Energías renovables Sector Biomasa nº 2 ( 536.92 Kb)

21
2 vigilancia tecnológica 2 o trimestre 2011 La Comisión Europea (CE), Airbus, las principales aerolíneas del continente y los productores de biocarburantes, han presentado en París un compromiso conjunto de desarrollo de estos combustibles para la aviación comercial. En la hoja de ruta planteada (European Advanced Biofuels Flightpath) se pretende alcanzar en 2020 la utilización de dos millones de toneladas de biocarburantes de segunda generación en vuelos comerciales. La CE confirma que, antes de presentarla, la iniciativa ha sido ampliamente discutida y consensuada entre los representantes de energía y transporte y organismos de investigación de los Estados miembros, las industrias de la aviación y los biocarbu- rantes y las organizaciones no gubernamentales. El acuerdo lleva asociado un Flight path, una especie de cronograma en el que se marcan los tiempos y las actuaciones a llevar a cabo. Hay un aspecto común a los contenidos del acuerdo: todos los biocarburantes se producirán en la UE con materias primas de la UE y con sistemas de producción y tecnologías de segunda generación. Entre 2011 y 2014 se desarrollarán varios proyectos con biocarburantes de síntesis (gasificación con proceso Fisher-Tropsch) y biodiésel con utilización de hidrógeno en el proceso (HydrotreatedVegetable Oil, HVO). En esta primera etapa se realizarán pruebas y algunos vuelos regulares, inversiones y fomento de ayudas para construir las primeras plantas comerciales, acuerdos de compra entre aerolíneas y productores de biocarburantes y el inicio de construcción de las primeras plantas, que está previsto que estén operativas entre 2015 y 2016. A medio plazo, entre 2015 y 2018 se espera contar con las primeras 2000 toneladas de una de las materias primas por las que se apuesta en esta etapa: aceite de algas. De las primeras plantas mencionadas se espera obtener el primer millón de toneladas de HVO y otras 200000 toneladas de biocarburantes sintéticos para mezclarlas ya con queroseno en los aviones. El final de este medio plazo concluye con el inicio de construcción de la siguiente serie de plantas de segunda generación que incluyen biocarburantes a partir de aceite de algas y de otros aceites y residuos. Todas ellas servirían para abordar la última etapa, con el suministro de las restantes 800000 toneladas a partir de esos nuevos biocarburantes. Simultáneamente a la presentación de esta hoja de ruta, el Paris Air Show, celebrado en París en el mes de Junio, fue el lugar de muestra de los primeros aviones que realizan vuelos transatlánticos con mezclas de queroseno y biodiésel de camelina. El primero, realizado con el Green Jet Fuel de la empresa Honeywell, llevaba un 50% de mezcla en uno de los motores, y el segundo, protagonizado por un Boeing 747-8, llevaba un 15% en cada uno de sus cuatro motores. En la misma cita, el consorcio aeroespacial europeo EADS presentó el Zero Emission Hypersonic Transportation, un proyecto de aeronave del futuro capaz de enlazarTokio con París (5000 kilómetros) en dos horas y media y de nuevo con los biocarburantes como uno de sus propulsores. SUMARIO Editorial .............................................................................................1 Tecnologías Termoquímicas ..................................................3 Tecnologías Bioquímicas .......................................................10 Tecnologías Químicas ............................................................17 SECTOR BIOMASA B O L E T Í N O N - L I N E Nueva hoja de ruta europea sobre biocombustibles de segunda generación para el sector de la aviación

Transcript of Energías renovables Sector Biomasa nº 2 ( 536.92 Kb)

2vigilanciatecnológica2o trimestre 2011

La Comisión Europea (CE), Airbus, las principalesaerolíneas del continente y los productores debiocarburantes, han presentado en París un compromisoconjunto de desarrollo de estos combustibles parala aviación comercial. En la hoja de ruta planteada(European Advanced Biofuels Flightpath) se pretendealcanzar en 2020 la utilización de dos millones detoneladas de biocarburantes de segunda generaciónen vuelos comerciales. La CE confirma que, antes depresentarla, la iniciativa ha sido ampliamente discutiday consensuada entre los representantes de energía ytransporte y organismos de investigación de los Estadosmiembros, las industrias de la aviación y los biocarbu-rantes y las organizaciones no gubernamentales.

El acuerdo lleva asociado un Flight path, una especie decronograma en el que se marcan los tiempos y lasactuaciones a llevar a cabo. Hay un aspecto común alos contenidos del acuerdo: todos los biocarburantes seproducirán en la UE con materias primas de la UE ycon sistemas de producción y tecnologías de segundageneración. Entre 2011 y 2014 se desarrollarán variosproyectos con biocarburantes de síntesis (gasificacióncon proceso Fisher-Tropsch) y biodiésel con utilizaciónde hidrógeno en el proceso (HydrotreatedVegetableOil, HVO). En esta primera etapa se realizarán pruebasy algunos vuelos regulares, inversiones y fomento deayudas para construir las primeras plantas comerciales,acuerdos de compra entre aerolíneas y productoresde biocarburantes y el inicio de construcción de lasprimeras plantas, que está previsto que estén operativasentre 2015 y 2016.

A medio plazo, entre 2015 y 2018 se espera contarcon las primeras 2000 toneladas de una de las materiasprimas por las que se apuesta en esta etapa: aceite dealgas. De las primeras plantas mencionadas se espera

obtener el primer millón de toneladas de HVO y otras200000 toneladas de biocarburantes sintéticos paramezclarlas ya con queroseno en los aviones. El final deeste medio plazo concluye con el inicio de construcciónde la siguiente serie de plantas de segunda generaciónque incluyen biocarburantes a partir de aceite de algasy de otros aceites y residuos. Todas ellas servirían paraabordar la última etapa, con el suministro de lasrestantes 800000 toneladas a partir de esos nuevosbiocarburantes.

Simultáneamente a la presentación de esta hoja de ruta,el Paris Air Show, celebrado en París en el mes de Junio,fue el lugar de muestra de los primeros aviones querealizan vuelos transatlánticos con mezclas de querosenoy biodiésel de camelina. El primero, realizado con elGreen Jet Fuel de la empresa Honeywell, llevaba un 50%de mezcla en uno de los motores, y el segundo,protagonizado por un Boeing 747-8, llevaba un 15%en cada uno de sus cuatro motores. En la misma cita,el consorcio aeroespacial europeo EADS presentó elZero Emission Hypersonic Transportation, un proyecto deaeronave del futuro capaz de enlazarTokio con París(5000 kilómetros) en dos horas y media y de nuevocon los biocarburantes como uno de sus propulsores.

SUMARIO

Editorial.............................................................................................1

Tecnologías Termoquímicas ..................................................3

Tecnologías Bioquímicas .......................................................10

Tecnologías Químicas ............................................................17

SECTOR BIOMASA

B O L E T Í N O N - L I N E

Nueva hoja de ruta europea sobre biocombustibles desegunda generación para el sector de la aviación

2

Análisis de patentesEn el segundo trimestre de 2011 se han identificado enla base de datosWPI (World Patent Index) 696 nuevasfamilias de patentes con documentos sobre tecnologíasde conversión de la biomasa para la producción deenergía.Atendiendo a laTabla 1 puede inferirse que,aproximadamente, el 45% de las referencias encontradasestán relacionadas con tecnologías termoquímicas yel 39% con bioquímicas. El 16% restante se refiere atecnologías químicas. Las tecnología de combustióncuenta con más de ciento cincuenta resultados.

En laTabla 2 se muestran los países líderes. Cabedestacar que el 50% de los documentos identificadosse solicitaron en China y el 22% son solicitudesinternacionales de patente (PCT).A continuación,aunque en menor medida, destaca EE.UU. (16%).España solamente dispone de una referencia.

En los apartados posteriores se recoge una selecciónde los documentos de patentes identificados en eltrimestre analizado, así como un resumen de lasnoticias más significativas, clasificados por tecnologías.

Editorial

B O L E T Í N O N - L I N E

TIPOS DE TECNOLOGÍAS DE 2O TRIM.CONVERSIÓN DE LA BIOMASA 2011

Tecnologías termoquímicas 312

Combustión directa 164

Gasificación 116

Pirólisis 32

Tecnologías bioquímicas 271

Digestión anaeróbica 138

Fermentación de azúcares 133

Tecnologías químicas (transesterificación,

Fischer-Tropsch síntesis de metanol) 113

Nº TOTAL FAMILIAS DE PATENTES 696

TABLA 1. Número de familias de patentesclasificadas por tecnologías

PAÍS Nº REFERENCIAS

1 China (CN) 348

2 Patentes PCT (WO) 152

3 EE.UU. (US) 109

4 Japón (JP) 52

5 Corea (KR) 33

6 Alemania (DE) 20

7 Taiwan (TW) 14

8 Patentes Europeas (EP) 11

9 Francia (FR) 10

10 Rusia (RU) 7

TABLA 2. Ranking por países

3

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

ZILKHA BIOMASS POWERLLC

INTER BIO CO

UNIV COLORADO STATERES FOUND

AIR BURNERS LLC

US2011120140

WO2011059230

US2011114074

WO2011053652

EE.UU.

