Encendidos Convencionales y Electrónicos

178

description

Teoría de encendidos convencionales y electrónicos para motores gasolina.

Transcript of Encendidos Convencionales y Electrónicos

Page 1: Encendidos Convencionales y Electrónicos
Page 2: Encendidos Convencionales y Electrónicos

INDICEINTRODUCCIÓN:...................................................................................................... 4

Sistema de encendidoClasificación de sistemas de encendido.

ENCENDIDO CONVENCIONAL:............................................................................. 6

Principio de funcionamiento.Funcionamiento del encendido.Oscilograma primario.Oscilograma secundario.Bobina de encendido.Distribuidor de encendido.Bujías de encendido.Punto de encendido.Cables de alta tensión.

ENCENDIDO ELECTRÓNICO TRANSISTORIZADO:......................................... 41Planteamiento.Generador de impulsos.Módulo electrónico de mando.Verificación y localización de averías.

Page 3: Encendidos Convencionales y Electrónicos

ENCENDIDO ELECTRÓNICO INTEGRAL:.......................................................... 84 Principio de funcionamiento. Sinopsis de funcionamiento. Captador de régimen y posición. Captador de presión en la admisión. Sensor temperatura motor. Sensor temperatura de aire. Sensor de detonación. Selector de octanaje. Unidad de mando. Etapa de potencia. Distribuidor de encendido. Verificación y localización de averías.

ENCENDIDO ELECTRÓNICO ESTÁTICO:........................................................ 139 Bobina De encendido. Principio de funcionamiento. Tipos de bobinas. Unidad de mando (sensor de fase) Verificación y localización de averías.

Page 4: Encendidos Convencionales y Electrónicos

Sistema de EncendidoLos motores de combustión interna, necesitan para su funcionamiento, un

sistema capaz de encender la mezcla de aire y gasolina que se introduce y comprime en el interior de sus cilindros. Esto se logra por mediación de una chispa eléctrica que se hace saltar en la bujía de encendido, que inflama la mezcla, iniciándose así la combustión. El conjunto de elementos que participan en la obtención de dicha chispa se denomina CIRCUITO DE ENCENDIDO:

1. Batería.

2. Llave de contacto.

3. Bobina.

4. Distribuidor.

5. Bujías.

— Circuito de baja.

Circuito de alta.

Page 5: Encendidos Convencionales y Electrónicos

InterrupciónCorriente primario

Mecanismosde avance

DistribuciónCorriente alta

Convencional

ElectrónicoTransistorizado

(EET)Electrónico

Integral(EEI)

ElectrónicoEstático(EEE)

Platinos MecánicosContacto

móvil

Contacto móvil

Contacto móvil

Individualmente(Bobinas DIS o Monobobinas)

MecánicosComponenteElectrónico(Módulo)

ComponenteElectrónico

(ECU)

ComponenteElectrónico

(ECU)

SensoresElectrónicos

SensoresElectrónicos

Clasificación de Encendidos

Page 6: Encendidos Convencionales y Electrónicos
Page 7: Encendidos Convencionales y Electrónicos

Encendido Convencional o Clásico

El encendido clásico destaca particularmente: un ruptor o platinos, de accionamiento mecánico, que hace posible la transformación de tensión en la bobina de encendido, un condensador que protege a los contactos del ruptor a la vez que potencia la chispa y unos dispositivos de variación del avance, que modifican el momento del salto de chispa en función de las condiciones de funcionamiento de motor.

Llave de contacto Mecanismo de avance por vacío

Bobina

Distribuidor

CondensadorRuptor o platinos

Bujías

Page 8: Encendidos Convencionales y Electrónicos

Principio de Funcionamiento IFaraday demostró que, cuando un conductor corta a las líneas de fuerza

producidas por un campo magnético, se genera en él una fuerza electromotriz inducida (f.e.m), que es directamente proporcional al flujo cortado, e inversamente proporcional al tiempo empleado en hacerlo.

Es decir:

Los mismos efectos se observan si en lugar de aproximar o alejar el imán a la bobina, es esta la que se mueve acercándose o alejándose del imán. Cambiando la polaridad del imán, el sentido de la corriente en la bobina es contrario al obtenido anteriormente.

(Diferencia de flujo)

(Diferencia de tiempo)

Page 9: Encendidos Convencionales y Electrónicos

Principio de Funcionamiento IISupongamos circuito formado por dos solenoides, el primero, al que

denominamos bobina primaria, alimentado por una batería y el segundo, al que denominamos bobina secundaria y cuyo circuito está cerrado por un amperímetro, tal como se indica en la figura.

Al cerrarse el interruptor, la corriente circula por la bobina primaria y el flujo en expansión corta el devanado secundario e induce en él una f.e.m. provocando una corriente eléctrica. Una vez que el flujo está completamente expandido, es decir, en su valor máximo, no hay variación de flujo en el secundario, por lo tanto la corriente inducida en este es cero.

Page 10: Encendidos Convencionales y Electrónicos

Principio de Funcionamiento III

Al abrirse el interruptor el campo magnético desaparece, dando lugar a la aparición de una nueva f.e.m., y provocando una corriente eléctrica de sentido contrario a la anterior. Una vez que el flujo ha desaparecido por completo, no hay variación de flujo en el secundario, por lo tanto la corriente es cero.

Siempre que haya una variación de flujo que corta las espiras de una bobina, se induce en esta una f.e.m. inducida, dando lugar a una corriente eléctrica siempre y cuando el circuito se encuentre cerrado.

Page 11: Encendidos Convencionales y Electrónicos

Funcionamiento del Circuito I• Al accionar la llave de contacto, la

tensión de la batería queda aplicada al arrollamiento primario (4), de la bobina de encendido (3). Cuando los contactos de los platinos o ruptor (7) están cerrados por la acción de la leva, la corriente fluye a través de ellos, creándose en el primario el consiguiente campo magnético y almacenamiento de una cierta cantidad de energía en la bobina.

• Debido a la acción de la leva sobre los contactos de los platinos, el circuito se abre, interrumpiéndose la corriente por el primario y desapareciendo el campo magnético

• En ese instante se induce una fuerza electromotriz tanto sobre el arrollamiento primario como sobre el secundario de la bobina.

1. Batería2. Contacto.3. Bobina.4. Arrollamiento primario.5. Arrollamiento secundario.

6. Condensador.7. Ruptor o platinos.8. Contacto móvil o pipa.9. Tapa distribuidor.10.Bujías.

Page 12: Encendidos Convencionales y Electrónicos

Funcionamiento del Circuito II• El condensador (6) se carga mientras

los contactos de los platinos se siguen abriendo. Así pues, la corriente que saltaría de un contacto a otro en forma de chispa, es absorbida por el condensador.

• Un instante después, y mientras los platinos permanecen abiertos, comienza el circuito oscilante de descarga y carga del condensador sobre el primario de la bobina, dando como consecuencia a cambios periódicos en el sentido de la corriente eléctrica por el primario ocasionando una sucesión de saltos de chispa en la bujía.

• La alta tensión inducida en el secundario, es mandada a la pipa o contacto móvil (8), que la reparte a la bujía correspondiente a través de los los cables de alta.

1. Batería2. Contacto.3. Bobina.4. Arrollamiento primario.5. Arrollamiento secundario.

6. Condensador.7. Ruptor o platinos.8. Contacto móvil o pipa.9. Tapa distribuidor.10.Bujías.

Page 13: Encendidos Convencionales y Electrónicos

Oscilograma PrimarioA-B: Carga inicial del condensador debido a la autoinducción en el primario.B-C: Oscilaciones de carga y descarga del condensador sobre el primario mientras que

existe chispa entre los electrodos de la bujía.C-D: Fase de amortiguación de las oscilaciones y disipación de la energía una vez

extinguida la chispa.D-E: Estabilización de la tensión a la de la batería y cierre de contacto en el punto E, por

lo que la tensión es cero.

Page 14: Encendidos Convencionales y Electrónicos

Oscilograma SecundarioA-B: Tensión de encendido o de aguja. Tensión necesaria para iniciar la sucesión de chispasB-C: Bajada de tensión, ya que la resistencia al salto de chispa es menor.C-D: Tensión de arco. Tensión entre los electrodos mientras se mantiene la chispa.D-E: Zona de amortiguación donde se disipa la energía almacenada.E-A: Se inicia la zona de cierre de primario. Representa la f.e.m inducida en el secundario al

establecerse la corriente de nuevo.

Page 15: Encendidos Convencionales y Electrónicos

Corriente por el PrimarioLa corriente por el primario no se establece de una manera instantánea, sino que

debido a la aparición de la f.e.m. autoinducida en el primario, el estableciendo de esta es lento, alcanzando la corriente máxima en el primario al cabo de un cierto tiempo (t1) desde el cierre de los contactos.

El tiempo de establecimiento de corriente por el primario (t1) es mayor que el tiempo de interrupción de corriente (t2) por lo que los valores de f.e.m inducida en el secundario solo son lo suficientemente grandes, para producir el salto chispa en la bujía, cuando los platinos se abren y no cuando estos se cierran

Page 16: Encendidos Convencionales y Electrónicos

Bobina de EncendidoMisión:

Transformar la tensión existente en los bornes de la batería al valor necesario para producir la chispa entre los electrodos de las bujías.

Características:• Primario formado por unas 200 a 300 espiras de hilo grueso aisladas entre sí y del

secundario. Sus extremos están conectados a los bornes de baja.• Secundario formado aproximadamente de 20.000 a 30.000 espiras de hilo fino de cobre

debidamente aisladas entre sí y del núcleo.

