Ensayo unidad 1

13
Calculo Integral Unidad 1 Centurión Domínguez José E

Transcript of Ensayo unidad 1

Calculo Integral Unidad 1 Centurión Domínguez José E

Calculo Integral Unidad 1 Centurión Domínguez José E

Calculo Integral Unidad 1 Centurión Domínguez José E

1.1 Medida Aproximada de Figuras Amorfas

Calcular las áreas de una figura regular es una tarea muy fácil, por lo cual la sustitución de la longitud, anchura u otras cantidades en la fórmula produciría el resultado. Sin embargo, la estimación del área bajo la curva de las funciones no es tan sencilla ya que existen figuras amorfas y no fórmulas directas para estimar esta área. La integración puede ser utilizada fructíferamente en una situación semejante. Existen cuatro gráficas posibles para las cuales el área necesita ser evaluada. Estas son: 1 Cuando el área está limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b. El gráfico de la función se muestra a continuación,

Calculo Integral Unidad 1 Centurión Domínguez José E

1.2 Notación Sumatoria

En muchas ocasiones las operaciones matemáticas requieren la adición de una serie de números para generar la suma total de todos los números de la serie. En tal escenario se hace difícil escribir la expresión que representa este tipo de operación. El problema empeora a medida que incrementan los números en la serie. Una solución es utilizar los primeros números de la serie, luego puntos suspensivos y finalmente los últimos números de la serie, como se muestra a continuación, Esta expresión representa una operación que incluye lasuma de los primeros cien números naturales. En esta expresión hemos usadolos puntos suspensivos, los tres puntos en la sucesión, para simbolizar la ausencia de números en la serie. Una solución aún mejor es hacer uso del símbolo sumatorio o sigma. Este es un tipo de técnica abreviada que ofrece una alternativa más conveniente para representar la operación sumatoria. Puede ser representada de la siguiente manera, Aquí se representa la variable o los términos en la serie. El operador sigma es un símbolo de la Grecia antigua, donde fue utilizado como letra mayúscula del alfabeto S. Una representación típica de la operación sumatoria n utilizando el símbolo sumatorio se representa, La variable que aparece en la parte derecha del símbolo es el “Elemento Típico”, el cual será sumado con la operación sumatoria. Siempre existe un límite inferior y un límite superior de la operación los cuales están representados por debajo y por encima del símbolo sumatorio. La variable, representando el límite de la operación, se escribe debajo del símbolo sumatorio hacia la izquierda del límite inferior. El límite de la operación se inicia a partir del valor hacia el lado derecho del índice de la variable y ntermina e el valor escrito sobre el símbolo sumatorio. El

Calculo Integral Unidad 1 Centurión Domínguez José E

límite inferior de la operación es llamado en ocasiones punto de partida, por lo tanto, el límite superior es llamado punto final. La expresión mostrada arriba se calcula como, = x1 + x2 + x3 + … + xn-1 + xn Mientras que algunos matemáticos están a favor de la escritura de la notación completa cada vez que se va a escribir una operación de notación sumatoria, algunos de ellos están a favor de escribirla solamente cuando se requiere producir la suma de algunas de las cantidades disponibles del conjunto de cantidades, y de escribir una versión abreviada cuando se va a producir la suma de los valores del conjunto completo. A modo de ejemplo, serviría a los fines en el último caso. Es posible elevar al cuadrado cada uno de los términos y luego producir la suma de todas las cantidades cuadradas. Tal operación se puede denotar como, = x12 + x22 + x32 + … + xn-12 + xn2 La notación abreviada de la expresión anterior sería x2. Es esencial recordar que esta notación es completamente diferente de ( x)2 dado que esta última expresión denota una operación en la queprimero se suman todos los términos y luego se eleva al cuadrado el resultado obtenido, mientras que la operación anterior denota una expresión en la cual se produce la suma de términos que ya estaban elevados al cuadrado. Otra operación interesante que se puede realizar utilizando el símbolo sumatorio es la sumatoria de productos vectoriales. Taloperación se puededenotarcomo,

