener el valor nutritivo, la aceptabilidad y las

propiedades físicas del alimento o pienso.

3. Las esporas y micelios de los hongos, deben destruirse de

forma que no produzcan nuevas toxinas.

4. Debe ser económicamente viable (Haláz et al., 2009; Awad

et al., 2010).

!3.1. Procesado y tratamientos térmicos

El procesado y los tratamientos térmicos de los alimentos

aumentan la palatabilidad de los mismos y la digestibilidad de los

nutrientes, al tiempo que reducen la carga microbiana, haciendo

su consumo más seguro. Diversas técnicas de procesado son

capaces modificar la cantidad de micotoxinas en una matriz

alimentaria mediante la selección y limpieza, troceado, molido,

macerado, fermentación, horneado, fritura, asado, nixtamalización

y extrusión. En general, estos procedimientos reducen

significativamente la concentración de las micotoxinas, pero no

las eliminan completamente (Bullerman y Bianchini, 2007). En

Introducción

! 38

general, el molido de los cereales produce una dilución y una

distribución de las micotoxinas a las fracciones menos consumidas

por humanos y comúnmente empleadas en alimentación animal.

Los tratamientos térmicos causan distintos grados de reducción,

pero la mayoría de las micotoxinas son moderadamente

termoestables (Kabak et al., 2009; Voss et al., 2010).

Vaclavikova et al., (2012) ha descrito el efecto de la

fabricación del pan y de la cerveza en la concentración de ENs

presentes en cereales. En panificación, al moler los granos para la

fabricación de harina refinada, se redujo la concentración de ENB

y ENB1 en un 75 %, debido a que la mayor contaminación se

concentra en las capas exteriores del grano y el salvado. El

proceso de amasado, fermentación y horneado de estas harinas

se tradujo en una reducción del 60 % y del 50 % de ENB y ENB1

respectivamente, pero no las destruyó totalmente. La fabricación

de cerveza a partir de granos de cebada contaminados dio como

lugar a un producto final libre de ENs, a diferencia de lo

observado para los tricotecenos DON y DON-3-Glc ya que

durante la infusión del grano, estas micotoxinas no son

transferidas al producto final.

Introducción

! 39

El efecto del horneado sobre la BEA ha sido evaluado en

varias matrices (Meca et al., 2012b). Una solución con 5 mg/kg de

este compuesto bioactivo, fue sometida a tratamientos térmicos

en horno a 160, 180 y 200ºC durante 3, 6, 10, 15 y 20 min. A

temperaturas de 160ºC aplicadas durante 3 min, la concentración

de BEA se redujo hasta 2.8 mg/kg, y la degradación fue total a

200ºC durante 20 min. En harinas contaminadas, el horneado se

tradujo en una reducción del 20 al 90% de la contaminación

inicial.

El efecto del procesado en las micotoxinas tradicionales de

Fusarium está ampliamente documentado. Se han comparado

distintos tratamientos en arroz contaminado por FB1. El cocinado

doméstico produce una reducción de hasta el 80 % y este

porcentaje se ve incrementado al aplicar calor seco a

temperaturas entre 150 y 200ºC (Becker Algeri et al., 2013). DON

es una molécula termoestable, puesto que no se observa

reducción en su concentración tras el horneado a 170ºC durante

30 minutos. Sin embargo, debido a su solubilidad en agua, el

tratamiento hidrotérmico descontamina significativamente la

Introducción

! 40

matriz alimentaria (Kushiro, 2008). El cocinado en pH alcalino da

como resultado la aparición de compuestos de degradación de

DON menos citotóxicos, como norDON A, norDON B y norDON

C (Bretz et al., 2006).

AFB1, OTA, ZEN, DON, FB1 y FB2 se pueden transferir

desde los granos de cereal a la cerveza durante su proceso de

elaboración. AFB1 y OTA presentan un patrón de disminución

similar, se mantienen relativamente estables frente al tratamiento

térmico, pero son más sensibles al proceso de malteado o

hidrólisis proteolítica (Bullerman y Bianchini, 2007).

Se ha estudiado la detoxificación de la PAT durante la

fabricación de compota de manzana. Con el lavado con cepillo de

los frutos, los niveles de PAT pueden descender más del 50 %.

Para la elaboración industrial de la compota, la manzana triturada

se cuela, de forma que se eliminan la piel, el pedúnculo y el

corazón. Este paso del procesado es el más eficiente en cuanto a

la reducción de la micotoxina, puesto que supone la eliminación

de las partes más infectadas. El tratamiento térmico de la

compota durante 10 minutos, produce una reducción de hasta el

Introducción

! 41

17,9 %. La reducción durante el calentamiento se produce por

una reacción de la PAT con sulfitos, tioles, y otros compuestos de

la matriz (Janotová et al., 2011).

El tratamiento industrial del grano de café conlleva en

reducción de los niveles de OTA según el estudio de La Pera (et

al., 2008). Tras el tostado de 14 muestras de café (3 minutos a

200ºC) se observa una degradación de entre 65-100 %. El

método de preparación de la infusión de café afecta el contenido

de OTA. En el método de preparación italiano o “Moka Express”,

los granos contaminados con OTA estuvieron poco tiempo en

contacto con el agua, y muy poca cantidad de toxina se solubiliza

en agua. Por el contario, en el método de preparación turco, el

café se mantiene en infusión durante 10 minutos y los niveles de

OTA en la bebida de café fueron superiores.

3.2. Tratamientos químicos

En ámbito europeo, el proceso de descontaminación

mediante agentes químicos está muy extenido en productos

destinados para alimentación animal. El proceso de amoniación

se usa a escala industrial para detoxificar las AFs presentes en

Introducción

! 42

harina de cacahuete destinada al vacuno lechero. El anillo

lactonico de la AFB1 es hidrolizado de forma irreversible, dando

lugar a un compuesto carente de toxicidad (EFSA, 2009). Por

otro lado, el empleo de agentes oxidantes como el ozono

degrada la AFB1, ZEA, y tricotecenos como el DON (Young et al.,

2006). Tanto la amoniación como el uso de agentes oxidantes,

reducen la contaminación, pero su uso presenta una desventaja,

puesto que también reduce de forma significativa el valor

nutritivo del pienso (Jard et al., 2011).

3.3. Descontaminación biológica

3.3.1. Degradación por agentes biológicos

Una estrategia para la descontaminación de las

micotoxinas es su degradación biológica en metabolitos no

tóxicos mediante microorganismos detoxificantes como bacterias,

levaduras, enzimas y hongos.

La fermentación es uno de los métodos de conservación

más antiguos y ampliamente empleados en alimentación humana.

El aislamiento de microorganismos capaces de degradar

enzimáticamente una determinada micotoxina, y emplearlos en

Introducción

! 43

un proceso de fermentación del alimento o del pienso podría dar

como resultado un producto carente del contaminante. Otra

estrategia para encontrar microorganismos detoxificantes, se

basa en aislar aquellas bacterias del tracto gastrointestinal que

sean capaces de transformar las micotoxinas, de forma que

pueden utilizarse tanto en procesos de fermentación industriales

o como probióticos, es decir, suplementos alimenticios formados

por microorganismos que tiene efectos beneficiosos para el

organismo que los consume (Haláz et al., 2009). En este sentido,

es necesario evaluar la toxicidad de los productos de

degradación, así como los efectos indeseables en la fermentación

o calidad del alimento o pienso producto (Shetty y Jespersen,

2006).

La actividad de enzimas intracelulares de Saccharomyces

cerevisiae para degradar el compuesto bioactivo BEA ha sido

descrita por Meca et al., (2013a). Las protesasas de 4 cepas de

esta levadura de uso común en la industria alimentaria, redujeron

la concentración del compuesto bioactivo BEA en harina de maíz

en un rango de 66 % a 91 % en función de la cepa. Además se

identificó la presencia de un producto de degradación mediante

Introducción

! 44

cromatografía líquida acoplada a espectrometría de masas (LC-

MS/MS-LIT). En otro estudio, se ha evaluado la reducción durante

la fabricación de pan y cerveza a partir de harinas contaminadas,

de forma que la fermentación con Saccharomyces cerevisiae se

tradujo en una reducción significativa de la contaminación por

BEA (Meca et al., (2013b). Ensayos con bacterias lácticas han

demostrado la reducción in vitro que la fusariotoxina BEA durante

la fermentación en medio de cultivo contaminado (Meca et al.,

2012a).

No se han publicado estudios de detoxificación biológica

de las ENs, a pesar de que los estudios de monitorización han

demostrado que son las fusariotoxinas emergentes encontradas a

concentraciones más elevadas en países europeos, en

comparación con BEA y FUS.

La capacidad de los microorganismos para degradar otras

micotoxinas ha sido descrita en numerosas publicaciones. El

primer microorganismo autorizado como aditivo detoxificante de

micotoxinas es Eubacterium BBSH 797, una bacteria Gram

positiva aislada en fluido ruminal de bovino que ha demostrado

Introducción

! 45

tener capacidad detoxificante frente a varios tricotecenos

mediante reacción de deepoxidación, de forma que el DON se

transforma en un metabolito el deepoxy-deoxynivalenol (de-

DON), 500 veces menos tóxico (He et al., 2010). También

degrada otros 6 tricotecenos de tipo A, como las toxinas HT-2 y

T-2, T-2 triol, T-2 tetraol, scirpentriol and diacetoxiscirpenol

(Fuchs et al., 2002).

En cuanto a las bacterias lácticas, Lactobacillus acidophilus

VM20 y Bifidobacterium animalis V12, dos cepas de uso en

alimentos fermentados, degradan OTA en un 95 % y PAT en un

80 % respectivamente. Además, estos microorganismos son

detoxificantes, ya que la preincubación de estas bacterias lácticas

y las micotoxina redujeron sus efectos tóxicos sobre células

hepáticas HepG2 (Fuchs et al., 2008).

La cepa Bacillus subtilis UTBSP1 reduce la concentración

de AFB1 en una matriz alimentaria y en caldo de cultivo en un 95 y

86 % respectivamente. La capacidad de biodegradación de esta

bacteria probiótica de debe a enzimas extracelulares, ya que el

sobrenadante del medio de cultivo libre de células, redujo la

Introducción

! 46

presencia de AFB1 en un 78 %. En ensayos in vivo en pollos

expuestos a AFB1, la adición de la cepa Bacillus subtilis ANSB060

al pienso mejora el índice de conversión, la calidad de la carne y

reduce la presencia de residuos tóxicos en hígado debido a la

biodegradación de la micotoxina (Fan et al., 2013).

Guan et al., (2009) realizó un screening para evaluar la

capacidad detoxificante de la microbiota de varias especies de

peces frente a DON, y comprobó que la cepa C133 aislada a

partir del pez gato Ameirus nebolusus produce la deepoxidación

de los tricotecenos DON, NIV y verrucanol tras 96 h de

incubación a 15ºC mediante deacetilación y deepoxidación.

Young et al., (2007) ha evaluado la capacidad de la microbiota

intestinal del pollo para degradar los tricotecenos mediante dos

rutas: la deepoxidación y deacetilación. La AFB1 es degradada

por la bacteria Gram negativa Strenotromorphas maltophilia 35-3,

aislada en heces de tapir, siendo la degradación del medio de

cultivo libre de bacterias es más efectiva que en presencia del

microorganismo vivo, lo que sugiere que las encimas producidas

por la bacteria y presentes en el medio de cultivo son las

responsables de la degradación (Guan et al. 2008). El medio de

Introducción

! 47

cultivo libre de bacterias en el que han crecido los

microorganismos Rhodocococcus erythropolis, Mycobacterium

fluoranthenivorans también degradan la AFB1 (Teniola et al, 2005;

Alberts et al., 2006).

La bacteria Rhodocococcus tiene un elevado potencial

como agente detoxificante. La capacidad de 32 cepas de este

microorganismo para biotransformar las micotoxinas AFB1, OTA,

ZEN, T-2 y FB1 ha sido estudiada recientemente por Cserháti et

al., (2013), observándose importantes ratios de biodegradación

de AFB1, ZEN y T-2, así como un descenso en la genotoxicidad y

estrogenicidad de AFB1 y ZEA respectivamente, mediante

ensayos de SOS-Chromotest y BLYES. La levadura Trichosporon

mycotoxinivorans degrada las micotoxinas ZEA y OTA

transformándolas derivados no tóxicos, tras incubación del

microorganismo durante 24 y 48 h, respectivamente. Tras la

biodegradación se encontró el producto de degradación no

tóxico OTα, y no se hallaron metabolitos tóxicos de ZEA, como el

α-zearalenol o β-zearalenol (Molnar et al., 2004). La capacidad de

esta levadura de detoxificar la OTA ha sido estudiada mediante

ensayos in vivo con pollos alimentados con piensos

Introducción

! 48

contaminados, en los que la adición del microorganismo al pienso

produjo una reducción significativa de los residuos de OTA en

suero, hígado y riñones respecto al grupo control (Hanif et al.,

2012).

Heinl et al., (2010) ha aislado dos genes de la bacteria

Sphingopyxis MTA144 responsables de la producción de enzimas

capaces de degradar la FB1 por deesterificación y deaminación.

3.3.2. Adsorción por agentes biológicos

Los agentes adsorbentes son compuestos de elevado peso

molecular que reducen la exposición a micotoxinas. Actúan

disminuyendo su bioaccesibilidad y su absorción mediante la

formación complejos estables con estas micotoxinas, que son

eliminados por heces tras transitar por el tracto gastro intestinal.

(EFSA, 2009).

Se han estudiado distintos microorganismos reductores de

la concentración de micotoxinas en medio de cultivo o en

matrices alimentarias, ya que tienen capacidad de fijarse a estos

contaminantes, lo que indica que tienen un uso potencial como

Introducción

! 49

agentes detoxificantes. Dentro del grupo de microorganismos

potencialmente útiles para ser empleados como agente

adsorbentes, hay que destacar las bacterias ácido lácticas y las

cepas de la levadura Saccharomyces cerevisiae, que se emplean

como cultivo iniciador en una matriz alimentaria en

fermentaciones industriales, beneficiar la salubridad del producto

final por su capacidad para fijar contaminantes y disminuir su

absorción intestinal.

Las bacterias ácido lácticas, son microorganismos

probióticos cuyo crecimiento se asocia al tracto gastrointestinal

humano, y son de uso extendido en la industria alimentaria.

Diferentes cepas han sido estudiadas con el objeto de evaluar su

capacidad para fijar aflatoxinas. Lactobacillus ramnhosus GG y LC

705 demostraron capacidad de reducir las aflatoxinas, y junto

con Propionibacterium freudenreichii son efectivas fijando las

toxinas de Fusarium DON, NIV, T-2 y HT-2 (El-Nezami et al.,

2002). Los peptidoglicanos de la pared celular y los polisacáridos

son los elementos responsables de la capacidad de adsorción de

las bacterias ácido lácticas (Kabak et al., 2006).

Introducción

! 50

Enterococcus faecium es una bacteria láctica ampliamente

utilizada en la industria láctea, en concreto en la fabricación del

queso. Las cepas M74 y EF 031 han demostrado capacidad de

reducir AFB1 y PAT en una solución acuosa tras un periodo de

incubación de 48 h (Topcu et al., 2010). En este ensayo la

disminución de AFB1 en el medio de cultivo no se vio afectada en

las muestras incubadas con bacterias inactivadas. Puesto que la

viabilidad del microorganismo no afectó a la reducción, se

entiende que esta reducción no se produce por degradación

biológica, sino por existir fijación a los compuestos de la pared

celular. En cambio, el ratio de detoxificación de PAT disminuyó en

el caso de inactivación, lo que se interpreta como que parte de la

micotoxina desaparece por conversión metabólica de los enzimas.

Planococcus spp. S118 reduce significativamente los

niveles de ZEA en medio de cultivo con bacterias viables e

inviables, en un 21,82% y 47,82% respectivamente. La

inactivación aumenta significativamente la reducción de la

micotoxina, lo que indica la detoxificación se produce por

adsorción del contaminante en los polisacáridos y

peptidoglicanos de la pared celular (Lu et al., 2011).

Introducción

! 51

También se ha descrito la utilidad de las levaduras como

agentes adsorbentes de las micotoxinas. Los distintos

componentes de la pared celular tienen capacidad para fijar las

toxinas AFB1, ZEA, FB1 y reducción in vivo de los efectos tóxicos

OTA, HT2 en pollos (Shetty and Jespersen 2006). Las cepas

enológicas de Saccharomyces cerevisiae pueden usarse para

descontaminar la OTA en zumos de uvas (Bejaouii et al., 2004) y

durante la fabricación del vino moscato mediante adsorción en la

parte externa e interna de la pared celular (Meca et al., 2010a).

4. Legislación

4.1. Límites máximos permitidos

La Autoridad Europea de Seguridad Alimentaria (EFSA), es

el organismo encargado de emitir dictámenes científicos y realizar

de la evaluación del riesgo de los contaminantes a partir de

estudios toxicológicos relevantes y los datos de monitoreo

llevados a cabo por los Estados Miembros. Sobre la base

científica de los informes y publicaciones de la EFSA, la Comisión

Europea, como organismo encargado de gestión del riesgo,

establece los límites máximos de micotoxinas y las clausulas de

Introducción

! 52

salvaguarda que protejan la salud de la población. Actualmente la

EFSA ha establecido la Ingesta Diaria Tolerable (IDT) para OTA,

ZEA, HT-2 y T-2, NIV, PAT y FBs. AFB1 y ZEA. En la tabla 1 se

muestran las IDT establecidas.

Micotoxina

OTA

PAT

DON

ZEA

FBs

HT2

+ T2

NIV

IDT ng/Kg pc

17,14

400

1000

250

2000

100

1200

Tabla 1. Ingestas diarias tolerables (IDT) de micotoxinas (EFSA, 2013, 2011a, 2011b, 2006, 2003, 2002, 1999).

Los principios básicos que rigen la legislación europea

sobre contaminantes están regulados en el Reglamento (UE) Nº

315/93 del Parlamento Europeo y del Consejo, por el que se

establecen procedimientos comunitarios en relación con los

contaminantes presentes en los productos alimenticios. Esta

norma prohíbe la puesta en el mercado de productos alimenticios

que contengan contaminantes en proporciones inaceptables

respecto de la salud pública y en particular desde el punto de

Introducción

! 53

vista toxicológico. Además, los contaminantes deberán

mantenerse al mínimo nivel posible mediante prácticas correctas.

Para proteger la salud, la Comisión Europea, estableció las

tolerancias máximas las micotoxinas mediante el Reglamento

(UE) Nº 1881/2006 de la Comisión, por el que se fija el contenido

máximo de determinados contaminantes en los productos

alimenticios, que especifica las tolerancias máximas para AFs,

OTA, PAT, DON, ZEA y las FBs en productos alimenticios. Esta

norma ha sido modificada en base a sucesivas evaluaciones de

riesgo y dictámenes de la Autoridad Europea de Seguridad

Alimentaria, mediante el Reglamento (UE) Nº 1126/2007, que

establece limites para las micotoxinas de Fusarium en maíz y

derivados, el Reglamento (UE) Nº 165/2010 que incrementó el

contenido máximo permitido para AFs, y el Reglamento (UE) Nº

105/2010 por el que se estableció un contenido máximo de OTA

para las especias y el regaliz. Por último, el Reglamento (UE) Nº

1058/2012 fija un contenido máximo de AFs en higos secos.