Corea

EE.UU.

EE.UU.

A cyclonic combustor comprising a combustion liner forming acombustion chamber having a generally cylindrical shape, a biomassfeed inlet for receiving biomass particles under pressure, wherein thebiomass feed inlet is formed so that the biomass particles areintroduced into the ignition zone of the combustion chamber witha tangential component relative to the longitudinal axis of thecombustion liner, and a plurality of air tuyeres formed through thecombustion liner for receiving compressed air, wherein the pluralityof air tuyeres are arranged to introduce the compressed air into thecombustion chamber with a tangential component relative to thelongitudinal axis of the combustion liner. A direct-fired biomass-fueledpressurized gas turbine system comprising a pressurized feed system,the cyclonic combustor, and a gas turbine. Methods of operating acyclonic combustor and methods for direct firing a gas turbine.

The present invention relates to a burner for a boiler using solid fuelsuch as wood pellets or the like, which are in the spotlight as biomassenergy, and realizes a new combustion type, wherein fuel is transportedusing a screw circulating water inside and burnt in a predeterminedsection supplied with air (oxygen) by a blower. Therefore, it is possibleto secure the durability of the screw even at the high temperaturegenerated during the combustion, and complete simultaneoustreatment of sludge and ashes. In addition, it is possible to largelyreduce the size of the boiler using solid fuels, thereby simplifying theentire structure of the boiler, while promoting the reduction ofmanufacturing cost.

A combustion chamber may include an upper and a lower chamber.Thechambers may be separable to aid in loading fuel and removing spentfuel.The cross-section of the upper combustion chamber may be lessthan the cross-section of the lower section. Charcoal or other biomassfuel may be added into the lower combustion chamber and may besupported by a grate. Oxygen may be fed into the combustion chamberthrough a plurality of apertures that may be substantially shielded fromdirect line of site of the fuel bed.The upper combustion chamber mayfurther include an annular constriction, to aid in constricting the viewfactor between the cooking vessel and the fuel bed.The constrictionmay also aid in radiating energy back to the fuel bed.

A portable air curtain incinerator for burning biomass, such as clearedlogs and vegetation, is equipped with heat recovery panels along at leastone of the sidewalls of the incinerator's firebox, and a heat transfermedium is cycled through the heat recovery panels and expanded toits gaseous phase by heat released during incineration of the biomass.The gaseous medium is directed to drive the turbine of a generator togenerate electricity.The heat transfer medium is condensed, preferablyusing a local source of cooling water, and the cycle is repeated.The aircurtain incinerator may include its own generator, or multipleincinerators may be coupled to a single shared generator.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

COMBUSTIÓN DIRECTA

Solicitudes de Patentes PublicadasLos datos que aparecen en la tabla corresponden a unaselección de las solicitudes de patentes publicadas por primeravez durante el trimestre analizado.

Si desea ampliar información sobre alguna de las patentes aquílistadas, pulse sobre el número de patente correspondientepara acceder a la información online relativa a la misma.

4

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

TEKNOLOGIANTUTKIMUSKESKUS VTT

CONPOWERENERGIEANLAGEN GMBH& CO KG

POWER SYSTEMS S.R.L

WO2011045473

WO2011045047

EP2302303

Finlandia

Alemania

Italia

The invention relates to a process and apparatus for producing abiocarbon product from bio-based raw stock. According to theinvention the bio-based raw stock is sorted by removing in the rawstock the fraction that is undesired in terms of the production ofbiocarbon from the desired fraction of the raw stock which is used forthe production of biocarbon, the desired fraction of the raw stock isfed to a fluidized-bed reactor, the undesired fraction of the raw stock isfed to a combustion boiler disposed in connection with the fluidized-bed reactor in order to produce energy fractions, a heat transfermaterial to be used in the fluidized-bed reactor is warmed up in thecombustion boiler and the warmed up heat transfer material is led tothe fluidized- bed reactor, the bio-based raw stock; is heated in thefluidized-bed reactor in oxygen-free conditions to a temperature of220 to 350 DEG C in the presence of the heat transfer material inorder to form a solid biocarbon product, and the heat transfer materialis circulated from the fluidized-bed reactor to the combustion boiler inorder to warm up the heat transfer material.

The invention relates to an (O) RC-method for utilising the waste heatfrom biomass combustion for generating electricity as well as to acorresponding system, according to the preamble of patent claims 1and 6. In order to achieve an improvement of the overall energyefficiency such that the overall efficiency of the biomass utilisation isenhanced, it is proposed, according to the invention, to design theevaporator so as to correspond exactly to the targeted difference inenthalpy on the boiling curve pre and post evaporation, by means ofconnecting to this end a controllable heat exchanger upstream of theevaporator, which heat exchanger is regulated to the difference inenthalpy between the pump and the entrance into the boiling curve ofthe evaporator.

This invention relates to a hearth for solid fuel stoves comprising acombustion chamber defined within an enclosure which is open at thetop and is provided with a device having a moving transfer unit for theremoval of combustion wastes and ash. According to the invention, thedevice is directly and at least partly located within combustion chamberso that the moving transfer unit penetrates at least partly within thesaid combustion chamber and removes the combustion wastes and ashdirectly from the combustion bed.This invention may advantageouslybe applied to both pellet stoves and biomass stoves.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

COMBUSTIÓN DIRECTA

5

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

CHALABI RIFAT AL

CHOREN IND GMBH

MEVA INNOVATION AB

TOBEY RICHARD E

MITSUBISHI HEAVY INDLTD

WO2011067552

WO2011063971

WO2011056142

US2011104770

WO2011052265

Gran Bretaña

Alemania

Suecia

EE.UU.

Japón

The invention provides an apparatus for processing material such asorganically coated waste and organic materials including biomass,industrial waste, municipal solid waste and sludge, comprising a processingchamber for processing said material at an elevated temperature toproduce syngas and a combustion chamber having at least one burnertherein for combusting syngas released by processing of said material. Aconduit means is provided between said combustion chamber and saidprocessing chamber for carrying hot exhaust gasses from the combustionchamber to said processing chamber and at last one mirror is arrangedto reflect and concentrate sunlight thereby to cause the temperaturewithin said processing chamber to be raised.The apparatus also includesa syngas reservoir. A storage conduit is provided for carrying syngasinto said syngas reservoir and a syngas feed line is provided for feedingsyngas from said reservoir to said combustion chamber.

The present invention relates to a device for generating a synthesis gas(SG) from biomass (BM) by entrained-flow gasification.The devicecomprises a processing unit in which the biomass (BM) is fed to a coarsecomminuting device which is connected downstream via a first sluice toa pressurized carbonization unit for the hydrothermal generation ofcarbonization coal (KK) from the biomass (BM).The carbonization unitcomprises at least one preheating device and a carbonization reactorthat is arranged downstream of the preheating device and is connecteddownstream via a second sluice to at least one solid-liquid separationdevice for providing a fuel. Downstream of the solid-liquid separationdevice, a drying device for drying the fuel is provided, downstream ofwhich is connected a comminution device for comminuting the fuel intoa combustible dust (BS) having particle sizes in a range from 55 [mu]mto 500 [mu]m.The device further comprises a transfer device fortransferring the fuel into an entrained-flow gasification unit, in such amanner that the processing unit is coupled to the entrained-flowgasification unit. In addition, the present invention discloses a method forgenerating a synthesis gas (SG) from biomass (BM) by entrained-flowgasification, using a device according to the invention.

Disclosed area process and a system for gasifying biomass to obtain acombustible gas for combustion in an engine. Further, a method and apurification system for removing tar components from a combustiblegas having a temperature above its dew-point are disclosed.

Ethanol and other liquid products are produced from biomass usinggasification of the biomass to produce a syngas containing CO2, CO, H2

and sulfur or sulfur compounds that passes the syngas to afermentation step for the conversion of the CO and CO2 and H2 toethanol. Sulfur and sulfur compounds in the syngas are used to satisfysulfur demanded by bacteria in the fermentation step. A sulfur controladditive is added to the gasification to control syngas sulfur and sulfurcompounds at a desired concentration to meet bacteria sulfur demand.