Page 17: Encendidos Convencionales y Electrónicos
Page 18: Encendidos Convencionales y Electrónicos

Verificación de la Bobina

Resistencia del primario:

Valor teórico: 2 a 5 Ω. Valor real : _________

Resistencia del secundario:

Valor teórico: 6 a 11 kΩ. Valor real : _________

Nula derivación a masa del primario y secundario:

Valor teórico: infinito. Valor real : _________

Page 19: Encendidos Convencionales y Electrónicos

DistribuidorMisión:

Distribuir la corriente de alta a las bujías en el orden y momento preciso. Incluye otras funciones fundamentales como, por medio del ruptor, interrumpir la corriente por el primario de la bobina y, mediante los mecanismos de regulación del avance al encendido, determinar el instante preciso del encendido, en función del régimen de revoluciones del motor y la carga del mismo.

En su movimiento rotativo, distribuye la corriente en el conocido “orden de encendido” 1-3-4-2.

Page 20: Encendidos Convencionales y Electrónicos
Page 21: Encendidos Convencionales y Electrónicos

Ruptor o PlatinosMisión:

Establecer e interrumpir la corriente por el primario de la bobina, para de esta forma proceder a su carga y descarga en el momento oportuno.

Características:• Consta de un contacto móvil llamado martillo y uno fijo denominado yunque.• Su apertura se realiza por el accionamiento de la leva, y su cierre por medio

de un muelle de lámina.

Portaplatinos

Placa fija

Tornillo de ajustePlatinos

Acoplamiento avance por vacío

Cable de masa

Page 22: Encendidos Convencionales y Electrónicos

Ciclo de EncendidoAngulo disponible: Es el ángulo de giro del distribuidor del que dispone el encendido para cargar y descargar la bobina. 360º/Número de cilindros.

Ángulo de cierre o contacto: Es el ángulo de rotación de la leva durante el cual los contactos del ruptor permanecen cerrados.Ángulo Dwell: Es el ángulo de leva expresando en porcentaje respectos al ángulo disponible. Ángulo de apertura o chispa: Es el ángulo de rotación de la leva durante el cual los contactos del ruptor permanecen abiertos.

360º/4 = 90º 360º/6 = 120º

Page 23: Encendidos Convencionales y Electrónicos

CondensadorMisión:• En el momento de la apertura de contactos, el condensador se carga absorbiendo el

alto voltaje autoinducido, y reduciendo el arco eléctrico que se produce entre los contactos del ruptor y que ocasionaría su rápida destrucción.

• Una más rápida interrupción del circuito primario, consiguiéndose tensiones inducidas más elevadas, aproximadamente 20 veces más rápido de lo que lo haría sin condensador.

• Crea, junto con el arrollamiento primario de la bobina, un circuito oscilante de cargas y descargas del condensador a través del primario, lo que da lugar a una sucesión de saltos de chispas entre los electrodos de la bujía, aportando la energía suficiente para la combustión de la mezcla.

Page 24: Encendidos Convencionales y Electrónicos

Bujías de EncendidoMisión:

Tiene como misión hacer que la corriente, producida en el secundario, salte en forma de chispa entre sus electrodos.

Rosca terminal

Aislador

Anillo de reborde

Barreras de fuga

Cámara de aire

Anillo sellador

Compuesto vítreoconductor

Electrodo de masa

Electrodo central

Píe del aislador

Anillo sellador

Núcleo central

Cuerpo metálico

Terminal

Page 25: Encendidos Convencionales y Electrónicos

Temperatura Funcionamiento Bujía

La temperatura de la bujía ha de estar dentro de unos límites comprendidos entre los 600º y 800º C. Si la temperatura de la bujía está por encima de la temperatura de funcionamiento, da lugar a encendidos por incandescencia (autoencendido); si por el contrario, la temperatura de la bujía es menor de la de funcionamiento, las partículas de aceite y hollín que se depositan sobre el píe del aislador, no desaparecen por ignición, pudiéndose originar derivaciones de corriente.

Page 26: Encendidos Convencionales y Electrónicos

Grado Térmico de una BujíaGrado térmico de una bujía se refiere a la clasificación en tipos que se

hace de las bujías, según su capacidad de transferencia del calor desde el lugar de encendido, en el píe del aislador, hasta el sistema de refrigeración y al medio ambiente.

Las bujías con bajo grado térmico se denominan bujías calientes Las bujías con alto grado térmico se denominan bujías frías

Grado térmico bajo Grado térmico medio Grado térmico alto

Page 27: Encendidos Convencionales y Electrónicos
Page 28: Encendidos Convencionales y Electrónicos

Grado Térmico de una Bujía

Page 29: Encendidos Convencionales y Electrónicos
Page 30: Encendidos Convencionales y Electrónicos

Temperatura de la bujia

Page 31: Encendidos Convencionales y Electrónicos

Control y Reglaje de Bujías

El reglaje deberá realizarse actuando sobre el electrodo de masa y nunca sobre el electrodo central, para así evitar deterioros en la porcelana aislante. Lo acercaremos o lo separaremos para darle el reglaje indicado por el fabricante y lo comprobaremos siempre con una galga de espesores.

NOTA: el fabricante del vehículo, siempre nos recomendará un tipo de bujía, (marca y modelo) la cual nos garantiza un correcto funcionamiento; de instalar otro tipo tendremos infinidad de fallos y averías: arranques en frío y caliente defectuoso, consumo alto, falta de potencia, daños en el motor, etc.

Page 32: Encendidos Convencionales y Electrónicos

MONTAJE DE LAS BUJÍAS DE ENCENDIDO

MONTAJE SIN LLAVE DINAMOMÉTRICA

MONTAJE CON LLAVE DINAMOMÉTRICA

Page 33: Encendidos Convencionales y Electrónicos

Punto de EncendidoEl punto de encendido es el momento en el cual la corriente salta en forma

de chispa entre los electrodos de la bujía.

Desde que salta la chispa y comienzan a inflamarse las capas de mezcla más cercanas a la bujía, hasta que finaliza la combustión de la totalidad de mezcla, transcurre un cierto tiempo, tiempo durante el cual el pistón sigue en movimiento. Para conseguir que la mezcla esté quemada totalmente justo después de que el pistón supere la posición del PMS, obteniéndose el valor máximo de presión, se le dota al punto de encendido de un avance.

1. Chispa de encendido.2. Presión de combustión máxima.

Page 34: Encendidos Convencionales y Electrónicos

Avances Excesivos y EscasosSi el avance al encendido es excesivo, la máxima presión de combustión se conseguirá

antes de que el pistón alcance el PMS, frenándole. Como resultado, la potencia del motor baja y la temperatura del motor aumenta, originando combustiones espontáneas de la mezcla, con picos de presión que se reflejan en vibraciones y ruido denominado picado

Si el avance al encendido es escaso, la máxima presión de combustión será menor y se conseguirá cuando el pistón ya está lejos del PMS. Esto hace que se reduzca la potencia del motor y se eleve la temperatura de este.

1a. a: Avance del encendido correcto.

1b. b: Encendido avanzando, Picado.

1c. c: Encendido retardado, baja presión.

Page 35: Encendidos Convencionales y Electrónicos
Page 36: Encendidos Convencionales y Electrónicos

Control del Punto de Encendido

El control del punto de encendido se realiza con una lámpara estoboscópica, que efectúa un destello en el momento de encendido. Al orientar el destello hacía las marcas de referencia en el motor, dadas por el fabricante, parece que estas fuesen inmóviles.

El ajuste básico del punto de encendido se efectúa en muchos casos el número de revoluciones de marcha a ralentí (600-900 r.p.m., según indica fabricante). Si se comprueba que las marcas no coinciden, girar la carcasa del distribuidor hasta la perfecta coincidencia de las mismas.

Pinza capacitiba

Cilindro 1 ó 4

Pistola estroboscópica

Page 37: Encendidos Convencionales y Electrónicos

Avance inicial

Variación Punto de EncendidoDesde el inicio de la inflamación de la mezcla hasta su combustión completa,

transcurren unos 2 milisegundos y prácticamente permanece constante mientras la composición de la mezcla no varíe; sin embargo, al aumentar las revoluciones del motor, el tiempo de paso del pistón por el PMS se reduce, con lo que la finalización de la combustión y la máxima presión obtenida se alcanza cada vez más lejos del PMS. Por lo tanto, según va aumentando la velocidad del motor, el encendido debe “adelantarse”.

Page 38: Encendidos Convencionales y Electrónicos

Por otra parte, cuando el motor funciona bajas o medias cargas, y la mezcla aspirada por el motor es pobre, la velocidad de inflamación disminuye, por lo que necesitamos más tiempo para realizar la combustión completa, siendo necesario avanzar el punto de encendido según la carga del motor.

Avance inicial +

centrífugo + por

depresión

Page 39: Encendidos Convencionales y Electrónicos

Avance CentrífugoEstá localizado en el distribuidor y se encarga de adelantar el punto de encendido a

medida que se incrementa el número de revoluciones del motor. Cuando el motor gira a ralentí, los muelles mantienen a los contrapesos en reposo, pero cuando el motor va aumentando de r.p.m. los contrapesos debido a la acción centrífuga se desplazan hacía la periferia, con lo cual los extremos de los contrapesos hacer girar al manguito de la leva en el mismo sentido de giro del distribuidor, dando así un cierto avance al encendido.