La selección u otros tratamientos físicos permiten reducir

el contenido de AF, DON, ZEA en las partidas de cacahuetes,

Introducción

! 54

frutos de cáscara, frutos secos y maíz. Con el fin de minimizar las

repercusiones sobre el comercio, estos reglamentos permiten

contenidos de estas micotoxinas más elevados en los productos

que no se destinan al consumo humano directo o como

ingrediente de productos alimenticios. En estos casos, los

contenidos máximos se han fijado teniendo en cuenta la

efectividad de los tratamientos mencionados a fin de reducir el

contenido de estas micotoxinas en cacahuetes, frutos de cáscara,

frutos secos y maíz, a niveles inferiores a los contenidos máximos

establecidos para al consumo humano directo o a ser utilizados

como ingrediente de productos alimenticios.

En alimentación animal, a nivel europeo se ha fijado

legalmente el contenido máximo para la AFB1 en 20 µg/Kg para

materias primas. En piensos completos destinados al ganado

lechero y a animales jóvenes contenido máximo de AFB1 es 5

µg/Kg (Directiva 2002/32/CE sobre sustancias indeseables en la

alimentación animal).

En cuanto a la presencia de DON, ZEA, OTA, Toxina T-2 y

HT-2 y FBs en productos destinados a la alimentación animal, no

Introducción

! 55

existe un límite máximo a nivel europeo, sino unas

Recomendaciones de la Comisión. Se establecen valores

orientativos y se insta a los operadores económicos a aplicar

estos límites en su sistema de análisis de peligros y de puntos

críticos de control (APPCC), valores críticos que separen lo

aceptable de lo inaceptable para la prevención, eliminación y la

reducción de los peligros determinados (Recomendación de la

Comisión 2006/576/UE; Recomendación de la Comisión

2013/165/UE).

Las micotoxinas emergentes de Fusarium ENs y BEA

actualmente no están legisladas a nivel europeo, sin embargo, la

EFSA está recabando datos sobre toxicidad y exposición de la

población, con el objetivo de fijar la IDT. Este organismo

científico es el encargado de realizar la determinación del riesgo

de los contaminantes emergentes, con arreglo al Reglamento

(UE) Nº 178/2002 del Parlamento y del Consejo, sobre principios

y requisitos de la legislación alimentaria, que consta de cuatro

etapas:

1. Identificación del factor de peligro

Introducción

! 56

2. Caracterización del factor de peligro es decir, la

relación dosis/respuesta

3. Determinación de la exposición a partir de

monitorización en alimentos

4. Caracterización del riesgo

4.2. Muestreo y análisis de micotoxinas

Con el objetivo de que los controles oficiales sean

homogéneos y fiables, se han establecido normas europeas para

la toma de muestras y análisis de las micotoxinas en alimentos en

piensos.

El Reglamento (UE) Nº 401/2006 por el que se establecen

los métodos de muestreo y de análisis para el control oficial del

contenido de micotoxinas en los productos alimenticios. El

reglamento establece un método específico en función de la

matriz que se vaya muestrear, así como el número de lotes en los

que se deben dividir las partidas grandes en función de su peso.

La distribución de las aflatoxinas en un lote es muy heterogénea,

sobre todo en los lotes de productos alimenticios con tamaño

grande de partícula, tales como los higos secos o los cacahuetes.

Introducción

! 57

A fin de obtener la misma representatividad, en el caso de los

lotes de productos alimenticios con tamaño grande de partícula,

el peso de la muestra global es ser superior al peso de la muestra

global de los lotes de productos alimenticios con tamaño más

pequeño de partícula. Por último, esta norma fija los criterios

aplicables a la preparación de la muestra en laboratorio, así como

los criterios de funcionamiento del método analítico para cada

micotoxina. En el caso del control oficial de productos destinados

a la alimentación animal, los métodos de muestreo y análisis de

las matrices están regulados por el Reglamento (UE) Nº 152/2009

del Parlamento Europeo y del Consejo, sobre control oficial en

piensos.

4.3. Descontaminación de las micotoxinas

Por otro lado, El Reglamento (UE) Nº 882/2004, sobre los

controles oficiales efectuados para garantizar el cumplimiento de

la legislación en materia de piensos y alimentos, establece que si

las autoridades de control oficial observan un incumplimiento en

la legislación de piensos y alimentos, podrán someterlos a un

tratamiento a fin de que se ajusten a los requisitos de la

Introducción

! 58

legislación, incluida, en su caso, la descontaminación química o

biológica, pero con exclusión de la dilución.

En cuanto a los compuestos que actúan reduciendo la

bioaccesibilidad y la toxicidad de las micotoxinas, su uso está

ampliamente extendido en el caso de la alimentación de los

animales de granja. El Reglamento (UE) Nº 386/2009, que

modifica al Reglamento (UE) Nº 1831/2003 sobre aditivos en la

alimentación animal, establece una nueva categoría de aditivos

para piensos los denominados reductores de la contaminación de

los piensos por micotoxinas. Se definen como sustancias que

pueden suprimir o reducir la absorción, promover la excreción o

modificar el modo de acción de estos contaminantes.

Los estudios de monitorización revelan que existen

elevados índices de contaminación por ENs y BEA en muestras de

cereales en distintas regiones europeas. Además se han

detectado efectos adversos toxicológicos, lo que supone un

riesgo emergente para la población española debido a la

ingestión de alimentos contaminados. Las autoridades sanitarias

son las encargadas de evaluar la exposición y fijar ingesta diaria

Introducción

! 59

estimada a partir de los datos sobre contaminación en muestras

de alimentos. Los cereales se van a consumir tras el cocinado, y

puesto que este proceso afecta a la cantidad de BEA y ENs, se

hace necesario evaluar la degradación por tratamiento

hidrotérmico para conocer la exposición real al contaminante.

Por otro lado, la detoxificación biológica de las micotoxinas

a partir de bacterias y levaduras probióticas es un campo muy

prometedor para conseguir alimentos más seguros. Actualmente

no existen estudios acerca de la interacción de las micotoxinas

ENs con estos microorganismos potencialmente detoxificantes.

Introducción

! 60

! 61

II.OBJETIVOS

! 62

Objetivos

! 63

El objetivo general del presente trabajo, es aplicar

distintos métodos de descontaminación tanto de tipo físico, como

biológico a las micotoxinas emergentes de Fusarium de forma

que se reduzca su efecto perjudicial para la salud.

Para conseguir este objetivo general se plantean los

siguientes objetivos específicos:

1. Analizar los contenidos de ENA, ENA1, ENB y ENB1 y

BEA en diferentes muestras de arroz y cuantificar el

efecto del cocinado en muestras de arroz contaminadas

por ENA, ENA1, ENB y ENB1 y BEA.

2. Evaluar la reducción de ENA, ENA1, ENB y ENB1 debido

a la acción de distintos microorganismos: levaduras del

género Saccharomyces spp., bacterias lácticas y

bacterias de la especie Bacillus subtilis.

3. Detectar la presencia de productos de degradación de

ENA, ENA1, ENB y ENB1 tras la descontaminación con

microorganismos.

4. Evaluar la capacidad bactericida de las ENs a elevadas

concentraciones sobre microorganismos probióticos

que se puedan emplear en estrategias de

descontaminación biológica.

! 64

! 65

III.PLAN DE TRABAJO

! 66

Plan de trabajo

! 67

Para alcanzar los objetivos propuestos, se ha diseñado un plan de

trabajo con las etapas siguientes:

1. Determinar la presencia de ENA, ENA1, ENB, ENB1 y BEA

en muestras de arroz recogidas en distintos supermercados

de la Comunidad Valenciana, mediante extracción con

Ultra-Turrax y posterior determinación de Cromatografía

Líquida acoplada a Espectrometría de masas (LC-MS/MS)

con triple cuadrupolo (QqQ).

2. Evaluar la reducción de ENA, ENA1, ENB, ENB1 y BEA el

procesado con tratamiento térmico de las muestras

contaminadas: cocción normal, cocción con exceso de

agua, en pH ácido y básico.

3. Evaluar la reducción in vitro de ENA, ENA1, ENB, ENB1

mediante la acción fermentativa de 37 cepas de levaduras

y bacterias probióticas tanto en medio de cultivo como en

una matriz alimentaria mediante LC-MS/MS-QqQ

4. Determinar la presencia de productos de biodegradación

tras la fermentación de levaduras y bacterias probióticas en

medio de cultivo, y en harina contaminada con ENA, ENA1,

Plan de trabajo

! 68

ENB, ENB1 mediante la técnica de cromatografía líquida

acoplada con trampa lineal de iones (LC-MS-LIT).

5. Evaluar la capacidad bactericida de ENA, ENA1, ENA2,

ENB, ENB1 y ENB4 sobre microorganismos probióticos

mediante bioensayo con antibiograma.

! 69

IV.MATERIAL, MÉTODOS,

RESULTADOS Y DISCUSIÓN

! 70

Material, métodos, resultados y discusión

! 71

1. Thermal processing effect on emerging Fusarium

mycotoxins present in naturally contaminated rice

samples of Spain.

1.1. Introduction

BEA and ENs are bioactive compounds that produce a

wide range of biological activities, including antibacterial,

insecticidal, phytotoxic and cytotoxic effects (Tedjiotsop et al.,

2010).

Rice (Orya sativaL.) is the second cereal most produced in

the world, wheat being the first (Hussain et al, 2009). This grain is

an essential source of carbohydrates and the principal source of

these macronutrients in Asiatic countries; it is also growth with

high humidity, so it is considerably susceptible of being

contaminated with mycotoxins (Serrano et al.,2012b). When

calculating human exposure to the emerging mycotoxins, we have

to consider that grains are consumed after a thermal food

processing, so it is important to assess how the cooking process

affects the levels of BEA and ENs.

Material, métodos, resultados y discusión

! 72

Usually, risk assessment studies are carried out by

comparison of the mycotoxin levels from the monitoring studies

with the corresponding provisional maximum tolerable daily

intake (PMTDI) established by the Joint FAO/WHO Expert

Committee on Food Additives (JECFA) and the European

Authority of Food Safety (EFSA). At the moment, studies of this

type have not been carried out for emerging Fusarium mycotoxins

in previous works. However, it is possible to perform an approach

to the risk assessment comparing the levels of emerging Fusarium

mycotoxins with the TDIs established for other Fusarium

mycotoxins, such as T-2 toxin and HT-2 toxin or deoxynivalenol

(EFSA, 2011; Serrano et al., 2012c).

Treatments of raw materials reduce the concentration the

mycotoxins but the majority of these bioactive compounds

tolerate the range of domestic temperatures (80-120ºC) (Kabak et

al., 2009). The emerging fusariotoxins BEA and ENs are affected

the baking and brewing process of wheat samples (Meca et

al.,2012b; Vaclavikova et al., 2012). The effect of food processing

on other mycotoxins has been extensively described by many

authors. Kushiro (2008), reviewed the effect of processing on the

Material, métodos, resultados y discusión

! 73

Fusarium mycotoxin DON present on wheat samples. The highest

contamination being located in the outer skin of the kernel, germ

and bran fraction, the process of cleaning and milling leads to a

fractionation of the contamination with DON reduction in the

flour fraction. The effect of different cooking methods on AFB1

and OTA on rice samples has been assessed in Pakistan by

Hussain and Lutfullah (2009), the study revealed high reduction

rates from 75,9% to 87,5%. In rice samples from Korea, the

thermal treatment produced a reduction on the AFB1

contamination and its mutagenic potential (Park et al., 2006). On

the other hand, some authors indicate that detoxification of

cereals depends on the pH of the liquid medium of processing. In

Central America, maize is submitted to an alkaline cooking

process called nixtamalization, which reduces AFB1 content up to

92 % (Mendez Albores et al., 2004). Studies performed in AFB1

contaminated sorghum samples treated with heat and pressure in

an extruder, employing different concentrations of citric acid and

temperatures, revealed that those factors affected significantly

the detoxification process, as the citric acid concentration

increased, the amount of aflatoxins decreased.

Material, métodos, resultados y discusión

! 74

In this context, the aim of this study was to assess the following

objectives: (1) providing data on the natural occurrence of ENs

and BEA in different types of rice from the Spanish market by

liquid chromatography coupled to triple quadrupole mass

spectrometer detector (MS/MS QqQ) determination, (2) evaluate

the effect of different cooking methods in the emerging

mycotoxin content and (3) the approach to the risk assessment of

ENs and BEA by evaluation of the dietary exposure.

1.2. Materials and methods

1.2.1. Chemicals and agents

Acetonitrile and methanol, all of HPLC grade, were

purchased from Merck (Damstadt, Germany). Deionized water

was obtained from a Milli-Q water purification system (Millipore,

Bedford, MA, USA). The stock standard solutions of BEA and

ENA, ENA1, ENB and ENB1 were purchased from SigmaeAldrich

(St. Louis, MO, U.S.A.). All stock solutions were prepared by

dissolving 1 mg of the mycotoxin (BEA, FUS or ENs) in 1 mL of

pure methanol, obtaining a 1mg/ml solution. These stocks

solutions were then diluted with pure methanol in order to obtain

Material, métodos, resultados y discusión

! 75

the appropriated work solutions. All solutions were stored in

darkness at -20ºC until the LC.

1.2.2. Sampling procedure

Twenty samples of rice were collected from different

supermarkets of Valencia (Spain) (n=20). Some samples are

collected from white rice (n=12). According to de Codex

Standard of Rice (CODEX STAN 198-1995) white rice or milled

rice is husked rice from which all or part of the bran and germ

have been removed by milling. According to the national quality

standard, white rice grain’s, must be lacking in pericarp cuticle

and have a uniform white colour. Other samples came from

ecological or organic production harvested is Spain (n=8).

Organic samples presented the following characteristics: white

rice (n=2), whole rice (n=2) and paddy rice (n=4), which have

retained its husk after threshing, and presented black (n=2) and

red husk (n=2). Raw samples were stored in sealed plastic bags

under refrigeration (4ºC).

Material, métodos, resultados y discusión

! 76

1.2.3. Thermic treatment of rice

Collected samples were submitted to two types of cooking

with a commercial electric cooker. Ordinary cooking reproduces

the traditional recipe in Spain: 20 g of rice was cooked in 100 ml

of distilled water. Twenty minutes were required to cook the rice

after the water stats to boil at 100ºC. The same procedure was

carried out employing an excess of water (400ml). After cooking,

the excess of water was drained off. Two samples of white were

rice were also submitted to alkaline and acid cooking, with

calcium carbonate (pH 9,2) and citric acid (pH 3,5). To obtain an

acid medium, we added 25ml of lemon juice to 1 L of distilled

water. A solution with 750 mg of calcium carbonate for 1 L was

prepared for the alkaline cooking. The pH of both medium was

measured by a calibrated pH-meter.

1.2.4. Mycotoxin Extraction

Before extraction, raw samples were blended. The method

used for the analysis of the mycotoxins (BEA and ENs) was

reported by Jestoi (2008). Briefly, 5 g of rice was extracted with

50 ml of acetonitrile using an Ultra Ika T18 basic Ultra-turrax

(Staufen, Germany) for 5 min. The extract was centrifuged at

Material, métodos, resultados y discusión

! 77

4500g for 15 min and then the supernatant evaporated to dryness

with a Büchi Rotavapor R-200 (Postfach, Switzerland). The extract

was dissolved with 5 mL of AcN, and was evaporated to dryness

by nitrogen gas at 35ºC using a multi-sample Turbovap LV

Evaporator (Zymark, Hoptikinton, USA). After solvent evaporation,

the extract was reconstituted with 1000 lL of AcN/MeOH (50/50

v/v), and was filtered through 13 mm/0.20 lm nylon filter

(Membrane Solutions, Texas, USA) prior the injection in the LC–

MS/MS system.

1.2.5. Analysis

A Quattro LC triple quadrupole mass spectrometer from

Micromass (Manchester, UK), equipped with an LC Alliance 2695

system (Waters, Milford, MA, USA) consisting of an autosampler,

a quaternary pump, a pneumatically assisted electrospray probe,

a Z-spray interface and a Mass Lynx NT software version 4.1 were

used for the MS/MS analyses. The separation was achieved by a

Gemini-NX C18 (150 x 2 mm I.D., 3 µm particle size) analytical

column supplied by Phenomenex (Barcelona, Spain), preceded by

a security guard cartridge C18 (4 x 2 mm I.D.), using gradient

elution that started at 90% of A (AcN) and 10% of B (20 mM

Material, métodos, resultados y discusión

! 78

ammonium formate in MeOH), increased linearly to 50% B in 10

min. After, it was decreased linearly to 10% of B in 3 min.

Afterwards, the initial conditions were maintained for 2 min. Flow

rate was maintained at 0.2 mL min-1. The analysis was performed

in positive ion mode. The electrospray ionization source values

were as follows: capillary voltage, 3.50 kV; extractor, 5 V; RF lens

0,5 V; source temperature, 100ºC; desolvation temperature,

300ºC; desolvation gas (nitrogen 99.99% purity) flow, 800 L h-1;

cone gas 50 L h-1 (nitrogen 99.99% purity). Ideal fragmentation

conditions were accomplished varying the cone voltage and

collision energies for each compound. The cone voltage selected

was 40 V for the fragmentation of ENA, ENA1, ENB, ENB1 and

BEA. The collision energy selected was 35 Ev for ENA, ENA1,

ENB and ENB1 and 40 Ev for BEA. The analyser settings were as

follows ones: resolution 12.0 (unit resolution) for the first and third

quadrupoles; ion energy, 0.5; entrance and exit energies, -3 and

1; multiplier, 650; collision gas (argon 99.995% purity) pressure,

3.83 x 10-3 mbar; interchanel delay, 0.02 s; total scan time, 1.0 s;

dwell time 0.1 ms. The mass spectrometer was operated in

Multiple Reaction Monitoring (MRM) mode. According to the

European Union criteria (Commission Decision, 2002), which

Material, métodos, resultados y discusión

! 79

establishes that a substance can be identified using LC–MS/MS in

MRM mode by at least two transitions, the follow precursor ion

and product ions was selected for each mycotoxin: the precursor

ion m/z 681.9 [M + H]+ and the product ions m/z 228.2 and 210.0

for ENA, the precursor ion m/z 667.9 [M + H]+ and the product

ions m/z 228.2 and 210.0 for ENA1, the precursor ion m/z 639.8

[M + H]+ and the product ions m/z 214.2 and 196.2 for ENB, the

precursor ion m/z 654.9 [M + H]+ and the product ions m/z 214.2

and 196.2 for ENB1, the precursor ion m/z 784.4 [M + H]+ and

the product ions m/z 244.0 and 262.0 for BEA.

1.2.6. Approximation to the dietary exposure of BEA and ENs in

rice

The approximation of the dietary exposure to BEA and ENs

present rice in the Spanish population was carried out by

calculation of the the Estimated Daily Intakes (EDIs) as follows:

EDI (μg/Kg bw/day)= concentration μg/Kg x consumption (Kg/Kg

bw/day).