Disclosed is a biomass gasification system provided with a biomassgasification furnace for gasifying biomass, a dust removal device forremoving gasified char present in the gasified gas generated in thebiomass gasification furnace, and a gas purifying means for purifying thegasified gas to form purified gas, the gasified char being removed fromthe gasified gas by means of the dust removal device, wherein the gaspurification means has: a gasified gas introduction unit in which porousparticles having fine pores and biomass in said particles are held, andwhich introduces the gasified gas to the gas purifying means, the gasifiedchar being removed from the gasified gas by means of the dust removaldevice; and a purified gas exhaust unit which exhausts the purified gaswhich was purified by passing through the porous particles having finepores and biomass.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

GASIFICACIÓN

6

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

RANGE FUELS INC

PACKER ENG INC

CORTRIGHT RANDY D

AIR LIQUIDE PROCESS &CONSTRUCTION INC

STICHTING ENERGIE

US2011107662

US2011094158

US2011086927

US2011085966

WO2011037463

EE.UU.

EE.UU.

EE.UU.

EE.UU.

Holanda

The present invention provides a process for producing gasolinecomponents from syngas. Syngas is converted to one or more ofmethanol, ethanol, mixed alcohols, and dimethyl ether, followed byvarious combinations of separations and reactions to produce gasolinecomponents with oxygenates, such as alcohols. The syngas is preferablyderived from biomass or another renewable carbon-containingfeedstock, thereby providing a biorefining process for the productionof renewable gasoline.

A system and method capable of efficient production of synthesis gasfrom biomass materials in a manner which can be scaled to relativelylarge throughput capacities. the system is operable to compact a loosebiomass material and simultaneously introduce the compacted biomassmaterial into entrances of internal passages of multiple parallelreactors, heat the compacted biomass material within the reactors toa temperature at which organic molecules within the compactedbiomass material break down to form ash and gases comprising carbonmonoxide and hydrogen gases, inhibit combustion of the compactedbiomass material when heated within the internal passages of thereactors, conduct the carbon monoxide and hydrogen gases throughthe reactors in a direction opposite the movement of the compactedbiomass through the reactors, and remove the ash from the reactor.

A low-temperature catalytic process for converting biomass (preferablyglycerol recovered from the fabrication of bio-diesel) to synthesisgas (i.e., H2/CO gas mixture) in an endothermic gasification reactionis described.The synthesis gas is used in exothermic carbon-carbonbond-forming reactions, such as Fischer-Tropsch, methanol, ordimethylether syntheses.The heat from the exothermic carbon-carbonbond-forming reaction is integrated with the endothermic gasificationreaction, thus providing an energy-efficient route for producing fuelsand chemicals from renewable biomass resources.

A method of high hydrogen recovery from syngas from a gasifier isprovided.This method includes providing a syngas stream from thegasifier to first hydrogen separation device, wherein the first hydrogenseparation device is a pressure swing adsorption device, therebyproducing a first high purity hydrogen stream and a tailgas stream.This method also includes increasing the pressure of the tailgas streamin a first compressor; thereby producing a pressurized tailgas stream.This method also includes providing the pressurized tailgas stream to asecond hydrogen separation device, thereby producing a second highpurity hydrogen stream and a residue stream. This method alsoincludes directing the residue stream to an auxiliary boiler, andcombining the first high purity hydrogen product stream and thesecond high purity hydrogen product stream, thereby producing a highpurity hydrogen product stream.

Method and system for gasifying biomass. Tar loaded gas from thereactor for gasifying the biomass is subjected to a saturation andabsorption treatment with a first and second fluid respectively. Thefirst fluid comprises aromatic hydrocarbons whilst the second fluidcomprises linear hydrocarbons. Tars received in the aromatic fluid isentered together with such fluid in a separation column. Separation iseffected based on evaporation temperature and the lighter fractionis returned to the inflow of the saturation separator. The heavierfractions are either discharged or sent back to the biomass reactor.An intermediate buffer vessel can be provided between the dischargeof the saturation cleaner and the separator.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

GASIFICACIÓN

7

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

T SRL AG

DIETENBERGER MARK A

WO2011055296

US2011088320

Italia

EE.UU.

The invention relates to a plant for the production of gas frombiomass, comprising a gasifier of the open- core downdraft type and anapparatus for cleaning the gas G.The apparatus comprises: - an inletline for the gas to be cleaned; - an evaporative cooler having: means forspraying an aqueous mixture MA into the gas; a basin for containing thecondensed mixture; and a first bleed pipe for removing the pollutants;- a condensing wet electrostatic precipitator having: means for coolingthe walls in contact with the gas; a tank for collecting the mixturecondensed by cooling; a recirculation pipe for removing the mixture andconveying it to the evaporative cooler; a second bleed pipe for removingthe pollutants from the tank; and a discharge pipe for removing theexcess aqueous mixture; - an outlet line for conveying the flow ofcleaned gas G to an external utilization unit.The invention also relatesto a method for treating the gas.

Disclosed are a method and a corresponding apparatus for convertinga biomass reactant into synthesis gas.The method includes the steps of(1) heating biomass in a first molten liquid bath at a first temperature,wherein the first temperature is at least about 100 DEG C., but lessthan the decomposition temperature of the biomass, wherein gascomprising water is evaporated and air is pressed from the biomass,thereby yielding dried biomass with minimal air content. (2) Recapturingthe moisture evaporated from the biomass in step 1 for use in theprocess gas. (3) Heating the dried biomass in a second molten liquidbath at a second temperature, wherein the second temperature issufficiently high to cause flash pyrolysis of the dried biomass, therebyyielding product gases, tar, and char. (4) Inserting recaptured steam intothe process gas, which may optionally include external natural gas orhydrogen gas or recycled syngas for mixing and reforming with tar andnon-condensable gases. (5) Further reacting the product gases, tar, andchar with the process gas within a third molten liquid bath at a thirdtemperature which is equal to or greater than the second temperaturewithin the second molten liquid bath, thereby yielding high quality andrelatively clean synthesis gas after a relatively long residence timeneeded for char gasification. A portion of the synthesis gas so formedis combusted to heat the first, second, and third molten liquid baths,unless external natural or hydrogen gas is available for this use.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

GASIFICACIÓN

8

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

SOUTHERN BIOMASS LLC

UNIV MISSISSIPPI STATE

G4 INSIGHTS INC

ENRESTEC INC

NOTO VINCENT H

WO2011041881

WO2011041756

WO2011060556

EP2319899

US2011089014

EE.UU.

EE.UU.

Canadá

Taiwan

EE.UU.

A torrefied biomass product impregnated, treated with, or otherwiseincluding a bio-liquid selected from an animal fat and plant oil.Preferably the torrefied biomass product has at least 1% wet weight ofthe bio-liquid, and more preferably between 4% to 12% wet weightof the bio-liquid.The bio-liquid is selected from plant oil and animal fat,preferably, vegetable oil, such as, canola or soybean oil.The biomassmaterial is, preferably, a hardwood, softwood or wood bark.

The device and method of this invention provides a means to increaseanhydrosugars yield during pyrolysis of biomass.This increase is achievedby injection of a liquid or gas into the vapor stream of any pyrolysis reactorprior to the reactor condensers. A second novel feature of our technologyis the utilization of sonication, microwave excitation or shear mixingof the biomass to increase the acid catalyst rate for demineralization orremoval of hemicellulose prior to pyrolysis.The increased reactivity ofthese treatments reduces reaction time as well as the required amountof catalyst to less than half of that otherwise required. A fractionalcondensation system employed by our pyrolysis reactor is also a novelelement of our technology.This system condenses biooil pyrolysisvapors to various desired fractions by differential temperaturemanipulation of individual condensers comprising a condenser chain.

Disclosed embodiments provide a system and method for producinghydrocarbons from biomass. Certain embodiments of the method areparticularly useful for producing substitute natural gas from forestryresidues. Certain disclosed embodiments of the method convert abiomass feedstock into a product hydrocarbon by hydropyrolysis andcatalytic conversion of the resulting pyrolysis gas to the producthydrocarbon and carbon dioxide in the presence of hydrogen and steamover a CO2 sorbent while simultaneously generating the requiredhydrogen by reaction with steam. A gas separation means is providedto purify product methane while forcing recycle of internally generatedhydrogen so as to obtain high conversion of the biomass feedstockto the desired hydrocarbon product. While methane is a preferredhydrocarbon product, liquid hydrocarbon products can also be delivered.

A continuous pyrolysis system, comprising a reactor with a charge port, adischarge port and a first gas outlet and a first axial transporting structureinstalled therein; a hest-source generator for supplying heat necessary forcarrying out a pyrolysis reaction in the reactor; a solid-product reformerfor performing a reforming process for the solid product of the pyrolysisreaction, with a first solid product inlet, a first solid product outlet and asecond gas outlet, and a second axial transporting structure installedtherein, wherein the first solid product inlet is communicated with thedischarge port of the reactor; and a gas-barrier component for preventingthe gas product of the pyrolysis reaction from entering the solid productreformer and transporting the solid product of the pyrolysis reaction intothe solid-product reformer, wherein the gas barrier component isinstalled in a channel communicating the first solid product inlet and thedischarge port of the reactor.

