ELS_GovindjeeEtAl(2010) (2)

download ELS_GovindjeeEtAl(2010) (2)

of 184

Transcript of ELS_GovindjeeEtAl(2010) (2)

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    1/184

    Photosystem IIGovindjee, UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois,USAJan F Kern,LawrenceBerkeleyNationalLaboratory,Berkeley,California,USAJohannes Messinger, UmeaUniversity,Umea,SwedenJohn Whitmarsh, NationalInstitutesofHealth,Bethesda,Maryland,USABasedinpartonthepreviousversionofthisEncyclopediaofLifeSciences(ELS)article,PhotosystemIIbyJohnWhitmarshandGovindjee.PhotosystemII(PSII)isaspecializedproteincomplexthatuseslightenergytodrivethetran

    sferofelectronsfromwatertoplastoquinone,resultingintheproductionofoxygenandthereleaseofreducedplastoquinoneintothephotosyntheticmembrane.ThekeycomponentsofthePSIIcomplexincludeaperipheralantennasystemthatemployschlorophyllandotherpigmentmoleculestoabsorblight,areactioncentreatthecoreofthecomplexthatisthesiteoftheinitialelectrontransferreactions,anMn4OxCaclusterthatcatalyseswateroxidationandabindingpocketforthereductionofplastoquinone.PSIIisthesolesourceofoxygenproductioninalloxygenicphotosyntheticorganisms,whichincludeplants,algaeandcyanobacteria.Intheseorganisms,PSIIoperatesinserieswithotherproteincomplexes,includingthePSIreactioncentre,toproducethereducedformofnicote-namideadeninedinucleotidephosphate(NADPH)andadenosinetriphosphate(ATP),whichisusedintheCalvinBensoncycletoproducecarbohydratesfromcarbondioxide.Introduction

    Oxygenicphotosynthesisisthephysical-chemicalprocessbywhichplants,algaeandcertainbacteriauselightenergytobuildcarbohydratesfromcarbondioxideandwater,resultinginthereleaseofmolecularoxygenintotheatmosphere.Theproductionofoxygendependsonpho-tosystemII(PSII),auniqueproteincomplexthatremovesELS subject area: BiochemistryHow to cite:Govindjee;Kern,JanF;Messinger,Johannes;andWhitmarsh,John(February2010)PhotosystemII.In:EncyclopediaofLifeSciences(ELS).JohnWiley&Sons,Ltd:Chichester.DOI:10.1002/9780470015902.a0000669.pub2Advanced articleArticle Contents.Introduction

    .Organization, Composition and Structure

    .Light Capture: The Antenna System

    .Primary Photochemistry: The Reaction Centre

    .Oxidation of Water: The Source of Atmospheric Oxygen

    .Reduction of Plastoquinone: TheTwo-electron Gate.Concluding RemarksOnline posting date: 15th February 2010

    electronsfromwater

    andtransfersthemtoplastoquinone(PQ).Anancientformofphotosynthesisoccursin

    certaintypesof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    2/184

    bacteriathatuselightenergytooxidize

    moleculesotherthanwater(Hunteretal.,2009).Fossilevidenceindicatesthat

    PSII-containingorganismsemergedmorethanthreebillionyearsago,resultingintheconversion

    oftheearthsatmospherefromamildlyreducinganaerobicstatetotheoxygen-richairsurroundingustoday(DesMarais,2000;KastingandSiefert,2002).The

    releaseofoxygen

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    3/184

    intotheatmospherebyPSIIenabledthe

    evolutionofoxidativerespiration,whichhashadaprofoundimpactonthe

    diversityoflifeonourplanet.Seealso:Earth:ChangesThroughTime;Evolution

    ofPhotosynthesis;Photosynthesis

    Oxygenicphotosynthesisdependsontworeactioncentrecomplexes,PSIIandPSI,thatarelinkedbythecytochromebfcomplexand

    mobileelectroncarriers

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    4/184

    (WhitmarshandGovindjee,1999;Figure 1).PSII,the

    cytochromebfcomplexandPSIareembeddedinthephotosyntheticmembrane(Figure 1a;

    seelegendfordetails)andoperateinseriestotransferelectronsfromwater

    tonicotinamideadeninedinucleotidephosphate(NADP+)(seeFigure 1b legendfordetails).TheenergyneededtotransferelectronsfromwatertoNADP+isprovidedbylight,whichis

    capturedbythe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    5/184

    PSIIandthePSIantennasystems.In

    plantsandalgaethephotosyntheticmembranesarelocatedinsidechloroplasts,whichare

    subcellularorganelles.Inoxygeniccyanobacteria,thephotosyntheticmembranesarelocatedinsidetheplasma

    membrane.Seealso:Chlorophyll:StructureandFunction;PhotosystemI;PlantChloroplastsandOtherPlastids

    Chloroplastsoriginatedfromoxygenicbacteriathatwereengulfedby

    aeukaryoticnonphotosynthetic

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    6/184

    organism.Inbothchloroplastsandcyanobacteria,photosynthetic

    membranesformvesiclesthatdefineaninnerandouterwaterspace.Light-driven

    electrontransferthroughthePSIIandPSIreactioncentresprovidesenergyforthe

    creationofaprotonelectrochemicalpotentialacrossthemembrane.TheenergystoredintheprotonelectrochemicalgradientisusedbyATPsynthasetoproduceATP.

    Inadditionto

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    7/184

    oxygen,theproductsofthelight-driven

    electronandprotontransportreactionsareNADPHandATP,whichprovidethe

    freeenergyneeded

    ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley

    &Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    8/184

    Stroma2 H+ 2 H+hNADP+NADPHH+

    3 H+Lumen2 H2O O24 H+4 H+hYDP680PheoLHCIIQA QBPQCyt

    b559PQPCCyt fCyt b6FeSP700PCFNRFdFeSLHClLHClA0A1CF1

    CF0PQH2PQH2PQH2YZMn4Stroma2 H+ 2 H+hNADP+NADPHH+3 H+Lumen2 H2O O24 H+4 H+hYDP680PheoLHCIIQA QBPQCytb559

    PQPCCyt fCyt b6

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    9/184

    FeSP700PCFNRFdFeSLHClLHClA0

    A1CF1CF0PQH2PQH2PQH2YZMn4Photosystem IIATP 3 H+ ADP + Pi

    4 nm

    Cytochrome b6f

    (a) Photosystem II Photosystem I ATP synthase.1.6.1.2.0.8.0.4

    Photosystem II~10 ps200 ps100.600 .s

    200 .sCyt b6f~1 ps40.200 ps15.200 ns< 1.125 .s2 NADPH~1 ms2 NADP+h200.500 nsComplexPhotosystem I< 1 ms1.20 ms1 msh.2 H2O 50 .s.1.5 ms20 ns.35 .sO2+4 H+P680P680*P700*A0A1 Fx FABFd

    FNRPheoQA QBPQ

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    10/184

    FeS Cyt fPC P700Mn4OxCaYzEm(volts)

    0.0

    0.4

    0.8

    1.2

    (b) 1.6Figure 1 (a)Schematicrepresentation

    ofproteincomplexesandcofactorsinvolvedinthelinearelectrontransportandthe

    protontransportofphotosynthesisinhigherplants(fordifferenceswithotheroxygenicorganisms,seelaterdiscussionandthetext).(b)TheZschemeshowingthe

    energeticsofoxygenic

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    11/184

    photosyntheticelectrontransport.Theverticalscaleshows

    theequilibriummidpointredoxpotential(Em)oftheelectrontransportcomponents.Approximate

    electrontransfertimesareshownforseveralreactions.Lookingatthecomponentsfrom

    thebottomleftofthediagrams:Mn4OxCa(orMn4),tetranuclearmanganeseoxygencalciumcluster,wherex54;Yz,tyrosine-161ontheD1protein;P680,primaryelectrondonorof

    photosystemII;P680 ,

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    12/184

    excitedelectronicstateofP680(fordetails,

    seetextandFigure 3c);Pheo,pheophytin;QA,atightlyboundplastoquinone;QB,

    aplastoquinonethatbindsandunbindsfromphotosystemII;PQ,apoolof

    mobileplastoquinonemolecules;themiddleboxrepresentsaproteincomplexcontainingtwomoleculesofcytochromeb6(Cytb6;onlyoneisshown),anironsulfurprotein

    (FeS;knownas

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    13/184

    RieskeFeSprotein)andacytochromef

    (Cytf);PC,plastocyanin(cyanobacteriaoftenemployCytc6);P700,reactioncentre

    chlorophyllaofphotosystemI;P700,excitedelectronicstateofP700;A0,a

    specialchlorophyllamolecule;A1,vitaminK;FX,FA,FB,ironsulfurcentres;Fd,ferredoxin;FNR,ferredoxinNADPreductaseandNADP+,nicotinamideadeninedinucleotidephosphate.Figure 1a shows,inaddition,LHC-Iand

    LHC-II,light-harvestingcomplexes

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    14/184

    ofphotosystemsIandII,respectively(see

    Figure 2b forcyanobacteria),andtheATPsynthasewithcouplingfactors(CF0andCF1).

    ThisfigurewasdrawnfortheauthorsbyDmitriyShevela(inthelaboratory

    ofJM).

    forthereductionofcarbondioxideandthesynthesisandRenger,2008).Thesechemicalreactionsaredrivenbyofcarbohydrates,the

    finalproductof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    15/184

    oxygenicphoto-theprimaryphotochemicalreactionofPSII,

    whichresultssynthesis.Seealso:AlgalChloroplasts;Photophosphory-inseparatingapositiveand

    anegativechargewithinthelation;Photosynthesis:TheCalvinCycle;Photosyntheticreactioncentre.

    TheprimaryphotochemicalreactionisCarbonMetabolism;RubiscogovernedbyEinsteinslawofphotochemistryone

    PSIIuseslightenergytodrivetwo

    chemicalreactions:absorbed

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    16/184

    photondrivesthetransferofoneelectron.