Material, métodos, resultados y discusión

! 80

The EDI was calculated in different cases: considering the

mean concentration of ENS and BEA, and also in the most

unfavourable situation, that is that a sample was contaminated

with the maximum amount reported for each mycotoxin. The

calculation was performed considering the contamination in raw

rice samples, and after the regular hydro-thermal treatment. Rice

consumption data are available in the database of the Spanish

Ministry of Agriculture, Food and Environment (MAGRAMA,

2013). The Spanish consumption of rice is 4,40 kg/person/year,

considering the data avalaible from June 2012 to June 2013. In

the Valencian region, the consumption of rice is more important

due to the specific traditional dishes prepared there, so the EDI

was calculated also for the Valencia population, where the rice

intake is 6,32 kg/person/year. Assuming 70 kg as the mean of

body weight (bw) for the Spanish and Valencian population, the

daily consumption per kg of bw was calculated.

1.3. Results and discussion

1.3.1. Method validation

The analytical method was validated in-house for rice

samples. The evaluation of the matrix effects for each mycotoxin

Material, métodos, resultados y discusión

! 81

was performed by the use of matrix-assisted calibration curves. A

mixture of extracts of dry rice, where none of the studied

mycotoxins was detected, was used as a blank sample in order to

ensure results representatively. Calibration curves were

constructed for each studied mycotoxin from the standards

prepared in methanol and from the standards prepared in extract

of blank sample. The standards were prepared at six

concentration levels: 0.025–25 µg kg-1 for ENA and 0.05–50 µg kg-

1 for ENA1, ENB, ENB1 and BEA. Suppression of the signal (SS)

was obtained for all mycotoxins (between 53.0% and 78.6%). For

more certain results, matrix effects were evaluated using blank

extracts of rice. The evaluation of the linearity, limits of detection

and quantification, accuracy and precision was performed using

matrix assisted calibration curves from a mixture of blank samples

(mixture of different rice). For the evaluation of the linearity,

calibration curves were constructed at six concentration levels:

0.025–25 µg kg-1 for ENA, and 0.05–50 µg kg-1 for ENA1, ENB,

ENB1 and BEA. The results showed good linearity with good

correlation coefficients (r2 > 0.992). The detection limits (LODs)

were calculated using a signal-to-noise ratio of 3. The limits of

quantification (LOQs) were calculated using a signal-to-noise ratio

Material, métodos, resultados y discusión

! 82

of 10. The LOQs and LODs obtained for ENs, BEA and FUS are

presented in the Table 2. The accuracy was evaluated through

recovery studies at two concentration levels, LOQ (low level) and

100 LOQ (high level). Intra-day precision was assessed by five

determinations at each addition level in the same day, while inter-

day precision was assessed by one determination at each addition

level during five days. The mean recoveries and the

corresponding relative standard deviations (RSDs) are presented

in Table 2. RSD values ranged between 4% and 11% for intra-day

precision, and between 5% and 15% for inter-day precision.

Recovery ranges for the low spiked level (LOQ) and the high

spiked level (100 xLOQ) were 85–110% and 86–112%,

respectively. Therefore, the results were in accordance to the

limits set in Commission Decision, 2002 /657/EC: a mean recovery

(n = 5) between 70% and 120%, and a RSD lower than 20%.

Material, métodos, resultados y discusión

! 83

Mycotoxin Recovery ± RSD (intra-day precision)a

Recovery ± RSD (inter-day precision)b

LOQ (µg/kg)

LOD (µg/kg)

Low level

(LOQ)

High level (100

xLOQ

Low level

(LOQ)

High level (100

xLOQ) ENA 92 ± 5 91 ± 4 93 ± 8 90 ± 6 0.50 0.15

ENA1 88 ± 7 86 ± 9 85 ± 11 88 ± 8 0.25 0.08 ENB 109 ± 8 112 ± 6 110 ± 8 109 ± 9 0.50 0.15

ENB1 99 ± 10 97 ± 11 97 ± 13 95 ± 15 0.50 0.15 BEA 93 ± 6 94 ± 4 96 ± 7 94 ± 5 0.10 0.02

aNumber of replicates, 5.bDifferent days, 5. Table 2. Analytical parameters: recoveries (%), relative standard deviations (%) and limits of detection and quantification (µg/kg)

1.3.2. Occurrence of BEA and ENs in raw samples

All the market rice samples studied were contaminated

with emerging fusariotoxins. The 4 ENs analysed were present in

100% of the samples. Regarding BEA, this compound was

detected in 17% of the rice samples produced by conventional

practices, and in 100% of the organic rice. The concentracions of

ENA, ENA1, ENB, ENB1 and BEA evidended in organic and

conventional rice samples are represented in table 3.

Material, métodos, resultados y discusión

! 84

Mean concentration

( µg/kg )

Positive samples

(%)

Mínimum Concentration

( µg/kg )

Máximum concentration

( µg/kg ) ENA Conventional

rice n=12 129,34 100,00 70,9 268,85

Organic rice n=8

320,34 100,00 52,81 617,5

ENA1 Conventional rice n=12

16,43 100,00 5,78 32,10

Organic rice n=8

18,94 100,00 7,86 41,08

EN B Conventional rice n=12

12,77 100,00 4,83 29,46

Organic rice n=8

21,91 100,00 6,35 42,27

EN B1

Conventional rice n=12

13,90 100,00 7,25 28,48

Organic rice n=8

13,37 100,00 6,89 26,36

BEA Conventional rice n=12

127,58 17,00 - 765,51

Organic rice n=8

298,74 100,00 74,6 839,96

Table 3. ENs and BEA concentrations in ecological and conventional rice samples

Material, métodos, resultados y discusión

! 85

Figure 2. Chromatogram corresponding to the bioactive compound ENB in a sample of white rice

The ENA was detected in 100% of the samples, with levels

ranging from 52,81 to 617,5 µg/kg. The lowest concentration was

detected in a sample of organic black paddy rice and the lowest

in a sample of ecological white rice. The mean concentrations of

ENA in organic and conventional rice are 320,34 µg/kg and

129,34 µg/kg respectively. The mean concentration of ENA

considering all the rice samples is 205.74 µg/kg, the highest mean

of all the emerging fusariotoxins studied in this report. The ENA1

was present in 100% of the samples with a mean concentration of

17,43 μg/kg. The lowest contamination of ENA1 was 5,78 µg/Kg

Material, métodos, resultados y discusión

! 86

and the highest contamination was of ENA1 41,08 µg/kg reported

in a sample of organic red paddy rice. The mean concentrations

of organic and conventional samples are 18,94 µg/kg and 16,43

µg/kg. Considering ENA1, no significant difference is detected in

both groups. ENB was present in 100% of the samples studied,

with concentrations ranging from 4,83 µg/kg in a sample of

conventional white rice, to 42,27 µg/kg. The highest

contamination of ENB was detected in the same sample with

highest ENA1 concentration. The mean concentration of ENB in

the samples analysed is 16,42 µg/kg. Comparing the results in

two groups, the mean concentration of this compound in organic

rice is the double than in conventional rice, 21.91 µg/kg and 12.77

µg/kg respectively. The mean concentration of ENB1 is 13,73

µg/kg. No difference was signalled between the mean

contaminations of ENB1 in organic o conventional rice. ENB1 was

detected in all the samples studied. The lowest concentration of

this mycotoxin corresponds to a sample of organic red rice.

BEA was found in 100% of the ecological samples studied.

The highest level of mycotoxins of this study corresponds to

839,96 µg/kg of BEA in a sample of organic black paddy rice that

Material, métodos, resultados y discusión

! 87

was also contaminated with ENs. Regarding the ratio between

ENs concentrations, the results is as follows:

ENA>ENA1>ENB>ENB1. The means of the contaminations in all

the samples of ENA and BEA are 205,74 µg/kg and 196,05 µg/kg

respectively. These levels are 10 times higher than the

contamination of the rest of the mycotoxins studied. The samples

that presented the highest levels of ENA, ENA1, ENB and BEA

corresponded to paddy rice, which has retained the husk. These

results agree with the works of Bullerman and Bianchini, (2007)

and Lancova (et al., 2008), who affirmed that the most mycotoxin

contaminated parts of the cereals are the husk and the bran

fraction.

The prevalence of emerging mycotoxins in cereals in the

Spanish Market has been recently assessed in different food

matrices such as grains, nuts, and cereal-based foods. Serrano et

al., (2012a) reported the results of ENs, BEA and FUS presence in

forty-five samples of infant formula collected in the Spanish

market. The frequencies of contamination were 46.6 and 20.0%

respectively with ENs and FUS, whereas all analyzed samples

were free of BEA. The ENB1 was the more detected mycotoxin

Material, métodos, resultados y discusión

! 88

with levels ranging from 11.4 to 41.9 mg/kg. Tolosa et al., (2013)

has evidenced the presence of BEA and ENs in dried fruits and

nuts available in supermarkets of Valencia (Spain). The presence

of emerging Fusarium mycotoxins (ENs and BEA) was determined

in samples of nuts and dried fruits commercialized in Valencia.

The results obtained showed high levels of contamination

(mg/kg). The percentage of the total contamination of samples

analysed with ENs was 50% for fruit nuts, 80% for shell nuts,

35.7% for dried fruits and 83.3% for dates.

According to the study Meca et al, (2010b) where the

compounds ENA, ENA1, ENB, ENB1, BEA and FUS were analysed

in cereal samples of Spain, ENA1 was the most prevalent

mycotoxin. The highest contamination was 814,42 mg/kg in a

sample of rice. The prevalence of the other ENs was under 10%.

BEA was detected in 32 % of the samples, with a maximum

concentration of 9,31 mg/kg. Sifou et al., (2011) evidenced the

presence of the minor fusariotoxins BEA and ENs in rice samples

of Morocco, ENB was the ENS most frequently isolated: 30% of

the samples with levels ranging 4,4 to 26, 2 mg/kg. Oueslati et

al., (2011), reported high prevalence of ENS in cereals of Tunisia.

Material, métodos, resultados y discusión

! 89

ENs, BEA and FUS were analysed in 51 samples of cereals and

cereals based products, and the results showed that 96% of the

samples were contaminated with ENS. The most frequently found

was ENA1 in 92,1% of the samples, with levels ranging from 11,1

to 480 mg/kg.

The prevalence of ENS and BEA in grains of Northern

European Countries has been reviewed by Uhlig (et al., 2007). The

relative concentration ratio was ENB>ENB1>ENA1<ENA<BEA. In

Norway, the highest contamination corresponds to 5800 µg/kg of

ENB in wheat. In Finnish grains, the highest contamination was

18300 µg/kg of ENB in spring wheat. Malachova (et al., 2011)

assessed the occurrence of the fusariotoxins in cereal-based foods

from the Czech Market. ENA was the most prevalent ENS,

isolated in 97% of the samples with concentrations ranging from

20 to 2532 µg/kg, followed by ENB in 91% of the samples and

levels from 13 to 941 µg/kg. High levels of BEA had been

detected in maize samples from Italy by Ritieni (et al., 1997) with

contamination of BEA up to 520 mg/kg, and co-occurrence with

the compounds FUS and FB1.

Material, métodos, resultados y discusión

! 90

1.3.3. Reduction of emerging mycotoxins in cooked samples

Rice samples (n=20) naturally contaminated with ENs and

BEA were submitted to ordinary cooking and cooking with excess

water. For both processes, the cooking time was 20 minutes, the

time necessary for the final product to present an adequate

texture.

The results can be seen in Figure 3. For all the mycotoxins,

it is evidenced a significant loss of mycotoxins after hydrothermal

treatment, nevertheless regular domestic cooking process didn’t

result in a complete degradation of the ENs and BEA. The loss of

mycotoxins by regular cooking ranged from 29% to 63% in the

case of ENB1 and BEA respectively, and when the excess of water

was employed, the reduction ranged from 32% for the ENA1 to

100% in the case of the BEA. These results agree with the reviews

on the effect of processing on mycotoxins published by Bullerman

and Bianchini (2007), and Kabak (2009), who affirmed that

mycotoxins are thermo tolerant in the range of domestic

temperatures (80-120ºC).

Material, métodos, resultados y discusión

! 91

Figure 3. Percentage of reduction of ENS and BEA in naturally contaminated rice samples (n=20) by normal cooking and cooking in excess of water (%)

In the case of ENA, ENB1 and BEA, cooking in excess water

improved de contamination rates, (61%, 48%, 100%) compared to

the regular cooking method (43%, 29% and 63%). The use of

additional water led to the complete loss of BEA. Reduction of

mycotoxins during processing might occur because they are

washed away, destroyed, bound to a food matrix or transformed

in unknown decomposed products. In the latter two cases, it

cannot be assumed that the reduction means decreased toxicity.

0!

20!

40!

60!

80!

100!

120!

ENA! ENA1! ENB! ENB1! BEA!

%"ENs"reduction"

regular water

excess of water

Material, métodos, resultados y discusión

! 92

Meca et al., (2012b) assessed the influence of heat

treatment on the minor Fusarium mycotoxin BEA at 160, 180 and

200ºC a range o temperatures higher than in our study. In a

model solution, the application of 200ºC for 20 min produced the

total degradation of BEA, in a food system (crispy breads) the

percentage of BEA degradation, resulted variable from 20 to

90%, and proportional to the temperatures and the incubation

times employed. Particularly at the temperature of 160º C during

20 minutes, BEA decreases from 5 mg/kg 2.8 mg/kg, evidencing

a percentage of degradation of 43%. Also a metabolite of the

thermic degradation of BEA was identified using the LC-MS in the

full scan mode.

The effect of baking and brewing procedures has been

monitored by Meca et al., (2013b), significant reduction on the

contamination of raw wheat was evidenced during bread making,

with BEA loss ranging from 75 to 95%, and during beer making

from 23 to 82%. The highest degradation activity of BEA for both

beer and bread was evidenced during the heat and fermentation

processes. Regarding the effect of baking and brewing

technologies on ENs, Vaclavikova et al., (2012) concluded that

Material, métodos, resultados y discusión

! 93

significant decline of ENs occurred within both processes, with

the largest drop in their concentrations observed in the brewing

process. Regarding bread baking, levels of ENs decreased down

to 30% of their concentration in the initial flour used for baking.

The fate of other mycotoxins during thermic treatment of

rice has been described by other authors. Hussain and Luttfullah

(2009) described the reduction of the carcinogenic mycotoxins

AFB1 and OTA in basmati rice samples of Pakistan. The results

were in accordance with ours, since the highest reduction rates

were reported in rice samples cooked in excess water (87,5 % and

83%), followed by that cooked by normal cooking (82,5% and

76,6%) and finally by the microwave oven cooked rice (77,6% and

75,9%).

Park et al., (2006) determined the loss of AFB1 by HPLC in

naturally contaminated rice samples by pressure-cooking and the

reduction of aflatoxin mutagenic potential by the Ames test with

Salmonella typhimurium. Cereal samples were cooked in an

ordinary cooker and in a pressure cooker for 20 min at 160ºC.

Traditional cooking produced a loss of 31-36% of the initial

Material, métodos, resultados y discusión

! 94

concentration, and the pressure-cooking induced a loss of 78-

88%. The reduction of the aflatoxin- induced mutagenic potential

was in agreement with the HLPC results, with an important

reduction for the pressure-cooked rice (71-68%) and a lower

reduction on the ordinary cooked rice (23-19%).

The reduction on the concentration of ENs and BEA of two

conventional samples of white rice in acid and alkaline medium,

by adding citric acid or calcium carbonate to the cooking water is

represented in Figure 4.

Figure 4. Effect of hydro-thermic treatment of white rice (n=2) in acid and alkaline medium

0!10!20!30!40!50!60!70!80!90!100!

ENA! EN!A1! EN!B! EN!B1! BEA!

% E

Ns r

educ

tion

Regular water

Acid water

Alkaline water

Material, métodos, resultados y discusión

! 95

When the pH was acidic, the loss of ENs ranged from 86

and 91%, and BEA degradation was 89%. Alkaline cooking led to

ENs decrease from 88 to 94% and BEA reduction of 89%.

Mycotoxin detoxification of many cereals and cereals-based foods

depends on the pH of the processing medium. Detoxification of

DON in Canadian barley by sodium carbonate (Na2CO3) and heat

had been described by Abramson et al., (2005). The treatments

were performed at different concentrations of Na2CO3 and

temperatures during 0,1,3,5 and 8 days. With 20% 1M Na2 CO3,

DON was reduced from 18,4 µg/Kg to 0,14 µg/Kg after one day

of treatment. After 8 days DON was undetectable by enzyme-

immune analysis. Traditional tortilla making with corn in Central

America is carried out in alkaline medium; the process is called

nixtamalization. During this process, the grains are cooked in

abundant water (2-3 L of water/ corn Kg) with 1-3% of calcium

hydroxide during 35-70 min. Traditional nixtamalization reduces

92% of the contamination of AFB1 (Méndez-Albores et al., 2004).

This treatment causes an important environmental damage,

because an important amount of water organic materials and high

pH is generated. Alternative methods employing less water (0,8

L/corn Kg) are studied, but the percentage of AFB1 reduction

Material, métodos, resultados y discusión

! 96

decreases to 61-78 %. In sorghum samples contaminated with

AFB1, Méndez-Albores et al., (2009) studied the effect of heat,

pressure, and different citric acid concentration. The highest

reduction (92%) was observed in the case of products treated at

pH 3,7. In vivo assays shown that the addition of 1N aqueous

citric acid to duck feed contaminated with AFB1 reduced its

carcinogenicity and mutagenesis (Méndez-Albores et al, 2007).

1.3.4. Approximation to the dietary exposure of ENS and BEA in

rice

The EDI of emerging mycotoxins in rice is based in the

analytical data obtained and the reports of rice consumption of

the Spanish and also the Valencian population available in the

database Ministry of Agriculture, Food and Environment of Spain.

Calculation data were performed considering the sum of the

mean concentration of the ENs + BEA and also in the most

unfavourable case, considering the maximum concentrations

reported for each compound. Reduced levels after regular

cooking were also used in the approximation to the dietary

exposure.

Material, métodos, resultados y discusión

! 97

The EDIs of emerging fusariotoxins in Spain and in the

Valencian Region are 0,08 µg/Kg bw/day and 0,11 µg/Kg bw/day

respectively, considering the occurrence of ENs and BEA in raw

rice. Considering the loss mycotoxins in cooked samples, the EDI

of the Spanish population is 0,06 µg/Kg bw/day and 0,08 µg/Kg

bw/day in the specific case of Valencia.

With the data available at the moment, it is not possible to

confirm that ENs and BEA represent a risk for Spanish rice

consumers, since European Food Safety Authority (EFSA) has not

established a tolerable daily intake for group of mycotoxins.

However, it is possible to achieve an approximation with the TDIs

established for other Fusarium mycotoxins, DON, NIV, toxins T-2

and HT-2, FBs fixed in the EFSA scientific publications (1; 1,2; 0.1

and 2 µg/Kg bw/day, respectively) (EFSA, 2013, 2011, 2003,

1999). The minimum TDI corresponds to the HT-2 and T-2 toxins,

with 0,1 µg/Kg bw/day. The EDI calculated are in the same order

than the TDI of the most toxics fusariotoxins HT-2 and T-2.

According to the calculation in the most unfavourable case, the

EDI in cooked rice sample is higher than the TDI of HT-2 and T-2

for both Valencian and Spanish populations.

