Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed...

41
Dr. Jhuma Sadhukhan FIChemE, CEng, CSci 1 15/11/2015 Dr. Elias Martinez-Hernandez University of Oxford Diseño e Integración de procesos para biorrefinerias competitivas

Transcript of Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed...

Page 2: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 2

Biorefinery research - promoting international collaboration for innovative and sustainable solutions, Instituto Mexicano del Petróleo, Mexico City, Mexico, 18-22 May 2015, British Council / CONACyT funded Researcher Links Workshop

Page 3: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Agricultural and forestry residues and energy crops: wood, short rotation coppice, poplar, switchgrass and miscanthus.

Grass: leaves, green plant materials, grass silage, empty fruit bunch, immature cereals.

Oily crops and Jatropha.

Oily residues: waste cooking oils and animal fat.

Aquatic: algae and seaweed.

Organic residues: municipal waste, manure, and sewage.

15/11/2015 3

Biomass

Page 4: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 4

Page 5: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 5

Mexican Agricultural Residues

50km radius

Valdez Vazquez, I., J. A. Acevedo Benítez y C. Hernández Santiago. (2010) Distribution and potential

of bioenergy resources from agricultural activities in México. Renewable & Sustainable Energy

Reviews. 14(7): 2147-2153 p

• Crop diversity• “Large enough” amounts• Dispersed along vast territory• Difficult topography• Global prices (equipment, resources, logistics)

Crop PCRI Prodton10^6

/year

Res prod

ton10^3/day

Wheat 1.5 3.4 13.9

Corn 1.5 21.9 90

Sorghum 1.5 5.5 22.6

Sugarcane 0.15 50.6 20.7

CoffeeCherry(pulp)

0.24 1.5 1.0

Agave (bagasse)

0.12 1.2 0.4

Page 6: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Mexico biomass Sugarcane bagasse

Corn stover

Sawdust

Municipal solid waste (MSW)

Agave and tequila industry residues

Newton Research Collaboration Programme Grant of theRAEng “Economic Value Generation and Social Welfare inMexico by Waste Biorefining” by Sadhukhan is about tostart to investigate the following integrated schemesfurther – in collaboration between INIFAP, IMP, Surrey,Imperial College and Oxford.

Page 7: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Colaboración con Dr Jorge en Jatropha

Page 8: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

8

Wild materials with high Oil content in 13 genotypes of J. curcas

Mainly fatty acids in J. curcas oil

%

Differences found in the

percentages of oleic and

linoleic acid according to

the origin of the seeds

Value chain creation around “piñon mexicano” (Jatropha curcas L.) – Tabasco case study, Dr Jorge Martinez-Herrera, UK-Mexico Biorefinery Research Workshop: Promoting International Collaboration for Innovative and Sustainable Solutions 18-22 May, 2015 at the Instituto Mexicano del Petróleo (IMP), in Mexico City, Mexico.

Page 9: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Foto: Dr. Odilón Sánchez

Use Traditional from Mexican piñón

Usado en el Totonacapan para preparar comida tradicional

Value chain creation around “piñon mexicano” (Jatropha curcas L.) – Tabasco case study, Dr Jorge Martinez-Herrera, UK-Mexico Biorefinery Research Workshop: Promoting International Collaboration for Innovative and Sustainable Solutions 18-22 May, 2015 at the Instituto Mexicano del Petróleo (IMP), in Mexico City, Mexico.

Page 10: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

1 kg Semilla (seed)

39.1 % cascarilla 60.9 % almendra

YIELDS SEED

Value chain creation around “piñon mexicano” (Jatropha curcas L.) – Tabasco case study, Dr Jorge Martinez-Herrera, UK-Mexico Biorefinery Research Workshop: Promoting International Collaboration for Innovative and Sustainable Solutions 18-22 May, 2015 at the Instituto Mexicano del Petróleo (IMP), in Mexico City, Mexico.