    Fourtheoxidationofwaterandthereductionofplastoquinonephotochemicalreactions

    arerequiredtoremovefour(WydrzynskiandSatoh,2005;Lubitzetal.,2008;

    Rengerelectronsfromtwowatermolecules,whichresultsinthe

    ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    17/184

    Photosystem II Photosystem IIhhh.productionofone

    moleculeofoxygenandthereleaseoffourprotonsintotheinner

    waterphase(thelumen)ofthephotosyntheticmembrane(Figure 2).Thefourelectronsextracted

    fromthewatermoleculesaretransferredtotheplastoquinone-bindingsitewhere,inconcertwithfour

    StromaHCO3.Fe2+PheoD1ChlD1 ChlD2P680YDYZ

    PheoD2QAD2 D1

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    18/184

    CP47CP43QBLumenLHC-IILHC-IICytb559PQPQ PQ

    PQPQPsbO PsbPclusterPsbQMn4OxCa2 H2O

    Thylakoid membrane

    protons

    takenupfromtheouterwaterphase(thestroma/cytoplasm;seelaterdiscussion),

    twomoleculesofplasto

    quinonearereduced:

    2H2O.2PQ.4H..4hn! O2.2PQH2.4H.

    outin

    O2 + 4 H+

    (a)h.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    19/184

    Herewedescribethestructure

    andfunctionofPSIIwithoutdiscussingtheexperimentalresultsthatunderlieour

    knowledge.Thereferencesattheendofthearticleprovideanentryto

    theliteraturedescribingprogressoverthepasthalfcenturyinunderstandingthisubiquitousenzyme,whoseemergencethreebillionyearsagocanbeviewedasa

    seminaleventin

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    20/184

    theevolution.

    Organization, Composition andStructure

    PSIIislocatedinthephotosyntheticmembrane,withtheoxygen-evolvingsitenear

    theinnerwaterphase(lumen),andtheplastoquinone-bindingsiteneartheouterwater

    phase(stromaineukaryotesandcytoplasmincyanobacteria;Figure 2a andb),anorientationthatenablestheoxidationreductionchemistryofthereactioncentretocontributetothe

    protonelectrochemicaldifference

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    21/184

    acrossthethylakoidmembrane(seethelegend

    ofFigure 2).Inchloroplasts,thearchitectureofthephotosyntheticmembraneiscomplicated,

    withregionsofstackedmembranes(granamembranes)andregionsofnonstackedmembrane(stromal

    membranes).PSIIandPSIareunevenlydistributedbetweenthetworegions,withmostofthePSIIcomplexeslocatedinthestackedmembranes,andvirtuallyall

    Cytoplasm

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    22/184

    D2 D1HCO3.Fe2+QBQAPheoD1 PheoD2ChlD2ChlD1P680

    YDYZPhycobilisomeLumen2 H2OThylakoid membraneCytb559PQPQ PQPQPQCP43 CP47PsbO PsbU

    clusterPsbVMn4OxCa(b)O2 + 4 H+

    Figure 2 (a)Schematicrepresentationofcomponentsofphotosystem

    IIin

    higherplantsandgreenalgae.(b)SchematicrepresentationofcomponentsofphotosystemIIincyanobacteria.D1andD2arethereaction

    centreproteinsof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    23/184

    photosystemII(PSII).PSIIuseslightenergy

    toremoveelectronsfromwater,resultinginthereleaseofoxygenand

    protons(seetheLumensideofthediagram).Theelectronsfromwaterare

    transferredviaredoxcofactorsintheproteincomplextoformreducedplastoquinone.Mn4OxCaisthemanganeseoxygencalciumclusterinvolvedinremovingelectronsfromwater;P680is

    apairof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    24/184

    chlorophylls(PD1andPD2)ofPSII;ChlD1

    istheprimaryelectrondonorandPheoD1,pheophytinonD1,isthe

    primaryelectronacceptor;QA(onD2),boundplastoquinone;QB(onD1),plastoquinonethat

    bindsandunbindsfromPSII;Yz(onD1)andYD(onD2)areredoxactivetyrosineresiduesinPSIIwithdifferentfunctionsandPQ,mobile

    plastoquinonemoleculesin

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    25/184

    themembrane.CP43andCP47arechlorophyllprotein

    complexesof43and47kDathatformtheinner(alsocalled

    core)antennasystemofPSII;LHC-II(light-harvestingcomplexII;Figure 2a)denotesallother

    PSIIantennaineukaryotes;PsbO(33kDa),PsbQ(16kDa)andPsbP(23kDa)areextrinsicproteinsthatstabilizeandoptimizethewater-splittingcomplexand

    itsreactivity(Figure 2a);

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    26/184

    Cytb559isadimericproteinthat

    containstheredoxactivecytochromeb559thatmaybeinvolvedinphotoprotectionof

    PSII

    ofthePSIcomplexeslocatedinthenonstackedmembranes.It

    isnotclearwhyPSIIandPSIarespatiallyseparatedinchloroplasts,butlocationofPSIIinthestackedmembranesallowsforveryclosepacking

    ofthemembranes

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    27/184

    becauseoftherelativelylimitedextensionof

    PSIIintotheouterwaterphase(thestroma)comparedtoPSI.In

    chloroplasts,thePSIIcomplexisdenselypackedinthephotosyntheticmembrane,withaverage

    centre-to-centre

    .

    distancesof150250A.Onesquarecentimeterofatypicalleafcontainsapproximately30trillionPSIIcomplexes.Inprokaryotes,the

    photosyntheticmembranesdo

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    28/184

    notform

    (thisproteinis

    alsoessentialfortheassemblyofPSII).Bicarbonate(HCO3;hydrogencarbonate)

    showninthefigureasboundtononhaemeiron;itmaybebound

    intheformofcarbonate(CO322).Incyanobacteria(Figure 2b),themajorantennaisthephycobilisomethatisextrinsictothemembraneandconnectedtothe

    CP47proteinof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    29/184

    PSIIviaananchorprotein;also,instead

    ofPsbPandPsbQasextrinsicpolypeptidesontheluminalside,these

    organismshavePsbU(12kDa)andPsbV(Cytc550)proteins.Thisfigurewas

    drawnbyDmitriyShevela(inthelaboratoryofJM).

    ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    30/184

    Photosystem II Photosystem IICytoplasmD2 D1 CP43Mn4OxCaPsbOPsbV

    50 .40 .10 .CP47ThylakoidmembraneLumenCyt b559PsbUQAQBCyt b559

    Bicarbonate8.8Fe9.0 QBQAPheoD1ChlZD1CarD1YzMn4OxCa Cl.PD1PD2ChlD2ChlD1 ChlZD213.1 .

    10.5 .10.4 .13.6 .5.4 .CarD2PheoD2Cyt b559YDFeD2D1CP43CP47(a)(b)(c)ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley&

    Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    31/184

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    32/184

    Photosystem II

    Figure 3 Structureofthephotosystem

    II(PSII)complexfromthethermophiliccyanobacteriumThermosynechocuuselongatus(Guskovetal.,

    2009).(a)Aviewofonemonomerofthecomplex;theviewdirection

    isalongthemembraneplane.Dimensions,inangstroms,areindicatedontherightside.Proteinsubunitsareshownascartoonandcolouredinyellow(D1),

    orange(D2),red

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    33/184

    (CP47),magenta(CP43),cyan(Cytb559),green

    (PsbO),blue(PsbU),salmon(PsbV)andgrey(remainingsmallsubunits).Cofactorsare

    shownassticksingreen(chlorophylls),orange(carotenoids)andblue(haeme).Thelocation

    ofthecatalyticsiteofwateroxidation,theMn4OxCacluster(x44),ishighlightedattheluminalside.(b)ThemembraneintrinsicpartofPSII;this

    viewisonto

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    34/184

    themembraneplanefromthecytoplasmicside;

    thecolouringisasinpanel(a).ThereactioncentredomainD1

    andD2andtheantennasubunitsCP43andCP47arehighlightedbyellipses,

    andthepositionoftheCytb559,thenonhaemeiron(bluesphere)andofQAandQBarelabelled.(c)Redoxactivecofactorsinthe

    reactioncentre.At

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    35/184

    therightside,thecentre-to-centredistances,in

    angstroms,betweenthecofactorsareindicatedstarting(frombottomtotop)from

    Ca(yellowsphere)oftheMn4OxCacluster,totheOHofthetyrosine,

    labelledasYz,chlorophyllPD1(ofP680),ChlD1(green),pheophytinPheoD1(yellow)andplastoquinoneQA(magenta)andthedistancesbetweenQA,Fe(bluesphere)and

    QBaregiven

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    36/184

    directlyinthefigureinangstroms.Bicarbonate

    (moreappropriatelycalledhydrogencarbonate)isshowntobeboundtothe

    nonhaemeiron.(Wedonotexcludethepossibilitythattheboundspeciesmay

    alsobecarbonate).Thefigurewasgeneratedbyusingthecoordinates(pdbcode:3BZ1,3BZ2)ofthe2.9A.resolutioncrystalstructure.Thisfigurewas

    drawnbyone

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    37/184

    ofus(JFK).

    stackedmembranes

    andthePSIIandPSIcomplexesappeartobeintermixed.

    ThereisaremarkablesimilarityinthestructureandfunctionofPSIIin

    higherplants,algaeandbacteria.Furthermore,thePSII,PSIand(anoxygenic)bacterialreactioncentresshareseveralstructuralfeatures,indicatingancientevolutionarylinks(Sadekaretal.,

    2006).Incontrast,

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    38/184

    thestructuresofthelight-capturingantennasystems

    invariousphotosyntheticsystemsarequitedifferent,indicatingmultipleorigins.Seealso:

    EvolutionofPhotosynthesis

    PSIIiscomposedofacentralreactioncentre

    coresurroundedbyalight-harvestingantennasystem(Figure2a andb).ThereactioncentrecoreincludesD1andD2polypeptidesthatbindthecofactorsofthephotochemical

    chargeseparationand

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    39/184

    electrontransfercarriersthatoxidizewaterand

    reduceplastoquinone(Figure 1,Figure 2 andFigure 3).Theantennasystemconsistsofproteincomplexes

    thatcontainlight-absorbingmolecules(chlorophyllorphycobilinsandotheraccessorypigments;seelater

    discussion)whichoperateinconcerttocapturephotonsandtransfertheexcitationenergytoreactioncentreswhereprimarychargeseparationoccurs.Inmosteukaryoticorganisms