Material, métodos, resultados y discusión

! 98

ENs+BEA (µg/kg)

EDI in Spain (μg/Kg bw/day)

EDI in the Valencian Region (μg/Kg bw/day)

Raw rice mean concentration

449,39 0,08 0,11

Raw rice maximum concentration

1569,29 0,27 0,39

Cooked rice mean concentration

337,34 0,06 0,08

Cooked rice maximum concentration

731,42 0,12 0,18

Table 4. Estimated daily intake (EDI) of ENs and BEA of present in rice in the Spanish and Valencian population

Material, métodos, resultados y discusión

! 99

2. Reduction of the enniatins A, A1, B, B1 by an in vitro

degradation employing different Saccharomyces and

acid lactic bacteria strains: identification of

degradation products by LC-MS-LIT

2.1. Introduction

In the scientific literature there is a lack of data related to

the degradation of ENs, whereas the degradation of other

fusarotoxins had been studied by other authors. Related to the

methodologies employed for the reduction BEA in the scientific

literature a US patent (Duvick and Rod, 1998) is the first report on

the biological detoxification this coumpound is available. Meca et

al. (2012a) evaluated the interaction between the minor Fusarium

mycotoxin 13 bacterial strains characteristic of the gastrointestinal

tract. The fermentations were carried out in the liquid medium of

MRS during 4, 12, 16, 24 and 48 h at 37ºC, under anaerobic

conditions. All the bacteria studied showed a significant BEA

reduction during the fermentation process, in particular the mean

diminution resulted variable from 66 to the 83%.

Material, métodos, resultados y discusión

! 100

Poppenberger et al. (2003) demonstrated that the enzymes

purified by several plants, employing chromatographic

techniques, detoxify completely the Fusarium mycotoxins

deoxinivalenol (DON) and 15-acetyl-deoxynivalenol (15-Ac-DON).

The degradation of trichothecenes mycotoxins by several

microbes has been investigated by Young et al. (2007) and Guan

et al. (2009). The two principally degradation pathways evidenced

by the authors were: deacylation and deepoxydation. The

degradation of the FB1 by microbial enzymes was studied by Heinl

et al. (2010). The authors using chromatographic techniques

isolated two enzymes by liquid culture of the bacterium

Sphingopyxis MTA144, responsible of the detoxification of the

FB1. Islam et al. (2012), isolated several microorganisms from soil

samples with the capacity to degrade the mycotoxin DON to de-

DON in vitro, employing the mineral salt broth as growth medium

(MSB).

Considering the lack of data related to the biological

degradation of the minor Fusarium mycotoxins ENs, the aims of

this study were: a) to evaluate the reduction in vitro of the ENs

employing different probiotic and Saccharomyces cerevisiae

Material, métodos, resultados y discusión

! 101

strains; b) to study the ENs reduction in food system composed

by wheat flour through microbial fermentations carried out by the

probiotic strains and c) to study the ENs degradation products

formed during the fermentation processes employing the

technique of the liquid chromatography coupled to the linear ion

trap (LC-MS-LIT).

2.2. Materials and methods

2.2.1. Chemicals

A stock standard solution of ENs A, A1, B, B1 (98% of purity)

(Sigma-Aldrich, St. Luis, USA) was prepared by dissolving 1 mg of

standard in 1 mL of pure methanol, obtaining a 1 mg ENs/ml

(1000 µg/mL) solution. This stock solution was then diluted with

methanol in order to obtain the appropriated work solutions with

concentrations of 1, 10 and 100 mg/L. All the ENs solutions were

stored in darkness at 4ºC until the LC-MS/MS analysis.

Acetonitrile, methanol, water, ethyl acetate, sodium chloride

(NaCl) (all of LC grade) and acetic acid were purchased from

Merck (Whitehouse Station, NJ, USA).

Material, métodos, resultados y discusión

! 102

2.2.2. Strains and methodology

The study was carried out using nine strains probiotic

bacteria, named Bifidobacterium longum, Bifidobacterium

bifidum, Bifidobacterium breve, Bifidobacterium adolescentes,

Lactobacillus rhamnosus, Lactobacillus casei-casei, Streptococcus

thermofilus, Lactobacillus ruminis, Lactobacillus casei and twenty

two strains of Saccharomyces cerevisiae. The strains were

obtained by the Spanish Type Culture Collection (CECT Valencia,

Spain) and the Istituto Delle Scienze delle Produzioni Alimentari

(Bari), in sterile 18% glycerol.

For longer survival and higher quantitative retrieval of the

cultures, they were stored at –80 ºC. When needed, recovery of

strains was undertaken by two consecutive subcultures in

appropriate media prior to use. The microbes were cultured in

15mL sterile plastic centrifuge tubes utilizing as growth medium

10 mL of DeMan-Rogosa-Sharpe (MRS broth, Oxoid Madrid,

Spain) for Bifidobacteria, Streptococcus, and Lactobacillus, and

Sabouraud Broth for yeast strains. (SB broth, Oxoid Madrid,

Spain). For the bacteria, the tubes were incubated at 37ºC, in an

anaerobic atmosphere with 95% CO2 and 5% H2 during 48h. For

Material, métodos, resultados y discusión

! 103

the yeasts, tubes were incubated at 30ºC in an aerobic milieu.

Then, the suspensions of each strain at concentrations of 108

CFU/ml were added to a fresh 10 mL of MRS or SB contaminated

with 5mg/L of the mycotoxins ENs A, A1, B, and B1, and incubated

at 37ºC in an anaerobic atmosphere with 95% CO2 and 5% H2

during 48h for the bacteria, at 30ºC and aerobic atmosphere for

the yeasts.

The mediums were analyzed in order to determinate the

residual concentrations of ENs present in the growth medium and

also to identify the possible degradation products.

The strain of Fusarium tricinctum CECT 1036 was obtained

by the Spanish Type Culture Collection (CECT Valencia, Spain), in

sterile 18% glycerol. A solid medium of wheat was used for the

production of the ENs. Briefly, one hundred grams of solid wheat

was weighted in a 2 L Erlenmeyer flask, and a suspension of 106

conidia mL of Fusarium tricinctum CECT1036 growth during three

days in a Potato Dextrose Broth (PDB) preinoculum, was used for

inoculation of the medium. Conidial concentration was measured

by optical density at 600 nm and adjusted to 106 conidia mL in the

Material, métodos, resultados y discusión

! 104

Erlenmeyer flasks (Kelly et al., 2006). The fermentations were

carried out at 25ºC on an orbital shaker (IKA Ks 260 basic,

Stanfen, Germany) in batch culture during 30 days. After that, the

wheat was grounded to obtain a finely flour used for the ENs

reduction experiments in the food system.

2.2.3. ENs extraction from fermented mediums

The fermentation tubes were centrifuged at 4000 rpm

(Centrifuge 5810R, Eppendorf, Germany) during 5 min at 4ºC in

order to separate the fermented medium from the cells. ENs

contained in fermented mediums were extracted as follows

(Jestoi, 2008). Five mL of fermented MRS were introduced in a 20

mL plastic tube, and extracted three times with 5 mL of ethyl

acetate using a vortex VWR international (Barcelona, Spain)

during 1 min. After that the mixtures were centrifuged (Centrifuge

5810R, Eppendorf, Germany) at 4000 rpm for 10 min at 4ºC. The

organic phases were completely evaporated by a rotary

evaporator (Buchi, Switzerland) operating at 30ºC and 30 mbar

pressure, resuspended in 1 mL of methanol, filtered with 0.22 µM

filters (Pheomenex, Madrid, Spain) and analyzed by LC-MS/MS

(Meca et al., 2010d).

Material, métodos, resultados y discusión

! 105

2.2.4. ENs degradation in food system composed by wheat flour

Two grams of wheat flour naturally contaminated by ENs

through a microbial fermentation with a strain of Fusarium

tricinctum CECT 1036 were introduced in 14 mL plastic tubes.

Two milliliters of sterile water containing 1x108 of microbial cells

were introduced. The tubes were incubated during 2 days at

room temperature.

2.2.5. ENs extraction by wheat flour

ENs were extracted according to the procedures described

by Jestoi (2008). Briefly, 2 g of wheat flour samples were

extracted with 20 mL methanol using an Ultra Ika T18 basic

Ultraturrax (Staufen, Germany) for 3 min. The mixture was

centrifuged at 4500g for 5 min and then the supernatant was

evaporated to dryness with a Büchi Rotavapor R-200 (Postfach,

Switzerland). The residue was re-dissolved in 2 mL of extraction

solvent. The extract was cleaned up using a Strata C18-E

cartridge (6 mL, 1 g). The cartridge was first activated with 2x2 mL

of methanol and conditioned with 2x2 mL of water before the

extract was loaded. The cartridge was then washed with 2x2 mL

of water at a flow rate of 0.5 mL/min till all water was out. ENs

Material, métodos, resultados y discusión

! 106

were eluted using 1 mL of methanol. Both the methanol eluate

and the water washing were filtered through 0.22 µM nylon filters

purchased from AnálisisVínicos (Tomelloso, Spain) before LC and

LC-MS analyses.

2.2.6. LC-MS/MS analysis of ENs

The method of analysis by MS/MS was optimized according

to the guidelines established by the European Commission

(Commission Decision, 2002), which establishes that a substance

can be identified using LC-MS/MS in MRM mode by at least two

transitions. The most abundant product ions were selected for

quantification and the second one for confirmation.

The optimization of MS/MS conditions was performed by

direct injection of individual standards at 100 μg/mL in “full

SCAN”, both positive and negative ESI mode. The most abundant

mass to-charge ratio (m/z) was selected for each compound of

interest. The mycotoxins exhibited precursor ions and product

ions with reasonably high signal intensities in positive ESI mode

(ESI+), being found protonated molecules [M+H]+, sodium adduct

ions [M+Na]+ and potassium adduct ions [M+K]+. [M+Na]+ and

Material, métodos, resultados y discusión

! 107

[M+K]+ adducts were removed with the addition of ammonium

formate at a concentration of 10 mM to the mobile phase and

with the increase cone voltage at 40 eV.

A Quattro LC triple quadrupole mass spectrometer from

Micromass (Manchester, UK), equipped with an LC Alliance 2695

system (Waters, Milford, MA) consisting of an autosampler, a

quaternary pump, and a pneumatically assisted electrospray

probe, a Z-spray interface and Mass Lynx NT software Version 4.1,

were used for the MS/MS analyses. The separation was achieved

by a Gemini-NX C18 (150 mm x 4.6 mm I.D., 5 μm particle size)

analytical column supplied by Phenomenex (Barcelona, Spain),

preceded by a guard column C18 (4 mm x 2 mm I.D.). The

analytical separation for LC-MS/MS was performed using gradient

elution with 90% of methanol (with 10 mM of formate ammonium)

as mobile phase A, and 10% of acetonitrile as mobile phase B,

increasing linearly to 50% B for 10 min; then, decreasing linearly

to 40% B for 3 min, and then gradually up to 10% B for 5 min.

Finally, initial conditions were maintained for 3 min. Flow rate was

maintained at 0.2 ml min. Analysis was performed in positive ion

mode (ESI+). The ESI source values were as follows: capillary

Material, métodos, resultados y discusión

! 108

voltage, 3.50 kV; source temperature, 100 ºC; desolvation

temperature, 300 ºC; cone gas 50l/h; desolvation gas (nitrogen

99.99% purity) flow, 800 l/h.

The analyzer settings were as follows: resolution 12.0 (unit

resolution) for the first and third quadrupoles; ion energy, 0.5;

entrance and exit energies, -3 and 1; multiplier, 650; collision gas

(argon 99.99% purity) pressure, 3.83 x 10-3 mbar; interchannel

delay, 0.02 s; total scan time, 1.0s; dwell time 0.1 ms. The mass

spectrometer was operated in multiple reaction monitoring

(MRM) mode. All time measurements were carried out in

triplicate. The MRM optimized parameters cone voltages and

collision energies were: 35 eV, 40V for ENs. The precursor and

product-ions selected were 681.9 [M+H]+, 228.2 and 210.0 for

ENA; 667.9 [M+H]+, 228.2 and 210.0 for ENA1; 639.8 [M+H]+,

214.2 and 196.2 for ENB; 654.9 [M+H]+, 214.2 and 196.2 for

ENB1.

2.2.7. Method performance

Method validation was carried out according to the

guidelines established by the European Commission (Commission

Material, métodos, resultados y discusión

! 109

Decision, 2002; Commission Regulation, 2006). The method

validation included the determination of linearity, limits of

detection (LODs), limits of quantification (LOQs), recoveries;

repeatability (intra-day precision) and reproducibility (inter day

precision).

In order to determine the linearity, calibration curves for

each studied mycotoxin were constructed from the standards

prepared in methanol and from the standards prepared in extract

of blank sample. All mycotoxins exhibited good linearity over the

working range (low concentration level at LOQ), and the

regression coefficient of calibration curves was higher than 0.992.

The LODs and LOQs were estimated from an extract of a

blank sample, fortified with decreasing concentrations of the

analytes. For 6 days additions were performed from three

different blank samples (n=18), to the estimated concentrations

for each mycotoxin. The LODs and LOQs were calculated using

the criterion of S/N ≥ 3 and S/N ≥ 10 for LOD and LOQ,

respectively. LODs for ENA, ENA1, ENB and ENB1 were 0.15,

Material, métodos, resultados y discusión

! 110

0.08, 0.15 and 0.15 μg/ kg. LOQs for ENA, ENA1, ENB and ENB1

were 0.5, 0.25, 0.5 and 0.5 μg /kg.

The recoveries, intra-day precision and inter-day precision

were evaluated by spiking different levels of standard analyte to

samples at two spiked levels (LOQ and 100 times LOQ). Relative

standard deviation (RSD) values ranged between 4 and 11% for

the intra-day precision, and between 5 and 15% for the inter-day

precision. Recovery ranges for the low spiked level (LOQ) and the

high spiked level (100 x LOQ) were 85-110% and 86-112%,

respectively. These values agree with EU criteria (European

Commission Decision, 2002).

2.2.8. Determination of the ENs degradation products with LC-

MS-LIT

The separation of ENs was achieved by LC Agilent 1100

(Agilent Technologies, Santa Clara, California) coupled to a mass

spectrometer, Applied Biosystems/MDS SCIEX Q TRAP TM linear

ion trap mass spectrometer (Concord, Ontario, Canada). A

Gemini (150 x 2.0 mm, 5 µm) Phenomenex (Torrance, California)

column was used. LC conditions were set up using a constant flow

Material, métodos, resultados y discusión

! 111

at 0.3 ml/min and acetonitrile/water (80:30, v/v with 0.1 % of

HCOOH) as mobile phases in isocratic condition were used. The

instrument was configured in the positive ion electrospray mode

using the following parameters: cone voltage 40 V, capillary

voltage 3.80 kV, source temperature 350ºC, desolvation

temperature 270ºC and collision gas energy 5 eV.

The analysis of the ENs degradation products employing

the technique of the liquid chromatography coupled to the ion

trap was carried out using the following procedure:

Characterization of the compound isolated with the modality of

ER scan, using the m/z range from 200 to 900 Da to obtain the

general spectra of the degradation compound. The utilization of

the mass spectrometry associated at the detection with the linear

ion trap, utilized in this modality permitted us to obtain a total

characterization of the compound isolated (Meca et al., 2012a).

2.3. Results and discussion

2.3.1. ENs degradation by acid lactic bacteria and Saccharomyces

strains in liquid medium.

Material, métodos, resultados y discusión

! 112

All the microbial strains tested showed a degradation

activities on the minor Fusarium mycotoxins ENs A, A1, B and B1 in

MRS and SB culture medium as is possible to observe in table 5.

In figure 5 are evidenced the LC-MS/MS chromatograms of the

ENs present in growth medium after the fermentation with

Saccharomyces cerevisiae ISPA10 and also the MS spectra that

confirms the presence of the bioactive compounds studied in the

fermentation extract.

Figure 5. LC-MS/MS chromatograms and daughter ion spectra of the ENs A, A1, B, and B1 present in the sample fermented by the strain of Saccharomyces cerevisiae ISPA10.

Material, métodos, resultados y discusión

! 113

% of Reduction

Strains A A1 B B1

Bb.longum CECT4551 97.9±2.3 94.0±2.2 34.1±1.1 69.2±1.1

Bb.bifidum CECT870 98.3±2.6 95.0±2.3 54.2±1.5 76.3±1.5

Bb.breve CECT4839 95.1±2.1 86.9±3.1 5.2±2.5 40.3±2.1

Bb.Adolescentis CECT4839

99.2±3.1 96.8±3.3 77.8±1.6 86.2±2.0

Lb.rhamnosus CECT278 99.2±3.6 98.4±2.5 72.1±2.3 91.1±3.2

Lb.casei-casei CECT4180

97.8±3.8 89.8±3.6 36.6±3.3 73.1±2.3

Lb.ruminis CECT 4061 98.2±2.4 92.0±2.3 45.5±2.0 69.9±2.5

Lb.casei-casei CECT 277

96.7±2.6 91.4±2.1 38.7±2.6 67.8±2.3

S.thermofilus CECT 986 99.5±2.0 98.7±2.0 76.7±1.5 91.9±2.8

S.cerevisiae ISPA13757 97.7±3.6 97.8±3.0 97.6±1.9 97.0±3.5

S.cerevisiae ISPA13751 98.0±3.4 94.7±3.3 96.3±2.4 94.0±3.7

S.cerevisiae ISPA13754 94.6±2.0 94.3±3.5 87.5±4.3 87.0±1.8

S.cerevisiae ISPA13758 94.3±2.1 85.7±2.3 93.4±2.3 81.0±2.9

S.cerevisiae ISPA13755 96,7±3.5 94.5±3.4 96.2±2.6 94.9±2.2

S.cerevisiae ISPA13749 93.7±3.4 92.6±3.3 77.9±3.6 81.9±3.6

Material, métodos, resultados y discusión

! 114

S.cerevisiae ISPA13756 98.4±3.5 98.4±2.3 97.7±3.3 97.5±3.1

S.cerevisae ISPA13750 93.2±1.2 90.5±2.5 83.2±3.1 82.9±1.3

S.cerevisiae ISPA13752 88.5±2.3 92.9±2.5 83.8±2.6 82.7±2.5

S.cerevisiae ISPA2 94.8±2.0 95.3±3.1 92.1±1.6 93.9±2.9

S.cerevisiae ISPA4 78.0±3.6 80.9±3.1 79.1±1.4 83.7±3.0

S.cerevisiae ISPA5 88.0±3.2 90.7±1.5 96.5±2.3 88.5±2.2

S.cerevisiae ISPA6 90.8±3.4 91.9±2.2 87.9±3.3 84.9±1.6

S.cerevisiae ISPA7 95.8±3.1 96.7±2.9 39.5±2.4 92.5±1.8

S.cerevisiae ISPA8 86.8±3.2 87.9±2.5 94.7±2.5 86.9±3.1

S.cerevisiae ISPA9 77.7±2.5 80.4±2.2 86.4±2.4 78.8±3.3

S.cerevisiae ISPA10 50.5±2.2 64.9±3.1 61.6±2.2 45.3±2.5

S.cerevisiae ISPA11 85.9±2.6 93.2±3.5 91.1±2.5 87.3±3.6

S.cerevisae ISPA12 62.2±2.2 81.2±2.3 78.0±1.6 80.5±2.4

S. cerevisae ISPA13 80.9±2.3 83.7±3.6 82.4±1.0 73.5±1.5

S.cerevisiae ISPA14 73.5±2.1 67.1±3.5 86.9±2.2 57.3±1.6

S.cerevisae ISPA15 90.7±2.3 84.5±3.3 93.3±1.3 94.1±2.2

Table 5. Degradation of the ENs A, A1, B and B1 produced by acid lactic bacteria and Saccharomyces strains in SB and MRSB medium at 48h of incubation.