Useful byproducts are recovered through the pyrolytic processing ofbiomass material such as vegetation, paper, or worn tires.The process isconducted in a sealed enclosure under vacuum or other controlledatmosphere.The biomass material is ablated and burned by crunchingbetween counter-rotating rollers rotated at different speeds whoseinner walls have been exposed to a highly heated fluid.The biomassmaterial is preheated by injecting into the feeding duct super-heated drysteam. A condenser within the enclosure reduces resulting vapors intooils that can be drained from the enclosure pan. Solid combustionresidue is abstracted from the enclosure by an Archimedes screw.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

PIRÓLISIS

9

TecnologíasTermoquímicas

B O L E T Í N O N - L I N E

TRANSFORMACIÓNDE BIOMASA DE ORIGENVEGETAL MEDIANTETERMÓLISIS

El Consejo Superior de Investiga-ciones Científicas (CSIC) ha firmadoun contrato de I+D con la empresaaragonesa UxúeBioenergía yRenovables S.A. para llevar a caboun proyecto de investigación enbiomasa vegetal bajo el nombre de“Procesos de termólisis y secadode biomasa agrícola y forestal”(VULCANO).

El objetivo de este proyecto esestudiar la transformación debiomasa de origen vegetal enenergía eléctrica y biocombustiblesmediante termólisis. Para ello, seconstruirá una planta de producciónde energía eléctrica y biomasa,que tomará como base los conoci-mientos previos desarrollados ypatentados en el Instituto deCarboquímica del CSIC, ubicadoen Zaragoza.

La nueva planta será diseñada paraque posea autonomía energética ypueda operar de forma estable ysegura durante al menos 1000horas de operación acumuladas.

PRODUCCIÓN DEBIOCOMBUSTIBLESMEDIANTE PIRÓLISISDE RESIDUOS DE PIELCURTIDA

El Instituto de la Mediana y PequeñaIndustriaValenciana (IMPIVA) estárespaldando la investigación queestá desarrollando el InstitutoTecn-ológico del Calzado (INESCOP)junto con el departamento deIngeniería Química de la Universi-dad de Alicante sobre una técnicade pirólisis tipo flash que aplicada alos residuos de piel curtida genera-dos por las tenerías y las industriasde calzado los convierte en bio-aceites aptos como combustiblesalternativos de diferentes procesosindustriales.

Con esta nueva técnica de aprove-chamiento de residuos, se contri-buye a mejorar el abastecimientoenergético de sectores industrialesde elevado consumo, como elcerámico o el del cemento.

En la actualidad, en mayor parte delos casos, los residuos de piel sealmacenan en vertederos junto conel resto de los residuos urbanos,generándose lixiviados con unelevado porcentaje de contaminan-tes peligrosos como el cromo (VI).

PROCESO DETORREFACCIÓN DEBIOMASA FORESTALY AGRÍCOLA

El grupo Lantec llegó a un acuerdocon la compañía francesaThermyapara adquirir la licencia de explo-tación de la tecnología Torspyd, quepermitirá la construcción de plantasde torrefacción de biomasa forestaly agrícola en España. La primeraplanta se construirá en Urnieta(Guipúzcoa).

Diversos estudios de investigaciónmuestran que la biomasa torrefac-tada tiene menor contenido dehumedad y presenta mayor estabi-lidad y mayor densidad energética,lo que permite reducir costes dealmacenamiento y transporte.Según investigaciones de la Uni-versidad de Carolina del Norte(EE.UU.), la madera torrefactada esmás ligera que la materia prima dela que procede y conserva el 80%de la energía en un tercio del peso.

El proceso básico de torrefacciónconsiste en un calentamiento lentoy prolongado de la biomasa enausencia de oxígeno hasta tempe-raturas finales en el rango de230-300ºC. El combustible gene-rado tiene un coste superior al dela biomasa de partida, pero puederesultar rentable en los casos deconsumos elevados de biomasaque precisen transportes a largasdistancias.También pueden serrentables en aplicaciones querequieran la pulverización fina dela biomasa, como la co-combustiónen centrales térmicas de carbón, laproducción de biocarburantes desegunda generación y la fabricaciónde pellets para exportación.

10

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

GHD, INC

OTV, SA

WORLD HYDROGENENERGY LLC

HUGE ASIA, LTD

OTT CHRISTOPHER

WO2011066393

FR2952369

US2011083971

WO2011054298

US2011084020

EE.UU.

Francia

EE.UU.

China

EE.UU.

The invention relates to methods and apparatuses for producing ClassA biosolids. In yet another embodiment, the invention relates to amethod comprising digesting waste material by anaerobic digestion, andyielding Class A biosolids. In still yet another embodiment, the inventionrelates to a system for anaerobic digestion of waste material to produceClass A biosolids. In still yet another embodiment, the invention relatesto a system for anaerobic digestion of waste material comprising amixing chamber, a digester, a heating pit, and an effluent pit.

The invention relates to a device and a method for anaerobictreatment of wastewater in a biological reactor involving at least onestabilised bacteria species including the following steps: measuring aconcentration, in an area linked to the reactor, of a reaction productinhibiting said at least one bacteria species; extracting a fraction of thecontents of the reactor when said concentration exceeds a predefinedthreshold; separating said fraction into first and second sub-fractions,the first sub-fraction being depleted of said reaction product; andrecirculating the first sub-fraction in the reactor.

A process for the production of hydrogen from anaerobicallydecomposed organic materials by applying an electric potential to theanaerobically decomposed organic materials, including landfill materialsand sewage, to form hydrogen, and for decreasing the time required totreat these anaerobically decomposed organic materials.The organicmaterials decompose to volatile acids such as acetic acid, which may behydrolyzed by electric current to form hydrogen.The process may becontinuously run in sewage digestion tanks with the continuous feed ofsewage, at landfill sites, or at any site having a supply of anaerobicallydecomposed or decomposable organic materials.

A method for integratedly treating domestic wastewater and organicgarbage comprises steps of multiphase separation, fermentation, biogasproduction and biological denitrification and dephosphorization, and itcan translate domestic wastewater and organic garbage into clearwater, biogas, organic fertilizer and sand residue, which can be dischargeddirectly.An apparatus for integratedly treating domestic wastewaterand organic garbage is also provided, which comprises a multiphaseseparation device, a fermentation device, a biogas production deviceand a biological denitrification and dephosphorization device.A multiphase separation device for separating domestic wastewateris also provided, which comprises a domestic wastewater inlet, a sandseparation chamber, a sand outlet, an automatic separation screendevice comprised of an abnormity screen and a separation rake, ascreen isolate outlet, a floating liquid chamber and a supernatantchamber. A method for separating domestic wastewater using themultiphase separation device is also provided. Domestic wastewaterand organic garbage can be treated, simultaneously, so as to realize anobject of minimum pollutant discharge.

A method for removing methane from biogas is described.The methodincludes: (i) receiving biogas including methane and other componentsinto a first tank; (ii) receiving water into the first tank; (iii) contactingthe biogas with the water inside the first tank; (iv) dispensing methanegas from an outlet of the first tank; and (v) producing from the tank aneffluent stream that includes other components of the biogas.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

DIGESTIÓN ANAERÓBICA

11

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

UNIV WASHINGTONSTATE RES FDN

ACEA PINEROLESE INDS P A

CHANDRATRE MAITHILEEDINESH

BIOGAS & ELECTRIC

NOREN FREDRIK

WO2011047372

WO2011036548

WO2011036675

US2011065166

WO2011028163

EE.UU.

Italia

India

EE.UU.

Suecia

Systems and methods for the treatment of lipid-extracted algaebiomass and recycling nutrients are provided.The lipid-extracted algaebiomass is hydrolyzed prior to anaerobic digestion; and the productsgenerated by anaerobic digestion are further processed to yield by-products that are of use either for external use or as process inputs tocarry out specific steps within an integrated algal growth and anaerobicdigestion process designed to minimize economic costs, required costlyinputs while improving upon system capabilities.

The invention relates to a system for preparing a mixture of organicfraction of urban solid waste and water to be fed to an anaerobicdigestion process, the system comprising a first separation stage forseparating a first heavy fraction of said urban solid waste and a secondseparation stage, wherein the second separation stage comprises firstand second separation means for said urban solid waste, the first meansbeing configured to remove a light fraction of the urban solid waste,the light fraction at least partially emerging from the free surface in thesecond stage, the second means comprising an outlet duct for themixture from the second stage; the outlet duct having a mouth arrangedbelow the free surface in the second stage and a mouth arranged at alevel between the free surface in the second stage and the mouth.

The present invention relates to a Method and system for completionof Ecological cycle of Biomass, applying Nature to Nature (N2N)theory, by biological treatment of any biodegradable waste or organicwaste, including biodegradable part of MSW, to produce rich biologicalfertilizer as end product, methane and many useful byproducts usingnatural processes and natural/organic materials within a very shorttime span.Thus, whatever is taken from nature is returned back to thenature in natural time span called as N2N Theory.