Page 11: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

1 kg Harina (flour)

42.8% Harina desgrasada 57.2% Aceite (Oil)

YIELDS

Value chain creation around “piñon mexicano” (Jatropha curcas L.) – Tabasco case study, Dr Jorge Martinez-Herrera, UK-Mexico Biorefinery Research Workshop: Promoting International Collaboration for Innovative and Sustainable Solutions 18-22 May, 2015 at the Instituto Mexicano del Petróleo (IMP), in Mexico City, Mexico.

Page 12: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 12

INIFAP My team

Biomass yield, characteristics

Integrated process schematics, economic

feasibility, environmental profile

Page 13: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 13

Page 14: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

The three most important economic terms for economic comparisons between systems

15/11/2015 14

Economic Margin = Value of products – Operating cost – Capital cost

Netback (when feedstock cost is unknown) = Value of products – Operating cost w/o Cost of feedstock –Capital cost

Cost of production = Operating cost + Capital cost

Apply any of the above terms to all the life cycle stages to evaluate Life Cycle Costing (LCC) of the value chain

Page 15: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 15

COST

TIME VALUE OF MONEY

ANNUALISED CAPITAL COST

DIRECT COST OF EQUIPMENT ×ANNUALISED CAPITAL CHARGE

R

1

2

size1

size2

SIZE

SIZE

COST

COST

UPDATE WITH PLANT INDEX AND INSTALLATION FACTOR

INDIRECT CAPITAL COST

OPERATING COST

FIXED

OTHERS: R&D

VARIABLEFEEDSTOCK, UTILITY AND

ENERGY COSTS

Page 16: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

How process integration helps in reducing costs?

15/11/2015 16

Increase resource efficiency

Heat integration, energy integration

Mass integration

High value productions

Waste and residue reduction

Page 17: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 17

p4 : Husk O 6 379831

α 0.0522 Fresh methanol Mehanol recovered

F 91.4 F 11.5 F 27.2 α 0.877 p1 : Biodiesel

VOP 50.0 Cost 372.1 Cost 372.1 F 105.3 F 100

COP 46.0 VOP 637.3 VOP 674.8

Δe 4.0 COP 592.6 COP 627.7

O 2 3863505 Δe 44.7 Δe 47.1

f1 : Seeds α 0.9478 α 0.8079

F 271.2 F 179.8 F 104.7 F 143.5 F 116.2 Oily waste

VOP 322.2 VOP 461.9 VOP 670.8 VOP 595.1 VOP 658.0 F 5.3

COP 296.3 COP 424.9 COP 619.5 COP 557.6 COP 611.8 Treatment cost 0.390

Δe 25.9 O 1 248166 Δe 37.0 Δe 51.3 O 3 5014209 Δe 37.5 O 4 1243239 Δe 46.2 O 5 49160

O 3 ' 15144819 O 4 ' -8887372

p3 : Cake p2 : Glycerol

α 0.1921 α 0.123

F 75.1 F 10.7

VOP 222.2 VOP 881.8

COP 205.2 COP 819.9

Δe 17.0 Δe 61.9

2

Oil extraction

3

Transesterification

4

Methanol recovery

5

Decantation

6

Biodiesel distillation

1

Dehusking

Mass flow rates (F) in kt year-1, VOP, COP and economic margins (∆𝒆) in $ t-1 along with allocation factors (𝜶) of the streams in a Jatropha-based biorefinery.

The methodology comes from Sadhukhan’s thesis

Page 18: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 18

The value analysis methodology is then applied to generate environmental profilesof individual products: called EVEI: Economic Value and Environmental ImpactAnalysisMartinez-Hernandez, E., Martinez-Herrera, J., Campbell, G. M., & Sadhukhan, J.(2014). Process integration, energy and GHG emission analyses of Jatropha-basedbiorefinery systems. Biomass Conversion and Biorefinery, 4(2), 105-124.