    (e.g.higherplants

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    40/184

    andgreenalgae),thelight-harvestingcomplexes

    areorganizedasaninnerantennasystemlocatedclosetothereaction

    centre,andaperipheralantennasystemcomposedofpigmentproteinsknownaslight-harvesting

    complexII(LHC-II;Lhcb16)(Figure 2a).Inothereukaryoticorganisms(e.g.redalgae)andinmanyprokaryoticorganisms(e.g.mostcyanobacteria),thelight-harvestingcomplexes,

    whichareknown

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    41/184

    asphycobilisomes,areextrinsictothephotosynthetic

    membraneandusephycobilinsratherthanchlorophyllstocapturelight(Figure 2b).The

    PSIIreactioncentrecomplex,excludingtheperipherallight-harvestingcomplexes,iscomposedofmore

    than20differentpolypeptides,mostofwhichareintegralmembranepolypeptides(Figure 3a andb).Theonlyknownmembraneperipheralproteinsarelocatedinthelumen.In

    additiontothe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    42/184

    differencesbetweentheantenna,thephotosystemsII

    ofhigherplantsandcyanobacteriadifferwithrespecttothecompositionof

    thesemembraneperipheralproteins(seeFigure 2a andb)asplantPSIIhavePsbO(33

    kDa),PsbP(23kDa)andPsbQ(16kDa)andcyanobacterialPSIIPsbO(33kDa),PsbU(12kDa)andPsbV(Cytc550)(seelaterdiscussion).Table 1 lists

    thegenesencoding

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    43/184

    thePSIIpolypeptides,togetherwiththe

    polypeptidemolecularweightsandtheirputativefunctions.Seealso:ChloroplastGenome

    PSIIcontainsatleasteightdifferenttypesofredoxcomponentsthat

    havebeenobservedtoundergolight-inducedelectrontransfer.Thesecomponentsincludechlorophyll,pheophytin,plastoquinone,tyrosine,manganese,iron,cytochromeb559andcarotenoid(Figure 3).However,only

    thefollowingredox

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    44/184

    componentsareknowntobeinvolvedin

    theelectrontransferfromwatertotheplastoquinone:thewater-oxidizingmanganeseoxygencalcium

    cluster(Mn4OxCa,wherex4isthenumberofbridgingoxygens),atyrosine

    (Yz),achlorophylldimer(PD1andPD2),whichisalsoreferredtoasP680,historicallythoughttobetheprimaryelectrondonor,butseethe

    discussiononthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    45/184

    primarychargeseparationeventbelow),amonomeric

    chlorophyll(ChlD1),apheophytin(PheoD1)andtwoplastoquinonemolecules(QAandQB)(Figure 2).

    Theprimaryelectrondonormoleculeinvolvedinthefirstchargeseparationreactionis

    ChlD1(Figure 3c;seethesectiononPrimaryphotochemistry:Thereactioncentre).

    Afterdecadesofeffortbymanyresearchers,thethree-dimensionalstructureof

    thePSIIinner

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    46/184

    corefroma.

    thermophiliccyanobacterium

    wasdeterminedto3.8AresolutionbyHTWitt,WSaengerandcoworkers

    (Zounietal.,2001).FollowingtheworkofWittandcoworkers,

    .

    morehighlyresolvedPSIIstructures(3.72.9Aresolution)havebeendetermined(KamiyaandShen,2003;Ferreiraetal.,2004;Lolletal.,2005;Guskov

    etal.,2009).

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    47/184

    ThePSII

    .

    reaction

    centrecoreis100Aacross(intheplaneof.

    the

    membrane)andextendsapproximately10Aintothe.

    stromalaqueousphaseand

    approximately55Aintothelumen(Figure 3a).AtthecentreofPSIIaretheD1andD2polypeptides,whichformtwobranchesthatprovidetheprimary

    scaffoldingforthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    48/184

    electroncarriers(Figure 3aandc).TheMn4OxCa

    clusterisligatedbyaminoacidsfromtheD1polypeptideandthe

    innerantenna(alsocalledcoreantenna)proteinCP43(Figure 4;Table 1).Inadditionto

    thesecomponents,thePSIIreactioncentrecoreandthetwoinner(orcore)antennaproteins(CP43andCP47)bind29moleculesofchlorophylla,12

    carotenoids,onenonhaeme

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    49/184

    iron,oneormorechlorideionsand

    onecarbonate

    222

    (CO3)orhydrogencarbonate(HCO3

    )ion(Figure 3bandc).AllPSIIcomplexescontaincytochromeb559,ahaeme

    proteincomposedoftwopolypeptideslocatedattheperipheryofthecomplex,aswellasatleast12smallmembraneintrinsicproteins(Figure 3;Table 1).In

    plants,the

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    50/184

    ENCYCLOPEDIAOFLIFESCIENCES&2010,

    JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    51/184

    Photosystem II Photosystem IITable1PhotosystemIIgenes,

    proteinsandputativeroles(excludingantennalight-harvestingcomplexII)

    Mass

    IntegralorGeneaProtein(kDa)bperipheralcCommentspsbA(c)D139I

    (5)D1(andD2)formthereactioncentrecorethatbindsmostofthePSIIelectrontransportcomponents;QBbindstoD1psbB(c)

    CP4756I

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    52/184

    (6)BindsantennachlorophyllapsbC

    (c)CP4347I(6)Bindsantennachlorophylla,providesaligand

    totheMn4OxCacomplexpsbD(c)D239I(5)D2(and

    D1)formthereactioncentrecorethatbindsmostofthePSIIelectrontransportcomponents;QAbindstoD2psbE(c)aSubunit9.3

    I(1)Binds

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    53/184

    b-haeme;maybeinvolvedinphotoprotectionCyt

    b559psbF(c)bSubunit4.5I(1)Bindsb-haeme;may

    beinvolvedinphotoprotectionCytb559psbH(c)PsbH7.8I(1)

    Canbephosphorylatedinplants,involvedinrepairofD1,optimizeselectronflowinprokaryotespsbI(c)PsbI4.2I(1)Stabilizationandassembly

    ofthecomplex

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    54/184

    psbJ(c)PsbJ4.2I(1)

    InfluencesplastoquinoneexchangeandelectronflowonacceptorsidepsbK(c)

    PsbK4.3I(1)StabilizationofthecomplexpsbL(c)PsbL4.5

    I(1)Influencesplastoquinonebindingandelectronflowonacceptorside,stabilizesdimerizationpsbM(c)PsbM4I(1)Mediatesinteractionbetweenthemonomers

    inthedimeric

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    55/184

    complexpsbO(n)PsbO27P

    (0)Involvedinoptimizingoxygenevolution,bindspossibleregulatory(MSP)calciumpsb

    P(n)PsbP20P(0)Involvedinoxygenevolution;eukaryotespecific(in

    prokaryotesaPsbP-likeproteinisfoundinsubstoichiometricamounts)psbQ(n)PsbQ17P(0)Involvedinoxygenevolution;eukaryotespecific,aslightlydifferent

    formofPsbQ

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    56/184

    isalsopresentinprokaryotes,optimizingoxygen

    evolutionactivitypsbR(n)PsbR10I(1)Neededforstable

    assemblyofPsbPinthecomplex,influencesdonorandacceptorsideelectrontransfer;

    eukaryotespecificpsbS(n)PsbS21I(4)InvolvedinnonphotochemicalquenchingpsbT(c)PsbT3.8P(1)StabilizesQA-bindingsite,supportsdimerization

    psbTn(n)

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    57/184

    PsbTn3.2P(0)Unknownfunction;eukaryote

    specificpsbUPsbU10P(0)Maybeinvolvedincalciumand

    chlorinedeliverytotheOEC;prokaryotespecific;butalsofoundinbrownand

    redalgaepsbVCytc55012P(0)Bindsc-haeme,optimizesoxygenevolutionactivity;prokaryotespecific;butalsofoundinbrownandredalgae

    psbW(n)

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    58/184

    PsbW6I(1)InvolvedinPSII

    dimerization;eukaryotespecificpsbX(c)PsbX4I(1)Unknownfunction

    psbY(c)PsbY4.7I(1)UnknownfunctionpsbZ(c)PsbZ

    11I(2)Connectiontoexternalantennasubunitsinplantsycf12(c)Ycf125I(1)Unknownfunction(Psb30)

    Notes:Cyt,cytochrome;I,

    integral;MSP,manganese-stabilizing

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    59/184

    protein;OEC,oxygenevolvingcomplex;P,peripheral

    andPS,photosystem.WeacknowledgethehelpofKimberlyWegner,JohannaRoose,

    HimadriPakrasiandJulianEaton-Ryeinthepreparationofthistable.aForeukaryotic

    organisms,theletterinparenthesesindicateswhethernuclear(n)orchloroplast(c)geneisencoded.bMasscalculatedfromaminoacidsequence.cNumberofahelices

    isgivenin

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    60/184

    parentheses.

    luminalsideofthe

    complexisshieldedbythreemembrane-areanalogoustothe16kDaand

    23kDaproteinsfoundextrinsicproteinsknownasthe33kDaorPsbO

    protein,theineukaryoticcells.Anotabledifferencebetweencyano16kDaorPsbQproteinandthe23kDaorPsbPprotein.Inbacteriaandplants

    isthepresence

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    61/184

    ofcytochromec550cyanobacteria,twoadditionalextrinsic

    proteins,PsbUand(PsbV)incyanobacteria.AlthoughthecytochromePsbV,arepresent

    attheluminalside,asaretwolesstightlyundergoeslight-activatedredoxreactions,

    itsroleinPSIIis(ortransiently)boundproteins,PsbPandPsbQ,whichunknown.

    ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley&

    Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    62/184

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    63/184

    Asp170D2CP436.5Asp170 Asp170Glu189

    Glu189His332His332His332Glu189Chl PD1Yz(Tyr161)(a)(b) (c)Photosystem IIAsp170

    D2CP436.5Asp170 Asp170Glu189Glu189His332His332His332Glu189Chl PD1Yz(Tyr161)

    (a)(b) (c)Photosystem IIFigure 4 ThecatalyticsiteofwateroxidationinphotosystemII(PSII);aminoacidsareshownwiththeir3-lettercodes.(a)Structuralmodelfor

    themetalions

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    64/184

    andaminoacidligandsoftheMn4OxCa

    cluster,theredoxactivetyrosineYz(Tyr161)andthechlorophyllPD1,as

    derivedfromthe2.9A.resolutioncrystalstructure(Guskovetal.,2009);the

    viewisalongthemembranewithlumenatthebottomandcytoplasmatthetop.Theproteinsurroundingisshownincartoonmodeinlight

    yellow(D1),orange

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    65/184

    (D2)andmagenta(CP43).Mn(purple),Ca2+

    (orange)andCl2(green)ionsareshownasspheres,ligatingaminoacids

    assticks.Thenitrogenandoxygenatomsoftheaminoacidligandsare

    colouredinblueandred,respectively;thecarbonatomsarecoloureddependingonthesubunittheaminoacidbelongsto:yellowforD1,orangefor

    D2andmagenta

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    66/184

    forCP43.(b)ModelfortheMn4OxCa

    clusterinthedarkstableS1stateofthewateroxidizingcomplex,

    obtainedfromorientationdependentX-rayspectroscopyonPSIIsinglecrystals(Yanoetal.,

    2006)embeddedintheligandenvironmentderivedfromthecrystalstructure.Thecolouringandtheviewdirectionisasinpanel(a),bridgingoxygensare

    shownassmall

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    67/184

    redspheres.(c)Theoreticalmodelforthe

    Mn4OxCaclusteranditsfirstligandsphereintheS1statederived

    fromdensityfunctionalcalculations(Siegbahn,2008);thecolouringandtheviewdirectionis

    asinpanel(a);thebridgingoxygensareshownassmallredspheres.Thismodelalsoincludessomewater/hydroxidegroups(hydrogensshowningrey)as

    ligandstothe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    68/184

    manganeseandcalciumions.Thisfigurewas

    drawnbyoneofus(JFK).