Provided herein are methods, devices and systems comprising a reactorthat is operatively connected to: (a) a biogas production unit forconverting waste to a biogas stream; and (b) an engine that utilizes thebiogas stream from the biogas producing unit to produce energy and anengine exhaust.

The invention relates to a method for production of biogas, comprisinganaerobic digestion of water living organisms from the group Ascidiacea.The invention also relates to culture and harvest of ascidians beforeanaerobic digestion. Further comprised is an integrated culture ofascidians and macroalgae before anaerobic digestion.The invention alsocomprises utilization of solid and fluid digestate from the anaerobicdigestion for production of fertilizer.The invention also comprises amethod for artificial seeding of ascidians in larval stage and anaerobicallydigested biomass obtained by anaerobic digestion of ascidians.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

DIGESTIÓN ANAERÓBICA

12

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

BIO ENERGY CORP

NAT UNIVERSITY CORPKOBE UNIVERSITY

ANITOX CORP

ARISDYNE SYSTEMS INC

CODEXIS INC

BUTAMAX TM ADVANCEDBIOFUELS LLC

WO2011067960

WO2011065539

WO2011066318

US2011136194

WO2011066457

WO2011063402

Japón

Japón

EE.UU.

EE.UU.

EE.UU.

EE.UU.

Disclosed is a method for producing ethanol, which comprises: a step inwhich a cellulose material is subjected to a hot water treatment and anammonia treatment, thereby obtaining a fermentation substrate; and astep in which the fermentation substrate is made to react with yeast,thereby producing ethanol.Also disclosed is a method for producing afermentation substrate that is used for the ethanol production by yeast,said method comprising a step in which a cellulose material is subjectedto a hot water treatment and an ammonia treatment, thereby obtaininga fermentation substrate.A fermentation substrate obtained by thismethod is capable of enhancing the ethanol production by yeast.

Disclosed is a process which enables the production of ethanol from aglycosylated biomass with high efficiency even when a fermentationinhibiting substance is present in the glycosylated biomass. Specificallydisclosed is a process for producing ethanol from a biomass, whichcomprises the steps of: mixing xylose-utilizing yeast that has been sotransformed as to over-express at least one gene for a metabolismenzyme involved in a pentose phosphate pathway with a glycosylatedbiomass; and culturing the mixture.

A high yield method for fermenting carbohydrate to ethanol, comprisinga) treating carbohydrate with a composition containing 10 - 90 wt%of an aldehyde selected from the group consisting of formaldehyde,para-formaldehyde, glutaraldhyde and mixtures thereof, 1 - 50 wt% of asurfactant having an I JLB from 4 to 18,0 - 20 wt% of an antimicrobialterpene, or essential oils, 1 - 50 wt% of organic acids selected fromC1-24 fatty acids, their salts, and glyceride esters thereof, and 1 - 50 wt%water, b ) fermenting said carbohydrate in the presence of yeast in afermentation broth, and c) isolating ethanol in a higher yield than wouldbe obtained without step a).

A process for increasing ethanol yield from grain comprising mixinggrain, water and enzyme to for a grain-based liquid medium.The grain-based liquid medium is passed through a cavitation device at a velocityand pressure capable of generating a cavitation activation energy of atleast 0.4 kJ per kilogram of grain-based liquid medium to enhance theactivity of the enzyme and increase ethanol yield.

The invention relates to recombinant expression of a variant formof a fungal C1 strain ss-glucosidase.The invention also relates to thegeneration of fermentable sugars from biomass and the productionof biofuels by fermentation of the sugars using genetically modifiedorganisms expressing the ss-glucosidase variant.The invention providesmethods for producing a fermentable sugar, such as glucose, fromcellobiose by contacting cellobiose with a recombinant ss-glucosidasevariant protein, such as a variant protein secreted by a recombinant hostcell into culture medium. Methods of the invention may be used forconversion of a biomass substrate to a fermentable sugar, and ultimatelyto ethanol or other biofuel.

A method is provided for producing butanol through microbialfermentation, in which the butanol product is removed during thefermentation by extraction into a water-immiscible organic extractant inthe presence of at least one osmolyte at a concentration at least sufficientto increase the butanol partition coefficient relative to that in the presenceof the osmolyte concentration of the basal fermentation medium and ofan optional fermentable carbon source.The osmolyte may comprise amonosaccharide, a disaccharide, glycerol, sugarcane juice, molasses,polyethylene glycol, dextran, high fructose corn syrup, corn mash, starch,cellulose, and combinations thereof. Also provided is a method andcomposition for recovering butanol from a fermentation medium.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

FERMENTACIÓN DE AZÚCARES

13

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

VALTION TEKNILLINEN

FPINNOVATIONS

HERCULES INC

LINDE AG

HSU TENG-CHIEH

JOHNSON ERIN

WO2011061400

WO2011057413

WO2011053965

WO2011055178

US2011104775

CA2719280

Finlandia

Canadá

EE.UU.

Alemania

Taiwan

Canadá

The present invention relates to a method of fractionatinglignocellulosic biomass into at least one cellulose rich solid fractionand at least one liquid fraction, wherein an alkaline agent and water areadded to the biomass to form a mixture and the biomass is contactedin the mixture with an oxidizing agent until most of the lignin issolubilised to produce a solid fraction comprising a cellulosic materialhaving a reduced content of lignin and a liquid fraction comprisingdissolved lignin.The method of invention is particularly useful forprocessing and pre-treating lignocellulose containing biomass e.g. forthe production of chemicals and for other non- fibrous applications.

A fractionation process for producing value-added products froma lignocellulosic biomass, comprises: a) mechanically refining thelignocellulosic biomass under mild refining conditions to form a refinedbiomass pulp with enhanced susceptibility to separation of hemicellulose,cellulose and lignin, and enhanced digestibility of carbohydrates inhydrolysis b) separating hemicellulose and sulfur- free high-quality ligninfrom cellulose in the refined biomass, and, optionally c) producingvarious bioproducts from the above said process.

In this invention, a process for producing fermentable sugars derivablefrom biomass that contains polysaccharide, such as cellulose, whichhas been made increasingly accessible as a substrate for enzymaticdegradation or other methods of depolymerization.The process of thepresent invention increases accessibility of polysaccharides, typicallypresent in biomass and produces polysaccharides with increasedaccessibility.The polysaccharides with increased accessibility may besubsequently saccharified to yield fermentable sugars.These fermentablesugars are subsequently able to be fermented to produce varioustarget chemicals, such as alcohols, aldehydes, ketones or acids.

Methods and apparatus for improving the fermentation process bycontrolling the temperature of the fermentation tanks.Wastebyproduct carbon dioxide from the fermentation process is recycled asliquid carbon dioxide and used as a coolant medium for thefermentation process.These methods and apparatus are particularlyuseful for maintaining temperatures of the fermentation process whenapplied to production of green ethanol from sugarcane.

The present disclosure is related to a method for increasing the ethanolconcentration from the conversion of lignocellulose.The pretreatedsolid residues are mixed with ethanol-containing broth from thefermentation of xylose hydrolysate by Pichia stipitis and then areperformed under the process of simultaneous saccharification andfermentation (SSF) with Sacharomyces cerevisiae and cellulase forconverting cellulose to ethanol.The final ethanol concentration inbroth as well as the ethanol productivity is increased at least 1.8 timesin comparison of conventional process for lignocellulosic ethanolproduction.

A novel isolated Pichia stipitis strain is provided.The strain is capable offermenting at least a pentose sugar in the presence of one or moreinhibitory substances to produce ethanol.A method of utilizing thestrain to produce ethanol is also provided.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

FERMENTACIÓN DE AZÚCARES

RENDIMIENTO DEBIOGÁS A PARTIR DEDISTINTOS RESIDUOSORGÁNICOS YOPTIMIZACIÓN DELDISEÑO DE REACTORES

En la actualidad, un campo deinvestigación en el área de biogásva dirigido hacia la optimización delos equipos de producción y ladeterminación del rendimiento debiogás a partir de distintos tiposde alimentaciones. Ésta es una delas líneas de investigación que selleva a cabo en el Laboratorio delDepartamento deTermodinámicade la Facultad de Ingeniería de laUniversidad Nacional del Nordestede Argentina (UNNE).

Los ensayos se realizan utilizandodos biodigestores de carga únicatipo batch de 100 y 25 litros. En

cada caso, el biogás producido seacumula y mide en un gasómetropara, posteriormente, ventilarlo yquemarlo.

El proceso de medición, así comoel de generación de biogás, depen-de de las condiciones atmosféricasy del tipo y cantidad de materiaorgánica de partida. Durante eltiempo de duración del ensayo,el biogás generado se mide en con-tinuo. En función de los resultadosobtenidos en cada caso, se trata derediseñar el digestor óptimo.