Page 19: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Gas and CHP

Biofuel

Chemicals, hydrogen

Polymers

Composites

Food, pharmaceutical

High value, low volume, challenging to find market

Low value, high volume, easy to find market

15/11/2015 19

Page 20: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Bioethanol plant configuration

Wan, Y.K., Sadhukhan, J., and Ng, D.K.S. (2015) Techno-economic evaluations for feasibility of sago biorefineries, Part 2: Integrated bioethanol production and energy systems. Chemical Engineering Research & Design, Special Issue on Biorefinery Value Chain Creation, In press.

Page 21: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Combined Heat and Power (CHP) system configuration

Wan, Y.K., Sadhukhan, J., and Ng, D.K.S. (2015) Techno-economic evaluations for feasibility of sago biorefineries, Part 2: Integrated bioethanol production and energy systems. Chemical Engineering Research & Design, Special Issue on Biorefinery Value Chain Creation, In press.

Page 22: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

AD plant configuration

Wan, Y.K., Sadhukhan, J., and Ng, D.K.S. (2015) Techno-economic evaluations for feasibility of sago biorefineries, Part 2: Integrated bioethanol production and energy systems. Chemical Engineering Research & Design, Special Issue on Biorefinery Value Chain Creation, In press.

Page 23: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Circular economy

15/11/2015 23

LCA

SLCALCC

X

BIOETHANOL PLANT

AD PLANT

CHP PLANT

BIOMASS

NUTRIENT

BIOFUELBIOENERGY

BIOCHEMICALBIOMATERIAL

Page 24: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Conversion rate for pre-treatment, enzymatic hydrolysis and fermentation processes (NREL/TP-5100-47764)

Pre-treatment Enzymatic Hydrolysis Fermentation

Conversion Rate (%) Conversion Rate (%) Conversion Rate (%)

Cellulose to Glucolig 0.3 Cellulose to Glucolig 4.0 Glucose to Ethanol 95.0

Cellulose to Cellobiose 0.0 Cellulose to Cellobiose 1.2 Glucose to Zymo (cell mass) 2.0

Cellulose to Glucose 9.9 Cellulose to Glucose 90.0 Glucose to Glycerol 0.4

Cellulose to HMF 0.3 Cellobiose to Glucose 100.0 Glucose to Succinic Acid 0.6

Xylan to Oligomer 2.4 Glucose to Acetic Acid 0.0

Xylan to Xylan 90.0 Glucose to Lactic Acid 0.0

Xylan to Furfural 5.0 Xylose to Ethanol 85.0

Xylan to Tar 0.0 Xylose to Zymo 1.9

Mannan to Oligomer 2.4 Xylose to Glycerol 0.3

Mannan to Mannose 90.0 Xylose to Xylitol 4.6

Mannan to HMF 5.0 Xylose to Succinic Acid 0.9

Galactan to Oligomer 2.4 Xylose to Acetic Acid 0.0

Galactan to Galactose 90.0 Xylose to Lactic Acid 0.0

Galactan to HMF 5.0 Arabinose to Ethanol 85.0

Arabinan to Oligomer 2.4 Arabinose to Zymo 1.9

Arabinan to Arabinose 90.0 Arabinose to Glycerol 0.3

Arabinan to Furfural 5.0 Arabinose to Succinic Acid 1.5

Arabinan to Tar 0.0

Acetate to Oligomer 0.0

Acetate to Acetic Acid 100.0

Furfural to Tar 100.0

HMF to Tar 100.0

Lignin to soluble lignin 5.0

Page 25: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Biomass composition

15/11/2015 25

Composition (%, dry basis)