Material, métodos, resultados y discusión

! 115

As is possible to observe in table 5, the mean percentage

of degradation of the EN A was 90.1±2.2%. The highest

degradation data was evidenced by Streptococcus thermofilus

CECT986 with 99.5±2.0% whereas the lowest was detected in the

sample fermented by Saccharomyces cerevisiae ISPA10 with

50.5±2.2%. The mean percentage of reduction considering the

EN A1 was 89.8±2.3%, 1.1 fold lowest than the data evidenced for

the EN A. The highest reduction in that series of experiments was

performed by Streptococcus thermofilus CECT986 with

98.7±2.2%, whereas the lowest reduction was obtained by

Saccharomyces cerevisiae ISPA1O with 64.9±3.1%. The ENs of

the B group presented a mean degradation data lower than the

values evidenced for the ENs A and A1. In particular the mean

degradation value evidenced for the EN B was of 75.0±2.0%, 1.2

folds lowest than the data evidenced for the other two ENs. The

highest reduction was evidenced in the medium fermented by

Saccharomyces cerevisiae ISPA13756 with 97.7±3.3% whereas the

lowest by the probiotic strain Bifidobacterium breve CECT4839

with 5.2±2.5%, that can be considered the lowest degradation

data evidenced in this study. The EN B1 evidenced a reduction

Material, métodos, resultados y discusión

! 116

rate similar to the values reported for the EN B, and in particular

the mean degradation evidenced was of 81.0±2.4%, similar to the

mean data evidenced for the EN B. The highest and lowest

degradation activities were performed by Saccharomyces

cerevisiae ISPA13756 and Bifidobacterium breve CECT4839 with

97.5±3.1 and 40.3±2.1 respectively.

2.3.2. ENs degradation by probiotic strains in wheat flour

The nine strains that showed the highest activity on the

degradation of the mycotoxins ENs in liquid medium were

employed for the degradation of the ENs presents in a food

system composed by wheat flour naturally contaminated with the

ENs A, A1, B, B1 through microbial fermentation by a strain of

Fusarium tricinctum CECT1036. The concentrations of the

bioactive compounds presents in the wheat flour before the

degradation experiments with the probiotic strains were

112.4±3.6 mg/Kg of EN A, 487.7±2.5 mg/Kg of EN A1, 575.9±5.4

mg/Kg of EN B and 805.0±6.3 mg/Kg EN B1. As evidenced in

figure 6, the mean reduction of EN A produced by the strains

employed was 22.5±1.6%. The highest reduction of this bioactive

compound was produced by Lactobacilus rhamnosus 278T with a

Material, métodos, resultados y discusión

! 117

49.2±3.6%, whereas the lowest degradation activity was detected

in the fermentation carried out by Saccharomyces cerevisiae

13757 with 3.4±0.3%. The mean reduction of EN A1 evidenced in

the fermentations performed in the food system was 17.0±2.3%.

The highest and the lowest degradation activity of EN A1 were

evidenced by the strains of Lactobacillus rhamnosus 278T and

Saccharomyces cerevisiae 13757 with 40.6±3.9% and 2.0±0.3%

respectively. EN B presented a mean degradation data of

14.6±2.0%. The highest reduction data of EN B was evidenced by

Streptococcus thermofilus 986 with a decrease of 32.4±4.0%,

whereas Saccharomyces cerevisiae 13751 presented the lowest

degradation data with 2.3±0.3%. EN B1 degradation data were

comparable with the values produced for the EN B. In particular,

the mean degradation evidenced for this bioactive compound

was of 12.6±1.0%, Lactobacillus rhamnosus 278T evidenced the

highest EN B1 reduction data with 28.9±3.2%, whereas

Saccharomyces cerevisiae 13751 presented the lowest reduction

with 1.7±0.4%.

Material, métodos, resultados y discusión

! 118

Figure 6. Degradation of the ENs A, A1, B and B1 produced by lactic acid bacteria and Saccharomyces strains in wheat flour at room temperature and 48h incubation.

Comparing the ENs degradation rate obtained in the food

system, with the reduction values obtained in the liquid medium,

the reduction evidenced in wheat flour is generically lower than

the reduction evidenced in the model system. This phenomenon

can be related to the composition of the samples and also to the

physical constitution of the mediums. The fermentations on solid

samples are much more complex respect to the degradations in

liquid medium due to the matrix effect generated by the solid

0!10!20!30!40!50!60!

ENs r

educ

tion

%

ENA

ENA1

ENB

ENB1

Material, métodos, resultados y discusión

! 119

samples and also to the different water activity (aw) data of the

liquid and solid samples.

The degradation activity of Fusarium mycotoxins by

bacteria has been studied by many authors. In particular

Poppenberger et al. (2003) reported the isolation and

characterization of a gene from Arabidopsis thaliana encoding a

UDP-glycosyltransferase that is able to detoxify DON. The

enzyme, previously assigned the identifier UGT73C5, catalyzes

the transfer of glucose from UDP-glucose to the hydroxyl group

at carbon 3 of deoxynivalenol. This deoxynivalenol-

glucosyltransferase (DOGT1) was also found to detoxify the

acetylated derivative 15-Ac-DON, whereas no protective activity

was observed against the structurally similar NIV. The degradation

of 12 trichothecenes mycotoxins by chicken intestinal microbes

was monitored by Young et al. (2007). The two principally

degradation pathways evidenced were: deacylation and

deepoxydation. The authors evidenced also that the

deepoxydation was the prevalent reaction in HT-2 toxin and T-2

triol, whereas T-2 toxin showed only deacetylation. The percent of

reduction was variable from 40 to 95 %. Guan et al. (2009)

Material, métodos, resultados y discusión

! 120

evaluated the degradation of the Fusarium mycotoxin DON,

employing microorganisms of fish digesta. The authors evidenced

that the microbial pathway related to the fish Ameiurusnebulosus,

transformed DON to de-DON at 15 °C in full medium after 96 h

incubation.

The interaction between the minor Fusarium mycotoxins

BEA and thirteen bacterial strains characteristic of the

gastrointestinal tract was studied by Meca et al. (2012a). Levels of

BEA in the fermentation liquid, on the cell walls and on the

internal part of the cells were determined using liquid

chromatography coupled to the mass spectrometry detector (LC-

MS/MS). Results showed that the bacteria reduced the

concentration of the BEA present in the medium, part of the

mycotoxin was adsorbed by cell wall and part internalized by the

bacteria. All the bacteria analyzed in this study showed a

significant BEA reduction during the fermentation process, in

particular the mean diminution resulted variable from 66 to the

83%.

Material, métodos, resultados y discusión

! 121

Considering that the mycotoxins BEA and ENs are

characterized by similar chemical structures (cyclic compounds

composed by three aminoacids and three HyLv units), this study

confirms that these compounds can be degraded by bacteria of

different species.

2.3.3. LC-MS-LIT identification of the ENs degradation products

The samples positive to the ENs degradation were also

injected in the LC-MS-LIT in the modality enhanced resolution

(ER) scan (m/z=200-900) to determine the ENs degradation

products produced through the microbial fermentations. In the

figure 7 is evidenced the LC-MS-LIT chromatogram of the ENs

presents in the fermentation extract produced by the strain of

Saccharomyces cerevisiae ISPA10.

Material, métodos, resultados y discusión

! 122

Figure 7. LC-MS-LIT chromatogram of the ENs and related degradation products presents in the in the growth medium fermented by the strain Saccharomyces cerevisiae ISPA10

In the chromatograms in possible to observe the presence

of the ENs A, A1, B and B1 with the retention time of 16.7, 19.4,

22.9 and 27.5 min, and also some other peaks corresponding to

the ENs degradation products. In particular close to the peak of

TIC of +EMS: from Sample 19 (31) of pepe.wiff (Turbo Spray), Smoothed, Smoothed, Smoothed, Smoothed, Smoothed Max. 8.0e8 cps.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50Time, min

0.0

5.0e7

1.0e8

1.5e8

2.0e8

2.5e8

3.0e8

3.5e8

4.0e8

4.5e8

5.0e8

5.5e8

6.0e8

6.5e8

7.0e8

7.5e8

8.0e8

Inte

ns

ity

, c

ps

16.76

19.48

22.935.45

3.87 6.29

13.82

27.25

3.52

35.80

25.2711.132.47 7.381.65 32.9732.34 48.0830.50 40.6237.13 47.4340.06 43.65

EN B EN B1

EN A1

EN A

EN B degradation product

EN B1 degradation product

EN A1 degradation product

Material, métodos, resultados y discusión

! 123

the EN B and with the retention time of 13.8 minutes is possible

to evidence the degradation product of the EN B. The formation

of this degradation product is confirmed by the fragment of this

new compound presents in the ER mass spectra showed in the

figure 8.a)

+EMS: 13.695 min from Sample 14 (4) of pepe.wiff (Turbo Spray) Max. 1.9e7 cps.

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900m/z, Da

0.0

1.0e6

2.0e6

3.0e6

4.0e6

5.0e6

6.0e6

7.0e6

8.0e6

9.0e6

1.0e7

1.1e7

1.2e7

1.3e7

1.4e7

1.5e7

1.6e7

1.7e7

1.8e7

1.9e7

Inte

nsi

ty,

cps

489.1

445.2

533.2573.1

540.4 679.2447.2 505.1 661.2427.3256.2 311.3 457.1 562.3401.3 603.2264.4

(EN B+Na)+ (EN B+K)+

(EN B-HyLv)+

(540.4-2H2O-CH3)+

(679.2-HyLv-Val)+

a)

Material, métodos, resultados y discusión

! 124

Figure 8. MS-LIT spectra obtained in ER scan mode (m/z 200-900) of the degradation products of the a) EN B and b) EN B1.

In the mass spectra are evidenced two fragments that

testify the origin of this product by the ENs B that are the EN B

sodium and potassium adducts (m/z=661.2 and 679.2), and also

three important diagnostic fragment like the m/z=540.4, 489.1

and 445.2. The fragment with an m/z of 540.4 corresponds to the

molecular weight (MW) of the EN B degradation product and is

represented by the EN B with the loss of a structural component

+EMS: 18.567 min from Sample 19 (31) of pepe.wiff (Turbo Spray) Max. 5.6e6 cps.

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900m/z, Da

0.0

2.0e5

4.0e5

6.0e5

8.0e5

1.0e6

1.2e6

1.4e6

1.6e6

1.8e6

2.0e6

2.2e6

2.4e6

2.6e6

2.8e6

3.0e6

3.2e6

3.4e6

3.6e6

3.8e6

4.0e6

4.2e6

4.4e6

4.6e6

4.8e6

5.0e6

5.2e6

5.4e65.6e6

Inte

ns

ity

, c

ps

473.2

517.2

573.0

676.3561.2

443.2

531.2487.2457.2 619.2605.2545.3508.4413.2 645.1532.2 662.4494.3264.3210.2 620.3427.1282.2 406.3 541.1311.3 591.3335.0 707.4250.3

(EN B1+Na)+

(EN B1+K-Val)+

(573.0-H2O-2CH3)+

(573.0-HyLv+H2O)+ b)

Material, métodos, resultados y discusión

! 125

represented by the hydroxyvaleric acid (HyLv). The presence of

this new degradation product is also confirmed by the fragment

with the pseudomolecular ion of 445.2 (m/z) that represents the

potassium adduct of the EN B with the loss of two structural

component of the ENs represented by the HyLv and also by a

valine (Val) unit. The fragment with an m/z of 489.1 represents the

EN B degradation product with the loss of two molecules of water

and also of a methyl group.

In the figure 8.b) is evidenced the MS-LIT mass spectra of

the EN B1 degradation product. This compound is composed by

the EN B1 potassium adduct with the loss of a structural

component of this compound as the Val unit as evidenced by the

fragment with am/z of 573.0. The formation of this compound is

also confirmed by the fragment with am/z of 473.2 that

represents the fragment with m/z of 573.0 with the loss of

another important structural component characteristic of the ENs

structure and represented by the HyLv. The origin of this

degradation product from the EN B1 is confirmed by the presence

of the fragment with m/z of 676.3 that represent the EN B1

sodium adduct. In the figure 5 is evidenced the MS-LIT spectra of

Material, métodos, resultados y discusión

! 126

the degradation product of the EN A1. In the spectra are

evidenced several diagnostic fragments that testify the formation

of this product like the signals with m/z of 573.1, 457.2 and 443.3

respectively. In particular the fragment with m/z of 573.1

represents the EN A1 potassium adduct with the loss of a

structural component of the ENs like the isoleucine (Ile). The

formation of this EN A1 degradation product is confirmed by

presence of the signal with m/z of 457.2 that represents the

fragment with m/z of 573.1 with a loss of HyLv, and also by the

fragment with m/z 443.3 derivated from the fragment with m/z of

573.1, with the loss of a second Ile unit. The presence of these

three ENs degradation products was evidenced in all the

fermentations carried out with the microbial strains tested.

Material, métodos, resultados y discusión

! 127

Figure 9. Mean data of the ENs A1, B and B1 degradation products a) formed in the liquid medium and b) in the food system composed by wheat flour contaminated by ENs, through a fermentation operated by probiotic microorganisms at 48h incubation.

The ENs reduction products identified were quantified

using the calibration curve of the corresponding EN at 48h

incubation in liquid medium and in food product. In particular as

Material, métodos, resultados y discusión

! 128

evidenced in figure 9.a), in liquid medium, the mean data of the

ENs degradation products detected was of 3.8±0.5 mg/L. The

concentration of EN A1 degradation product was of 3.9±0.4 mg/L

(77.4% of the total EN A1) whereas the concentration of ENs B

and B1 newly formed products detected was of 4.6±0.9 (92.0% of

the total EN B) and 3.1±0.6 (62% of the total EN B1) mg/L

respectively. The degradation products of the bioactive

compounds ENs were also identified in the experiments carried

out with the food system composed by wheat flours

contaminated with ENs and treated with the probiotic

microorganisms. In particular as evidenced in figure 9.b), the

mean data of newly formed compounds evidenced was of

54.0±3.1 mg/Kg. EN A1 degradation product evidenced a

concentration of 38.4±3.5 (7.8% of the total EN A1) whereas ENs

B and B1 reduction compounds evidenced data of 50.2±2.9 and

73.4±3.6 mg/Kg respectively (8.7 and 9.11 of the total EN B and

B1). The concentration of the degradation products detected in

food system compared with the quantity detected in the liquid

medium was 10 fold lowest. This phenomenon can be related

with the composition of the solid matrix used for the experiments

in food system. In fermentation on solid medium, the

Material, métodos, resultados y discusión

! 129

fermentation of the macro and micronutrients is generally slower

compared with the fermentation on liquid mediums due to the

different concentration of water, which permits a more rapid

fermentation of the components, including the bioactive

compounds ENs, in liquid medium.

Material, métodos, resultados y discusión

! 130

3. Detoxification of the bioactive compounds enniatins

A, A1, B, B1 employing different strains of Bacil lus

subtil is

3.1. Introduction

Bacillus subtilis is a Gram positive, spore former bacteria

considered a soil microorganism that can also inhabit the

gastrointestinal tract of animals and insects. The robustness of the

spore formers enables them to survive, transit through the

stomach, after which they germinate, proliferate and then re-

sporulate before the excretion in faeces. Bacillus subtilis strains

are isolated in ileum biopsies and human faecal samples, so they

are adapted to the human gastro intestinal tract and should be

considered as gut commensals (Hong et al., 2009).

Bacterial spore formers of the genus Bacillus are widely

used as probiotic preparations that can benefit the host

improving intestinal balance and health. Their use as probiotic

dietary supplements is expanding rapidly, since more than 15

Bacillus probiotics products are authorized for human

consumption (Hong et al., 2005). Spores being heat-stable have a

Material, métodos, resultados y discusión

! 131

number of advantages over other probiotics non-spore formers

such as Lactobacillus spp., that the product can be stored at room

temperature in a desiccated form without any deleterious effect

on viability. A second advantage is that the spore is capable of

surviving the low pH of the gastric barrier (Cutting et al., 2011).

The mechanisms of their probiotic effect are mainly

immune stimulation, synthesis of antimicrobials, but also its

hability to detoxify mycotoxins is remarkable. Bacillus subtilis has

demonstrated capability to reduce in vitro the amount of AFB1

and DON (Cheng et al., 2011; Farzaneh et al, 2012; Gao et al.,

2011). Fan et al., (2013) evidenced the hability of Bacillus subtilis

ANSB060 to reduce the concentration of aflatoxin residues in

livers of chicken fed naturally with moldy peanut meal.

In the scientific literature there is not any report on the

reduction of the bioactive compounds ENs by Bacillus subtilis.

Considering the lack of data related to the biological degradation

of the minor Fusarium mycotoxins ENs by Bacillus strains, the

aims of this study were: a) to evaluate the reduction in vitro of the

ENs employing different Bacillus subtilis strains and b) to

Material, métodos, resultados y discusión

! 132

investigate the degradation products of ENs employing the

technique of the liquid chromatography coupled to the mass

spectrometry linear ion trap (LC-MS-LIT).

3.2. Material and methods

3.2.1. Chemicals

A stock standard solution of ENs A, A1, B, B1 (98% of purity)

(Sigma-Aldrich, St. Luis, USA) were prepared by dissolving 1 mg

of standard in 1 mL of pure methanol. This stock solution was

then diluted with methanol in order to obtain the appropriated

work solutions with concentrations of 1, 10 and 100 mg/L. All ENs

solutions were stored in darkness at 4ºC until the LC-MS/MS

analysis. Acetonitrile, methanol, water, ethyl acetate, sodium

chloride (all of LC grade) and acetic acid were purchased from

Merck (Whitehouse Station, NJ, USA).

3.2.2. Strains and methodology

The study was carried out using six strains of Bacillus

subtilis obtained by the Spanish Type Culture Collection (CECT

Valencia, Spain), in sterile 18% glycerol. For longer survival and

higher quantitative retrieval of the cultures, they were stored at –

Material, métodos, resultados y discusión

! 133

80ºC. When needed, recovery of strains was undertaken by two

consecutive subcultures in appropriate media prior to use. The

microbes were cultured in 15mL sterile plastic centrifuge tubes

utilizing as growth medium 10 mL of Nutrient Broth (NB, Oxoid

Madrid, Spain) and incubated at 37ºC in aerobic atmosphere

during 48h. After that each bacterial suspension at concentrations

of 108 CFU/ml were added to a fresh 10 mL of NB contaminated

with 5mg/L of the mycotoxins ENs A, A1, B, and B1, incubated at

37ºC in during 48h. The mediums were analyzed in order to

determinate the residual concentration of ENs present in the

growth medium and also to identify the possible degradation

products.

3.2.3. ENs and degradation products extraction from fermented

mediums

The fermentation tubes were centrifuged at 4000 rpm

(Centrifuge 5810R, Eppendorf, Germany) during 5 min at 4ºC in

order to separate the fermented medium from the cells. ENs

contained in fermented medium were extracted as follows (Jestoi

2008): five mL of fermented NB were introduced in a 20 mL

plastic tube, and extracted three times with 5 mL of ethyl acetate

Material, métodos, resultados y discusión

! 134

using a vortex VWR international (Barcelona, Spain) during 1 min.