CO-DIGESTIÓN DEPURINES YSUBPRODUCTOSAGRÍCOLAS

El equipo de investigadores delInstituto de Ciencia yTecnologíaAnimal de la Universidad Politécnica

deValencia ha estudiado el trata-miento conjunto de purines ysubproductos agrícolas para pro-ducir biogás con el objetivo deproporcionar alternativas sosteni-bles de uso y aprovechamiento delos purines.

De momento, los investigadoreshan ensayado in vitro la combina-ción de purines con destríos depimiento, tomate, melocotón ycaqui para conocer su potencialpara producir biogás y buscar elnivel óptimo de combinación deambos sustratos (purines y sub-productos agrícolas).

Tras un año de estudio, se hacomprobado que el pimientoaumenta en un 44% la producciónde metano, respecto a la de lospurines solos; el tomate la aumentaun 41%, el melocotón un 28% y, sin

14

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

PURDUE RESEARCHFOUNDATION

POET RES INC

WO2011047039

US2011079219

EE.UU.

EE.UU.

The disclosure describes a process for the conversion of lignocellulosicbiomass to ethanol utilizing a dicarboxylic acid such as maleic acid as anenzyme mimic to hydrolyze the hemicellulose and cellulose of thebiomass. Controlling the condition of the maleic acid hydrolysis canselectively hydrolyze the hemicellulose giving as a result a liquid portionrich in xylose and a solid portion rich in glucan.The glucan can befurther hydrolyzed to produce a glucose containing material.The sugarmaterials can be fermented to produce ethanol which is recovered.The dicarboxylic acid is then recovered from the residue left after theethanol is removed from the fermentation material, and the recovereddicarboxylic acid is recycled to the beginning of the process to treatadditional lignocellulosic biomass.

A system for pre-treating biomass for the production of ethanol isprovided.The system comprises a method for pre-treating biomass.The method comprises supplying biomass to a steaming bin, whereinthe biomass is mixed with water, and inputting the steamed biomass toa first pretreatment reactor, wherein the steamed biomass comprisesliquids and solids.The method also comprises removing a bulk of liquidsfrom the solids and feeding the solids into a second pretreatmentreactor.The method further comprises applying a pressure drop to thesolids in the second pretreatment reactor, wherein the pressure dropopens up a structure of the solids, and sending the solids to afermentation process for ethanol processing.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

FERMENTACIÓN DE AZÚCARES

15

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

embargo, con el caqui no se haobservado ninguna diferencia.

A partir de estos datos, se van arealizar pruebas en digestores amayor escala y de manera continua,para simular el proceso real deproducción de biogás combinandopurines y los destríos de pimiento,tomate y melocotón. Los investiga-dores piensan que en un añopueden obtener resultados a escalareal y podrían ya aplicarse enplantas de biogás centralizadas.

Los investigadores, junto con elCentro de Investigación yTecnolo-gía Animal del InstitutoValencianode Investigaciones Agrarias (IVIA),desarrollan también una línea detrabajo para introducir subproduc-tos agrícolas como la colza, la pulpade naranja o la cascarilla de arroz,en el pienso de los cerdos y com-probar que, además de no afectaral crecimiento del animal y otrosparámetros productivos, se produceun aumento en la producción demetano a partir de los purines.

CONTROL ÓPTIMODE LA CO-DIGESTIÓNANAERÓBICA CONINTEGRACIÓN DE LAECOLOGÍA MICROBIANAEN EL MODELADO YDIAGNOSIS DELPROCESO

El Grupo de Ingeniería Ambientaly Bioprocesos de la Universidadde Santiago de Compostela estállevando a cabo el proyecto“Control óptimo de la co-digestiónanaerobia con integración de laecología microbiana en el mode-lado y diagnosis del proceso”(CoMDigest). El objetivo principaldel proyecto es lograr una mejorasignificativa en el funcionamientode los procesos de co-digestiónanaeróbica, en términos de

producción y calidad de biogás,calidad del digestato, estabilidad delproceso e impactos ambientalesdel mismo.A pesar de que en labibliografía existen diversos proto-colos de control, la co-digestiónposee características específicasque requieren del desarrollo deestrategias de control novedosas.

La primera tarea del proyectoconsiste en el desarrollo de unmodelo matemático del procesode co-digestión, capaz de describirde forma precisa su dinámica. Elmodelo va a incorporar la muyinnovadora característica de inte-grar información relevante de lainterrelación entre la ecologíamicrobiana y el funcionamientodel proceso. El modelo se utilizarápara el desarrollo y prueba deestrategias de control óptimo ensimulación.Asimismo, se definiráuna serie de indicadores numéricos,heurísticos y medioambientales delsistema a utilizar en la diagnosisdel proceso.

La segunda tarea persigue elobjetivo de dilucidar la diversidad,funcionalidad y límites de funciona-miento óptimo de la poblaciónmicrobiana. Se realizarán experi-mentos en discontinuo y encontinuo (uno y varios sustratos,perturbaciones controladas) con elfin de investigar las característicasy dinámica de la población micro-biana. El conocimiento adquiridose combinará con mediciones físicasy químicas para crear un indicadormicrobiano temprano, basado enel uso de sondas FISH sencillas,de desestabilización del proceso yposibilidades de recuperación.Asimismo, se tomarán datos deplantas industriales de co-digestión,en diferentes condiciones, y sedeterminará su diversidad micro-biana con el fin de validar lasconclusiones obtenidas en

laboratorio. Los resultados seránintegrados en el modelo comonuevos indicadores para control.

La tercera tarea consistirá en eldesarrollo y validación de estrate-gias de control óptimo. Se utilizaráuna función multiobjectivo, consi-derando tanto la producción debiogás como la calidad del digestato,así como los impactos ambientalesglobales. Se propondrán algoritmosde control dinámicos que seránprobados en simulación inicial-mente. Como parte fundamentalde la optimización, se estableceráun sistema de diagnosis basadoen los indicadores numéricos yheurísticos previos. Las estrategiasde control óptimo se validarán enuna planta piloto de co-digestiónaltamente instrumentada.

En la cuarta tarea, los resultadosdel proyecto CoMDigest se integra-rán y se elaborará un documentode directrices que será presentado,entre otros, a empresas interesadasdel sector.

La integración de microbiologíamolecular, modelado teórico yestrategias de control óptimo,validados a escala piloto, propor-cionará un avance científico ytecnológico significativo en laco-digestión anaeróbica así comoen otros bioprocesos.

AUMENTO DELRENDIMIENTO EN LAPRODUCCIÓN DEBIOETANOL MEDIANTELA UTILIZACIÓN DERHIZOPUS OLIGOSPORUS

Un grupo de ingenieros de la IowaState University de Estados Unidosha desarrollado un innovadorproceso para la producción debioetanol. El avance ha sido posiblegracias a un hongo, el Rhizopus

16

Tecnologías Bioquímicas

B O L E T Í N O N - L I N E

oligosporus, que permite el recicla-do de distintos tipos de residuos.

En la actualidad, el nuevo procesoha pasado de la fase de laboratorioal desarrollo en planta piloto. Esteproceso, denominado MycoMeal,podría derivar en un futuro enla producción de un suplementoalimenticio de bajo coste paraconsumo humano.

En la producción de etanol, porcada galón producido, se generancinco de vinaza. Ésta contieneelementos sólidos y otros mate-riales orgánicos que se eliminanpor centrifugación, en algunoscasos, o se secan, y venden poste-riormente como alimento paraganado. El líquido restante contienealgunos sólidos, una variedad decompuestos orgánicos y enzimas.La novedad del proceso consisteen que al incorporar el Rhizopusoligosporus a la vinaza líquida seelimina alrededor del 60% de lamateria orgánica y la mayoría delos sólidos presentes en la vinaza,permitiendo que el agua y lasenzimas puedan ser recicladas eincorporadas nuevamente a laproducción de etanol.

El proceso MycoMeal podríarevolucionar la industria de losbiocombustibles, estimándose unahorro de 565 millones de eurosal año para los productores debioetanol.

DESARROLLO DEMATERIA PRIMABIOCOMBUSTIBLE ABASE DE PASTO AGUJABAJO EN LIGNINAMEDIANTE LAREGULACIÓNREDUCTORA DE UN GENCLAVE DE BIOSÍNTESISDE LA LIGNINA

Uno de los principales problemasdel proceso de obtención debioetanol a partir de biomasalignocelulósica es la eliminación dela lignina. Para llevarla a cabo, amenudo se utilizan métodos termo-químicos que resultan costosos yde elevado consumo energético.Otro posible enfoque consistiría enactuar sobre la propia materiaprima y desarrollar plantas bajas enlignina, aplicando técnicas debiología molecular. Científicos de laFundación Samuel Roberts Noble

y el Centro de Ciencias Bioener-géticas de EE.UU. trabajan en laactualidad en el desarrollo de pastode aguja (panicum virgatum) bajoen lignina, estudiando la regulaciónreductora de un importante genque controla la biosíntesis de lalignina en esta hierba.