Starch

Fibre

Bark

Starch 73.7 52 -

Soluble dietary fibres 3.3 - -

Insoluble dietary fibers 4.0 - -

Cellulose - 16 23.1

Hemicellulose - 9.8 17.31

Lignin - 5.2 18

Moisture 16.1 15.6

2.76

Acetate - 1.4

38.83

Ash 0.2 - -

Protein 2.4 - -

Lipids 0.3 - -

Page 26: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Product yields

Starch Fibre Bark Fibre + Bark

Feed Amount (ton/d , dry basis) 12 6.458 10.202 16.660

Produced ethanol (ton/d) 4.171 2.008 2.745 4.750

Yield 0.35 0.31 0.27 0.28

Generated Lignin to CHP system (ton/d) 6.338 3.220 4.136 7.647

Generated biogas (ton/d) 3.718 1.856 2.444 4.398

Generated energy (kW) 1303 657 852 1559

Total generated VHP steam (kg/s) 0.41 0.22 0.29 0.53

Required LP steam (kg/s) 0.18 0.09 0.12 0.22

Required HP steam (kg/s) 0.04 0.02 0.04 0.06

Generated Electricity (kW) 217 116.63 136.4 252

Electricity consumption (kW) 156.43 84.18 133.00 217.19

- Ethanol Production 95.84 51.57 81.48 133.06

- WWTP 42.44 22.84 36.08 58.92

- Storage and Utilities 18.15 9.77 15.44 25.21

Electricity to grid (kW) 60.56 32.44 3.40 35.30

Required make up water / ethanol

produced (ton/ton.d) 4.50

4.34

5.97

4.60

Page 27: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Economics

Produce Enzyme On-site

Raw material Fibre + Bark

Scenario c/w Labour w/o Labour

Total capital cost (million $) 6.929 6.929

Feedstock handling (million $) 0.580 0.580

Pre-treatment (million $) 1.310 1.310

Hydrolysis and fermentation (million $) 0.733 0.733

Cellulase enzyme production (million $) 0.021 0.021

Ethanol recovery (distillation) (million $) 0.769 0.769

WWTP (million $) 1.412 1.412

Storage System (million $) 0.230 0.230

Utilities system (million $) 0.368 0.368

CHP system (million $) 1.506 1.506

Total Operating Cost (million $/year) 0.601 0.122

Revenue (million $/year) 1.175 1.175

Profit (million $/year) 0.574 1.053

Payback Period (year) 12.06 6.58

Page 28: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

28

Lignocellulose (e.g. straw, wood, etc.)

Size reductionSteam

pretreatment(solid state)

FermentationDistillation, dehydration

Ethanol

Enzyme production

Yeast propagation

Fractionation e.g. modified pulping /

organosolv, acid hydrolysis, etc.

Lignin platform

C6, C5 platform

Solid / liquid separation of

stillage

Combustion

Solid

Air cathode in MFC: WaterOr, Anaerobic cathode in MEC: HydrogenOr, Anaerobic biocathode in MEC: Biofuel

(glutamate, propionate, butanol, etc.)

Energy

Electricity generated in MFCOrVoltage applied in MEC

Bioanode:Glu CO2 / Acetate + 24H+ + 24e-

e- e-

H+

CO2 / Acetate / H2

21

1

Liquid

15/11/2015

Integrated flowsheet example (1)

Reference: Sadhukhan, J.,Lloyd, J., Scott, K., Premier,G.C., Yu, E., Curtis, T., and Head,I. (2015). A Critical Review ofIntegration Analysis ofMicrobial Electrosynthesis(MES) Systems with WasteBiorefineries for theProduction of Biofuel andChemical from Reuse of CO2.Renewable & Sustainable EnergyReviews, Submitted.