    Thepathwayandrate

    ofelectrontransferwithinthePSIIcomplexmustberigorouslycontrolledforefficient

    operationintheelectrontransportchain.Oneofthekeyfactorscontrollingelectrontransferfromoneredoxsitetoanotheristhedistancebetweenthe

    components(Moseret

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    69/184

    al.,1992),whichisdeterminedbythe

    orientationandpositionoftheredoxcomponentsestablishedbytheproteinscaffolding

    ofthecomplex.Theimportanceofdistanceincontrollingelectrontransferisdemonstrated

    bytheremarkablehomologybetween(anoxygenic)bacterial

    reactioncentresandplant,algalandcyanobacterialPSIIreactioncentres(Sadekaretal.,2006).Anotherfactor

    incontrollingelectron

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    70/184

    transferisproteindynamics,whichappearsto

    playanimportantroleinthestabilizationoftheprimarychargeseparation

    andmanyotherreactionswithinPSII.Notethatthecentralcoreformedby

    theD1andD2polypeptidesformsasymmetricalstructure,whichprovidestwopotentialelectrontransportpathwaysthroughthereactioncentre.However,onlyonepathwayis

    active(Figure 2).Although

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    71/184

    theelectrontransferpathwaysin

    ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    72/184

    Photosystem II

    Table2Distributionof

    chlorophyllsandcarotenoidsinphotosystemIIfromhigherplants

    Protein

    NumberofchlorophyllmoleculesNumberofcarotenoidmoleculesReactioncentreproteins(D1/D2)6

    Chla2InnerantennaproteinsCP4716Chla5CP4313Chla3(+2boundbysmallsubunits)CP24+CP26+CP2918Chla+9

    Chlb6

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    73/184

    OuterantennaproteinsOnetightlybound+onemedium-bound

    48Chla+36Chlb24LHC-IIbtrimerLooselyboundLHC-IIb+otherLHCs

    Approximately100Chl(a+b)Approximately30CarPhotosystemII(reactioncentre+antennaApproximately250

    Chl(a+b)Approximately70Carsystem)

    thereactioncentrearetightlycontrolled,thereappeartobemultiplepathwaysforprotontransferfromthe

    outerwaterphase

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    74/184

    totheQBsite,andforthe

    releaseofprotonsfromtheMn4OxCaclusterintotheinnerwaterphase

    (thelumen).

    Light Capture: The Antenna System

    Oxygenicphotosynthesisisdrivenbyvisiblelight

    thatisabsorbedbychlorophyll/phycobilinsandotherpigments

    (e.g.carotenoids)boundtothelight-harvestingproteinsthatsurroundthePSIIandPSIreactioncentres

    inthephotosynthetic

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    75/184

    membrane.Themajorlight-absorbingpigmentinplants

    andmanyalgaeischlorophyll,whichisacyclictetrapyrroleinwhich

    thenitrogensofthepyrrolesarecoordinatedtoacentralmagnesiumion.Chlorophyll

    isagreenpigmentthatstronglyabsorbsblueandredlight.Plantsandmanytypesofalgaecontaintwotypesofchlorophyll,aandb,

    whichdifferby

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    76/184

    asinglegroupononeofthe

    pyrrolerings.Incontrasttoplants,cyanobacteriaandredalgaeemployphycobilins

    (thatareopen-chaintetrapyrrolesboundcovalentlytoproteins)asthemajorlight-absorbingpigments,

    whichtransferexcitationenergytochlorophylla.Inmanyplantsandalgae,theantennasystemservingasinglePSIIreactioncentrecontains200250chlorophyll

    and6070carotenoid

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    77/184

    molecules(Table 2).Carotenoids,whicharelinearpolyenes

    thatabsorbblueandgreenlight,serveadualroleinphotosynthesis.

    Theyareimportantlight-harvestingpigments,significantlyenhancingthespectrumofvisiblelightabsorbed

    bytheantennasystem.Inaddition,carotenoidsserveacriticalroleinprotectingthephotosyntheticapparatusfromdamageassociatedwithlightcapture.Theseprotectiveprocesses

    includedownregulation,which

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    78/184

    protectsmembranecomponentsunderconditionsofexcess

    light,andquenchingofexcitedtripletstatesofchlorophyllthatcaninduce

    oxidativedamage(Demmig-Adamsetal.,2006;Franketal.,1999).Thestructureof

    oneofthelight-harvestingproteincomplexes(LHC-II)associatedwitheukaryoticPSIIhasbeendeterminedbyelectroncrystallography(Ku.hlbrandt

    etal.,1994)and

    byX-raycrystallography

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    79/184

    (seereviewbyBarrosandKu.hlbrandt,

    2009).TheLHC-IIcomplexformsatrimer,witheachsubunitbindingeight

    moleculesofchlorophylla,sixmoleculesofchlorophyllbandfourmoleculesof

    carotenoids.Seealso:Chlorophyll-bindingProteins

    Photosynthesisisinitiatedbyabsorptionofaphotonbyanantennamolecule,whichinducesarapid(10215s)

    transitionfromthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    80/184

    electronicgroundstatetoanexcitedelectronic

    state.Theexcitedstatedecaysrapidly(10213s)byvibrationalrelaxationto

    thefirstexcitedsingletstate.Thefateoftheseshort-livedexcitedstatesis

    guidedbythestructureandcompositionofthelight-harvestingproteinpigmentcomplexes.Becauseoftheproximityofotherantennamoleculeswiththesameorsimilar

    electronicenergylevels,

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    81/184

    theexcitedsingletstateenergyhasa

    highprobabilityofbeingtransferredtoaneighbouringmoleculebyaprocess

    knownasFo.rsterResonanceEnergyTransfer(FRET)(Lakowicz,1999).Transferofexcitation

    energybetweenantennamoleculesdependsontheinteractionbetweenthetransitiondipolemomentsofthedonorandacceptormolecules.Theprobabilityoftransferfallsoff

    quicklyasthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    82/184

    distancebetweenthepigmentsincreases(inmany

    cases,therateisproportionaltoR26,whereRisthedistance

    betweenthetransitiondipoles),anddependsstronglyontheoverlapoftheemission

    spectrumofthedonormoleculeandtheabsorptionspectrumoftheacceptormolecule,aswellastherelativeorientationofthedonorandacceptorpigments.

    Aschematicrepresentation

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    83/184

    ofexcitationenergymigrationovertheantenna

    systemisshowninFigure 5.Becausethefirstexcitedsingletstateof

    chlorophyllaisenergeticallylowerthanthatofchlorophyllborthecarotenoids,

    excitationenergyisrapidlylocalizedonthechlorophyllamolecules.Asaconsequence,excitationenergythatescapestheantennasystemasfluorescencecomesalmostentirely

    fromchlorophylla.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    84/184

    Photosyntheticantennasystemshaveevolved

    tobehighlyefficientatguidingexcitedstateenergytoareaction

    centretopromoteprimaryphotochemistry,ratherthanallowingtheenergytobelost

    asheatorfluorescence.However,ifareactioncentreisunable

    Notes:Car,carotenoid;Chl,chlorophyll;CP,chlorophyll-bindingprotein;LHC,light-harvestingcomplex.

    ENCYCLOPEDIAOF

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    85/184

    LIFESCIENCES&2010,JohnWiley&

    Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    86/184

    Photosystem II

    Antenna system with an open reaction centre

    Fluorescence (F0)

    Light

    (a)Antenna system with a closed reaction centre

    Fluorescence (Fmax)

    Light

    (b)

    Figure 5 Schematicrepresentationshowingexcitationenergytransfer(smallredarrows)fromonechlorophyllmolecule

    toanotherinagenericLHC-typeantennasystemofhigherplants.Greendiscsrepresentchlorophyllsaandb,andyellowdiscsrepresentcarotenoids;thedarker

    greendiscin

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    87/184

    themiddleofpanel(a)representsan

    openreactioncentreandthelightergreendiscinthemiddleof

    panel(b)representsaclosedreactioncentre.Whenthereactioncentreisopen

    (a),mostenergyisusedforchargeseparation,andthesystememitsminimalchlorophyllafluorescence(labelledasF0);whenthereactioncentreisclosed

    (b),chlorophylla

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    88/184

    fluorescenceismaximal(Fmax).Thisfigurewas

    drawnbyDmitriyShevela(inthelaboratoryofoneofus,JM).

    toundergoprimarychargeseparation(closed),thentheprobabilityofthe

    excitationenergygoingintofluorescenceorheatishigher(cf.Figure 5a andb).Measurementsofphotosynthesisunderoptimalconditionsshowthatover90%ofabsorbedphotons

    canbetrapped

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    89/184

    byareactioncentreandpromotecharge

    separation.However,environmentalconditionsmayimposelimitationsonphotosynthesisthatsignificantlylimit

    therateofelectrontransport,whichsignificantlyincreasesthefractionofabsorbedlight

    energythatgoesintofluorescenceandheat.Measurementsofchlorophyllfluorescenceprovideaneffectiveandnoninvasivemethodformonitoringphotosyntheticperformanceunderremarkablywiderange

    ofconditionsand

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    90/184

    environments(PapageorgiouandGovindjee,2004).