After that the mixtures were centrifuged (Centrifuge 5810R,

Eppendorf, Germany) at 4000 rpm for 10 min at 4ºC.The organic

phases were completely evaporated by a rotary evaporator

(Buchi, Switzerland) operating at 30ºC and 30 mbar pressure,

resuspended in 1 mL of methanol, filtered with 0.22 µM filters

(Pheomenex, Madrid, Spain) and analyzed by LC-MS/MS or by

LC-MS-LIT.

3.2.4. LC-MS/MS analysis of ENs

The optimization of MS/MS conditions was performed by

direct injection of individual standards at 100 μg/mL in “full

SCAN”,. The most abundant mass to-charge ratio (m/z) was

selected for each compound of interest. The mycotoxins

exhibited precursor ions and product ions with reasonably high

signal intensities in positive ESI mode (ESI+), being found

protonated molecules [M+H]+, sodium adduct ions [M+Na]+ and

potassium adduct ions [M+K]+. A Quattro LC triple quadrupole

mass spectrometer from Micromass (Manchester, UK), equipped

with an LC Alliance 2695 system (Waters, Milford, MA) consisting

of an autosampler, a quaternary pump, and a pneumatically

Material, métodos, resultados y discusión

! 135

assisted electrospray probe, a Z-spray interface and Mass Lynx NT

software Version 4.1, were used for the MS/MS analyses. The

separation was achieved by a Gemini-NX C18 (150 mm x 4.6 mm

I.D., 5 μm particle size) analytical column supplied by

Phenomenex (Barcelona, Spain), preceded by a guard column C18

(4 mm x 2 mm I.D.). The analytical separation for LC-MS/MS was

performed using gradient elution with 90% of methanol (with

5mM of formate ammonium) as mobile phase A, and 10% of

acetonitrile as mobile phase B, increasing linearly to 50% B for 10

min; then, decreasing linearly to 40% B for 3 min, and then

gradually up to 10% B for 5 min. Finally, initial conditions were

maintained for 3 min. Flow rate was maintained at 0.2 ml/min. The

ESI source values were as follows: capillary voltage, 3.50 kV;

source temperature, 100ºC; desolvation temperature, 300ºC;

cone gas 50l/h; desolvation gas (nitrogen 99.95% purity) flow, 800

l/h.

The analyser settings were as follows: resolution 12.0 (unit

resolution) for the first and third quadrupoles; ion energy, 0.5;

entrance and exit energies, -3 and 1; multiplier, 650; collision gas

(argon 99.99% purity) pressure, 3.83 x 10-3 mbar; interchanel

Material, métodos, resultados y discusión

! 136

delay, 0.02 s; total scan time, 1.0s; dwell time 0.1 ms. The mass

spectrometer was operated in Multiple Reaction Monitoring

(MRM) mode. All time measurements were carried out in

triplicate. The MRM optimized parameters cone voltages and

collision energies were: 35 Ev and 40V, respectively. The

precursor and product-ions selected were 681.9 [M+H]+, 228.2

and 210.0 for ENA; 667.9 [M+H]+, 228.2 and 210.0 for ENA1;

639.8 [M+H]+, 214.2 and 196.2 for ENB; 654.9 [M+H]+, 214.2 and

196.2 for ENB1. The most abundant product ions were selected

for quantification and the second one for confirmation.

3.2.5 Method performance

Method validation was carried out according to the

guidelines established by the European Commission (Commission

Decision, 2002; Commission Regulation, 2006). The method

validation included the determination of linearity, limits of LODs,

LOQs, recoveries; repeatability (intra-day precision) and

reproducibility (inter day precision). In order to determine the

linearity, calibration curves for each studied mycotoxin were

constructed from the standards prepared in methanol and from

the standards prepared in extract of blank sample. All mycotoxins

Material, métodos, resultados y discusión

! 137

exhibited good linearity over the working range, and the

regression coefficient of calibration curves was higher than 0.992.

The LODs and LOQs were estimated from an extract of a blank

sample, fortified with decreasing concentrations of the analytes.

For 6 days additions were performed from three different blank

samples (n=18), to the estimated concentrations for each

mycotoxin. The LODs and LOQs were calculated using the

criterion of S/N ≥ 3 and S/N ≥ 10 for LOD and LOQ, respectively.

LODs for ENA, ENA1, ENB and ENB1 were 0.15, 0.08, 0.15 and

0.15 μg/ kg, respectively. LOQs for ENA, ENA1, ENB and ENB1

were 0.5, 0.25, 0.5 and 0.5 μg/kg respectively. The recoveries,

intra-day precision and inter-day precision were evaluated by

spiking different levels of standard analyte to samples at two

spiked levels (LOQ and 100 times LOQ). Recovery ranges for the

low spiked level (LOQ) and the high spiked level (100 x LOQ)

were 85-110% and 86-112%, respectively. RSD values ranged

between 4 and 11% for the intra-day precision, and between 5

and 15% for the inter-day precision. These values agree with EU

criteria (Commission Decision, 2002).

Material, métodos, resultados y discusión

! 138

3.2.6. Determination of the ENs degradation products with LC-

MS-LIT

The separation of ENs was achieved by LC Agilent 1100

(Agilent Technologies, Santa Clara, California) coupled to a mass

spectrometer, Applied Biosystems/MDS SCIEX Q TRAP TM linear

ion trap mass spectrometer (Concord, Ontario, Canada).A Gemini

(150 x 2.0 mm, 5 µm) Phenomenex (Torrance, California) column

was used. LC conditions were set up using a constant flow at 0.3

ml/min and acetonitrile/water (80:30, v/v with 0.1 % of HCOOH)

as mobile phases in isocratic condition were used. The instrument

was configured in the positive ion electrospray mode using the

following parameters: cone voltage 40 V, capillary voltage 3.80

kV, source temperature 350ºC, desolvation temperature 270ºC

and collision gas energy 5 eV. The analyses of the ENs

degradation products employing the technique of the liquid

chromatography coupled to the ion trap was carried out using the

following procedure:

(1) Characterization of the compound isolated with the modality

of ER scan, using the m/z range from 200 to 900 Da to obtain the

general spectra of the degradation compound;

Material, métodos, resultados y discusión

! 139

(2) Characterization of the fragments obtained in the ER scan with

the modality EPI scan to obtain a MS2 scan of a fragment of the

degradation product.

The utilization of the mass spectrometry associated at the

detection with the linear ion trap, utilized in these two modalities

permitted us to obtain a total characterization of the compound

isolated (Meca et al., 2012a).

3.3 Results and discussions

3.3.1 ENs degradation by Bacillus subtilis strains in NB medium

All the Bacillus subtilis strains showed a degradation

activity on the minor Fusarium mycotoxins ENs A, A1, B and B1 in

NB medium as is possible to observe in the data (each EN

degradation experiment was repeated five times) shown in table

6. In figure 10 is evidenced the LC-MS/MS chromatograms of the

ENs present in growth mediums after the fermentation with

Bacillus subtilis CECT4522.

Material, métodos, resultados y discusión

! 140

Figure 10. LC-MS/MS chromatogram of the ENs A, A1, B, B1, present in NB medium before fermentation by the strain Bacillus subtilis CECT 4522.

TIC of +EMS: from Sample 174 (EN A1 pH ac 15) of pepe.wiff (Turbo Spray), Smoothed, Smoothed Max. 4.9e8 cps.

5 10 15 20 25 30 35 40 45 50 55 60 65Time, min

0.0

2.0e7

4.0e7

6.0e7

8.0e7

1.0e8

1.2e8

1.4e8

1.6e8

1.8e8

2.0e8

2.2e8

2.4e8

2.6e8

2.8e8

3.0e8

3.2e8

3.4e8

3.6e8

3.8e8

4.0e8

4.2e8

4.4e8

4.6e8

4.8e8

Inte

ns

ity

, c

ps

24.20

20.503.92

22.54

26.923.42

17.496.060.21 7.87 8.96 13.9814.61 28.27 30.84 33.14 36.42 38.98 41.42 43.65 48.22 49.47 53.15 53.92 59.7856.20 61.66

EN B EN B1

EN A1

EN A

Material, métodos, resultados y discusión

! 141

% of Reduction Strains A A1 B B1 Bacillus subtilis CECT 35 77.7±1.2 67.1±3.1 64.7±3.6 79.7±3.2 Bacillus subtilis CECT 39 87.7±1.5 83.0±2.6 85.3±3.8 90.0±2.0 Bacillus subtilis CECT 371 96.2±2.2 94.2±2.9 96.7±4.1 96.7±1.9 Bacillus subtilis CECT 497 95.1±2.4 95.4±3.0 98.0±2.6 99.0±3.6 Bacillus subtilis CECT 498 90.6±2.6 86.4±2.9 86.2±2.9 92.8±3.3 Bacillus subtilis CECT 4522 81.7±2.4 72.9±3.5 76.5±3.3 84.0±2.7

Table 6. Degradation of the ENs A, A1, B, B1 in NB medium through a fermentation in submerged culture by different strains of Bacillus subtilis

The mean percentage of degradation of the EN A was

88.1%. The highest degradation data was evidenced by the strain

of Bacillus subtilis CECT371 with 96.2%, whereas the lowest was

detected in the sample fermented by Bacillus subtilis CECT35

Material, métodos, resultados y discusión

! 142

with 77.7%. The mean percentage of reduction considering the

EN A1 was 83.1%. The highest reduction was performed by the

strain of Bacillus subtilis CECT497 with 95.4%, whereas the lowest

reduction was obtained by Bacillus subtilis CECT 35 with 67.1%.

The ENs of the B group presented mean degradations data

similar to the values evidenced for the ENs A and A1. In particular

the mean degradation evidenced for the EN B was of 84.5%; the

highest reduction was evidenced in the medium fermented by the

strain of Bacillus subtilis CECT497 with 98.0, whereas the lowest

degradation was observed by Bacillus subtilis CECT35 with

64.7%, that can be considered the lowest degradation data

evidenced in this study. The EN B1 evidenced a mean reduction

data of 92.0 %, and the highest and lowest degradation activity

were performed by the strains Bacillus subtilis CECT497 and

Bacillus subtilis CECT35 with 99.0 and 79.7 respectively.

The hability of Bacillus subtilis to detoxify mycotoxins has

been studied by different authors. The Fusarium bioactive

compound DON is degraded by two Bacillus subtilis strains

according to the results of Cheng et al., (2011). Incubation at

37ºC, for 12 h, reduced DON >98% and 71.4%, respectively. The

Material, métodos, resultados y discusión

! 143

degradation presented a sharp decrease when the heating

temperature changed from 65–75ºC. These compounds could be

applied in the fermentation process of feedstuffs and fermented

food. Farzaneh et al., (2012) demonstrated that Bacillus subtilis

UTBSP1, a strain isolated in Iranian pistachio nuts, degrades AFB1

in different matrices. The reductions evidenced in NB culture,

pistachio nut, and cell free supernatant were 85.66%, 95%,

78,39% respectively. The results demostrate that the mechanism

for its degradation activity was likely due to the extracellular

nature of the produced enzyme in the media which could remove

AFB1. In vitro detoxification of AFs by Bacillus subtilis ANSB060

has been evidenced by Gao et al., (2011), with reductions of

81,5% and 80,7% for AFB1 and AFG1 respectively.

3.3.2. LC-MS-LIT characterization of the ENs degradation

products

The samples positive to the ENs degradation, by microbial

fermentation, were also injected in the LC-MS-LIT in the modality

ER scan (m/z=200-900). In figure 11 is shown the chromatogram

of the ENs presents in the fermentation extract produced by the

strain of Bacilllus subtilis CECT4522, where is possible to evidence

Material, métodos, resultados y discusión

! 144

the presence of the ENs A, A1, B and B1 with the retention time

(RT) of 16.4, 19.2, 22.4 and 26.5 min.

Figure 11. LC-MS-LIT chromatogram in ER mode of the ENs and its degradation products present in NB medium after the fermentation by of Bacillus subtilis CECT 4522.

In the chromatogram are also present some other peaks

corresponding to the ENs degradation products. In particular

close to the peak of the EN B and with the retention time of 14.9

minutes is possible to evidence the degradation product of this

compound, whereas the EN B1 degradation product presents a

RT of 18.0 min.

Material, métodos, resultados y discusión

! 145

The formation of the EN B degradation product is

confirmed by the fragments related to the structure of this new

compound presents in the ER mass spectra showed in the figure

12. In particular in the figure is shown the mass spectrum related

to the EN B degradation product identified as the potassium

adduct of the EN B, with the loss of a ENs structural component

as the HyLv.

Figure 12. LC-MS-LITmass spectra obtained in ER mode (MS1) of the degradation products of the EN B .

(EN B+K-HyLv)+

(EN B+K-Val-H2O)+

(EN B+K-Val-COOH)+

(EN B-2HyLv-H2O)+

Material, métodos, resultados y discusión

! 146

The formation of this degradation product is confirmed by

the fragment with a pseudomolecular weight of 561.2, and also

by other important diagnostic signals as the fragments with a m/z

of 547.1 and 503.2, that represent the potassium adduct of the

EN B with the loss of the amino acid valine (Val) associated also

with the loss of a molecule of water and of a carboxylic group,

respectively. The fragment with am/z of 459.2 confirms the

presence in the structure of the EN B degradation product of the

HyLv with the loss of two units. To obtain more information and

also to confirm the structure of the EN B degradation product

formed, the sample was also injected in the modality EPI scan to

obtain the MS2 scan of the degradation product isolated using as

fragmenting signal, the ion with a m/z of 561.2.

In figure 13.a), is possible to observe the LC-MS-LIT

chromatogram of the degradation product identified, and in

figure 13.b) the EPI-LIT spectrum with the presence of two

important fragments that confirm the structure of the reduction

product isolated that are the signals with m/z of 563.5 and 350.3.

These signals confirmed the presence in the degradation

Material, métodos, resultados y discusión

! 147

products structure of the two basic components of the ENs

structure as the Val and HyLv.

EN B degradation product

MS2

] a)

Material, métodos, resultados y discusión

! 148

Figure 13. a)LC-MS-LITchromatogram obtained in EPI mode (MS2) using as fragmenting ion the signal with a m/z of 561.2 of the EN B degradation product and b) EPI mass spectrum obtained in MS2 of the degradation products of the EN B.

In figure 14 is shown the ER-LIT spectrum related to the

degradation product of the EN B1, and identified as the

potassium adduct of the EN B1 with the loss of a structural

component as the HyLv.

b)

(EN B+K-Val)+

(2Val-HyLv)+

Material, métodos, resultados y discusión

! 149

Figure 14. LC-MS-LITmass spectra obtained in ER mode (MS1) of the degradation products of EN B1.

In the spectra there are some important diagnostic signals

that confirm the formation of this degradation product. The

fragment with a m/z of 573.1 represent the MW of the EN B1

degradation product, whereas the fragments with m/z of 517 and

473.2 represent the EN B with the loss of other important

structural components as the amino acid Val for the signals with

m/z of 517.2 and of the contemporary loss of the amino acids Ile

(EN B1+Na)+

(EN B1+K-HyLv)+

(EN B1+K-Ile)+

(EN B1-2Val)+

(EN B1+K-Ile-Val-H2O)+

Material, métodos, resultados y discusión

! 150

and Val for the signal with m/z of 473.2. To confirm the formation

of these new degradation product the ion corresponding to its

MW was fragmented in the modality EPI (MS2) scan with a mass

range variable from 200 to 540 Da. In figure 15.a) is evidenced

the EPI-LIT chromatogram of the EN B1 degradation product and

in figure 15.b) the MS2 spectrum that confirm, with the presence

of two diagnostic signals, the structure of the degradation

product detected.

MS2

[573.1] EN B1 degradation product

a)

Material, métodos, resultados y discusión

! 151

Figure 15. Chromatogram obtained in EPI mode (MS2) using as fragmenting ion the signal with a m/z of 573.10of the EN B1 degradation product a) and b) EPI mass spectrum b.

In particular, the fragment with a m/z of 415.4 was

identified as the EN B1 degradation products with the loss of

another HyLv unit, whereas the signal with a m/z of 309.2

represents the degradation compound formed with the loss of

the structural amino acids that compose the EN B1 as the Val and

Ile. The utilization of the LC-MS-LIT in the ER and EPI modalities

permitted to characterize completely the two degradation

products formed.

((EN B1+K-HyLv)-HyLv-H2O))+

((EN B1+K-HyLv)-Val-Ile-H2O))+

b)

Material, métodos, resultados y discusión

! 152

4. Antibacterial activity of the emerging Fusarium

mycotoxins enniatins A, A1, A2, B, B1, and B4 on

probiotic microorganisms

4.1. Introduction

ENs are known as antifungal compounds against

Aspergillus flavus, Aspergillus parasiticus, Aspergillus fumigatus,

Asepergillus ochraceus, Beauveria bassiana, Fusarium

verticilloides, Fusarium sporotrichioides, Fusarium tricinctum,

Fusarium poae, Fusarium oxysporum, Fusarium proliferatum,

Penicillium expansum and Trichoderma harzianum (Meca et al.,

2010c), as antiyeast against Candida albicans, Trichosporum

cutaneum and Cryptococcus neoformans (Firáková et al., 2008)

and as antibacterial agents against pathogenic bacteria Sebastia

(et al. 2011). It has also been reported that these mycotoxins have

insecticidal and phytototoxic properties (Grove and Pople, 1980).

Intestinal microflora has an essential role in nutrition, physiology

and prevention of the infection caused by pathogenic bacteria

and for this reason is important to assess the antimicrobial activity

of the bioactive compounds ENs naturally presents in several kind

of food, to understand if this antibacterial activity can alternate

Material, métodos, resultados y discusión

! 153

the probiotic microbiota characteristic of the gastrointestinal tract

(GT) (Tedjiotstop et al. 2010). Also the biological decontamination

of mycotoxins by microorganisms is one strategy widely used for

the control and management of mycotoxins in foods and feeds.

Among the different potential decontaminating microorganisms,

Saccharomyces cerevisiae and lactic acid bacteria represent two

important groups, which are widely used in food fermentation

and preservation (Shetty and Serpersen, 2006). The aim of this

study was to evaluate, the antimicrobial effects of the ENs A, A1,

A2, B, B1, and B4 on several microorganisms characteristics of the

gastrointestinal tract or that could be potentially used in

detoxification strategies of these bioactive compounds.

4.2. Materials and methods

4.2.1. Chemicals

DeMan Rogosa Sharp Agar (MRSA) and Broth (MRSB) and

Sabouroud agar (SA) and broth (SB) were obtained from Oxoid

(Basingstoke, UK). EN A (purity: 98% molecular weight: 682.92

g/mol), EN A1 (purity: 98% molecular weight: 668.89 g/mol), EN

A2 (purity: % molecular weight: 681.91 g/mol), EN B (purity: 97%

molecular weight: 640.84 g/mol), ENB1 (purity: 98% molecular

Material, métodos, resultados y discusión

! 154

weight: 654.87 g/mol) and ENB4 (purity: 98 molecular weight:

653.36 g/mol) were produced in our laboratory according to

Cuomo et al. (2012). Stock solutions of ENs were prepared in

methanol (LC grade), and stored in darkness at 4ºC until the

inoculation. Methanol was purchased from Merck (Whitehouse

Station, NJ, USA). Deionized water (<18 MΩ cm resistivity) was

obtained from a Milli-Q water purification system (Millipore,

Bedford, MA, USA).