El gen estudiado es el que expresala enzima cinamil alcohol dehidroge-nasa (CAD), que cataliza la fasefinal de la vía bioquímica queproduce los precursores de lasíntesis de la lignina. En sus investi-gaciones, produjeron plantastransgénicas con una construccióngénica de ARNi de la CAD bajocontrol del promotor de laubiquitina del maíz. Se observóque las líneas transgénicas presen-taban menores niveles de expresiónde la CAD, actividad enzimáticareducida, menor contenido delignina y una composición de ligninaalterada. La regulación reductoradel gen de la CAD hizo posiblemejorar la liberación de azúcary la digestibilidad y aumentar laeficiencia de la sacarificación,que sería útil para reducir elcoste de producción de bioetanolcelulósico.

17

Tecnologías Químicas

B O L E T Í N O N - L I N E

GENIFUEL CORP

KOREA ENERGYRESEARCH INST

SHELL INT RESEARCH

UNIV WAYNE STATE

US2011131869

WO2011062410

EP2325281

WO2011057196

EE.UU.

Corea

Holanda

EE.UU.

A process for production of biofuels from algae can include cultivatingan oil-producing algae by promoting sequential photoautotrophic andheterotrophic growth.The method can further include producing oil byheterotrophic growth of algae wherein the heterotrophic algae growthis achieved by introducing a sugar feed to the oil-producing algae.An algal oil can be extracted from the oil-producing algae, and can beconverted to form biodiesel.

The present invention relates to a method in which a catalytic reactionis used in order to produce hydrocarbons from renewable startingmaterials derived from biological organisms such as vegetable lipids,animal lipids and lipids extracted from macroalgae and microalgae,and more specifically relates to a method for selectively making ahydrocarbon, which is suitable for gasoline or diesel, by removing theoxygen contained in the starting material without consuming hydrogen.In the present invention, the production takes place by bringing thestarting material into contact with hydrotalcite, which constitutes acatalyst, and thereby removing oxygen via a decarboxylation ordecarbonylation reaction; and the starting material is one or moresuch material selected from triglycerides, fatty acids and fatty-acidderivatives obtained from a renewable source of supply originatingfrom a biological organism.

The present invention provides a process for catalytic cracking of apyrolysis oil derived from material comprising lignocellulose, comprisingthe steps of a) subjecting a feed comprising the pyrolysis oil to ahydrodeoxygenation step to obtain a product stream comprising apartially deoxygenated pyrolysis oil; b) separating the partiallydeoxygenated pyrolysis oil having an oxygen content of from 5 to 30wt% from the product stream obtained in a); c) contacting the partiallydeoxygenated pyrolysis oil obtained in b) in the presence of ahydrocarbon feed derived from a mineral crude oil with a crackingcatalyst under catalytic cracking conditions to obtain a deoxygenatedand cracked product stream; and d) separating at least one productfraction from the product stream obtained in c).

Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO,A1203, Si02,TiO2,Nd2O3,Yb2O3, or any combination of these) supported on zirconia(ZrO2) or hydrous zirconia are provided.These mixed metal oxidecatalysts can be prepared via coprecipitation, impregnation, or sol -gelmethods from metal salt precursors with/without a Zirconium saltprecursor. Metal oxides/ZrO2 catalyzes both esterification andtransesterification of oil containing free fatty acids in one batch orin single stage. In particular, these mixed metal oxides supportedor added on zirconium oxide exhibit good activity and selectivity foresterification and transesterification.The low acid strength of thiscatalyst can avoid undesirable side reaction such as alcohol dehydrationor cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitiveto any water generated from esterification.Thus, esterification doesnot require a water free condition or the presence of excess methanolto occur when using the mixed metal oxide catalyst.The FAME yieldobtained with metal oxides/ZrO2 is higher than that obtained withhomogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts canbe prepared as strong pellets and in various shapes for use directly ina flow reactor. Furthermore, the pellet has a strong resistance towarddissolution to aqueous or oil phases.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

TECNOLOGÍAS QUÍMICAS

18

Tecnologías Químicas

B O L E T Í N O N - L I N E

PURDUE RESEARCHFOUNDATION

CHEVRON USA INC

RELIANCE LIFE SCIENCESPVT LTD

UNIV GEORGIA

EXXONMOBIL RES &ENG CO

WO2011056982

US2011107656

WO2011051977

US2011091945

WO2011056543

EE.UU.

EE.UU.

India

EE.UU.

EE.UU.

The present invention provides a robust and efficient process forreducing the cloud point of biodiesel fuel in which clathrates areformed from saturated fatty acid components as solvent is evaporatedfrom a mixture of urea, methanol and fatty acid esters.The processspeed can be fast, and is governed by the speed with which urea can bebrought into clathrate forming contact with the fatty acid esters in thefirst instance, and then by the speed that solvent can be evaporated.Advantageously, substantially all of the solvent can be evaporated aspure solvent, which enhances process efficiencies and reduces cost.Additionally, substantially all of the urea can be used to form clathrates,further maximizing process efficiency.

The present invention is directed to methods (processes) and systemsfor processing triglyceride-containing, biologically-derived oils to providefor base oils and transportation fuels, wherein partial oligomerizationof fatty acids contained therein provide for an oligomerized mixturefrom which the base oils and transportation fuels can be extracted.Such methods and systems can involve an initial hydrotreating step ora direct isomerization of the oligomerized mixture.

Disclosed herein are methods and compositions related to theproduction and extraction of oils and biodiesel from oleaginous yeast,such as a new yeast isolate of the genus Pichia.Also disclosed hereinare methods for providing fermentation conditions for the productionof yeast in high density using inexpensive raw materials including crudeglycerol and corn steep liquor.

The present disclosure provides methods of enhancing the biofuelpotential of an algal culture, the ability of an algal culture to provide abiofuel such as a lipid or to be processed to a biofuel, the methodcomprising: contacting an algal culture with a composition selected toenhance the biofuel potential of an algal culture; and allowing the algalculture to incubate to the point where the potential of the algal cultureto provide a biofuel product or be processed to a biofuel product isenhanced compared to when the algal culture is not in contact withthe composition.The selected algal species can be a species of agenus selected from the group consisting of: Gloeocystis, Limnothrix,Scenedesmus, Chlorococcum, Chlorella,Anabaena, Chlamydomonas,Botryococcus, Cricosphaera, Spirulina, Nannochloris, Dunaliella,Phaeodactylum, Pleurochrysis,Tetraselmis, or any combination thereof,one suitable species being Chlorella sorokiniana. In some embodiments,the composition selected to enhance the biofuel potential of analgal culture can be a pesticide such as, but not limited to, malathion(2-(dimethoxyphosphinothioylthio)butanedioic acid diethyl ester).

This invention provides processes for producing fuel, particularlytransportation fuel, from biological material, e.g., lipid material. Oneaspect of the invention involves hydroprocessing a feedstock in ahydroprocessing zone that is maintained at conditions that promote theefficiency of converting the lipid-containing feedstock into transportationfuel. Such conditions include one or more of maintaining CO content ofthe hydroprocessing zone at a predetermined amount and recycling orproviding a hydrogen-containing gas to the hydroprocessing zone thathas been treated to remove CO.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

TECNOLOGÍAS QUÍMICAS

19

Tecnologías Químicas

B O L E T Í N O N - L I N E

LURGI GMBH

OLVA TECHNOLOGIES

LANXESS SYBRONCHEMICALS INC

KOREA IND TECH INST

EP2311929

FR2951194

US2011076207

WO2011040798

Alemania

Francia

EE.UU.

Corea

Processing of slightly saponifiable crude oil from plant or animal origin,comprises: (a) degumming of crude oil with the addition of an acid,carrying out partial neutralization of the acid by adding a base andseparating the resulting gums and soaps by a mechanical separationprocess; and (b) further reducing the content of aromatic substancesand free fatty acids in the oil by stripping with inert gas or water vaporand/or applying a vacuum. Processing of slightly saponifiable crude oilfrom plant or animal origin, comprises: (a) degumming of crude oil withthe addition of an acid, carrying out partial neutralization of the acidby adding a base and separating the resulting gums and soaps by amechanical separation process; and (b) further reducing the contentof aromatic substances and free fatty acids in the oil by stripping withinert gas or water vapor and/or applying a vacuum.The degumming,partial neutralization with the base and separation of gums are carriedout in a first temperature range, and the stripping and/or the vacuumtreatment are carried out in a second temperature range.The distancebetween an upper limit of the first and a lower limit of the secondtemperature range is at least 100 K, and not > 220 K.