Calculo Integral Unidad 1 Centurión Domínguez José E

1.3 Suma de Riemann En matemáticas, la suma de Riemann es un método de integración numérica que nos sirve para calcular el valor de una integral definida, es decir, el área bajo una curva, este método es muy útil cuando no es posible utilizar el Teorema Fundamental del Cálculo. Estas sumas toman su nombre del matemático alemán Bernhard Riemann. La suma de Riemann consiste básicamente en trazar un número finito de rectángulos dentro de un área irregular, calcular el área de cada uno de los rectángulos y sumarlos. El problema de este método de integración numérica es que al sumar las áreas se obtiene un margen de error muy grande. Introducción Es aquella sumatoria en la cual se hacen varias subdivisiones del área bajo la curva y se van calculando las partes de una función por medio de rectángulos con base en un incremento en el eje X, ya que la suma de toda las áreas de los rectángulos va ser el área total. Dicha área es conocida como la suma de Riemann Dada f(x) en el intervalo [a,b] para encontrar el área bajo la curva: Dividimos la región "S" en franjas de anchos iguales. El ancho de cada franja es: Teniendo los intervalos: La ecuación para la suma de Riemann es la siguiente: donde haciendo de esta como un promedio entre la suma superior e inferior de Darboux. Para esta suma es importante saber las siguientes identidades: Representación. Las sumas de Riemann más sencillas son las siguientes: . Una suma de Riemann se interpreta como el área total de rectángulos adyacientes de anchura común y de alturas situados entre el eje de los abscisas y la curva de la función f (ver figura siguiente). Sumas de Riemann S'n de una misma función, con n = 5 rectángulos;

n = 10 y n = 20. Cuando crece n, el área total de los rectángulos se

aproxima al área delimitado por el eje de las abscisas y la curva de f.

Calculo Integral Unidad 1 Centurión Domínguez José E

1.4 Integral definida

Dada una función de una variable real y un intervalo de la recta real, la integral es igual al área de la región del plano limitada

entre la gráfica de , el eje , y las líneas verticales y , donde son negativas las áreas por debajo del eje .

La palabra "integral" también puede hacer referencia a la noción de

primitiva: una función F, cuya derivada es la función dada . En este caso se denomina integral indefinida, mientras que las integrales tratadas en este artículo son las integrales definidas. Algunos autores mantienen una distinción entre integrales primitivas e indefinidas.

Los principios de la integración fueron formulados por Newton y Leibniz a finales del siglo XVII. A través del teorema fundamental del cálculo, que desarrollaron los dos de forma independiente, la integración se conecta con la derivación, y la integral definida de una función se puede calcular fácilmente una vez se conoce una antiderivada. Las integrales y las derivadas pasaron a ser herramientas básicas del cálculo, con numerosas aplicaciones en ciencia e ingeniería.

Bernhard Riemann dio una definición rigurosa de la integral. Se basa en un límite que aproxima el área de una región curvilínea a base de partirla en pequeños trozos verticales. A comienzos del siglo XIX, empezaron a aparecer nociones más sofisticadas de la integral, donde se han generalizado los tipos de las funciones y los dominios sobre los cuales se hace la integración. La integral curvilínea se define para funciones vectoriales de una variable, y el intervalo de integración [a,b] se sustituye por el de la parametrización de la curva sobre la cual se está integrando, la cual, conecta dos puntos del plano o del espacio. En una integral de superficie, la curva se sustituye por un trozo de una superficie en el espacio tridimensional.

Las integrales de las formas diferenciales desempeñan un papel fundamental en la geometría diferencial moderna. Estas

Calculo Integral Unidad 1 Centurión Domínguez José E

generalizaciones de la integral surgieron primero a partir de las necesidades de la física, y tienen un papel importante en la formulación de muchas leyes físicas cómo, por ejemplo, las del electromagnetismo. Los conceptos modernos de integración se basan en la teoría matemática abstracta conocida como integral de Lebesgue, que fue desarrollada por Henri Lebesgue.

1.5 Teorema de existencia

En matemáticas, un teorema de existencia es un teorema con un enunciado que comienza 'existe(n)...', o más generalmente 'para todo x, y, ...existe(n) ...'. Esto es, en términos más formales de lógica simbólica, es un teorema con un enunciado involucrando el cuantificador existencial. Muchos teoremas no lo hacen explícitamente, como es usual en el lenguaje matemático estándar, por ejemplo, el enunciado de que la función seno es una continua, o cualquier teorema escrito en la notación O.

Una controversia que data del temprano siglo XX concierne el tema de teoremas de existencia puros, y la acusación relacionada de que al admitirlos las matemáticas traicionan sus responsabilidades de aplicación concreta (ver demostración no constructiva). El punto de vista matemático es que los métodos abstractos tienen un gran alcance, mayor que el del análisis numérico.

Calculo Integral Unidad 1 Centurión Domínguez José E

1.6 Propiedades de la integral definida

Se enuncian algunas propiedades y teoremas básicos de las integrales definidas que ayudarán a evaluarlas con más facilidad.