4.2.2. Strains and culture conditions

The antimicrobial activity of the minor Fusarium mycotoxins

ENs was carried out employing nine strains of different probiotic

lactic acid bacteria, particularly Bifidobacterium longum,

Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium

adolescentis, Lactobacillus rhamnosus, Lactobacillus casei-casei,

Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus

ruminis, Streptococcus termofilus; and twenty two strains of

Saccharomyces cerevisiae. The microorganisms tested in this

study were obtained by the Spanish Type Culture Collection

(CECT Valencia, Spain) and by Istituto delle Scienze delle

Produzioni Alimentari (Bari) preserved in sterile 18% glycerol and

Material, métodos, resultados y discusión

! 155

stored at -80°C before use. Before antimicrobial assays the

microorganisms were reconstituted by two consecutive

subcultures in appropriate media prior to use, and were

recovered in appropriate media, DeMan-Rogosa-Sharpe broth

(MRS) for lactic acid bacteria, Sabouraud broth (SB) for

Saccharomyces cerevisiae, respectively.

4.2.3 Antimicrobial activity of the ENs

The microbial bioassay technique used in this study was

according with the method of Madhyastha et al. (1994). The

antimicrobial activity of the bioactive compounds ENs was carried

out on sterile disks (6-mm) obtained from Whatman No. 1

(Whatman, Madrid Spain). Sterilized solutions containing ENs A,

A1, A2, B, B1, and B4, separately, in 10µL methanol were added

aseptically to each disk. The microorganisms used for the

inoculums were cultured on 9-com Petri dishes with 20 mL of

MRSA, and SA depending of the bacteria typology and incubated

24 h at 37ºC. Lactic acid bacteria were expressly incubated in

anaerobic conditions using an anaerobic jar (Deltalab, Spain).

After that one ml of distilled water was added on the agar

surface, the microorganisms were scraped with a sterile loop and

Material, métodos, resultados y discusión

! 156

0.1 ml of the inoculums were introduced in another plate

containing only 10 ml of growth medium. The treated disks were

placed on the agar surface just after inoculation. After

refrigeration at 4ºC for 6 h to allow the mycotoxin to diffuse into

the agar, the plates were incubated 24 h at 37ºC in aerobiosis for

Saccharomyces cerevisiae strains and in anaerobiosis for probiotic

strains. According to Castlebury et al. (1999) plates were positive

to the antimicrobial activity of the ENs if an inhibition zone at

least of 2 mm wide was observed around the disk.

Figure 16. Schematic representation of the microbial bioassay tecnique

Material, métodos, resultados y discusión

! 157

4.3. Results and discussion

The results related to the antimicrobial activity of the

bioactive compounds ENs are evidenced in the table 7.

Strains

Inhibition ENs (positive inhibition/mm inhibition zone)b

ENA

ENA1

ENA2

ENB1 20000 2000 20000 20000 2000 20000 2000 200 20 Bf. longum 4551

- - +/9 - - +/10 - - -

Bf. bifidum 870T - - +/9 - - +/8 - - -

Bf. breve 4839T - - +/12 - - - - - -

Bf.adolescentis 5871 - - - - - +/9 +/7 +/5 +/3

Lc. rhamnosus 278T - - +/9 - - - - - -

Lc. casei- casei 4180 - - +/8 - - +/8 - - -

Lc. casei 4180 - - +/12 - - - - - - Lc. ruminis 4061 T - - +/10 - - +/8 - - -

St. thermofilus 986 - - +/10 - - +/10 +/9 - -

S.cerevisiae 4 - - - - - - - - - S.cerevisiae 7 +/8 +/6 - - - - - - - S.cerevisiae 15

- - - +/9 +/5 - - - -

a Each strain was tested with five replicate disks for each concentration of ENs. b In each positive test we specified the millimeters (mm) of the inhibition zone.

Table 7. Positive microorganism sensible to different quantities (20000-20 ng) of the bioactive compounds ENsa

Material, métodos, resultados y discusión

! 158

In particular as is possible to observe the EN A was active

against one strains of Saccharomyces cerevisiae at 20000 and

2000 ng evidenced inhibition spots of 8 and 6 mm respectively.

The EN A1 produced antimicrobial activity on several strains

tested at 20000 ng and in particular on three Bifidobacteria and

four Lactobacillus strains with inhibition spots ranging from 8 to

12 mm. The EN A2 produced antibiotic activity on Saccharomyces

cerevisiae 15 at 20000 and 2000 ng evidencing inhibition spots of

9 and 5 mm respectively. The EN B1 can be considered one of the

most active compounds tested, and in particular at 20000 ng

produced the inhibition growth of several strains with spots that

ranged from 8 to 10 mm. This compound was active against

Bifidobacterium adolescentis 5871, from 20 to 20000 ng with

inhibition spots ranging from 3 to 9 mm. Also on Streptococcus

thermofilus the EN B1 reduced the microorganism growth when

was used at 20000 and 2000 ng with inhibition spots of 9 and 10

mm respectively.

Material, métodos, resultados y discusión

! 159

Figure 17. Antibacterial activity expressed by EN B1 on Bf. adolescentis CECT 5871 (c=control, 20000, 2000, 200, 20 ng).

This study can be considered the first where the bioactivity

of ENs A, A1, A2, B, B1, and B4 has been studied on probiotic

microorganisms, whereas the antimicrobial activity of the

bioactive compounds ENs and BEA on other microorganisms has

been studied by several authors. As regards the antimicrobial

action, Gaumann et al. (1947) studied the decrease of the viability

of Mycobacterium tuberculosis, Mycobacterium phlei, Bacillus

subtilis, and Staphylococcus aureus, exposed at different

concentration of EN mixtures. Gaumann et al. (1947) also

c"

c"

20000"

2000"

200"

20"

Material, métodos, resultados y discusión

! 160

demonstrated that the same ENs mixture was active against

Mycobacterium spp., Staphylococcus spp., Bacillus spp.,

Pseudomonas aeruginosa, Serratia marcenscen, Salmonella

pseudoasiatica, and several different fungi.

Castlebury et al. (1999), evaluated the bioactivity of the

emerging micotoxin BEA on several microorganism using the disk

diffusion assay. The bacteria inhibited by the lowest dose (0.1 µg)

was Bacillus pumilus. Several species of Bacillus and Paenibacillus

were inhibited by 1µg of BEA per disk. P. validus, Bifidobacterium

adolescentis, Clostridium perfringens, Eubacterium biforme,

Peptostreptococus anaerobius and Paenibacillus productus were

sensible to a dose of 25 µg of BEA. On the other hand,

Clostridium clostridioforme, Peptostreptococcus magnus,

Bacteriodes fragilis, Bacillus thetaitaomicron and Fusobacterium

prausnitzii were not inhibited by the highest dose of the study

that was of 25 µg. Fotso and Smith (2003) studied the toxicity of

BEA by bacterial bioluminescence assay on several bacteria

strains evidenced a mean data of the effective concentration

(EC50) of 94 µ/mL. Pohanka et al. (2004) evidenced an inhibitory

activity of ENs B, B1, B2, B4, and J1, J2, J3, and K3 isolated from

Material, métodos, resultados y discusión

! 161

Fusarium F31 against Botrytis cinerea at 75mg/ mL concentration.

Moderate antimicrobial activity was observed with, EN A, A1, and

B1 against Candida albicans, Cryptococcus neoformans, and

Mycobacterium intracellulare (Jayasinghe et al., 2006). ENs B, B4,

C, G, H, I isolated from Verticillium hemipterigenum BCC1449

were active against Micobacterium tuberculosis (H37Ra strain);

growth of mentioned microorganism was inhibited by EN B4 and

EN H with an IC50 value of 0.20 mg/mL. The mixture of ENs O1,

O2, and O3 showed biological activities similar to those of EN B,

with an IC50 of 3.2 mg/mL (Firáková et al., 2007). Meca et al.

(2010c) studied the antibiotic effect of BEA on several pathogenic

bacteria: Escherichia coli, Enterococcus faecium, Salmonella

enteric, Shygella dysenteriae, Listeria monocytogenes, Yersinia

enterocolictica, Clostridium perfringens, Pseudomonas

aeruginosa and Staphylococcus aureus. This compound presented

no antibiotic effect on the two strains of Staphylococcus aureus

tested. Clostridium perfringens suffered the highest susceptibility

in this study with inhibition with doses between 1 and 1000 ng.

80% of the bacteria tested were inhibited by the dose of 1000 ng.

The antibacterial effect of ENs J1 and J3 on pathogenic and lactic

acid bacteria has been described by Sebastià et al., (2011). ENs J1

Material, métodos, resultados y discusión

! 162

and J3 presented antibiotic effect on Clostridium perfringens,

Enterococcus faecium, Escherichia coli, Shygella dysenteriae,

Staphylococcus aureus and Yersinia enterocolitica. 90% strains of

lactic acid bacteria tested were inhibited by a dose of 1000 ng of

ENJ1 and 100% by 1000 ng of the ENJ3.

! 163

V.CONCLUSIONES

Conclusiones

! 164

Conclusiones

! 165

1. Presencia de micotoxinas emergentes de Fusarium en

muestras de arroz:

El 50% de las muestras procedentes de distintos mercados

de la Comunidad Valenciana, resultaron positivas a BEA y el 100%

estaban contaminadas por ENs. Las concentraciones medias de

las BEA, ENA y ENB fueron superiores en el caso de muestras de

arroz ecológico, respecto a las de cultivo tradicional.

2. Descontaminación por cocinado de las muestras de

arroz:

La cocción del arroz utilizando la cantidad de agua

recomendada por el fabricante produce una reducción de las

micotoxinas que oscila entre el 30 y el 60%. Si bien en exceso de

agua la reducción oscila entre el 30 y el 100%.

Conclusiones

! 166

3. Reducción de ENs por degradación in vitro por

bacterias probióticas y levaduras en medio de cultivo:

Todos los microorganismos estudiados presentaron

actividad reductora de las ENs, si bien 8 de ellos con actividad

superior al 90%. Los porcentajes de reducción oscilan entre 99 %

por acción Streptococcus thermophilus CECT986 sobre ENA, y el

5 % por acción de Bifidobacterium breve CECT4839 sobre ENB.

En el caso de ENA y ENA1 Streptococcus thermophilus CECT986

fue el microorganismo que produjo una mayor reducción. En el

caso de ENB y ENB1, Saccharomyces cerevisisae ISPA13756 fue el

microorganismo más descontaminante.

4. Reducción de ENs por degradación mediante

bacterias probióticas y levaduras en harina de trigo

contaminada:

Los porcentajes de reducción están comprendidos entre el

1,7 y el 49%. La mayor reducción se obtiene con Lactobacillus

rhamnosus CECT278T y en concreto sobre la ENA. Las tasas de

Conclusiones

! 167

reducción fueron inferiores en el caso de la matriz alimentaria

respecto a las observadas en medio de cultivo.

5. Identificación de los productos de degradación.

Empleando la técnica de LC-MS-LIT se han caracterizado

productos de degradación procedentes de ENA, ENB y ENB1

producidos por la fermentación con bacterias lácticas,

Saccharomyces cerevisiae y de Bacillus subtilis en medios de

cultivo específicos y en la harina de trigo. La concentración de los

productos de degradación es inferior en el caso de la matriz

alimentaria en comparación con el medio específico.

6. Capacidad bactericida de ENs sobre

microorganismos probióticos.

Las ENs A, A1, A2, y B1 son bioactivas frente a

microorganismos probióticos. El compuesto más bioactivo fue EN

A1 que produjo halos de inhibición de 8 a 12 mm a dosis de 20

Conclusiones

! 168

µg. Bifidobacterium adolescentis 5871T fue la bacteria inhibida

por la concentración más baja de micotoxina.

! 169

VI.BIBLIOGRAFÍA

! 170

! 171

Abramson, D., House, J. D., & Nyachoti, C. M. (2005). Reduction of deoxynivalenol in barley by treatment with aqueous sodium carbonate and heat. Mycopathologia, 160(4), 297-301.

Alberts, J. F., Engelbrecht, Y., Steyn, P. S., Holzapfel, W. H., & van

Zyl, W. H. (2006). Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. International journal of food microbiology, 109(1–2), 121-126.

Ariño, A., Herrera, M., Juan, T., Estopañan, G., Carramiñana, J.,

Rota, C., & Herrera, A. (2009). Influence of agricultural practices on the contamination of maize by fumonisin mycotoxins. Journal of Food Protection, 72(4), 898-902.

Awad, W. A., Ghareeb, K., Böhm, J., & Zentek, J. (2010).

Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food additives and contaminants, 27(4), 510-520.

Becker-Algeri, T. A., Heidtmann-Bemvenuti, R., dos Santos

Hackbart, Helen Cristina, & Badiale-Furlong, E. (2013). Thermal treatments and their effects on the Fumonisin B1 level in rice. Food Control. 488-493

Bejaoui, H., Mathieu, F., Taillandier, P., & Lebrihi, A. (2004).

Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. Journal of applied microbiology, 97(5), 1038-1044.

! 172

Bretz, M., Beyer, M., Cramer, B., Knecht, A., & Humpf, H. -. (2006). Thermal degradation of the Fusarium mycotoxin deoxynivalenol. Journal of Agricultural and Food Chemistry, 54(17), 6445-6451.

Bryden, W. L. (2012). Mycotoxin contamination of the feed supply

chain: Implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1), 134-158.

Bullerman, L. B., & Bianchini, A. (2007). Stability of mycotoxins

during food processing. International journal of food microbiology, 119(1-2), 140-146.

Castlebury, L. A., Sutherland, J. B., Tanner, L. A., Henderson, A. L.,

& Cerniglia, C. E. (1999). Use of a bioassay to evaluate the toxicity of beauvericin to bacteria. World Journal of Microbiology and Biotechnology, 15(1), 131-133.

Chen, B. -., Tsai, M. -., & Jow, G. -. (2006). Induction of calcium

influx from extracellular fluid by beauvericin in human leukemia cells. Biochemical and biophysical research communications, 340(1), 134-139.

Cheng, B., Wan, C., Yang, S., Xu, H., Wei, H., Liu, J., Tian, W., &

Zeng, M. (2010). Detoxification of deoxynivalenol by Bacillus strains. Journal of Food Safety, 30(3), 599-614.

Cserháti, M., Kriszt, B., Krifaton, C., Szoboszlay, S., Háhn, J., Tóth,

S., Nagy, I., & Kukolya, J. (2013). Mycotoxin-degradation profile of Rhodoccocus strains. International journal of food microbiology. 176-185

! 173

Cuomo, V., Randazzo, A., Meca, G., Moretti, A., Cascone, A.,

Eriksson, O., Novellino, E., & Ritieni, A. (2012) Production of enniatins A, A1, B, B1, B4, J1 by Fusarium tricinctum in solid corn culture: Structural analysis and effects on mitochondrial respiration. Food Chemistry. 784-793

Cutting, S. M. (2011). Bacillus probiotics. Food Microbiology, 28(2),

214-220. Duvick, J., & Rod, T. A. (1998). Beauvericin detoxification

compositions and methods, United States Patents, patent number 5.798.255, date of patent Aug. 25, 1998.

EFSA (2013). Scientific Opinion on risks for animal and public

health related to the presence of nivalenol in food and feed. EFSA Journal 2013;11(6):3262.

EFSA (2011a). Scientific Opinion on the risks for public health

related to the presence of zearalenone in food. EFSA Journal 2011;9 (6):2197.

EFSA (2011b). Scientific Opinion on the risks for animal and public

health related to the presence of T-2 and HT-2 toxin in food and feed EFSA Journal 2011;9(12):2481.

EFSA (2009). Review of mycotoxin-detoxifying agents used as feed

additives: mode of action, efficacy and feed/food safety. http://www.efsa.europa.eu/en/supporting/doc/22e.pdf

! 174

EFSA (2006). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food doi:10.2903/j.efsa.2006.365.

EFSA (2003). Updated opinion of the Scientific Committee on

Food on Fumonisin B1, B2 and B3 (expressed on 4 April 2003) http://ec.europa.eu/food/fs/sc/scf/out185_en.pdf EFSA (2002). Tarea 3.2.8 «Assessment of dietary intake of Patulin

by the population of EU Member States». http:// ec.europa.eu/food/food/chemicalsafety/contaminants/3.2.8_en.pdf.

EFSA (1999). Dictamen del Comité científico de la alimentación

humana sobre las toxinas de Fusarium (DON), http://ec.europa.eu/food/fs/sc/scf/out44_en.pdf.

European Commission (2013): Commission Recommendation

2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Official Journal of the European Union. L 91 de 3.4.2013, p. 12/15

European Commission (2012). Regulation (EU) No 1058/2012 of

12 November 2012 amending Regulation (EC) No 1881/2006 as regards maximum levels for aflatoxins in dried figs. Official Journal of the European Union. L 313 de 13.11.2012, p. 14/15.

European Commission (2010). Regulation (EU) No 165/2010 of 26

February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs

! 175

as regards aflatoxins. Official Journal of the European Union. L 50, 27.2.2010, p. 8–12.

European Commission (2010). Regulation (EU) No 105/2010 of 5

February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Official Journal of the European Union. L 35, 6.2.2010.

European Commission (2009): Regulation (EC) No 386/2009 of 12

May 2009 amending Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the establishment of a new functional group of feed additives. Official Journal of the European Union. L 118, 13.5.2009, p. 66–66.

European Commission (2009). Regulation (EU) No 152/2009 of 27

January 2009 laying down the methods of sampling and analysis for the official control of feed. Official Journal of the European Union. L 54, 26.2.2009, p. 1–130

European Commission (2007). Regulation (EC) No 1126/2007 of 28

September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal of the European Union. L 255, 29.9.2007, p. 14–17

European Commission (2006). Regulation (EC) No 1881/2006 of 19

December 2006 setting maximum levels for certain

! 176

contaminants in foodstuffs. Official Journal the European Union. L 364, 20.12.2006

European Commission (2006): Commission Recommendation of

17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Official Journal of the European Union. L 229, 23.8.2006, p. 7–9.

European Commission (2006): Commission Recommendation of 17

August 2006 on the prevention and reduction of Fusarium toxins in cereals and cereal products. Official Journal of the European Union. L 234, 29.8.2006, p. 35–40.

European Commission (2006). Regulation (EC) No 401/2006 of 23

February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Official Journal of the European Union. L 70, 9.3.2006, p. 12–34.

European Commission (2004) Regulation (EC) No 882/2004 of the

European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules. Official Journal of the European Union. L 165, 30.4.2004, p. 1–141

European Parliament and Council (2002) Directive 2002/32/EC on

undesirable substances in animal feed - Council statement Official Journal of European Communities. L 140, 30.5.2002, p. 10–22.

! 177

European Commission (2002). Regulation (EC) No 2002/657 of 12

August 2002 implementing Council Directive 96/23/EC concerning the per-formance of analytical methods and the interpretation of results. Official Journal of the European Communities. L 221, 17.8.2002, p. 8–36.

European Council (1993). (EEC) No 315/93 of 8 February 1993

laying down Community procedures for contaminants in food. Official Journal of European Communities. L 37, 13.2.1993, p. 1–3.