ContrapesosMuelles

Leva

Page 40: Encendidos Convencionales y Electrónicos

Curva de Avance Centrífugo

Si los dos muelles del conjunto de avance centrífugo, están ajustados sobre los respectivos pernos, el avance es lineal hasta llegar al tope de la apertura de las masas, por lo que no se consigue más avance y la curva se hace horizontal.

Si uno de los muelles presenta holgura en uno de los pernos de sujeción, la curva tendrá dos pendientes, la primera corresponderá a la fuerza que opone el muelle ajustado y el inicio de la segunda, a la fuerza que oponer los dos muelles una vez superada la holgura del segundo.

El fabricante nos indica el valor del avance al encendido en función de las revoluciones del distribuidor en una curva característica, en la cual se indica los márgenes aceptables.

Page 41: Encendidos Convencionales y Electrónicos

Avance por Vacío Está igualmente localizado en el distribuidor y se encarga de adelantar el

punto de encendido en función de la riqueza de mezcla.Cuando el motor funciona a ralentí, la depresión no actúa sobre la

membrana.

Ralentí

Page 42: Encendidos Convencionales y Electrónicos

Avance por Vacío

Al abrirse la mariposa de gases a medias cargas, la depresión en el colector de admisión llega a la cápsula de vació haciendo girar a la placa portarruptor en sentido contrario al de giro de la leva, adelantando el punto de apertura de los contactos del ruptor y por lo tanto avanzando el punto de encendido.

Medias cargas

Page 43: Encendidos Convencionales y Electrónicos

Avance por Vacío

A plena carga, la depresión en el colector de admisión disminuye, recuperando la placa portarruptor su posición de reposo.

Plenas cargas

Page 44: Encendidos Convencionales y Electrónicos

Curva de Avance por VacíoEl fabricante nos indica el valor del avance al encendido en función de la depresión en el

colector de admisión en una curva característica, en la cual se indica los márgenes aceptables.

La curva de avance en grados con respecto a la depresión, en milímetros de mercurio (mm. Hg) o en milibares (mbar).

El fabricante nos indica los grados de avance en el distribuidor, por lo que hay que tener presente que: 1 grado de giro del distribuidor = 2º de giro del motor.

Page 45: Encendidos Convencionales y Electrónicos

Control Curvas de Avance

Curva de avance centrífugo

Curva de avance por vacío

Page 46: Encendidos Convencionales y Electrónicos

Cables de Alta TensiónLos cables destinados a transmitir la

alta tensión, han de reunir unas características especiales en cuanto a su aislamiento, ya que deben tener la suficiente rigidez dieléctrica para aislar del exterior la elevada tensión que soportan. Sin embargo debido a la pequeña corriente que circula por ellos, no necesitan gran sección de alma.

Ademas han de ser capaces de soporta altas temperaturas, sin agrietamientos ni deterioro del aislante, y ser perfectamente insensibles a la humedad e hidrocarburos.

También son antiparasitarios, para que no puedan interferir con las emisiones de radio y televisión.

Cable antiparasitariode encendido

Cable con núcleode cobre

Page 47: Encendidos Convencionales y Electrónicos

Control Instalación de Alta Tensión

Resistencia y aislamiento de la pipa:

Valor resistencia: 1 kΩ. Valor real : _________

Valor aislamiento: infinito. Valor real : _________

Aislamiento de la tapa del distribuidor:

Valor aislamiento: infinito. Valor real : _________

Resistencia y aislamiento de la pipa:

Valor resistencia: según fabricante (25 - 30 kΩ máximo). Cable cilindro nº 1: _________Cable cilindro nº 2: _________Cable cilindro nº 3: _________Cable cilindro nº 4: _________Cable bobina/distriuidor: _________

Page 48: Encendidos Convencionales y Electrónicos

Ejemplo de ControlesModelo Ford Fiesta 1.0Código motor TKASistema de encendido SZBobina de encendido LucasTensión de funcionamiento 7 VResistencia estabilizadora 1,5 ΩResistencia del primario 0,95 – 1,6 ΩResistencia del secundario 5 – 9,3 kΩDistribuidor de encendido BoschSeparación del ruptor 0,5 mmÁngulo de apertura y cierre 48º – 52º (53 – 58 %)Capacidad del condensador 0,45 μFOrden de encendido 1-2-4-3Reglaje de encendido a PMS sin vacíoAvance inicial 10º / 800 r.p.m.

Avance centrífugo 11º - 15º / 2.000 r.p.m.

(Sin vacío y con avance inicial ) 13º - 18º / 3.000 r.p.m.20º - 25º / 5.000 r.p.m.

Avance por vacío AvanceVariación 10º –18ºComienzo 67 mbarFinal 300 mbarBujías Bosch / NGKTipo HR 7 DC / BPR6EFSSeparación entre contactos 0,8 mm

Page 49: Encendidos Convencionales y Electrónicos
Page 50: Encendidos Convencionales y Electrónicos

El PlanteamientoEl desreglaje del punto del encendido y el desgaste de los elementos

giratorios confieren al encendido clásico una vida muy corta, con lo cual se hace necesario el estudio de un nuevo tipo de encendido que suprima en parte los problemas del encendido clásico y mejore el funcionamiento del motor. se utilizan bobinas con primarios de poca resistencia óhmica, al poder utilizar en el circuito primario corrientes más elevadas, de hasta 10 amperios, el campo magnético generado es mayor al igual que la tensión inducida en el secundario.

10 A

Si, pero ¿por qué elemento se va sustituir el ruptor para conseguir la ruptura de la elevada

corriente por el primario?

Page 51: Encendidos Convencionales y Electrónicos

La Solución La ruptura eléctrica se realizará con un transistor intercalado en el circuito

primario de bobina, de tal manera que el transistor necesitará una débil corriente de mando en su base para poder comandar la corriente de paso por el primario.

10 A

La solución es el transistor, pero

¿Cómo dónde, y de qué manera damos la señal a la base del transistor?

LA SOLUCIÓN ES EL TRANSISTOR

Page 52: Encendidos Convencionales y Electrónicos

Encendido Electrónico Transistorizado

En el interior del distribuidor se dispone de un generador de impulsos que hace llegar esos impulsos a un módulo electrónico de mando, en donde después de tratarlos convenientemente, determina principalmente el ángulo de cierre y el punto de encendido.

Módulo de mando

BateríaLlave decontacto

Bobina

Bujía

Generador de impulsos

Page 53: Encendidos Convencionales y Electrónicos

Generador de ImpulsosLos sistemas de encendido electrónicos transistorizados (EET),

independientemente de la variedad de las soluciones empleadas, se pueden clasificar según el tipo de generador de impulsos, no obstante nosotros únicamente nos vamos a referir a los generadores de impulso de mayor difusión, es decir:

Generador de impulsos por inducción magnética.Generador de impulsos por efecto hall.

Generador Inductivo Generador Hall

Page 54: Encendidos Convencionales y Electrónicos

Generador de Impulsos Inductivo

El generador de impulsos se va situar en el distribuidor, en el lugar del ruptor. Consta de una parte giratoria o rotor y de una fija o estator.

Rotor

EstatorDisco polar

Conexiones

Page 55: Encendidos Convencionales y Electrónicos

Generador de Impulsos Inductivo

Rotor

Bobinado de inducción

El rotor: Es de acero dulce, magnético, lleva tantos dientes como número de cilindros hay y es movido por el eje del distribuidor.

El estator: Lleva un imán permanente y una bobina arrollada alrededor de una masa metálica.

Page 56: Encendidos Convencionales y Electrónicos

Funcionamiento (I)

Page 57: Encendidos Convencionales y Electrónicos

Funcionamiento (II)

Page 58: Encendidos Convencionales y Electrónicos

Funcionamiento (III)

Page 59: Encendidos Convencionales y Electrónicos

Funcionamiento (IV)

Page 60: Encendidos Convencionales y Electrónicos

Rotor

Estator Bobinado

Al repetirse nuevamente el ciclo, por cada una de los salientes del rotor, en un giro completo de éste conseguiremos una tensión alterna como la representada en la figura, cuyo valor de pico de estará en función de la velocidad de rotación del distribuidor, pudiendo variar desde 0,5 V a 100 V.

Page 61: Encendidos Convencionales y Electrónicos
Page 62: Encendidos Convencionales y Electrónicos

Avance en el EE Transistorizado

Avance Centrífugo

Page 63: Encendidos Convencionales y Electrónicos

Avance en el EE Transistorizado

Avance por Vacío

Page 64: Encendidos Convencionales y Electrónicos

Circuito EET con Captador Inductivo

1

2 5 6

3

4

Page 65: Encendidos Convencionales y Electrónicos

Generador de Impulsos Hall

Un semiconductor es recorrido por una corriente entre sus puntos A y B, si se le aplica un campo magnético N-S, perpendicular al semiconductor, se genera una pequeña tensión (tensión Hall) entre los puntos E y F debido a la desviación de las líneas de corriente por el campo magnético, cuando estas dos condiciones se producen de forma simultánea.

El funcionamiento de este generador, se basa en el fenómeno físico conocido como efecto Hall.

Page 66: Encendidos Convencionales y Electrónicos

Constitución:

Pantalla

Imán

Integrado

Tambor

TamborPantalla

Integrado

Page 67: Encendidos Convencionales y Electrónicos
Page 68: Encendidos Convencionales y Electrónicos

Funcionamiento:El módulo de mando alimenta de manera constante al integrado Hall, que

a su vez proporciona la corriente necesaria al semiconductor hall, con lo que sólo hay que variar la intensidad del campo magnético periódicamente en el ritmo de encendido, para conseguir una tensión hall variable.