1) donde c es una constante

2) Si f y g son integrables en [a, b] y c es una constante, entonces las siguientes propiedades son verdaderas:

(se pueden generalizar para más de dos funciones)

3) Si x está definida para x = a entonces = 0

4) Si f es integrable en [a, b] entonces

5) Propiedad de aditividad del intervalo: si f es integrable en los dos intervalos cerrados definidos por a, b y c entonces

Calculo Integral Unidad 1 Centurión Domínguez José E

1.7 Función primitiva

En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f.

Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo.

Si una función f admite una primitiva sobre un intervalo, admite una infinidad, que difieren entre sí en una constante: si F1 y F2 son dos primitivas de f, entonces existe un número real C, tal que F1 = F2 + C. A C se le conoce como constante de integración. Como consecuencia, si F es una primitiva de una función f, el conjunto de sus primitivas es F + C. A dicho conjunto se le llama integral indefinida de f y se representa como:

ó

El proceso de hallar la primitiva de una función se conoce como integración indefinida y es por tanto el inverso de la derivación. Las integrales indefinidas están relacionadas con las integrales definidas a través del teorema fundamental del cálculo, y proporcionan un método sencillo de calcular integrales definidas de numerosas funciones

Calculo Integral Unidad 1 Centurión Domínguez José E

1.8 Teorema fundamental del cálculo

El teorema fundamental del cálculo consiste (intuitivamente) en la

afirmación de que la derivación e integración de una función son operaciones

inversas. Esto significa que toda función acotada e integrable (siendo continua

o discontinua en un número finito de puntos) verifica que la derivada de su

integral es igual a ella misma. Este teorema es central en la rama de las

matemáticas denominada análisis matemático o cálculo.

El teorema es fundamental porque hasta entonces el cálculo aproximado de

áreas -integrales- en el que se venía trabajando desde Arquímedes, era una

rama de las matemáticas que se seguía por separado al cálculo diferencial que

se venía desarrollando por Isaac Newton, Isaac Barrow y Gottfried Leibniz en

el siglo XVIII y dio lugar a conceptos como el de las derivadas. Las integrales

eran investigadas como formas de estudiar áreas y volúmenes, hasta que en

ese punto de la historia ambas ramas convergieron, al demostrarse que el

estudio del "área bajo una función" estaba íntimamente vinculado al cálculo

diferencial, resultando la integración, la operación inversa a la derivación.

Una consecuencia directa de este teorema es la regla de Barrow, denominada

en ocasiones segundo teorema fundamental del cálculo, y que permite

calcular la integral de una función utilizando la integral indefinida de la

función al ser integrada

Calculo Integral Unidad 1 Centurión Domínguez José E

1.9 Integrales impropias

Si la función f al ser integrada de a a c tiene una discontinuidad en c, especialmente en la forma de una asíntota vertical, o si c = ∞, entonces la integral

Punto singular en c.

Puede ser más conveniente redefinirla de la siguiente forma:

En algunos casos, la integral de a a c ni siquiera está definida, puesto que las integrales de la parte positiva y negativa de f(x) dx entre a y c son ambas infinitas, sin embargo el límite puede existir. Estos casos corresponden a las llamadas "integrales impropias", es decir, aquellas cuyos valores no pueden definirse excepto como límites.

La integral

puede interpretarse como:

pero desde el punto de vista del análisis matemático no es obligatorio interpretarla de tal manera, ya que puede interpretarse como una integral de Lebesgue sobre el intervalo (0, ∞). Por otro lado, el uso del

Calculo Integral Unidad 1 Centurión Domínguez José E

límite de integrales definidas en intervalos finitos es útil, aunque no sea como forma de calcular su valor.

En contraste al caso anterior,

no puede ser interpretada como una integral de Lebesgue, ya que

Ésta es una "verdadera" integral impropia, cuyo valor está dado por

Llamamos singularidades de una integral impropia a los puntos de la recta real extendida en los cuales debemos utilizar límites.

Tales integrales son frecuentemente escritas en forma simbólica de igual forma que una integral definida, utilizando un infinito como límite de integración. Esto no hace más que "ocultar" el debido proceso de calcular los límites de la integral. Utilizando la más avanzada integral de Lebesgue en lugar de una integral de Riemann, uno puede a veces evitar tal operación. Pero si sólo se desea evaluar el límite para obtener un valor definido, tal mecanismo pudiera no resultar de ayuda. El concepto de integral de Lebesgue es más o menos esencial en el tratamiento teórico de la transformada de Fourier que hace uso extensivo de integrales sobre el total de la recta real.