The transesterification device comprises a frame accommodatingfunctional modules for transesterification process, a reactor and asmelter for heating the animal fats, and a settling tank to treat theunmelted fats from the smelter. The resulting mixture in the settlingtank is re-injected in the smelter. The smelter comprises a filter in itsoutlet for performing filtration of the resulting mixture by gravity. Thereactor comprises a vent and a valve.The reactive supply is automated,and provided to the reactor depending on the temperature of thecontent of the reactor. The transesterification device comprises a frameaccommodating functional modules for transesterification process, areactor and a smelter for heating the animal fats, and a settling tank totreat the unmelted fats from the smelter. The resulting mixture in thesettling tank is re-injected in the smelter. The smelter comprises a filterin its outlet for performing filtration of the resulting mixture by gravity.The reactor comprises a vent and a valve. The reactive supply isautomated, and provided to the reactor depending on the temperatureof the content of the reactor. The reactor is equipped with an overflowdevice. The mixture inside the reactor is produced by a movementin a closed circuit and a movement in a pump assuring the supply ofmelted fat in the reactor. A second reactor is used for performing pre-esterification reaction of acid for optimal operation of esterification.

A process for monitoring the condition of a guard bed catalyst materialused in an adiabatic reactor to thereby protect a primary reaction catalystand, in particular, the present invention is intended to be applied to aguard bed used prior to the heterogeneous catalyzed esterification of freefatty acids with low molecular weight monohydric alcohols, especiallymethanol, to produce fatty acid alkyl esters for biodiesel production.

Provided is an enzymatic biodiesel production method using carbondioxide in the liquid state.The biodiesel production method of the presentinvention is a method based on the trans-esterification of oils and fats withmethanol using enzymes, wherein liquid carbon dioxide is employedinstead of an organic solvent to avoid methanol induced decreases inenzyme activity, and a lipase, which is active at low and room temperatures,is used as the enzyme. The biodiesel production method according to thepresent invention is advantageous in that it is more environmentallyfriendly than methods of the prior art, in which biodiesel is produced byemploying an organic solvent or supercritical carbon dioxide, while at thesame time being able to dramatically lower production costs for biodiesel.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

TECNOLOGÍAS QUÍMICAS

CULTIVO DEMICROALGAS PARALA OBTENCIÓN DEBIOCOMBUSTIBLES ENEL AEROPUERTO DEMADRID-BARAJAS

En el aeropuerto de Madrid-Barajasse ubicará, junto a laT4, una plantatecnológica de experimentaciónque se dedicará a investigar ymejorar las tecnologías de capturade CO2, en este caso procedentede las instalaciones aeroportuarias.En ella se cultivarán microalgasdestinadas a la producción debiomasa, a partir de la cual podríanobtenerse biocombustibles conmenores costes, mejorándose larentabilidad del proceso.

Aena ha cedido el terreno en quese ubicará la planta de experimen-tación gestionada por AlgaEnergy,en cuyo diseño han intervenido

los científicos del Instituto deBioquímica y Fotosíntesis Vegetaldel CSIC y las Universidades deSevilla y Almería. En el proyectoparticipa también Repsol, que trans-formará los aceites de la biomasaobtenida en biocombustible.

La plataforma tecnológica seabastecerá con agua destilada de ladepuradora de Iberia en La Muñozay utilizará CO2 procedente de lasinstalaciones de Aena y del Bancode Pruebas de Motores de Iberiaen el aeropuerto de Madrid-Barajas.Tanto Aena como Iberia, analizaránla utilización del biocombustibleque se obtenga en sus vehículosde plataforma y aeronaves.

La experimentación en el cultivoy la producción de biomasa demicroalgas en la PlataformaTecno-lógica, que no requiere suelo deuso agrícola ni grandes cantidades

de agua, pudiendo incluso ser éstasresiduales, contribuirá a mejoraraspectos sustanciales del procesoproductivo de biomasa algal ricaen lípidos, de la que se derivenbiocombustibles de segundageneración.

CULTIVO DEMICROALGAS EN LACENTRAL TÉRMICALITORAL DECARBONERAS DEENDESA (ALMERÍA)

ENDESA, la Universidad de Almería,el CentroTecnológico AITEMIN yTecnalia participan en un proyectoconjunto para estudiar la viabilidadtécnica y económica de la pro-ducción de biomasa algal a partirde agua de mar y el CO2 producidoen la central térmica Litoral deCarboneras de ENDESA (Almería).

20

Tecnologías Químicas

B O L E T Í N O N - L I N E

COUNCIL SCIENT IND RES

UNIV MISSISSIPPI STATE

WO2011033346

WO2011041732

India

EE.UU.

The present invention describes a process for converting high free fattyacid containing feed stocks( FFA 20-85 %) like palm fatty acid distillate(PFAD),restaurant grease, waste cooking oil, Soya deodistillate, acid oil,jatropha curcas oil, mohua oil etc. to biodiesel, which involvesesterification of FFA containing oil with lower alcohols like methanol,ethanol, propanol etc. in presence of macro reticular and gel type acidicheterogenous resin as catalyst to bring down acid value in the range of1-2 mgKOH/g followed by transesterification in presence ofhomogeneous basic catalyst metal oxides, hydroxides and alkoxides likesodium hydroxide, potassium hydroxide, sodium methoxide, potassiummethoxide etc. and separation of biodiesel and glycerine.

This invention relates to a method and device to produce esterified,olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. Theolefinated/esterified product may be utilized as a biocrude for input toa refinery, either alone or in combination with petroleum crude oils.The bio-oil esterification reaction is catalyzed by addition of alcoholand acid catalyst. The olefination/esterification reaction is catalyzed byaddition of resin acid or other heterogeneous catalyst to catalyzeolefins added to previously etherified bio-oil; the olefins and alcoholmay also be simultaneously combined and catalyzed by addition of resinacid or other heterogeneous catalyst to produce theolefinated/esterified product.

SOLICITANTENO DE PUBLICACIÓN PAÍS ORIGEN CONTENIDO TÉCNICO

TECNOLOGÍAS QUÍMICAS

21

Tecnologías Químicas

B O L E T Í N O N - L I N E

La planta piloto consta de quincecalles de fotobiorreactores dotadosde las estructuras metálicas quesoportan las bolsas de polietilenotransparente que albergan losinóculos del alga Nannochloropsisgaditana. Cada biorreactor poseeuna longitud de 12 metros y unainclinación de 60º. Los medios decultivo manejados contienen entre1 y 2 gramos de alga por cada litrode agua, por lo que se centrifugala masa algal hasta alcanzar unaconcentración de 50-70 gramospor litro.

Actualmente, a la empresa lesupone 5 euros la producciónde 1 kg de algas. Para que esteproceso sea rentable, el costehabría de situarse en torno a los50 céntimos.

España, por sus condiciones climá-ticas, constituye una de las regionesmás propicias para el desarrollode microalgas. La planta piloto deENDESA en Almería es la primerade estas características que se poneen marcha en Europa.

PRODUCCIÓN DEHIDROBIODIÉSELMEDIANTEHIDROGENACIÓNDE ACEITE VEGETALO ANIMAL

El Centro de Investigación de Cepsaha desarrollado en las instalacionesde la refinería La Rábida de Huelva,un nuevo proceso para la produc-ción de hidrobiodiésel a partir deaceite vegetal. La refinería onubenseemprenderá la producción delnuevo biocombustible en Julio y lade Gibraltar-San Roque en Noviem-bre. Las investigaciones se llevandesarrollando desde el año 2007en las refinerías deTenerife y Huelvay responde a la necesidad decumplir con las nuevas directivaseuropeas y la legislación española.

En este proceso se consigue trans-formar por hidrogenación el aceitevegetal en un gasóleo para automo-ción (hidrobiodiésel), utilizando lasmismas instalaciones en las quese reduce el azufre del gasóleo(desulfuración). La capacidad inicial

de producción estimada para lastres refinerías de Cepsa en Españaes superior a los 100000 metroscúbicos de producto al año.

Esta iniciativa, que forma parte delcompromiso de Cepsa con la inno-vación, se considera esencial parael cumplimiento de la recientelegislación en materia de biocarbu-rantes y, al mismo tiempo, suponeuna importante reducción de gasesde efecto invernadero.

La nueva regulación marca comoobjetivo para 2020 que el 10% dela energía presente en las gasolinasy gasóleos provenga del empleode biocarburantes. Para 2011, esteobjetivo de implantación progresivaa lo largo del tiempo es el 6.2%.

La investigación supone para lapetrolera una herramienta decreación de valor, competitividad ycrecimiento sostenible, que ademáscontribuye a optimizar los procesosde producción, mejorar la calidadde los productos y la capacitacióntecnológica de la compañía.

Boletín elaborado con la colaboración de:

Montalbán, 3. 2º Dcha.28014 MadridTel: 91 781 00 76E-mail: [email protected]

Paseo de la Castellana, 7528071 MadridTel: 91 349 53 00Email: [email protected]

Avda Complutense 22.28040 MadridTel: 91 346 08 99e-mail: [email protected]