    Primary Photochemistry: The ReactionCentre

    Thereisconvincingevidencethattheprimaryphotochemicalreaction

    inPSIIresultsinchargeseparationbetweenPD1andPheoD1within8ps

    (Greenfieldetal.,

    +2+

    1997),creatingPD1/PheoD1(alsodenotedasP680/Pheo2).However,thereisuncertaintyconcerninghowthis

    charge-separatedstateis

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    91/184

    formed,whichisdueinpartto

    theproximityofthefourchlorophyll(ChlD1,PD1,PD2andChlD2)andtwopheophytin

    (PheoD1andPheoD2)molecules(Figure 3c).Becausetheelectronicenergylevelsofcorechromophore

    moleculesarenearlysimilar,excitationenergywithinthereactioncentreequilibratesrapidly(within1ps)betweenthecorechlorophyllandpheophytinmoleculesbeforechargeseparation

    occurs.Itappears

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    92/184

    thatthisensembleofmoleculesformsthe

    excitedstateoftheprimarydonorandthatchargeseparationcanoccur

    betweendifferentchromophoresinthereactioncentre(Grootetal.,2005).(Thus,several

    authors(see,e.g.RengerandRenger,2008)haveadoptedanalternatedefinitionforP680fortheentireensembleofpigmentmolecules;however,wepreferto

    keeptheoriginal

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    93/184

    definitionofP680.)Afewpicosecondsafter

    theformationoftheexcitedstate,theprimaryphotochemicalreactionofPSII

    begins,mostlikelybyelectrontransferfromthemonomericChlD1tothePheoD1,

    whichisfollowedbyasecondelectrontransfer

    +2

    leadingtotheformationofPD1/PheoD1(Dineretal.,2001;Holzwarthet

    al.,2006;Di

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    94/184

    Donatoetal.,2008).

    The

    highefficiencyofreactioncentrephotochemistrydependsonpreventingrecombinationofthe

    primarychargeseparation,whichisaccomplishedbytherapid(intherange

    2

    of200ps)transferoftheelectronfromPheoD1toQA(Figure

    2

    1b,Figure 2a andb andFigure 3c).FromQA,the

    electronistransferred

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    95/184

    toanotherplastoquinonemoleculeboundatthe

    QBsite.Aftertwophotochemicalturnovers,QBbecomesfullyreducedandprotonated,

    formingPQH2,whichdebindsfromPSIIandentersthehydrophobiccoreofthe

    photosyntheticmembrane.Concurrentwithelectrontransfertoplastoquinone,thetyrosineresidue(Yz)ontheD1polypeptidetransfersanelectronto(PD1PD2)+.Electronsforthereduction

    ofoxidizedYz

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    96/184

    (Yz.)areextractedfromtheMn4OxCa

    cluster,whichisthecoreofthewater-oxidizingcomplex.(ThenotationYz

    .denotesaneutralradicalduetoprotontransfertothenearbyhistidine

    residue.)TherateofelectrontransferfromYztoP680+rangesfrom20nsto35ms,dependingontheredoxstatesofthecomponents

    involvedinwater

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    97/184

    oxidation(Figure 1b andFigure 3c).

    Oxidation of Water: The Source ofAtmospheric Oxygen

    In1969,PierreJoliotandcoworkersmeasuredoxygenreleaseduringsuccessive

    single-turnoverlightflashesindark-adaptedalgae(Joliotetal.,1969).Theyfoundthat

    the

    ENCYCLOPEDIAOFLIFESCIENCES&2010,JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    98/184

    Photosystem II Photosystem IIyieldofoxygenplottedas

    afunctionoftheflashnumberremovesasingleelectronfromthe

    water-oxidizingcomexhibitedaperiodicityoffour(Figure 6a).Thisclassicplex,whichadvancesPSII

    tothenexthigherSstateuntilexperimentdemonstratedthateachPSIIcomplexoperatestherearefouroxidizingequivalentsinthecomplex,leadingindependentlyand

    thatfourphotochemical

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    99/184

    reactionstotheoxidationoftwomolecules

    ofwater.Identifyingthearerequiredforthereleaseofoneoxygen

    molecule(Joliotchemicalstepsleadingtowateroxidationhasproventobeand

    Kok,1975).Theperiodicityoffourwasreadilyachallengingproblem.ItappearsthatnostableOOexplainedbythechemistryofwateroxidation,but

    theintermediateis

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    100/184

    formeduptotheS3state(Messinger

    etal.,observationthatthemaximumoxygenyieldoccurredon1995;Hillier

    andWydrzynski,2000;HillierandMessinger,thethirdratherthanfourthflash,and

    thattheperiodi-2005),andthattheformationofmolecularoxygenoccurscitydisappearedafterseveralcyclesindicatedanunex-duringtheS3!S4!S0transition,eitherthroughtwo

    pectedlevelof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    101/184

    complexityinthemechanismofwatersequential

    two-electronsteps,orthroughoneconcertedoxidation.four-electronoxidationevent(seelater

    discussionand

    OnthebasisofJoliotsobservationsandtheirown

    HillierandMessinger,2005;McEvoyandBrudvig,2006;experiments,Koketal.(1970)showedthattheperiodBrudvig,2008;MessingerandRenger,2008).Thecomplete

    fouroscillationis

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    102/184

    independentofthenumberofactivewater-oxidation

    cycleresultsintheproductionofonePSIIcentresanddevelopedan

    elegantmodelofwateroxygenmolecule,thereleaseoffourprotonsintothe

    inneroxidationinwhichtheoxygen-evolvingcomplexcanexistwaterphase(theluminalphase)andthesequentialtransferinoneofthefiveoxidationstates,

    labelledS0,S1,S2,S3and

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    103/184

    offourelectronsthroughthereactioncentre

    totheplasS4(Figure6b).InKoksmodel,eachphotochemicalreactiontoquinonepool.

    Seealso:OxygenProduction

    Mn3+Mn3+

    Mn4+Mn4+

    .eto Yz

    eto Y .

    z

    S1

    1

    4

    H+ +

    Mn3+Mn3+ Mn3+Mn4+

    S2

    Mn3+Mn4+ S0 Mn4+Mn4+

    H+ H+

    O2 2 .

    eto Y

    z

    H+

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    104/184

    2 H2O

    +

    +

    S4 3S3

    3 7 1115 19

    Flash number

    .

    (a) (b) eto Yz(I) S4 (II) S3Yz (III) S3H

    H+ H+

    Y

    Hz

    O Ca

    HOOH OO

    Mn4+ OO

    O+ O

    O Ca Mn4+

    Mn3+

    O (Mn4+)3 Mn3+(Mn4+)2OOMn4+ O (Mn4+)2Mn3+

    (Mn4+)3

    O

    0.750.500.25Oxygen yield per flash(c)Figure 6 Theoxygencycle(alsocalledtheoxygen

    clock)ofphotosystem

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    105/184

    II(PSII).(a)OxygenyieldfromPSII

    asafunctionofflashnumber(oxygencycle)(seeJoliotandKok,

    1975).(b)Oneofthecurrentmodelsofthestepsinoxygenevolution

    inPSII.SeetextandJoliotandKok(1975)fordetails.(c)SimplifiedschemesforthreecurrentlydiscussedpathwaysfortheOObondformationat

    theMn4OxCacluster

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    106/184

    inphotosystemII.Thethreedisplayedmechanisms

    differinthewayhowthesubstratewatermolecules(termwaterincludes

    herealldeprotonatedandpartiallyoxidizedwater-derivedligands)arebound,andtheOO

    bondformationisinitiated:(I)viaanucleophilicattackmechanism(S4isshown);(II)aradicalmechanism(S3Yz.isshown)or(III)anoxidative

    couplingoftwo

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    107/184

    hydroxogroupswithinanequilibriuminthe

    S3state.Inthelatterexamplethecomplexedoxowouldrepresenta

    minorfractionofthecentres,butonlythisfractionwouldbeoxidizedby

    Yz..Forfurtherdetailsseetextandthereferencesstatedtherein.ThisfigurewasdrawnbyDmitriyShevela(inthelaboratoryofoneof

    us,JM).

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    108/184

    ENCYCLOPEDIAOFLIFESCIENCES&2010,

    JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    109/184

    Photosystem II Photosystem IIToaccountfortheobservation

    thatthemaximumoxygenyieldoccursonthethird,ratherthanthe

    fourthflash(Figure 6a),Koketal.(1970)proposedthatmostofthewater-oxidizing

    complexesareintheS1stateindark-adaptedPSIIreactioncentres.Asaconsequence,theS4stateisreachedafterthreeflashesresultingin

    thereleaseof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    110/184

    oxygen.Toaccountforthesmallyield

    ofoxygenonthesecondandfourthflash,andthelossof

    periodicityastheflashnumberincreased,Koketal.(1970)assumedthatin

    somePSIIcomplexesashortsaturatinglightflashmayfailtoadvancetheS-state(misses),whereasinothercomplexestheflashmaypromoteatwo-state

    advance(doublehits).

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    111/184

    TheKokmodelsuccessfullyexplainedtheflash

    dependenceofoxygenevolutionandcontinuestoguideresearchintothemechanism

    ofwateroxidationandoxygenreleasebyPSII(MessingerandRenger,2008).

    Thecoreoftheoxygen-evolvingcomplexisaninorganicclusteroffourmanganeseionsandonecalciumionheldtogetherbyseveralm-oxobridges.

    TheMn4OxCacluster

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    112/184

    (x4)islocatedontheluminal

    sideoftheD1proteinandhasoneligandfromtheCP43

    protein(Figure 4).TheMn4OxCaclusterissurroundedbyaproteinmicro-environmentthat

    includesD1andD2proteins,theluminalextensionsoftheCP43andCP47proteinsandseveralextrinsicpolypeptides(Figure 2 andFigure 3).Althoughtheproteinsphereserves

    toshieldthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    113/184

    water-oxidizingcomplexfromtheinneraqueousphase,

    channelsexistfortheentryofsubstratewaterandthereleaseof

    molecularoxygenandprotons.Recentlyachloride-bindingsitehasbeenidenti

    .

    fiedapproximately67AfromtheMn4OxCacluster(Figure 4;Guskovetal.,2009).Althoughchloridehasbeenshowntoinfluencewater-oxidation,therelativelydistant

    locationfromthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    114/184

    clustermakesitdifficulttoproposea

    mechanism.Onepossibilityisthatchlorideplaysaroleinstabilizingthe

    protonnetworksurroundingtheMn4OxCacluster(OlesonandAndreasson,2003).