Page 29: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

29

Oily residues

Sulphuric acid and methanol

Dilute acid esterification

TransesterificationMethanol Waste oil

Glycerol refining

Biodiesel refining

Glycerol Biodiesel

Stillage Electricity generated in MFCOrVoltage applied in MEC

Bioanode:Glycerol Ethanol + CO2 + 2H+ + 2e-

Ethanol

e- e-

H+

Air cathode in MFC: WaterOr, Anaerobic cathode in MEC: HydrogenOr, Anaerobic biocathode in MEC: Biofuel or Chemical

Substrate for biocathode shown in Figure 1

15/11/2015

Integrated flowsheet example (2)

Reference: Sadhukhan, J., Lloyd, J., Scott, K.,Premier, G.C., Yu, E., Curtis, T., and Head, I. (2015).A Critical Review of Integration Analysis ofMicrobial Electrosynthesis (MES) Systems withWaste Biorefineries for the Production of Biofueland Chemical from Reuse of CO2. Renewable &Sustainable Energy Reviews, Submitted.

Page 30: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

ANODE

CATHODE

Anode substrate: Organic waste/ wastewaters / lignocellulosic wastes and their hydrolysates/stillage from biodiesel and bioethanol plants / glycerol from biodiesel plant

H2 and CO2 / carbonic acid / pyruvate / formate / fatty acids

e-e-

External Voltage Supply

H+

H+

Bio

ele

ctro

che

mic

al

ox

idat

ion

Cat

alyt

ic e

lect

ro-h

ydro

ge

nat

ion

, h

ydro

de

ox

yge

nat

ion

re

du

ctio

n

reac

tio

ns

CO2 reuse in Chemical / Bioplastic / Biofuel production

Biofuel / Bioplastic / Chemical

Cathode substrates 1: Anode Effluents (pyruvate / organic acids)

Gaseous products (e.g. hydrogen, methane)

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

Cathode substrates 2: Other Wastes (Wastewaters / hydroxy acids, glucose, etc. from lignocellulose wastes

PR

OT

ON

EX

CH

AN

GE

ME

MB

RA

NE

Reference: Sadhukhan, J., Lloyd, J., Scott, K., Premier, G.C., Yu, E., Curtis, T., and Head, I. (2015). A Critical Reviewof Integration Analysis of Microbial Electrosynthesis (MES) Systems with Waste Biorefineries for the Productionof Biofuel and Chemical from Reuse of CO2. Renewable & Sustainable Energy Reviews, Submitted.

Page 31: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Reference: Sadhukhan, J., Lloyd, J., Scott, K., Premier, G.C., Yu, E., Curtis, T., and Head, I. (2015). A Critical Reviewof Integration Analysis of Microbial Electrosynthesis (MES) Systems with Waste Biorefineries for the Productionof Biofuel and Chemical from Reuse of CO2. Renewable & Sustainable Energy Reviews, Submitted.

Anode substrate: Organic waste/ wastewaters

H2 and CO2 / carbonic acid / pyruvate / formate / fatty acids

e- e-

External voltage applied

H+

An

od

e c

ham

be

r:

Bio

ele

ctro

che

mic

al

ox

idat

ion

Cat

ho

de

ch

amb

er:

𝑴++𝒆−→𝑴

CO2 reuse in reactions

MetalBiofuel or Chemical or Polymer (Optional)

Gaseous products (e.g. hydrogen, methane)

Cathode substrate: Wastewaters containing metal contaminants

PR

OT

ON

EX

CH

AN

GE

ME

MB

RA

NE

H+

Proton exchange membrane (optional)

CxHyOz + (2x-z)H2O →(y+4x-2z)H+ + xCO2 + (y+4x-2z) e-

Page 33: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Database created for decision making software 63 anodic and 72 cathodic reactions of metabolism and 9

metabolic pathways have been collated for assessing technical feasibility based on thermodynamic spontaneity of resource recovery from waste substrates and combinations of anodic and cathodic reactions using MES

The database (spreadsheet) as supplementary information available with: Sadhukhan, J., Lloyd, J., Scott, K., Premier, G.C., Yu, E., Curtis, T., and Head, I. (2015). A Critical Review of Integration Analysis of Microbial Electrosynthesis (MES) Systems with Waste Biorefineries for the Production of Biofuel and Chemical from Reuse of CO2. Renewable & Sustainable Energy Reviews, Submitted.