FAO (2001). Manual on the application of the HACCP system in

mycotoxin prevention and control. FAO/IAEA Training and Reference Centre for Food and Pesticide Control. ISBN 92-5-104611-5.

Fan, Y., Zhao, L., Ma, Q., Li, X., Shi, H., Zhou, T., Zhang, J., & Ji, C.

(2013). Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food and Chemical Toxicology.

Farzaneh, M., Shi, Z., Ghassempour, A., Sedaghat, N.,

Ahmadzadeh, M., Mirabolfathy, M., & Javan-Nikkhah, M. (2012). Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 23(1), 100-106.

Ferrer, E., Juan-García, A., Font, G., & Ruiz, M. J. (2009). Reactive

oxygen species induced by beauvericin, patulin and

! 178

zearalenone in CHO-K1 cells. Toxicology in Vitro, 23(8), 1504-1509.

Firáková, S., Sturdikova, M., Liptaj, T., Pronayova, N., Bezakova, L.,

& Proksa, B. (2008). Enniatins produced by Fusarium dimerum, an endophytic fungal strain. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 63(7), 539-541.

Firáková, S., Proksa, B., & Sturdikova, M. (2007). Biosynthesis and

biological activity of enniatins. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 62(8), 563-568.

Fotso, J., & Smith, J. S. (2003). Evaluation of beauvericin toxicity

with the bacterial bioluminescence assay and the Ames mutagenicity bioassay. Journal of Food Science, 68(6), 1938-1941.

Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M., & Knasmüller,

S. (2008). Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology, 46(4), 1398-1407.

Fuchs, E., Binder, E. M., Heidler, D., & Krska, R. (2002). Structural

characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food additives and contaminants, 19(4), 379-386.

Gao, X., Ma, Q., Zhao, L., Lei, Y., Shan, Y., & Ji, C. (2011). Isolation

of Bacillus subtilis: screening for aflatoxins B1, M1, and G1 detoxification. European Food Research and Technology, 232(6), 957-962.

! 179

Gäumann, E., Roth, S., Ettlinger, L., Plattner, P. A., & Nager, U.

(1947). Enniatin, ein neues, gegen Mykobakterien wirksames Antibiotikum. Experientia, 3(5), 202-203.

Grove, J. F., & Pople, M. (1980). The insecticidal activity of

beauvericin and the enniatin complex. Mycopathologia, 70(2), 103-105.

Guan, S., He, J., Young, J. C., Zhu, H., Li, X., Ji, C., & Zhou, T.

(2009). Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture, 290(3), 290-295.

Guan, S., Ji, C., Zhou, T., Li, J., Ma, Q., & Niu, T. (2008). Aflatoxin

B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. International journal of molecular sciences, 9(8), 1489-1503.

Gutleb, A. C., Morrison, E., & Murk, A. J. (2002). Cytotoxicity

assays for mycotoxins produced by Fusarium strains: a review. Environmental toxicology and pharmacology, 11(3), 309-320.

Halász, A., Lásztity, R., Abonyi, T., & Bata, Á. (2009).

Decontamination of mycotoxin-containing food and feed by biodegradation. Food Reviews International, 25(4), 284-298.

Hamill, R. L., Higgens, C. E., Boaz, H. E., & Gorman, M. (1969). The

structure op beauvericin, a new depsipeptide antibiotic toxic to artemia salina. Tetrahedron letters, 10(49), 4255-4258.

! 180

Hanif, N. Q., Muhammad, G., Muhammad, K., Tahira, I., & Raja, G. K. (2012). Reduction of ochratoxin A in broiler serum and tissues by Trichosporon mycotoxinivorans. Research in veterinary science, 93(2), 795-797.

Hartinger, D., & Moll, W. -. (2011). Fumonisin elimination and

prospects for detoxification by enzymatic transformation. World Mycotoxin Journal, 4(3), 271-283.

He, J., Zhou, T., Young, J. C., Boland, G. J., & Scott, P. M. (2010).

Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends in Food Science & Technology, 21(2), 67-76.

Heinl, S., Hartinger, D., Thamhesl, M., Vekiru, E., Krska, R.,

Schatzmayr, G., Moll, W., & Grabherr, R. (2010). Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology, 145(2), 120-129.

Herrera, M., Conchello Moreno, María del Pilar, Juan Esteban, T.,

Estopañán Muñoz, G., Herrera Marteache, A., & Ariño Moneva, A. A. (2010). Fumonisins concentrations in maize as affected by physico-chemical, environmental and agronomical conditions, 55(2), 121-126.

Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci,

M., Brisson, A., Gasbarrini, A., Barnes, I., & Cutting, S. M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Research in microbiology, 160(2), 134-143.

! 181

Hong, H. A., Duc, L. H., & Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS microbiology reviews, 29(4), 813-835.

Hussain, A., & Luttfullah, G. (2009). Reduction of aflatoxin-B1 and

ochratoxin-A levels in polished basmati rice (Oryza sativa linn.) by different cooking methods. Journal of the Chemical Society of Pakistan, 31(6), 911-915.

Hyun, U., Lee, D., Lee, C., & Shin, C. (2009). Apoptosis induced by

enniatins H and MK1688 isolated from Fusarium oxysporum FB1501. Toxicon, 53(7), 723-728.

IARC monographs on the evaluation of carcinogenic risks to

humans. (2002) Some traditional herbal medicines, some mycotox- ins, naphthalene and styrene: Summary of data reported and evaluation, vol. 82

Islam, R., Zhou, T., Young, J. C., Goodwin, P. H., & Pauls, K. P.

(2012). Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World Journal of Microbiology and Biotechnology, 28(1), 7-13.

Ivanova, L., Skjerve, E., Eriksen, G. S., & Uhlig, S. (2006).

Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon: official journal of the International Society on Toxicology, 47(8), 868-876.

Janotová, L., Čížková, H., Pivoňka, J., & Voldřich, M. (2011). Effect of processing of apple puree on patulin content. Food Control, 22(6), 977-981.

! 182

Jard, G., Liboz, T., Mathieu, F., Guyonvarc’h, A., & Lebrihi, A. (2011). Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A, 28(11), 1590-1609.

Jayasinghe, L., Abbas, H. K., Jacob, M. R., Herath, W. H., &

Nanayakkara, N. D. (2006). N-Methyl-4-hydroxy-2-pyridinone Analogues from Fusarium oxysporum�. Journal of natural products, 69(3), 439-442.

Jestoi, M. (2008). Emerging fusarium-mycotoxins fusaproliferin,

beauvericin, enniatins, and moniliformin - A review. Critical reviews in food science and nutrition, 48(1), 21-49.

Kabak, B. (2009). The fate of mycotoxins during thermal food

processing. Journal of the science of food and agriculture, 89(4), 549-554.

Kabak, B., Dobson, A. D. W., & Var, I. (2006). Strategies to prevent

mycotoxin contamination of food and animal feed: A review. Critical reviews in food science and nutrition, 46(8), 593-619.

Kelly, S., Grimm, L., Bendig, C., Hempel, D., & Krull, R. (2006).

Effects of fluid dynamic induced shear stress on fungal growth and morphology. Process Biochemistry, 41(10), 2113-2117.

Kushiro, M. (2008). Effects of milling and cooking processes on the deoxynivalenol content in wheat. International Journal of Molecular Sciences, 9(11), 2127-2145.

! 183

La Pera, L., Avellone, G., Lo Turco, V., Di Bella, G., Agozzino, P., & Dugo, G. (2008). Influence of roasting and different brewing processes on the ochratoxin A content in coffee determined by high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 25(10), 1257-1263.

Lancova, K., Hajslova, J., Kostelanska, M., Kohoutkova, J.,

Nedelnik, J., Moravcova, H., & Vanova, M. (2008). Fate of trichothecene mycotoxins during the processing: Milling and baking. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 25(5), 650-659.

Lee, K., Kim, B. H., & Lee, C. (2010). Occurrence of Fusarium

mycotoxin beauvericin in animal feeds in Korea. Animal Feed Science and Technology, 157(3-4), 190-194.

Lin, H., Lee, Y., Chen, B., Tsai, M., Lu, J., Chou, C., & Jow, G.

(2005). Involvement of Bcl-2 family, cytochrome c and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells. Cancer letters, 230(2), 248-259.

Lu, Q., Liang, X., & Chen, F. (2011). Detoxification of Zearalenone

by viable and inactivated cells of Planococcus sp. Food Control, 22(2), 191-195.

Madhyastha, M., Marquardt, R., Masi, A., Borsa, J., & Frohllch, A. (1994). Comparison of toxicity of different mycotoxins to several species of bacteria and yeasts: use of Bacillus brevis in a disc diffusion assay. Journal of Food Protection, 57(1), 48-53.

! 184

MAGRAMA (2013). http://www.magrama.es: Food consumption,

marketing and distribution 2013. Mahnine, N., Meca, G., Elabidi, A., Fekhaoui, M., Saoiabi, A., Font,

G., Mañes, J., & Zinedine, A. (2011). Further data on the levels of emerging Fusarium mycotoxins enniatins (A, A1, B, B1), beauvericin and fusaproliferin in breakfast and infant cereals from Morocco. Food Chemistry, 124(2), 481-485.

Malachova, A., Dzuman, Z., Veprikova, Z., Vaclavikova, M.,

Zachariasova, M., & Hajslova, J. (2011). Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. Journal of Agricultural and Food Chemistry, 59(24), 12990-12997.

Martínez-Larrañaga, M.R. y Anadón, A, (2006). Micotoxinas. En

Cameán, A.M. & Repetto (Ed.), Toxicología alimentaria (2006) (pp. 289-305). ISBN: 84-7978-727-9. Díaz de Santos. Madrid-Buenos Aires.

Meca, G., Ritieni, A., Zhou, T., Li, X., & Mañes, J. (2013a).

Degradation of the minor Fusarium mycotoxin beauvericin by intracellular enzymes of Saccharomyces cerevisiae. Food Control.

Meca, G., Zhou, T., Li, X., & Mañes, J. (2013b). Beauvericin degradation during bread and beer making. Food Control.

! 185

Meca, G., Ritieni, A., & Mañes, J. (2012a). Reduction in vitro of the minor Fusarium mycotoxin beauvericin employing different strains of probiotic bacteria. Food Control, 28(2), 435-440.

Meca, G., Ritieni, A., & Mañes, J. (2012b). Influence of the heat

treatment on the degradation of the minor Fusarium mycotoxin beauvericin. Food Control, 28(1), 13-18.

Meca, G., Font, G., & Ruiz, M. (2011). Comparative cytotoxicity

study of enniatins A, A1, A2, B, B1, B4 and J3 on Caco-2 cells, Hep-G2 and HT-29. Food and Chemical Toxicology, 49(9), 2464-2469.

Meca, G., Blaiotta, G., & Ritieni, A. (2010a). Reduction of

ochratoxin A during the fermentation of Italian red wine Moscato. Food Control, 21(4), 579-583.

Meca, G., Soriano, J. M., Gaspari, A., Ritieni, A., Moretti, A., &

Mañes, J. (2010b). Antifungal effects of the bioactive compounds enniatins A, A1, B, B1. Toxicon, 56(3), 480-485.

Meca, G., Sospedra, I., Soriano, J. M., Ritieni, A., Moretti, A., &

Mañes, J. (2010c). Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon, 56(3), 349-354.

Meca, G., Zinedine, A., Blesa, J., Font, G., & Mañes, J. (2010d).

Further data on the presence of Fusarium emerging mycotoxins enniatins, fusaproliferin and beauvericin in cereals available on the Spanish markets. Food and Chemical Toxicology, 48(5), 1412-1416.

! 186

Meca, G., Sospedra, I., Soriano, J. M., Ritieni, A., Valero, M. A., &

Mañes, J. (2009). Isolation, purification and antibacterial effects of fusaproliferin produced by Fusarium subglutinans in submerged culture. Food and Chemical Toxicology, 47(10), 2539-2543.

Méndez-Albores, A., Veles-Medina, J., Urbina-Álvarez, E.,

Martínez-Bustos, F., & Moreno-Martínez, E. (2009). Effect of citric acid on aflatoxin degradation and on functional and textural properties of extruded sorghum. Animal Feed Science and Technology, 150(3), 316-329.

Méndez-Albores, A., Del Río-García, J., & Moreno-Martínez, E.

(2007). Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Animal Feed Science and Technology, 135(3), 249-262.

Méndez-Albores, J., Arámbula-Villa, G., Loarca-Piña, M., González-

Hernandez, J., Castaño-Tostado, E., & Moreno-Martı́nez, E. (2004). Aflatoxins’ fate during the nixtamalization of contaminated maize by two tortilla-making processes. Journal of stored products research, 40(1), 87-94.

Molnar, O., Schatzmayr, G., Fuchs, E., & Prillinger, H. (2004).

Trichosporon mycotoxinivorans sp. nov., A New Yeast Species Useful in Biological Detoxification of Various Mycotoxins. Systematic and applied microbiology, 27(6), 661-671.

Oueslati, S., Meca, G., Mliki, A., Ghorbel, A., & Mañes, J. (2011).

Determination of Fusarium mycotoxins enniatins, beauvericin

! 187

and fusaproliferin in cereals and derived products from Tunisia. Food Control, 22(8), 1373-1377.

Park, J. W., & Kim, Y. (2006). Effect of pressure cooking on

aflatoxin B1 in rice. Journal of Agricultural and Food Chemistry, 54(6), 2431-2435.

Pohanka, A., Capieau, K., Broberg, A., Stenlid, J., Stenström, E., &

Kenne, L. (2004). Enniatins of Fusarium sp. Strain F31 and Their Inhibition of Botrytis c inerea Spore Germination. Journal of natural products, 67(5), 851-857.

Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T.,

Schuhmacher, R., Krska, R., Kuchler, K., Glössl, J., Luschnig, C., & Adam, G. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278(48), 47905-47914.

Prosperini, A., Juan-García, A., Font, G., & Ruiz, M. (2013a).

Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicology letters. 204-211.

Prosperini, A., Meca, G., Font, G., & Ruiz, M. (2013b).

Bioaccessibility of Enniatins A, A1, B, and B1 in Different Commercial Breakfast Cereals, Cookies, and Breads of Spain. Journal of Agricultural and Food Chemistry, 61(2), 456-461.

Prosperini, A., Juan-García, A., Font, G., & Ruiz, M. (2013c).

Reactive oxygen species involvement in apoptosis and

! 188

mitochondrial damage in Caco-2 cells induced by enniatins A, A1, B and B1. Toxicology letters. 36-44

Raters, M., & Matissek, R. (2008). Thermal stability of aflatoxin B1

and ochratoxin A. Mycotoxin Research, 24(3), 130-134. Ritieni, A., Moretti, A., Logrieco, A., Bottalico, A., Randazzo, G.,

Monti, S. M., Ferracane, R., & Fogliano, V. (1997). Occurrence of Fusaproliferin, Fumonisin B1, and Beauvericin in Maize from Italy. Journal of Agricultural and Food Chemistry, 45(10), 4011-4016.

Rojas-Durán, T., Fente, C., Vázquez, B., Franco, C., Sanz-Medel, A.,

& Cepeda, A. (2007). Study of a room temperature phosphorescence phenomenon to allow the detection of aflatoxigenic strains in culture media. International journal of food microbiology, 115(2), 149-158.

Santini, A., Ferracane, R., Meca, G., & Ritieni, A. (2009). Overview

of analytical methods for beauvericin and fusaproliferin in food matrices. Analytical and Bioanalytical Chemistry, 395(5), 1253-1260.

Sebastià, N., Meca, G., Soriano, J. M., & Mañes, J. (2011).

Antibacterial effects of enniatins J1 and J3 on pathogenic and lactic acid bacteria. Food and Chemical Toxicology, 49(10), 2710-2717.

Serrano, A., Font, G., Mañes, J., & Ferrer, E. (2012a). Emerging

Fusarium mycotoxins in organic and conventional pasta

! 189

collected in Spain. Food and Chemical Toxicology. 51, 259-266.

Serrano, A.B., Font, G., Ruiz, M.J., Ferrer, E., (2012b). Co-

occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chemistry. 135 (2), 423–429

Serrano, A., Meca, G., Font, G., & Ferrer, E. (2012c). Risk

assessment associated to the intake of the emerging Fusarium mycotoxins BEA, ENs and FUS present in infant formula of Spanish origin. Food Control, 28(1), 178-183.

Shetty, P. H., & Jespersen, L. (2006). Saccharomyces cerevisiae and

lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology , 17, 48-49-55.

Sifou, A., Meca, G., Serrano, A. B., Mahnine, N., El Abidi, A.,

Mañes, J., El Azzouzi, M., & Zinedine, A. (2011). First report on the presence of emerging Fusarium mycotoxins enniatins (A, A1, B, B1), beauvericin and fusaproliferin in rice on the Moroccan retail markets. Food Control, 22(12), 1826-1830.

Tedjiotsop Feudjio, F., Dornetshuber, R., Lemmens, M., Hoffmann,

O., Lemmens-Gruber, R., & Berger, W. (2010). Beauvericin and enniatin: Emerging toxins and/or remedies? World Mycotoxin Journal, 3(4), 415-430.

Teniola, O., Addo, P., Brost, I., Färber, P., Jany, K., Alberts, J., Van

Zyl, W., Steyn, P., & Holzapfel, W. (2005). Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis

! 190

and Mycobacterium fluoranthenivorans sp. nov. DSM44556 T. International journal of food microbiology, 105(2), 111-117.

Tolosa, J., Font, G., Mañes, J., & Ferrer, E. (2013). Nuts and dried

fruits: natural occurrence of emerging fusarium mycotoxins. Food Control.

Tonshin, A. A., Teplova, V. V., Andersson, M. A., & Salkinoja-

Salonen, M. S. (2010). The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology, 276(1), 49-57.

Topcu, A., Bulat, T., Wishah, R., & Boyacı, I. H. (2010).

Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. International journal of food microbiology, 139(3), 202-205.

Uhlig, S., Jestoi, M., & Parikka, P. (2007). Fusarium avenaceum -

The North European situation. International journal of food microbiology, 119(1-2), 17-24.

Uhlig, S., Torp, M., & Heier, B. T. (2006). Beauvericin and enniatins

A, A1, B and B1 in Norwegian grain: a survey. Food Chemistry, 94(2), 193-201.

Vaclavikova, M., Malachova, A., Veprikova, Z., Dzuman, Z.,

Zachariasova, M., & Hajslova, J. (2012). ´ Emerging´ mycotoxins in cereals processing chains: changes of enniatins during beer and bread making. Food Chemistry. 136, 750-757.

! 191

Voss, K., & Snook, M. (2010). Stability of the mycotoxin deoxynivalenol (DON) during the production of flour-based foods and wheat flake cereal. Food Additives & Contaminants: Part A, 27(12), 1694-1700.

Young, J. C., Zhu, H., & Zhou, T. (2006). Degradation of

trichothecene mycotoxins by aqueous ozone. Food and chemical toxicology, 44(3), 417-424.

Young, J. C., Zhou, T., Yu, H., Zhu, H., & Gong, J. (2007).

Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food and chemical toxicology, 45(1), 136-

Zinedine, A., & Mañes, J. (2009). Occurrence and legislation of

mycotoxins in food and feed from Morocco. Food Control, 20(4), 334-344.

Zinedine, A., Soriano, J. M., Molto, J. C., & Mañes, J. (2007).

Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology, 45(1), 1-18.