    As

    aforementioned,thestructureofthePSIIreaction.

    centreisnowavailableat3.52.9Aresolution(Ferreiraetal.,2004;Lolletal.,2005;Guskov

    etal.,2009),

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    115/184

    andreasonablydetailedmodelsfortheMn4OxCa

    clusterhavebeenproposedbasedonthesestructuresandonpolarizedExtended

    X-rayAbsorptionFineStructure(EXAFS)spectroscopy(Yanoetal.,2006).Incombinationwith

    experimentaldatathatincludesFourier-TransformInfraRed(FTIR)andElectronParamagneticResonance(EPR)spectroscopy,aswellasmassspectrometryanddetailedtheoreticalcalculations,the

    goalofunderstanding

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    116/184

    themolecularmechanismofwateroxidationappears

    tobewithinreach(Siegbahn,2008;Sprovieroetal.,2008;Zeinet

    al.,2008).Figure 4b andcshowtwooftheproposedgeometricarrangementsofthe

    manganeseandcalciumions.Thebindingsitesforsubstratewaterarespeculative,withatleastonewatermoleculeboundintheS0andS1states,

    andtwowater

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    117/184

    moleculesboundintheS2andS3

    states.Thereisevidencethatcalciumisinvolvedinbindingonesubstrate

    watermoleculeandthatmanganeseisinvolvedinbindingatleastoneof

    thetwowatermolecules.

    Oneofthechallengesinmodellingwateroxidationisaccountingforthepatternofprotonreleaseintothelumen

    duringtheS0!S1,S1!S2,S2!S3

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    118/184

    andS3!(S4)!S0transitions(Figure 6b).Theproblemis

    thattheprotonsappearinginthelumencouldcomefromaminoacids

    nearthewateroxidationsiteratherthandirectlyfromthecatalyticstepsinvolved

    inwateroxidation(seeSuzukietal.,2009andreferencestherein).

    AstheMn4OxCaclustertransitionsfromoneS-statetoanother,theearly

    oxidationstatesmust

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    119/184

    bestabilizedlongenoughtoenablethe

    relativelyslowwater-oxidationchemistry( 1ms)tooccurduringtheS3!S4!S0

    transition.TheformaloxidationstateofS0includes3Mn3+and1Mn4+

    (Kuliketal.,2007;Figure 6b).(Intheliterature,analternativenotationMn(III)3Mn(IV)isalsousedtodescribetheformaloxidationstateofMninthe

    OEC.)Assignmentof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    120/184

    theseoxidationstatestospecificmanganeseions

    withintheclusterhasprovendifficult.Furthermore,chargedelocalizationoverthemanganese

    ionsandtheoxygenbridgesandligandsoftheclusterresultinginpartial

    chargeshasbeenproposedforsomeS-states.

    DuringtheS0!S1transition,anMn3+toMn4+oxidationoccursthatiscoupledtoastructural

    changeofthe

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    121/184

    Mn4OxCacluster.Thestructuralchangeappearsto

    includeadecreaseinoneoftheMnMndistancesfrom2.85to

    .

    2.75Aduetodeprotonationofonem-OHbridge(Kulik

    etal.,2007).IntheS1!S2transition,anotherMn3+toMn4+

    oxidationoccurs,butwithoutanysignificantstructuralchangeandnosignificantproton

    releaseisobserved.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    122/184

    Thus,intheS2statetheMn4OxCa

    clusterhasanadditionalpositivecharge.TheS2!S3transitioninvolvestherelease

    ofaproton,whichisfollowedbytheoxidationoftheMn4OxCacluster

    bytyrosineYz..Thenatureofthisoxidationiscontroversial

    ithasbeenproposedtobeMn3+toMn4+oxidation,oran

    oxidationofa

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    123/184

    moxobridge.TheS2!S3transitioninvolvesa

    significantstructuralchangethathasyettobefullycharacterized.

    DuringtheS3!S4!S0transition,theOObondisformedandtwoprotonsare

    released.TheformationoftheOObond,acriticalstepinwateroxidation,requiresactivationofthetwosubstratewatermolecules.Threepossibilitieshavebeen

    proposed(Figure 6c):(I)

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    124/184

    Oneofthesubstratewatermolecules(bound

    toMn)isdeprotonatedandbecomeselectrophilicduringtheS-statecycleby

    successiveoxidationoftheligatingMnion.Thisspeciesisdescribedinthe

    S4stateasMn4+=O.,Mn5+=Oor

    Mn4+:O+

    andisthoughttobeattackedbythesecond(nucleophilic)substratewatermolecule,whichis

    activatedandpositioned

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    125/184

    bybindingtoalowervalentmanganese

    and/orcalciumandmaybepartiallydeprotonated.(II)Duringoxidationofthe

    Mn4OxCacluster,oneoftheoxygenbridgesoranoxygenligand(originatingfrom

    substratewater)becomespartiallyoxidizedforminganoxygenradical,whichcanformtheOObondinaradical-likemechanismwithasecondoxygenspecies

    thatmaybecoordinated

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    126/184

    tomanganeseand/orcalcium.(III)Inthe

    S3state,asmallfractionoftheMn4OxCaclustersmaycontainthe

    OObondintheformofacomplexedperoxide,which

    ENCYCLOPEDIA

    OFLIFESCIENCES&2010,JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    127/184

    Photosystem II

    ispostulatedtobe

    thespeciesthatisoxidizedbyYz.inthenexttransition.

    InthismodeltherateoftheS3!S4transitiondependsontheequilibrium

    constantbetweentheopenandclosedformsoftheS3Yz.state(forreviewsseeHillierandMessinger,2005;McEvoyandBrudvig,2006;Brudvig,2008;

    MessingerandRenger,

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    128/184

    2008;Lubitzetal.,2008).Seealso:

    OxygenProduction

    Reduction of Plastoquinone: TheTwo-electron Gate

    Plastoquinoneplaysakeyrole

    inphotosynthesisbylinkingelectrontransporttoprotontransferacrossthephotosyntheticmembrane.

    InthePSIIcomplex,twoplastoquinonemoleculesworkintandem,withonemoleculepermanentlyboundattheQAsite,andanothermoleculeboundatthe

    QBsite.Once

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    129/184

    plastoquinoneattheQBsitehasbeen

    fullyreducedbytheadditionoftwoelectronsandtwoprotons,the

    reducedform(PQH2)isreleasedintothephotosyntheticmembrane.Thereductionofplastoquinone

    attheQBsiteisknownasthetwo-electrongate,becausetwoelectrons,andthereforetwophotochemicalreactionsarerequiredfortheformationandrelease

    ofPQH2(Bouges-Bocquet,

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    130/184

    1973;VelthuysandAmesz,1974;Figure7).The

    QBsiteofPSIIisofparticularinterestbecausesomeherbicidesused

    inagriculture(e.g.Atrazine)inhibitphotosynthesisbybindingatorneartheQB

    site(Oettmeier,1999).

    Thepathwayofelectronsfromtheprimaryelectrondonor(ChlD1)toQBisshowninFigure 2.Inthefirstreac

    2

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    131/184

    tion,anelectronistransferredfromQA

    toQBwithin100

    2

    200ms,producingthe

    stateQA/QB(Figure7b).Inthesecond

    22

    reactionanelectron

    istransferredfromQAtoQBwithin400600ms,producingthestateQA/QB22,whichtakesupprotonsfromtheouterwaterphase,producingPQH2.Although

    thepathwayof

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    132/184

    protonsthroughPSIIinvolvesspecificaminoacids,

    Figure 7b showsaproton(H+)nearQBwithoutspecifyingitssource.Thereis

    evidencethatbicarbonate/carbonateionsplayaroleinprotonationby

    Chlorophyll

    afluorescence,.F

    0.75

    0.50

    0.25

    13579

    (a)Number of preilluminating flashesbindingneartheQBsite(VanRensenetal.,

    1999;cf.Rose

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    133/184

    etal.,2008),whichissupportedby

    structuraldata(Ferreiraetal.,2004;Lolletal.,2005)showingthat

    abicarbonate/carbonateisboundtothenonhaemeironandiswithin

    .

    3.2AofLysine264(onproteinD2;seeCoxetal.,2009forevidence).Onfullreduction,PQH2debindsfromtheQB

    site,migratesthrough

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    134/184

    ahydrophobicquinoneexchangecavitywithinthe

    proteincomplex,andentersthehydrophobiccoreofthephotosyntheticmembrane(Guskov

    etal.,2009).ThereductioncycleisrepeatedbybindingofaPQ

    moleculefromthequinoneexchangecavity.Photosystem II contributes to thetransmembrane proton electrochemicalpotential difference that drives ATP synthesis

    TheproductionofATPinphotosynthesisdependsontheconversionofredox-freeenergyintoa

    transmembraneprotonelectrochemical

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    135/184

    potentialdifference,whichismadeupof

    apHdifference(DpH)andanelectricalpotentialdifference(DC)acrossthe

    photosyntheticmembrane(Mitchell,1961;reviewedinRenger,2008).PSIIcontributestotheproton

    potentialenergybythereleaseofprotonsintotheinnerwaterphaseassociatedwithoxidationofwater,andbytheuptakeofprotonsfromthe

    outerwaterphase

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    136/184

    associatedwiththereductionofPQ.Reduction

    ofplastoquinoneattheQBsitebyPSIIisfollowedbyuptake

    ofprotonsfromtheouterwaterphase.Thisreactionisthefirststep

    inaproton-transportingmechanismthatiscompletedbytheoxidationofPQH2bythecytochromeb6fcomplex.AsPQH2isoxidized,twoelectronsfromit

    arepassedon

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    137/184

    tothecytochromeb6fcomplexandthe

    protonsarereleasedintothelumen.InadditiontotheDpHthat

    isbuiltupinthisway,anelectricalpotentialdifference(DC)isalso

    createdacrossthethylakoidmembraneduetothedirectionalelectrontransferthroughthePSIIreactioncentrefromwater(luminalside)toplastoquinone(stromal/cytoplasmicside).See

    also:Photophosphorylation;Photosynthesis:

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    138/184

    LightReactions

    QAQB(H+)

    H+

    I

    QAQB Q.AQB(H+)

    PQH2

    100.200 .sPQ

    QAQBH2 QAQ.B(H+)

    2

    H+2.