15/11/2015 33

Page 34: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 34

Page 36: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Strategy for bioproduct and bioprocess development from ideas to market: Utilisation of predictive power

15/11/2015 36

Societal needs and market

demands for products

Availability of waste

resources and infrastructures

Health, environment

and job creation

Policy incentives

Project definition: Characterise waste

substrates and identify pathways to products

Identify appropriate gut communities

responsible for rapid rates of microbial

bioconversion in nature

Hypothesise metabolic pathways; Metabolic

flux analysis for targeting products

thermodynamic optimisationEconomics

Design options and regions for

operability

Process Integration and

flowsheet synthesis, industrial symbiosis

Process simulation and dynamics

Control experimentation

Economics and sustainability

Piloting, demonstration and

fully operational symbiotically

integrated process plant

Page 37: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 37

Surrey’s strategy to resource recovery from waste streams

• Waste flows and characteristics: Environmental Data Centre on Waste, EUROSTAT; DEFRA’s database on UK’s waste for each county; biomass data from INIFAP

• Waste prevention: Apply Process Integration and Intensification and Green Chemistry Principles and ‘plug-and-play’ technologies

• Resource Recovery: Metals and minerals• Resource Recovery: Biofuels, chemicals, nutrients and fibre• Product logistics• Apply LCA, LCC and SLCA to the same system boundary to maximise

the benefits of trade-off analyses and select the best integrated design

Page 38: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 38

Page 39: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

15/11/2015 39

Building block C No. NREL BREW Building block C No. NREL BREW

Syngas (H2 + CO) C1 Aspartic acid C4

Ethanol C2 Arabinitol C5 Acetic acid C2 Furfural C5 Lactic acid C3 Glutamic acid C5 Glycerol C3 Itaconic acid C5 Malonic acid C3 Levulonic acid C5 Serine C3 Xylitol C5 Propionic acid C3 Xylonic acid C5 3-Hydroxypropionic acid C3 Glucaric and Gluconic acid C6 1,3-propanediol C3 1-butanol C6

Acrylic acid C3 1,4-butanediol C6 Acrylamide C4 Sorbitol C6

Acetoin C4 Adipic acid C6

3-Hydroxybutryolactone C4 Citric acid C6

Malic acid C4 Caprolactam C6

Theonine C4 Lysine C6

Succinic acid C4 Fat and oil derivatives >C6

Fumaric acid C4 Polyhydroxyalkanoates (PHA) >C6

Page 40: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Oil refinery Biorefinery

Mature process technology (e.g. thermal and catalytic cracking, reforming, hydrotreatment)

Mature and innovative process technology (e.g. fractionation, pyrolysis, fermentation, anaerobic digestion, MBT and bioseparations)

Use of every crude oil fraction Use of every biomass fraction and components Process flexibility and product diversification

Process flexibility and product diversification

Co-production of valuable chemical building blocks

Co-production of valuable and highly functionalised chemical building blocks

Cogeneration of heat and power Cogeneration of heat and power Process integration Process integration and design for sustainability Economy of scale Scale according to biomass logistics but must be maximised

to benefit from economy of scale

15/11/2015 40

Page 41: Diseño e Integración de procesos para biorrefinerias ... · Starch Fibre Bark Fibre + Bark Feed Amount (ton/d , dry basis) 12 6.458 10 .202 16 .660 Produced ethanol (ton/d) 4.171

Publications/know-how reciprocal

Experimental analysis without global contexts and viability has little/no impactModelling analysis without experimental validation has little/no impactTeam cooperative papers are more cited and carry more credibility than individually written onesSurrey runs LCA module with hands-on experience in modelling with LCA software and LCC, SLCA and LCSA know-how

[email protected]

Acknowledgements:[email protected]@surrey.ac.ukNATURAL ENVIRONMENT RESEARCH COUNCIL, UK

4115/11/2015