Page 69: Encendidos Convencionales y Electrónicos
Page 70: Encendidos Convencionales y Electrónicos

Integrado Hall (I)El circuito integrado Hall, actúa como un interruptor, transfiriéndole masa al terminal

neutro (o) con la frecuencia que le indique el semiconductor Hall. Por el terminal (o) el módulo de mando envía una tensión de referencia, que según el estado de conducción de la etapa de potencia del integrado Hall, caerá prácticamente a cero o no.

(+)

Etapa depotencia

Compensaciónde temperatura

Amplificador

EstabilizadorDe tensión

Convertidorde señal

(-)

(O)SemiconductorHall

Page 71: Encendidos Convencionales y Electrónicos

Integrado Hall (II)

Page 72: Encendidos Convencionales y Electrónicos

Circuito EET con Captador Hall

1

3,5,6

4

2

Page 73: Encendidos Convencionales y Electrónicos

Módulo Electrónico de MandoLos aparatos de mando de los sistemas de encendido de alta prestación con

captador inductivo o Hall (TZ-I) están construidos casi exclusivamente en técnica híbrida, ya que reúnen alto espesor de envoltura con reducido peso y buena fiabilidad.

El circuito va montado en el marco de metal que disipa la pérdida de calor del circuito a la superficie de anclaje. Los componentes están protegidos de la suciedad y de posibles daños mecánicos con una tapa.

Page 74: Encendidos Convencionales y Electrónicos

Funcionamiento Módulo de Mando

Batería

A

C

D

B

1 2 3 4 5

6 7

a

bc d

+

El funcionamiento interno de un módulo electrónico de mando se puede explicar brevemente en un diagrama de bloques como el de la figura.

A: Módulo de mando.B: Bobina de encendido.C: Sensor inductivo.D: Sensor hall.

1. Conformador de impulsos.2. Regulación ángulo de cierre.3. Desconexión corriente en reposo.4. Etapa de excitación o impulso.5. Etapa de potencia.6. Etapa de limitación de corriente.7. Resistencia de captación de

corriente.

a: Intensidad de primario.b: Valor nominal de la corriente primaria.c: Tiempo regulación tensión efectiva.d. Tiempo regulación tensón nominal.

Page 75: Encendidos Convencionales y Electrónicos

Produce una caída de tensión en una resistencia de bajo valor en el cable del emisor del transistor. A través de una conexión de regulación de limitación de tensión se ejerce directamente el mando de la etapa de excitación del transistor de potencia del encendido.

Limitación

Limitación de Corriente por el Primario

Page 76: Encendidos Convencionales y Electrónicos
Page 77: Encendidos Convencionales y Electrónicos

Mediante un circuito interno se modifica la duración del ángulo de contacto en función de a la velocidad de giro del motor y de la tensión de alimentación, aumentando el ángulo de contacto con altos regímenes de giro y ante bajas tensiones de batería.

Ángulo de cierre

1.000 r.p.m.

Ángulo de cierre

5.000 r.p.m.

Variación del Ángulo de Contacto

Page 78: Encendidos Convencionales y Electrónicos
Page 79: Encendidos Convencionales y Electrónicos
Page 80: Encendidos Convencionales y Electrónicos

Localización del MóduloEl emplazamiento del módulo electrónico puede ser variado. Se empezó situándole en una placa de refrigeración de aluminio, también se instalaba en el mismo soporte de la bobina de encendido y por último se ha acabado situando en el propio distribuidor, haciendo la instalación y el traslado de la señal más fácil y sencillo.

Page 81: Encendidos Convencionales y Electrónicos

Verificación y Localización de Averías

Encendido Electrónico Transistorizado con captador inductivo

Page 82: Encendidos Convencionales y Electrónicos

2) chispa fuerte y azul

3) Tensión de alimentación.

1)chispa fuerte y azul

Page 83: Encendidos Convencionales y Electrónicos

4) Verificación masa. 5) Tensión primario.

6) Verificar el captador:

Resistencia Aislamiento

Page 84: Encendidos Convencionales y Electrónicos

Medir la tensión alterna o obtener la señal del captador.

Page 85: Encendidos Convencionales y Electrónicos

7) La función Salida del módulo.

8) Si el diodo parpadea, verificar la bobina.

PrimarioSecundario

Excitación del sistema:Se puede excitar la etapa del módulo, dando al pin 5 ó 6 alimentación a 12 voltios de

una forma pulsatoria, a la vez que se observa el salto de chispa a la salida de la bobina.

Page 86: Encendidos Convencionales y Electrónicos

Ejemplo Controles de Encendido (I)

Esquema encendido Citroen AX 1.1/1.4

Modelo Citroen AX 1.1/1.4Código motor H1A/K1ASistema de encendido TZ-i 2ª generaciónBobina de encendido Bosch/DucelierResistencia del primario 0,8 – 1,2 ΩResistencia del secundario 8 – 11 kΩ / 6,5 kΩDistribuidor de encendido BoschResistencia del captador 320 ΩEntrehierro 0,3 a 0,5 mmOrden de encendido 1-3-4-2Reglaje de encendido a PMS sin vacío (o)Avance inicial 8º / 750 r.p.m.

Page 87: Encendidos Convencionales y Electrónicos

Ejemplo Controles de Encendido (II)Esquema encendido Fiat Uno 60

Modelo Fiat Uno 60Código motor 156ASistema de encendido Breakerless 2º generaciónBobina de encendido M. MarelliTipo BAE 506AResistencia del primario 0,7 – 1 ΩResistencia del secundario 3,3 – 4,1 kΩ

Distribuidor de encendido M. MarelliTipo SE 101 AResistencia del captador 758 - 872 ΩEntrehierro 0,3 a 0,4 mmOrden de encendido 1-3-4-2Reglaje de encendido a PMS sin vacío (o)Avance inicial 10º / 750 r.p.m.

Page 88: Encendidos Convencionales y Electrónicos

Verificación y Localización de Averías

Encendido Electrónico Transistorizado con captador Hall

Page 89: Encendidos Convencionales y Electrónicos

a) Alimentación del captador Hall.

(+)

(-)

(6)

(3)

(o)

(-)

b) Tensión de referencia.

Page 90: Encendidos Convencionales y Electrónicos

Obtención de la señal del captador Hall.

(6)

(3)

2 - 10 V

Excitación del sistema:Se puede excitar la etapa del módulo, dando al pin 6 masa de una forma pulsatoria,

a la vez que se observa el salto de chispa a la salida de la bobina.

c) Función salida del captdor Hall.

(-)(3)

Page 91: Encendidos Convencionales y Electrónicos

Ejemplo Controles de Encendido (III)Esquema encendido Seat Toledo 1.8

Modelo Seat Toledo 1.8Código motor RPSistema de encendido TZ-hBobina de encendido BOSCHResistencia del primario 0,52 – 0,76 ΩResistencia del secundario 3,4 – 3,5 kΩDistribuidor de encendido BoschOrden de encendido 1-3-4-2

Reglaje de encendido a PMS sin vacío (o)Avance inicial 6º ±1 / 750 r.p.m.Comprobación del avance 0º / 950 - 1.200 rpm Sin vacío 11º-15º/ 2.600 rpm

27º- 31º/ 6.000 rpmVariación avance por vacío 10º-14ºComienzo 100 mbarFinal 260 mbar

(+)(o)(-)ECU inyección

Page 92: Encendidos Convencionales y Electrónicos
Page 93: Encendidos Convencionales y Electrónicos

Encendido Totalmente Electrónico

Si Bien el encendido transistorizado presenta un neto progreso respecto al encendido convencional, no es menos cierto que el reglaje del punto de avance se realiza siempre mediante correctores mecánicos ya sean centrífugos o por depresión.

El siguiente paso será por tanto que el avance del encendido sea en todo momento el adecuado para el grado de carga del motor y el régimen de giro, y que todo esto se realice sin ningún tipo de unión mecánica con el motor. La solución nos vendrá dada por la adopción para el encendido de un “Sistema Electrónico Integral” o también denominado “Encendido de Campo Característico”, que suprime totalmente los dispositivos mecánicos de corrección del avance, a los que sustituye por sensores electrónicos.

Page 94: Encendidos Convencionales y Electrónicos

Principio de Funcionamiento

Captador deVelocidad

y posición UNIDADUNIDAD

ELECTRÓNICAELECTRÓNICADE CONTROLDE CONTROL

(ECU)(ECU)

Captador deCarga motor

Otras entradas

Cierre y apertura

del primario

BOBINA

Otrassalidas

Page 95: Encendidos Convencionales y Electrónicos

Mapa tridimensional

Campo Característico Los distintos valores son memorizados en la unidad electrónica de control. Su

ilustración gráfica se representa bien como series de puntos en un sistema coordinado de desarrollo tridimensional denominado mapa tridimensional o por tablas de datos.

Cuanto más alto es el número de puntos o coordenadas que componen un mapa tridimensional o una tabla de datos, más precisa es la respuesta a cada situación específica del motor. Además de la precisión del mapa, otro factor importante es la rapidez de respuesta de la unidad de control a los datos de entrada. Actualmente puede afirmarse que estos datos son calculados prácticamente en “tiempo real”.

¡Jo!, Qué rápido soy.