    QAQB (H+) Q.AQ.B(H+)(b)300.600 .s

    Figure 7 Thetwo-electrongateontheelectronacceptorsideofphotosystemII(PSII).(a)ChlorophyllafluorescencefromPSII,asafunctionofflashnumber,

    aftertheoxygen

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    139/184

    cycleisinhibitedandwaterisreplaced

    byanartificialelectrondonor(VelthuysandAmesz,1974);datashowclearly

    thetwo-flashdependence.(b)Stepsinthetwo-electronreductionofplastoquinoneatthe

    QBsiteofPSII(seeFigure 2 andtextfordetails).ThisfigurewasdrawnbyDmitriyShevela(inthelaboratoryofoneofus,JM).

    ENCYCLOPEDIAOF

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    140/184

    LIFESCIENCES&2010,JohnWiley&

    Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    141/184

    Photosystem II

    Downregulation: Energy can be divertedaway from the photosystem II reaction centrein excess light

    Environmentalconditionsoftenimposeseverelimitationsonboththerateandefficiency

    ofphotosynthesis.Acommonstresssituationforaphotosyntheticorganismistheabsorption

    ofmorelightthanitcanuseforcarbonreduction.Theexcesslightcandriveinopportuneelectrontransferreactions,whichcancausebothlong-andshort-

    termdamageto

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    142/184

    PSII,impairingphotosyntheticproductivity.Photosyntheticorganismshave

    evolveddifferentstrategiestoavoidinjuryduetoexcesslight.Oneof

    thedominantprotectivemechanismsinplantsandalgaeisknownasdownregulationor

    nonphotochemicalquenching,whichisadynamicregulationofexcitationenergytransferpathwayswithintheantennasystemthatdivertsexcitationenergyintoheatbeforeitreaches

    thereactioncentre

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    143/184

    (Demmig-Adamsetal.,2006).Thisprocessinvolves

    xanthophylls,aspecialclassofcarotenoids.Underexcesslightitisnot

    unusualforhalfoftheabsorbedquantatobeconvertedintoheat.

    Secondary electron transfer reactions inphotosystem II protect against photodamage

    Despitetheprotectionprovidedbydownregulation,PSIIissusceptibletodamagebyinopportuneredoxreactionsassociatedwiththepowerfuloxidantsrequired

    fortheoxidation

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    144/184

    ofwater,andreductantsrequiredforthe

    reductionofplastoquinone.Toavoidsuchdamage,PSIIcontainsredoxcomponentsthat

    protectbyacceptingordonatingelectronsatopportunetimes.Forexample,cytochromeb559

    appearstodeactivateararelyformed,buthighlydamaging,redoxstateofPSII(WhitmarshandPakrasi,1996;Kaminskayaetal.,2007).Inaddition,somecarotenoid

    andchlorophyllmolecules

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    145/184

    ontheD1/D2reactioncentrehavebeen

    showntoactasalternativeelectrondonorstoP680+[(PD1,PD2)+]incases

    whenthewater-oxidizingcomplexisinactive.

    Some photosystem II centres are inactive

    Althoughmost

    PSIIreactioncentrecomplexesworkefficientlytooxidizewaterandreduceplastoquinone,anumberofinvivoassayshaveshownthatasignificantproportionof

    thesecentresare

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    146/184

    unabletotransferelectronstotheplastoquinone

    poolatphysiologicallysignificantrates.Experimentsusinghigherplants,algaeandcyanobacteria

    indicatethatinactivePSIIcomplexesareacommonfeatureofoxygenicorganisms.It

    hasbeenestimatedthatinactivecentresmayreducethequantumefficiencyofphotosynthesisbyasmuchas10%.Theseinactivecentresmaybeaconsequence

    ofthesignificant

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    147/184

    turn-overofdamagedPSIIcentreswhichrequires

    partialdisassemblyofthecomplex,replacementofthesubunitD1andreassembly

    ofanactivecomplex.TheD1subunitofPSIIispronetolight-induced

    damage,exhibitingahalf-lifetimein

    plantsasshortas30min(seeVassandAro,2008forreviewonassembly).Manyof

    theintermediatestates

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    148/184

    occurringduringthedisassemblyandreassemblyprocess

    haveimpairedoxygen-evolvingactivity,whichmaynecessitatecontrolprocessestoavoidthe

    productionofdeleteriousproductssuchashydrogenperoxide.

    Concluding Remarks

    As

    thesourceofatmosphericoxygen,PSIIhasplayedaseminalroleintheevolutionoflifeonourplanet.PSIIisachlorophyllproteincomplexfound

    inalloxygenic

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    149/184

    photosyntheticorganisms,whichincludecyanobacteria,algaeand

    plants.Itiscomposedofanantennasystemforcapturinglight,and

    areactioncentrecorethatusesthelightenergytodriveelectronand

    protontransferreactions.Theantennasystemconsistsofproteincomplexesthatbindchlorophyllandothermoleculesthatconvertlightenergyintoexcitationenergy.Atthe

    centreofPSII

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    150/184

    isareactioncentrethatcontainselectron

    carriersthattransferelectronsfromwatertoplastoquinone.Thesecarriersincludean

    oxygenbridgedclusteroffourmanganeseionsandonecalciumion(Mn4OxCacluster)

    thatisthesiteofwateroxidation,atyrosine(Yz),anarrayoffourchlorophyllmolecules(ChlD1,PD1(wecanalsocallitChlPD1)PD2(wecan

    alsocallit

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    151/184

    ChlPD2),ChlD2),twopheophytinmolecules(PheoD1and

    PheoD2),apermanentlyboundplastoquinone(QA)andaplastoquinonethatbindsreversibly

    toPSIIattheQBsite.WithinaPSIIcomplex,fourconsecutivephotochemical

    reactionsleadtotheoxidationoftwowatermolecules,whichresultsinthereleaseofoneoxygenmolecule,fourprotonsandthereleaseoftwo

    reducedplastoquinonemolecules.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    152/184

    Nowthatwehavewell-resolvedPSIIstructures,

    detailedspectroscopicinformationonthestructureandfunctionoftheMn4OxCacluster,

    andpowerfultheoreticalmethods,thegoalofunderstandingthemolecularmechanismofwater

    oxidationappearstobewithinreach.Adeepunderstandingofthisfundamentalbiologicalprocesscanacceleratethedevelopmentofartificialcatalystsforsolarhydrogenand

    oxygenproductionfrom

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    153/184

    water(Lubitzetal.,2008).

    References

    BarrosTandKu.hlbrandtW(2009)Crystallisation,structureand

    functionoflight-harvestingcomplexII.BiochimicaetBiophy

    sica

    Acta1787:753772.Bouges-BocquetB(1973)Electrontransferbetweentwophoto-

    systemsinspinachchloroplasts.BiochimicaetBiophysicaActa

    31:250256.Brudvig

    GW(2008)Water

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    154/184

    oxidationchemistryofphotosystemII.PhilosophicalTransactions

    ofRoyalSocietyofLondonSeriesB.BiologicalSciences363:12111218.

    CoxG,JinL,JaszewskiAetal.(2009)Thesemiquinone-ironcomplex

    ofphotosystemII:structuralinsightsfromESRandtheoreticalsimulation;evidencethatthenativeligandtothenon-hemeironiscarbonate.BiophysicalJournal97:20242033.

    ENCYCLOPEDIA

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    155/184

    OFLIFESCIENCES&2010,JohnWiley

    &Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    156/184

    Photosystem II

    Demmig-AdamsB,AdamsWW

    IIIandMattooA(eds)(2006)Photoprotection,Photoinhibition,GeneRegulation,andEnvironment.

    AdvancesinPhotosynthesisandRespiration(Seriesed.Govindjee),vol.21.Dordrecht:Springer.

    DesMaraisDJ(2000)Whendidphotosynthesisemergeonearth?Science289:17031704.

    DiDonatoM,CohenRO,DinerBAetal.

    (2008)Primarycharge

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    157/184

    separationinthephotosystemIIcorefrom

    Synechocystis:acomparisonoffemtosecondvisible/midinfraredpump-probespectraofwild-typeandtwoP680

    mutants.BiophysicalJournal

    94:47834795.DinerBA,SchlodderE,NixonPJ

    etal.(2001)Site-directedmutationsatD1-His198andD2-His197ofphotosystemIIinSynechocystisPCC6803:sitesofprimarychargeseparationandcationandtriplet

    stabilization.Biochemistry40:

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    158/184

    92659281.

    FerreiraKN,IversonTM,

    MaghlaouiK,BarberJandIwataS(2004)Architectureofthephotosynthetic

    oxygen-evolvingcenter.Science303:18311838.

    FrankHA,YoungAJ,BrittonG

    andCogdellRJ(eds)(1999)Thephotochemistryofcarotenoids.AdvancesinPhotosynthesisandRespiration(Seriesed.,Govindjee),vol.8.Dordrecht:KluwerAcademic(nowSpringer).

    GreenfieldSR,

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    159/184

    SeibertM,GovindjeeandWasielewskiMR(1997)

    Directmeasurementoftheeffectiverateconstantforprimarychargeseparationin

    isolatedphotosystemIIreactioncenters.JournalofPhysicalChemistry.B101:22512255.

    GrootML,PawlowiczNP,VanWilderenLJGWetal.(2005)InitialelectrondonorandacceptorinisolatedphotosystemIIreactioncenteridentifiedwithfemtosecond

    mid-IRspectroscopy.Proceedings

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    160/184

    oftheNationalAcademyofSciencesof

    theUSA102:1308713092.

    GuskovA,KernJ,GabdulkhakovA

    etal.(2009)CyanobacterialphotosystemIIat2.9Aresolutionandtheroleof

    quinones,

    .lipids,channelsandchloride.NatureStructuralandMolecularBiology16:334342.HillierWandMessingerJ(2005)Mechanismofphotosyntheticoxygen

    production.In:Wydrzynski

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    161/184

    TandSatohK(eds)PhotosystemII.

    TheLight-DrivenWater:PlastoquinoneOxidoreductase,AdvancesinPhotosynthesisandRespiration,vol.22,

    pp.567608.TheNetherlands:Springer.HillierWandWydrzynskiT(2000)Theaffinities

    forthetwosubstratewaterbindingsitesintheO2evolvingcomplexofphotosystemIIvaryindependentlyduringtheS-stateturnover.Biochemistry39:43994405.Holzwarth

    AR,Mu.ller

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    162/184

    MG,ReusMetal.(2006)Kinetics

    andmechanismofelectrontransferinintactphotosystemIIandinthe

    isolatedreactioncenter:pheophytinistheprimaryelectronacceptor.ProceedingsoftheNational

    AcademyofSciencesoftheUSA103:68956900.HunterCN,DaldalF,ThurnauerMCandBeattyJT(eds)(2009)

    ThePurplePhototrophicBacteria.