Tabla de datos

Page 96: Encendidos Convencionales y Electrónicos

ECU

Sinopsis del FuncionamientoCaptador régimen

Activación del AC

Captador Posición

Selección octanaje

Captador carga

Presión del turbo

Sensor temp. motor

Sensor temp. aire

Sensor detonación

Contactor mariposa

Selección cambio auto

BOBINAabre y cierra el primario

Válvula paso mínima

Cuentarrevoluciones

Testigo avería

Toma de diagnosis

Otras funciones

Otras entradas

15

50

31

Page 97: Encendidos Convencionales y Electrónicos

Captador de Régimen y posición

Sirven para determinar el número de revoluciones y la sincronización con el cigüeñal, mediante captadores, existen varias posibilidades en función de la disposición de los captadores: Si estos van montados en la polea, volante del cigüeñal o en el distribuidor, y en función del tipo de captador, pudiendo ser mayoritariamente del tipo inductivo o hall.

Sensor inductivo en polea Sensor inductivo

en volante

Sensor inductivo en distribuidor

Sensor Hall en distribuidor

Page 98: Encendidos Convencionales y Electrónicos

Captadores InductivosEn los montajes de este captador en el volante o polea del cigüeñal, este captador

está constituido por una corona dentada denominada rueda fónica, acoplada en la periferia del volante o polea, y un captador magnético colocado frente a ella, formado por una bobina enrollada en un imán permanente.

El giro continuado de la corona produce sucesivas variaciones de flujo debidas al paso de los dientes y huecos frente al captador, en cuya bobina se induce una tensión alterna con impulsos positivos y negativos. La frecuencia con que se realizan dichos impulsos le sirve a la unidad de mando para interpretar el régimen de giro del motor.

Page 99: Encendidos Convencionales y Electrónicos

Captador de Régimen

Rueda Fónica condientes idénticos

Sensor de régimen

Page 100: Encendidos Convencionales y Electrónicos

Captador de Posición o PMS

Rueda Fónica condientes enfrentados

Sensor de régimen

Page 101: Encendidos Convencionales y Electrónicos

Captadores de Régimen y Posición

Rueda Fónica contetones de posición

Sensor de régimenSensor de posición

Page 102: Encendidos Convencionales y Electrónicos

Captador de Régimen y Posición

Rueda Fónica condientes y huecos dobles

Page 103: Encendidos Convencionales y Electrónicos

Captador de Régimen y Posición

Rueda Fónica conausencia de dientes

Sensor de régimen

Page 104: Encendidos Convencionales y Electrónicos

El perfil de los dientes de la corona genera un perfil de tensión alterna, cuya frecuencia indica a la unidad de mando el régimen de giro del motor. Los dientes dobles o la falta de dientes, según el caso, genera una señal de referencia que permite a la unidad de mando reconocer, con un cierto avance, el PMS de la pareja de cilindros 1-4. La unidad de mando reconoce el PMS de la pareja de cilindros 2-3 gracias al montaje de dos marcas de referencia enfrentadas o debido al cálculo de la unidad de mando

PMS Cilindros 1- 4

PMS Cilindros 2- 3

20d

50d

1d

Page 105: Encendidos Convencionales y Electrónicos

PMS Cilindros 1- 4

PMS Cilindros 2- 3

20d

50d

1d

1 20

PMS Cilindros 1-4

avanceavance

PMS Cilindros 2-3

50

Page 106: Encendidos Convencionales y Electrónicos

Los sistemas de encendido con captadores inductivos en el distribuidor tuvieron inicialmente una gran implantación, sobretodo a la facilidad de sustitución en los motores existentes de los distribuidores convencionales por otros con sensores inductivos, más adelante la mayor precisión y el mayor caudal de datos suministrado por los sensores dispuestos frente a coronas dentadas solidarias al cigüeñal hizo que éstos se generalizaran finalmente.

Conector

Bobinado e imán

Rueda polarMarca para el calado

Pipa o contacto móvilEste distribuidor actúa como sensor de posición y como

distribuidor de corriente de alta.

Page 107: Encendidos Convencionales y Electrónicos

Captadores HallEstos tipos de sensores se utilizan la gran mayoría de veces como sensores

montados en el distribuidor. La señal de régimen se toma directamente del sensor hall, ya que la señal ya está en forma digital. El intervalo del encendido se obtiene del perfil de la señal hall en la unidad de control. En una palabra, el propio captador hall hace de sensor de régimen motor y de sensor de posición.

Page 108: Encendidos Convencionales y Electrónicos

Otras veces, únicamente actúa como sensor de posición en combinación con un sensor inductivo de régimen, ver figura. En el ejemplo el tambor de captador hall consta de dos ventanas. En su movimiento el tambor cubre y descubre al captador hall dos veces por vuelta del árbol de leva. Por cada vuelta del rotor, da origen a dos ondas cuadradas con un determinado desfase entre ellas (en la figura 90º) que, junto a las señales generadas por el sensor de régimen, permiten que la unidad de mando reconozca con cierta anticipación el PMS del cilindro 1.

Page 109: Encendidos Convencionales y Electrónicos

Conexionado Sensor Régimen

ECU

Sensor Inductivo

Sensor inductivo

Sensor Hall

ECU+5V

o-

Sensor Hall

Page 110: Encendidos Convencionales y Electrónicos

Captador de Presión en la Admisión

El sensor de presión absoluta está conectado al colector de admisión y proporciona una señal de tensión proporcional a la presión existente en el colector de admisión.

Atendiendo a su principio de funcionamiento, nos podemos encontrar en los sistemas de encendido dos tipos de captadores de presión absoluta en la admisión:

Captador de membrana. Captador piezoeléctrico cerámico y de pyrex. Captador digital.

Page 111: Encendidos Convencionales y Electrónicos

Captador MAP de Membrana

Cuando se deforma la membrana de la cápsula, desplaza el núcleo, lo que origina una variación de flujo magnético de la bobina y, en consecuencia, varia la frecuencia enviada por la unidad electrónica.

Page 112: Encendidos Convencionales y Electrónicos

Cuando la depresión actúa sobre la membrana de la cápsula, el núcleo esta poco metido en la bobina, la frecuencia del oscilador es elevada. Cuando la presión es idéntica en ambos lados de la membrana, el núcleo empujado por el muelle está muy introducido en la bobina, entonces la frecuencia del oscilador es menor.

ALTO VACÍO

BAJO VACÍO

Page 113: Encendidos Convencionales y Electrónicos

Captador MAP Pizoeléctrico

La unidad de mando mantiene a 5 voltios la alimentación del captador. Ante una depresión en el colector de admisión, provoca que el diafragma cerámico del sensor se arquee variando el valor de las resistencias del puente, y haciendo variar también el valor de la tensión en la salida.

Puente de resistenciasDiafragma

Tensión de alimentación

Tensiónsalida

Soporte

Page 114: Encendidos Convencionales y Electrónicos

El sensor se instala dentro de un contenedor de plástico, sobre el que se ha provisto un orificio que, conectado a un tubo de goma se transmite el vacío del colector hasta el interior del sensor.

A: Positivo alimentación 5V.B: Negativo alimentación masa.C: Señal. Tensión variable.

A: Negativo alimentación masa. B: Señal. Tensión variable.C: Positivo alimentación 5V.

Page 115: Encendidos Convencionales y Electrónicos

Captador MAP DigitalEste tipo de sensor, recibe una tensión de alimentación de referencia a 5

voltios, procedente de la unidad de mando, la cual convierte el sensor en una frecuencia proporcional a la situación de vacío. Esta frecuencia se vuelve a dirigir a la central de mando teniendo un valor aproximados entre 80 Hz a 0,2 bar y 162 Hz a 1 bar.

Toma de vacío

Page 116: Encendidos Convencionales y Electrónicos

Conexionado Sensor MAP

En función del tipo de sensor MAP pizoeléctrico, el conexionado puede variar.

ECU5 V

C

BA

Sensor MAP

ECU5 V

A

B

C

Sensor MAP

Page 117: Encendidos Convencionales y Electrónicos

Existe un gran número de unidades electrónicas de mando que incorporan al sensor de presión absoluta en su interior, formando un conjunto hermético y compacto.

Page 118: Encendidos Convencionales y Electrónicos

Sensor Temperatura Motor Su misión es informar directamente a la unidad de mando de la temperatura motor.

El sensor de temperatura motor, montado con la parte sensible sumergida en el líquido de refrigeración de motor, está constituido por una resistencia de coeficiente de temperatura negativo (NTC), Por lo tanto si la temperatura del sensor aumenta al aumentar la temperatura del líquido de refrigeración, se produce una disminución del valor de resistencia.

Sensor NTC

Page 119: Encendidos Convencionales y Electrónicos

Conexionado Sensor T. MotorLa unidad de mando pone bajo tensión al sensor de temperatura de

refrigerante, que actúa como una resistencia variable en función de la temperatura. La corriente eléctrica fluye a través del sensor, a masa. En el sensor se produce una caída de tensión, este valor de tensión corresponde a una temperatura determinada del motor. La unidad de mando asigna un valor determinado de temperatura a cada valor de tensión.

ECU 5 V

Sensor temperatura motor

Page 120: Encendidos Convencionales y Electrónicos

Sensor Temperatura AireEl sensor de temperatura de aire puede ir montado en el conducto de admisión

de aire o en la propia carcasa del filtro del aire. Están compuestos, al igual que los sensores de temperatura de refrigeración, de una resistencia del tipo NTC, (algunas veces, nos podemos encontrar tanto en sensores de temperatura de agua como sensores de temperatura de aire, resistencia del tipo PTC).

Page 121: Encendidos Convencionales y Electrónicos

Conexionado Sensor T. AireAl igual que el sensor de temperatura motor, la unidad de mando controla las variaciones de

resistencia del sensor a través de los cambios de tensión y obtiene por lo tanto, la información sobre la temperatura del aire aspirado. 