    AdvancesinPhotosynthesis

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    163/184

    andRespiration(Seriesed.,Govindjee)vol.28.

    Dordrecht:Springer.

    JoliotPandKokB(1975)Oxygenevolution

    inphotosynthesis.In:Govindjee(ed.)BioenergeticsinPhotosynthesis,pp.387412.NewYork:Academic

    Press.

    JoliotP,BarbieriGandChabaudR(1969)Unnouveaumode`ledescentresphotochimiquesdusyste`meII.PhotochemistryandPhotobiology

    10:309329.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    164/184

    KaminskayaO,ShuvalovVAandRenger

    G(2007)Tworeactionpathwaysfortransformationofhighpotentialcytochromeb559

    ofPSIIintotheintermediatepotentialform.BiochimicaetBiophysicaActa1767:

    550558.

    KamiyaNandShenJR(2003)Crystalstructureofoxygen-evolvingphotosystemIIfromThermosynechococcusvulcanusat3.7-Aresolution.ProcedingsoftheNational

    AcademyofSci

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    165/184

    .encesoftheUSA

    100:98103.KastingJFandSiefertJL(2002)Lifeandtheevolution

    ofEarthsatmosphere.Science296:10661068.KokB,ForbushBandMcGloinM

    (1970)Cooperationofchargesinphotosyntheticoxygenevolution.PhotochemistryandPhotobiology11:457

    475.

    Ku.hlbrandtW,WangDNandFujiyoshiY(1994)Atomicmodelof

    plantlightharvesting

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    166/184

    complexbyelectroncrystallography.Nature367:614621.

    KulikLV,EpelB,LubitzWandMessingerJ(2007)Electronicstructure

    oftheMn4OxCaclusterintheS0andS2statesoftheoxygen-evolving

    complexofphotosystemIIbasedonpulse55Mn-ENDORandEPRspectroscopy.JournaloftheAmericanChemicalSociety129:1342113435.LakowiczJR(1999)PrinciplesofFluorescence

    Spectroscopy,2ndedn.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    167/184

    NewYork:KluwerAcademicPlenum.LollB,Kern

    J,SaengerW,ZouniAandBiesiadkaJ(2005)Towardscompletecofactor

    arrangementinthe3.0Aresolution

    .structureofphotosystemII.Nature438:

    10401044.LubitzW,ReijerseEJandMessingerJ(2008)Solarwater-splittingintoH2andO2:designprinciplesofphotosystemIIandhydrogenases.EnergyEnvironmentalScience

    1:1531.McEvoy

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    168/184

    JPandBrudvigG(2006)Water-splittingchemistry

    ofphotosystemII.ChemicalReviews106(11):44554483.MessingerJandRengerG

    (2008)Photosyntheticwatersplitting.In:RengerG(ed.)PrimaryProcessesofPhotosynthesis:Principles

    andApparatus,ComprehensiveSeriesinPhotochemicalandPhotobiologicalSciences,vol.9,part2,pp.291349.Cambridge,UK:RoyalSocietyofChemistry(RSC)Publishing.MessingerJ,

    BadgerMand

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    169/184

    WydrzynskiT(1995)Detectionofoneslowly

    exchangingsubstratewatermoleculeintheS3stateofphotosystemII.Proceedings

    oftheNationalAcademyofSciencesoftheUSA92:32093213.MitchellP

    (1961)Couplingofphosphorylationtoelectronandhydrogentransferbychemiosmotictypeofmechanism.Nature

    191:144148.MoserCC,KeskeJM,WarnckeK,

    FaridRSand

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    170/184

    DuttonPL(1992)Natureofbiologicalelectron

    transfer.Nature355:796802.OettmeierW(1999)Herbicideresistanceandsupersensitivityin

    photosystemII.CellularandMolecularLifeSciences55:12551277.

    OlesonK

    andAndreassonL-E(2003)Thefunctionofthechlorideandcalciumioninphotosyntheticoxygenevolution.Biochemistry42:20252035.

    PapageorgiouGandGovindjee

    (eds)(2004)Chlorophyll

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    171/184

    aFluorescence:ASignatureofPhotosynthesis.Advances

    inPhotosynthesisandRespiration,vol.19.Dordrecht:Springer.

    RengerG

    (ed.)(2008)PrimaryProcessesofPhotosynthesis:BasicPrinciplesandApparatus,PartIand

    II.Cambridge,UK:RoyalSocietyofChemistry.

    RengerGandRengerT(2008)PhotosystemII:themachineryofphotosyntheticwatersplitting.PhotosynthesisResearch

    98:5380.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    172/184

    ENCYCLOPEDIAOFLIFESCIENCES&2010,

    JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    173/184

    Photosystem II

    RoseS,MinagawaJ,

    SeufferheldMetal.(2008)D1-argininemutants(R257E,KandQ)of

    ChlamydomonasreinhardtiihavealoweredQBredoxpotential:analysisofthermoluminescenceandfluorescence

    measurements.PhotosynthesisResearch98:449468.

    SadekarS,RaymondJandBlankenshipRE(2006)Conservationofdistantlyrelatedmembraneproteins:photosyntheticreactioncentersshare

    acommonstructural

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    174/184

    core.MolecularBiologyandEvolution23:20012007.

    SiegbahnPE(2008)Astructure-consistentmechanismfordioxygenformationin

    photosystemII.Chemistry14:82908302.

    SprovieroEM,GasconJA,McEvoy

    JP,BrudvigGWandBatistaVS(2008)Quantummechanics/molecularmechanicsstudyofthecatalyticcycleofwatersplittinginphotosystemII.JournaloftheAmerican

    ChemicalSociety130:

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    175/184

    34283442.

    SuzukiH,SugiuraM

    andNoguchiT(2009)Monitoringprotonreleaseduringphotosyntheticwateroxidationin

    photosystemIIbymeansofisotope-editedinfraredspectroscopy.JournaloftheAmericanChemical

    Society131:78497857.

    VanRensenJJS,XuCandGovindjee(1999)RoleofbicarbonateinphotosystemII,thewater-plastoquinoneoxido-reductaseofplantphotosynthesis.

    PhysiologiaPlantarum105:

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    176/184

    585592.

    VassIandAro

    EM(2008)Photoinhibitionofphotosyntheticelectrontransport.In:RengerG(ed.)Primary

    ProcessesofPhotosynthesis:BasicPriniciplesandApparatus,pp.393425.Cambridge,UK:RoyalSociety

    ofChemistry.

    VelthuysBRandAmeszJ(1974)Chargeaccumulationatthereducingsideofsystem2ofphotosynthesis.BiochimicaetBiophysicaActa

    325:277281.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    177/184

    WhitmarshJandGovindjee(1999)The

    photosyntheticprocess.In:SinghalGS,RengerG,SoporySK,IrrgangK-Dand

    Govindjee(eds)ConceptsinPhotobiology:PhotosynthesisandPhoto-morphogenesis,pp.1151.Availablefree

    athttp://www.life.uiuc.edu/govindjee/paper/gov.html.Dordrecht:KluwerAcademic(nowSpringer).

    WhitmarshJandPakrasiH(1996)Formandfunctionofcytochromeb559.In:OrtDR

    andYocumCF

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    178/184

    (eds)OxygenicPhotosynthesis:TheLightReactions,pp.

    249264.Dordrecht:KluwerAcademic(nowSpringer).

    WydrzynskiTandSatoh

    K(eds)(2005)PhotosystemII:thelight-drivenwater:plastoquinoneoxidoreductase.Advancesin

    PhotosynthesisandRespiration(Seriesed.,Govindjee)vol.22.Dordrecht:Springer.

    YanoJ,KernJ,SauerKetal.(2006)Wherewater

    isoxidizedto

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    179/184

    dioxygen:structureofthephotosyntheticMn4Cacluster.

    Science314:821825.

    ZeinS,KulikLV,YanoJet

    al.(2008)FocusingtheviewonNatureswatersplittingcatalyst.PhilosophicalTransactionsof

    RoyalSociety,UK.SeriesB363:11671177.

    ZouniA,WittHT,KernJetal.(2001)CrystalstructureofphotosystemIIfromSynechococcus

    elongatusat3.8

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    180/184

    Angstromresolution.Nature409:739743.

    Further Reading

    Bjo.rnLO,PapageorgiouGC,BlankenshipRandGovindjee(2009)

    Aviewpoint:whychlorophylla?PhotosynthesisResearch99:8598.

    BlankenshipRE

    (2002)MechanismsofPhotosynthesis.Oxford:BlackwellScience.

    BlankenshipRE,GovindjeeRandGovindjee(2008)Photosynthesis.McGrawHillEncyclopediaofScienceandTechnology

    13:468475.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    181/184

    Govindjee(1999)Milestonesinphotosynthesisresearch.In:

    YunusM,PathreUandMohantyP(eds)ProbingPhotosynthesis:Mechanisms,Regulation

    andAdaptation,pp.939.London:TaylorandFrancis.

    GovindjeeandColeman

    W(1990)Howdoesphotosynthesismakeoxygen?ScientificAmerican262:5058.

    KeB(2001)Photosynthesis:photobiochemistryandphoto-biophysics.In:Govindjee(ed.)Advances

    inPhotosynthesisand

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    182/184

    Respiration,vol.10.Dordrecht:KluwerAcademic(now

    Springer).

    LaneN(2003)OxygenTheMoleculeThatMade

    theWorld.Oxford:OxfordUniversityPress.

    MortonO(2008)Eatingthe

    Sun:HowPlantsPowerthePlanet.NewYork:HarperCollinsPublishers.

    RabinowitchEandGovindjee(1969)Photosynthesis.NewYork:Wiley.Availablefreeat

    http://www.life.uiuc.edu/govindjee/photosynBook.html.

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    183/184

    VanAmerongenH,ValkunasLand

    VanGrondelleR(2000)PhotosyntheticExcitons.Singapore:WorldScientific.

    ENCYCLOPEDIA

    OFLIFESCIENCES&2010,JohnWiley&Sons,Ltd.www.els.net

  • 8/3/2019 ELS_GovindjeeEtAl(2010) (2)

    184/184