Senspr temperatura de aire

ECU 5 V

Page 122: Encendidos Convencionales y Electrónicos

Sensor de DetonaciónUna de las características negativas relacionadas con los sistemas de

gestión del avance es aquella según la cual, por motivos de precaución, es necesario siempre mantener un cierto margen de seguridad para evitar que en condiciones puntuales de funcionamiento del motor pudiesen producir detonaciones. Estos márgenes de seguridad, a veces excesivos pero de todas maneras necesarios, no permitían el máximo aprovechamiento del motor.

Page 123: Encendidos Convencionales y Electrónicos

Sensor de DetonaciónPara solucionar este inconveniente se emplean sensores de detonación que,

montados por lo general en la parte superior del bloque, detectan detonaciones en la culata. Estos sensores están compuestos de cristales piezoeléctricos que generan una señal eléctrica cuando perciben el exceso de vibraciones producidas por los fallos de combustión.

Page 124: Encendidos Convencionales y Electrónicos

Sensor de DetonaciónLa unidad de mando evalúa las señales procedentes del sensor y activa una

estrategia de retraso del encendido de una forma paulatina, hasta que la detonación desaparece. Posteriormente, se vuelve a situar el momento de encendido, a pequeños pasos, hacía avance, hasta que queda situado en su valor programado. Si la detonación apareciese en cualquier momento, la ECU volvería a producir el retraso hasta su desaparición. Las detonaciones pueden ser diferenciadas cilindro a cilindro, pudiéndose ajustar el avance individualmente por cilindro.

Page 125: Encendidos Convencionales y Electrónicos

Conexionado Sensor de Detonación

ECU

El apriete del tornillo de sujección del detector de picado ha de realizarse a su par correspondientes, ya que de lo contrario emitirá señales inpropias con el estado de funcionamiento del motor.

Page 126: Encendidos Convencionales y Electrónicos

Selector de OctanajeAlgunos sistema de encendido poseen un conector de servicio, mediante el

cual pueden llevarse a cabo un ajuste del octanaje con ayuda de un cable de servicio, o simplemente variando la posición de un conmutador. Este puede ser necesario al utilizar combustible de distinto índice de octano o en caso de un posible picado del motor.

Este ajuste de octanaje origina una modificación en el avance del momento de encendido, adoptando un campo característicos distintos.

Page 127: Encendidos Convencionales y Electrónicos

Conexionado del selector Octanaje

La selección del tipo de octanaje, varia de unos modelos a otros. He aquí dos formas distintas de conexionado de selector de octanaje: La unidad de mando manda una tensión de referencia, normalmente de 5V y en esta, en función del tipo de conexionado, se producirá una caída de tensión determinada, identificada por la unidad de mando.

ECU 5 V

Conector de octanaje

ECU 5 V

Conector de octanaje

Page 128: Encendidos Convencionales y Electrónicos

CIRCUITOANALÓGICO

Unidad de Mando (ECU)

TRATAMIENTODE SEÑALES

CIRCUITODIGITAL

SENSOR DEPRESIÓN

SENSOR DER.P.M. Y

POSICIÓN

Alimentación Alimentación

COMPARADORAMPLIFICADOR

Señal de presión

Señal tipo reloj r.p.m.

Señal posición

Señal de mando

CIRCUITO DEPOTENCIA

Hacia el distribuidorBOBINA DEENCENDIDO

Page 129: Encendidos Convencionales y Electrónicos

Circuito integrado analógico:Se divide en dos partes, una de tratamiento de señales encargado de transformar

las señales analógicas que provienen de los captadores en señales digitales y otra de comparación y amplificación de la señal de mando emitida por el circuito numérico; esta última es la encargada de gobernar la etapa de potencia, no solamente para determinar el ángulo de avance al encendido más idóneo, sino para conseguir también:

Mantener constante la energía aportada por la bobina. Variar el ángulo de contacto según el régimen motor y tensión de alimentación. Limitar la corriente por el primario.

Circuito integrado numérico:Comprende un circuito de cálculo y una memoria que guarda el campo característico

del motor. El circuito numérico recibe las señales interpretándolas y comparándolas con las de su memoria, determina el momento adecuado para abrir o cerrar el circuito primario de la bobina; para ello envía señales de mando hacía el circuito analógico que amplifica las señales y gobierna el circuito de potencia.

Circuito de potencia:Es un montaje de transistores darlington y se encarga de transmitir masa al

terminar (-) de la bobina y de quitárselo cuando llegue el momento del salto de chispa.

Page 130: Encendidos Convencionales y Electrónicos

Etapa de Potencia

+ Bobina

Etapa de potencia

AT

COMPARADORAMPLIFICADOR

CIRCUITOANALÓGICO

Page 131: Encendidos Convencionales y Electrónicos

En algunas unidades de mando la etapa de potencia se monta en el exterior, ya que esta es más susceptible de avería, con lo que se abarata el coste de la reparación.

Page 132: Encendidos Convencionales y Electrónicos

Nos podemos encontrar encendidos electrónicos integrales que van gobernados por la unidad electrónica de control del sistema de inyección (realmente serian sistemas de gestión de motor). De igual manera estos sistemas pueden incorporar la etapa de potencia del encendido en el exterior de la unidad de mando o bien en el interior.

ECU

Sensor rpmy posición

Etapa de potencia

Bobina

Distribuidor

Bobina

Sensor rpmY posición

ECU

Distribuidor

Page 133: Encendidos Convencionales y Electrónicos

Etapa de potenciaEn los sistemas de encendido que consten con etapas de potencia exterior,

dichas etapas están excitadas directamente por la unidad de mando mediante una señal normalmente cuadrada. Podemos diferenciar dos tipos distintos.

- Bobina ECU+15

- Bobina ECU

La ECU transfiere masa a la etapa de potencia cuando quiera que esta cargue a la bobina y le quita la masa en el momento que dictamine el salto de chispa en la bujía.

La ECU transfiere positivo a la etapa de potencia cuando quiera que esta cargue a la bobina y le quita la masa en el momento que dictamine el salto de chispa en la bujía.

Page 134: Encendidos Convencionales y Electrónicos

Distribuidor de EncendidoEl distribuidor en el encendido electrónico integral suele ser eso,

únicamente un distribuidor de la corriente de alta, aunque podemos encontrar varios modelos de encendido electrónico integral en los que el captador de velocidad o posición están incorporados en el propio distribuidor como si se tratase de un captador de encendido electrónico transistorizado.

Arrastre

Carcasa

Pipa Tapa

Carcasa

Eje

Captadorhall

Arrastre

Page 135: Encendidos Convencionales y Electrónicos

Sistema de Encendido EZ61-MSTS

1. Sensor r.p.m. y posición.2. Etapa de potencia.3. Interruptor de encendido.4. Batería.5. Cuentarrevoluciones.6. Bobina de encendido.7. Distribuidor.

8. Unidad de mando. ECU.9. Sensor de temperatura motor.10. Selector de octanaje.11. Salida señal para ECU inyección.12. Pin 10 de la ECU inyección.13. Interruptor de mariposa.

Page 136: Encendidos Convencionales y Electrónicos

Sistema de Encendido EZ PLUS

K20:K84:

L3:P23:P24:Y10X5:

X10:X13:X15:

Etapa de potencia.Unidad electrónica de mando.Bobina de encendido.Sensor de presión en el colector.Sensor temperatura de aceite.Distibuidor con captador Hall.Conector tablero de instrumentos.Enchufe codificador, reglaje básico.Enchufe de diagnosis.Enchufe de octanaje.

Page 137: Encendidos Convencionales y Electrónicos

Sistema de Encendido Digiplex 2

1. Toma de vacío del colector.2. Unidad electrónica de control (ECU).3. Bobina de encendido.4. Distribuidor de alta tensión.5. Volante motor.6. Eventual interruptor para reducción avance7. Eventual interruptor para curva base.8. Interruptor de mínimo de la mariposa.

9. Batería.10. Bujías.11. Cuentarrevoluciones.12. Válvula de mínima (Cut-off)13. Toma de diagnosis.14. Sensor de r.p.m. y P.M.S.15. Motor de arranque.16. Centralización de masas.

Page 138: Encendidos Convencionales y Electrónicos

Sistema de Encendido Microplex

1. Unidad Electrónica de mando.2. Toma de vacío de admisión.3. Bujías.4. Distribuidor de alta tensión.5. Bobina de encendido.6. Etapa de potencia de encendido.7. Llave de contacto.8. Cuentarevoluciones.9. Sensor de posicón PMS.10.Sensor de régimen.11.Sensor de detonación.12.Interruptor seguridad sobrealimentación.13.Señal tacométrica.14.Toma de diagnosis.

Page 139: Encendidos Convencionales y Electrónicos

Ejemplo Controles de Encendido (I)

Esquema encendido Renault 11 Modelo Renault 11Código motor C2j L7-17Sistema de encendido Renix AEIBobina de encendido RenixResistencia del primario 0,4 – 0,8 ΩResistencia del secundario 4 – 5,5 kΩDistribuidor de encendido DucelierOrden de encendido 1-3-4-2Reglaje de encendido a PMS sin vacío (o)Avance inicial 8º / 700 r.p.m.Comprobación avance 7º - 9º / 750 rpm

15º - 23º / 1.750 rpm24º - 30º / 4.050 rpm

Sensor regimen y posiciónResistencia 150 – 250 ΩEntrehierro 0,5 – 1,5 mm

+ bobina - bobinaConectorsensor

Sensor rpm,posición

ECUbobina

Sensorvacío

Conectoralimentación

Cuentarevoluciones- negativo+ positivo

Nota: En los últimos modelos de encendido Renix, el conector de alimentación solo disponía de tres pines (positivo, negativo y señal cuentarevoluciones

Page 140: Encendidos Convencionales y Electrónicos

Comprobaciones

2) Sensor régimen y posición:

Sensor Sensor

Conector Conector

Resistencia Aislamiento

1) Alimentación de la unidad de mando (ECU):

Tensión mínima: 10 V (3)

(2)

3) Función salida de la ECU:

(+)

(-)

Al arrancarparpadea

Page 141: Encendidos Convencionales y Electrónicos

Ejemplo Controles de Encendido (II)Esquema encendido Seat Ibiza- Malaga 1.5 inyección

ECU Encendido

ECU Inyección

Distribuidor

Bobina

Relé taquimétrico

NTC

Etapa depotencia

Contactor

Page 142: Encendidos Convencionales y Electrónicos

Identificación de Pines ECU

Nº DESTINO1 Masa a través de la etapa de potencia.2 Salida de masa hacia captador Hall.3 Alimentación a través de contacto (15).4 Alimentación captador Hall.

5 Salida señal taquimétrica hacia relé taquimétrico y ECU inyección de gasolina.

6 Entrada señal ralentí desde el contactor de mariposa.7 Libre8 Libre9 Libre

10 Libre11 Libre12 Entrada señal desde el generador Hall.13 Señal de control de la etapa de potencia.14 Señal de plena carga desde el contactor de mariposa.15 Entrada información desde la ECU inyección de gasolina

Page 143: Encendidos Convencionales y Electrónicos

ComprobacionesVerificar si existe salto de chispa y el circuito de alta, tal como se explicó en el

apartado de encendido electrónico transistorizado.

c) Función salida.

(2)

(12)(4)

(12)

1) Verificar la alimentación y la masa de la unidad de mando. Accionar el contacto.

(3)

(1)

Valor: Vbat.

2) Comprobar el captador hall. Con el contacto accionado:

a) Alimentación:

(2)

(4)

Valor: _____

b) Tensión referencia.

(2)

(12)

Valor: _____

Page 144: Encendidos Convencionales y Electrónicos

4) Controlar la señal de mando de la ECU hacia la etapa de potencia.:

a) Con lámpara led

(4)

(13)

____

b) Con osciloscopio.

(1 ó masa)

(13)

3) Verificar la alimentación y la masa de la etapa de potencia y de la bobina. Accionar el contacto.

Valor: Vbat.Valor: Vbat.

Valor: Vbat.

Page 145: Encendidos Convencionales y Electrónicos

7) Comprobar la señal taquimétrica emitida por la ECU.a) Con lámpara led

(3)

(5)

b) Con osciloscopio.

(1 ó masa)

(5)

5) Verificar la función salida de la etapa de potencia. Conectar una lampara led entre el (+) y (-) de la bobina o entre el pin 4 y 1 de´la etapa. Accionando el arranque.

(14)

(1)

Valor: Vbat. a plena carga.(6)

(1)

Valor: Vbat. a ralentí.

6) Verificar señal del contactor de mariposa. Accionar el arranque o puentear el relé taquimétrico entre sus terminales 30 y 87.

Page 146: Encendidos Convencionales y Electrónicos

Ajuste Básico del Punto de Encendido

3) Conectar una lámpara estroboscópica, arrancar el motor y ajustar el régimen a ralentí a unas 850 r.pm.

4) Comprobar y ajustar el punto de encendido, si es preciso a 10º de avance.

1) Comprobar el sentido de giro del distribuidor y el orden de encendido.

2) Desconectar el conector del contactor de mariposa y hacer un puente entre los tres terminarles del conector de la instalación.

Conector interruptor de mariposa

Page 147: Encendidos Convencionales y Electrónicos
Page 148: Encendidos Convencionales y Electrónicos

Encendido Electrónico EstáticoEl encendido electrónico estático contiene las funciones del encendido

electrónico integral y se suprime la distribución de alta tensión por el distribuidor. La alta tensión es distribuida directamente a las bujías a través de bobina doble (o triple para 6 cilindros) o mediante bobinas individuales (monobobinas) una para cada una de las bujías.

1. Bujía.2. Bobina doble de encendido.3. Interruptor de mariposa4. Unidad de mando.5. Toma captador de presión.6. Sensor temperatura motor.7. Sensor de régimen y posición.8. Rueda fónica en volante motor.9. Batería.10. Llave de contacto.

Las ventajas de este sistema son: Eliminación del distribuidor. Reducción del nivel de ruidos. Menor pérdida de energía.

Page 149: Encendidos Convencionales y Electrónicos

Bobina DobleLa bobina doble está formada por dos devanados primarios, gobernados

de forma alternativa cada uno por una etapa de potencia, y dos secundarios, unido cada uno de ellos por sus extremos, directamente a las bujías. Existen, por lo tanto, dos circuitos de encendido 1-4 y 2-3 en el motor de cuatro cilindros y tres circuitos de encendidos 1-5, 4-3 y 2-6 en el motor de seis cilindros.

DIS 4

DIS 6

Al encendido electrónico estático también se le denomina “Encendido de chispa perdida”, ya que el salto de chispa en una de las bujías no es utilizado para combustionar la mezcla, aunque si tiene una insignificante perdida de energía.

Page 150: Encendidos Convencionales y Electrónicos

Principio de FuncionamientoLa alta tensión inducida en

los secundarios de forma alternativa, hace que en ambas bujías, conectadas en serie con el secundario en cuestión, se originen un salto de chispa. Las bujías de encendido están ordenadas de tal manera que una de las bujías encienda en el tiempo de trabajo del cilindro, mientras que la otra encienda en el tiempo de escape desfasado 360º. Es decir, si la bujía del cilindro 1 enciende finalizando la compresión, la del cilindro numero 4 encenderá terminando escape. Este procedimiento se repite nuevamente una vuelta después, pero intercambiando los papeles en los cilindros.

Page 151: Encendidos Convencionales y Electrónicos

Polaridad en las bujías Dado que la dirección del flujo de corriente en el circuito secundario está

regida por el diseño, se alcanzan polaridades diferente del voltaje de encendido en ambas bujías conectadas a un mismo secundario. Esto significa que la bujía del cilindro número 1 y 4 tendrán una tensión una positiva y otra negativa, al igual que en las bujías de los cilindros 2 y 3. 

En estos sistemas de encendido se utilizan bujías con un recubrimiento especial en sus electrodos, debido a la alta tensión que se originan entre ellos. Igualmente por esto permiten que separación entre electrodos sea superior a las bujías utilizadas en los anteriores sistemas de encendido.

Page 152: Encendidos Convencionales y Electrónicos

Tipos de Bobinas de EEE

DIS 4

DIS 6NANOBOBINA

VALEO ROCHESTER IAW O MMBA

Page 153: Encendidos Convencionales y Electrónicos

Particularidad en Bobinas

Page 154: Encendidos Convencionales y Electrónicos

Bobina Individual o Monobobina

Este sistema de encendido estático es la última generación en el desarrollo de los encendidos. Como ya se ha dicho la generación de alta tensión tiene lugar mediante una bobina de encendido para cada cilindro y bujía.

1-6 Bujías.11-16 Monobobinas.21 Etapa potencia.22 Etapa potencia.40 Unidad de mando motronic.41 Unidad de codificación.31 Sensor de régimen y posición.32 Sensor de fase.33 Sensor de temperatura motor.34 potenciómetro mariposa.35 Medidor de masa de aire.36 Sensor de picado.37 Sensor de picado.

Este sistema de encendido está integrado con el

sistema de inyección de gasolina

Page 155: Encendidos Convencionales y Electrónicos

MonobobinasLas bobinas de encendido

están montadas directamente en la bujía y están controladas por unidades de potencia.

Page 156: Encendidos Convencionales y Electrónicos

Constitución de las Monobobinas

Las bobinas constan en su interior de un primario y un secundario, igual que las bobinas vistas hasta el momento, pero con la particularidad de que en el secundario se acopla un diodo especial, que solo permite que la corriente circule por el secundario cuando la tensión aplicada a este sea elevada, del orden de kV. Con esto se evita la posibilidad de que salte una chispa en el momento de restablecer la corriente por el primario, como consecuencia de la variación de flujo.

Page 157: Encendidos Convencionales y Electrónicos

Unidad de MandoLa unidad de mando del encendido electrónico estático es prácticamente

idéntica a la del encendido electrónico integral. La diferencia existente entre la unidad de mando de un encendido electrónico integral y un estático, radica en la necesidad que tiene esta última de disponer de un sensor de fase.

Page 158: Encendidos Convencionales y Electrónicos

Unidad de MandoEl sensor de fase suele ser un captador Hall montado en el arbol de

levas, cuya misión es reconocer el momento en que el cilindro número uno esta realizando la admisión, ya que con el sensor de régimen y posición lo único que reconoce es que está situado en el PMS, pero no sabe que tiempo del ciclo está efectuando.

Page 159: Encendidos Convencionales y Electrónicos

ECU

Sensor rpmy posición

Etapa de potencia

Bobina

Bobina

Sensor rpmY posición

ECU

Localización Etapa de Potencia

Page 160: Encendidos Convencionales y Electrónicos

Etapa de PotenciaLas etapas de potencia, al igual que en el encendido integral, se encargan

de controlar los tiempos de conducción de corriente por los primarios de las bobinas y también limitan la corriente en el primario de la bobina, para una vez alcanzado el valor nominal, se mantenga constante hasta el momento del encendido.

Se pueden agrupar dos o mas nanobobinas, con sus

correspondientes etapas de potencia para ser aplicadas a un motor de cuatro cilindros.

Page 161: Encendidos Convencionales y Electrónicos

Unidad de Mando (I)

Etapa depotencia

Page 162: Encendidos Convencionales y Electrónicos

Unidad de Mando (II)Etapas depotencia

Page 163: Encendidos Convencionales y Electrónicos

Sistema MMBA AEI 450A

1. Batería.2. Conmutador de arranque.3. Fusible de protección 15 A.4. Polea motor de 4 dientes.5. Sensor rp.m. y PMS.6. Bobina de encendido cilin. 1-4.7. Bujías.8. Placa disipadora de calor. 9. Etapa de potencia de bobina 6.10.Etapa de potencia de bobina 11.11.Bobina de encendido cilin. 2-3.12.Doble relé de alimentación.13.ECU de encendido e inyección.14.Sensor de detonación.15.Sensor de presión absoluta.

Fiat Coupé 1995 16V Turbo

Page 164: Encendidos Convencionales y Electrónicos

Sistema Encendido ESC P1 - Ford

1. Sensor r.p.m. y posición.2. Sensor temperatura motor.3. Sensor temperatura aire.4. Selector de octanaje.5. Toma de vacío.6. Unidad de mando ESC P1.7. Bobina de encendido DIS.

Page 165: Encendidos Convencionales y Electrónicos

Esquema Eléctrico ESC P1 - Ford

1. Sensor r.p.m. y posición.2. Unidad de mando ESC P1.3. Interruptor de encendido.4. Batería.5. Sensor temperatura motor. 6. Bobina de encendido DIS.7. Selector de octanaje.8. cuentarrevoluciones.9. Bujías.10. Sensor temperatura aire.

Page 166: Encendidos Convencionales y Electrónicos

Identificación de Pines ECU

112

Nº DESTINO1 Señal captador inductivo de régimen y posición.2 Señal captador inductivo de régimen y posición.3 Señal temperatura de aire.4 Masa sensores.5 Señal temperatura motor.6 Codificación para el octanaje.7 Codificación para el octanaje.8 Alimentación a través de contacto (15).9 Masa.

10 Libre11 Negativo transferido (-) a un primario.12 Negativo transferido (-) a un primario.

Page 167: Encendidos Convencionales y Electrónicos

ComprobacionesVerificar si existe salto de chispa y el circuito de alta, tal como se explicó en el

apartado de encendido electrónico transistorizado.

1

1) Verificar la alimentación y la masa de la unidad de mando. Accionar el contacto.

(9)

(8)Valor: Vbat.

2) Comprobar el captador de régimen y posición.

a) Resistencia.

1

(1)

(2)

Valor: _____ Ω

b) Nula derivación.

Valor: _____

1

(1)

(9)

Ω

c) Señal.

1

(1)

(2)

Valor: _______

Page 168: Encendidos Convencionales y Electrónicos

También se puede obtener la señal mediante osciloscopio.

1

(2)

(1)

3) Verificar el circuito de los primarios y la alimentación de la bobina. Accionar el contacto y desconectar la unidad de mando.

Valor: Vbat.

1

(11)

(9)1

(12)

(9)

4) En caso de no obtener tensión en ninguna de las dos pruebas, verificar la alimentación a la entrada de de la bobina, y el estado de la bobina.

Valor: __________

Valor: __________

Page 169: Encendidos Convencionales y Electrónicos

5) Verificar la función salida de la unidad de mando de los dos primarios. Accionando el arranque.

1

(11)

(8)1

(12)

(8)

6) Verificar señal del sensor temperatura motor. Medir la resistencia del sensor a distintas temperturas o medir su caida de tensión con el motor en marcha.

1

(5)

(4)1

(5)

(4)

ΩValor: __________

Valor 20º: ______ 80º: ______

7) Verificar el sensor de temperatura de aire igual como el sensor de temperatura motor.

1

(3)

(4)1

(3)

(4)

ΩValor: __________

Valor 20º: ______ 0º: ______

Page 170: Encendidos Convencionales y Electrónicos

Sistema Inyeción EEC (Motorcraft)

1. Sensor r.p.m. y posición.2. Módulo E-DIS.3. Sensor MAP.4. Potenciómetro mariposa.5. Caudalímetro.6. Sensor temperatura motor. 7. Sensor temperatura aire.8. Conector de servicio.9. Convertidor de presión.10. Sonda Lambda.11. Relé alimentación.12. Módulo E-DIS.13. Bobina de encendido DIS.

Page 171: Encendidos Convencionales y Electrónicos

Principio Funcionamiento

La señal del sensor de régimen y posición sirve de base para el cálculo. Para posicionar exactamente el tiempo de cierre del circuito de corriente primario se digitaliza la señal del sensor de régimen mediante un generador de impulsos en el módulo E-DIS. El microprocesador del módulo E-DIS determina el momento de cierre requerido a partir de esta información sobre el régimen motor.

La señal de régimen digitalizada es enviada como señal de onda cuadras, denominada PIP a la unidad de inyección EEC. La unidad EEC utiliza la señal PIP para determinar el avance de encendido.

La información de avance al encendido es transferida como señal SAW al módulo E-DIS. Esta información es almacenada en una memoria del módulo. El microprocesador compara los datos SAW con la señal del sensor de régimen digitalizada, y así determina la posición exacta del avance de encendido. En esta posición, el circuito de corriente primaria es interrumpido, y las chispas de encendido se disparan mediante la bobina DIS.

El microprocesador hace uso del desfase de la señal del sensor de régimen a 90º antes del PMS, con objeto de controlar el circuito primario pertinente, de acuerdo con el orden de encendido. El cálculo siguiente del avance de encendido o control del circuito primario se refiere al circuito de encendido 1-4.

La contraetapa electrónica nos facilita la base de control del circuito de encendido 2-3 desfasada en 180º.

Page 172: Encendidos Convencionales y Electrónicos

9

EEC IV

Esquema del Módulo E-DIS

1. Sensor r.p.m. y posición.2. Cuentarevoluciones.3. Interruptor de encendido.4. Batería.5. Unidad de mando inección.6. Relé alimentación.7. Bobina de encendido DIS.8. Bujías.9. Unidad o Módulo E-DIS.

Page 173: Encendidos Convencionales y Electrónicos

Identificación de Pines ECU

Nº DESTINO1 Señal PIP de salida hacia la ECU inyección. Señal de avance básico al encendido.2 Señal EDM. Línea para la autodiagnosis.3 Señal SAW de entrada al módulo E-DIS. Señal de avance básico del encendido4 Masa Electrónica5 Señal captador inductivo de régimen y posición.6 Señal captador inductivo de régimen y posición.7 Masa apantallamiento.8 Alimentación procedente del relé principal.9 Masa.

10 Negativo transferido (-) a un primario.11 Señal taquimétrica para el cuentarevoluciones.12 Negativo transferido (-) a un primario.

112

Page 174: Encendidos Convencionales y Electrónicos

ComprobacionesVerificar si existe salto de chispa y el circuito de alta, tal como se explicó en el

apartado de encendido electrónico transistorizado.

1

1) Verificar la alimentación y la masa del módulo E-DIS. Accionar el contacto.

(9)

(8)Valor: Vbat.

2) Comprobar el captador de régimen y posición.

a) Resistencia.

1

(5)

(6)

Valor: _____ Ω

b) Nula derivación.

Valor: _____

1

(5)

(9)

Ω

c) Señal.

1

(5)

(6)

Valor: _______

Page 175: Encendidos Convencionales y Electrónicos

También se puede obtener la señal mediante osciloscopio.

1

(6)

(5)

3) Verificar el circuito de los primarios y la alimentación de la bobina. Accionar el contacto y desconectar la unidad de mando.

Valor: Vbat.

1

(10)

(9)1

(12)

(9)

4) En caso de no obtener tensión en ninguna de las dos pruebas, verificar la alimentación a la entrada de de la bobina, y el estado de la bobina.

Valor: __________

Valor: __________

Page 176: Encendidos Convencionales y Electrónicos

5) Verificar la función salida de la unidad de mando de los dos primarios. Accionando el arranque.

1

(10)

(8)1

(12)

(8)

6) Verificar la señal PIP de salida del módulo E-DIS hacía la ECU de inyección.

1

(9)

(1)

7) Verificar la señal SAW de entrada de la unidad de mando hacía el módulo E-DIS

1

(3)

(1)

Page 177: Encendidos Convencionales y Electrónicos

Sistema Gestión Motor Sagem SL961. Batería.2. Caja máxifusibles vano motor.3. Caja fusibles vano motor.4. Llave de contacto.5. Caja fusibles habitáculo.6. Cuadro de instrumentos.7. Relé doble.8. Regulador ralentí.9. Bomba combustible.10.ECU gestión motor.11.Conector diagnosis.12.Recalentador de aire.13.Sensor temperatura aire.14.Sensor MAP.15.Caldeo colector.16.Electroválvula caníster.17.Contactor de inercia.18.Bobina de encendido.19.Sensor posición mariposa.20.Sensor temperatura motor.21.Sonda lambda.22.Sensor régimen y posición.23.Sensor detonación.24.Sensor velocidad vehículo.25.Inyector cilindro nº 1.26.Inyector cilindro nº 4.27.Inyector cilindro nº 2.28.Inyector cilindro nº 3.29.Sistema antiarranque.30.ECU climaticazión.

Page 178: Encendidos Convencionales y Electrónicos