Esfuerzo y Deformacion

25
ESFUERZO Y DEFORMACIÓN Realizado por: Juan Hernández c.I 22.653.834

Transcript of Esfuerzo y Deformacion

ESFUERZO Y DEFORMACIÓN

Realizado por: Juan Hernándezc.I 22.653.834

ESFUERZO Y DEFORMACIÓN El esfuerzo se define aquí como la intensidad de las fuerzas componentes

internas distribuidas que resisten un cambio en la forma de un cuerpo. El esfuerzo se define en términos de fuerza por unidad de área. Existen tres clases básicas de esfuerzos: tensivo, compresivo y corte. El esfuerzo se computa sobre la base de las dimensiones del corte transversal de una pieza antes de la aplicación de la carga, que usualmente se llaman dimensiones originales.

La deformación se define como el cambio de forma de un cuerpo, el cual se debe al esfuerzo, al cambio térmico, al cambio de humedad o a otras causas. En conjunción con el esfuerzo directo, la deformación se supone como un cambio lineal y se mide en unidades de longitud. En los ensayos de torsión se acostumbra medir la deformación cómo un ángulo de torsión (en ocasiones llamados detrusión) entre dos secciones especificadas.

Cuando la deformación se define como el cambio por unidad de longitud en una dimensión lineal de un cuerpo, el cual va acompañado por un cambio de esfuerzo, se denomina deformación unitaria debida a un esfuerzo. Es una razón o número no dimensional, y es, por lo tanto, la misma sin importar las unidades expresadas, su cálculo se puede realizar mediante la siguiente expresión:

ESFUERZO Y DEFORMACIÓN e= e /L (14)Donde,e: es la deformación unitariae: es la deformaciónL: es la longitud del elemento

Si un cuerpo es sometido a esfuerzo tensivo o compresivo en una dirección dada, no solo ocurre deformación en esa dirección (dirección axial) sino también deformaciones unitarias en direcciones perpendiculares a ella (deformación lateral). Dentro del rango de acción elástica la compresión entre las deformaciones lateral y axial en condiciones de carga uniaxial (es decir en un solo eje) es denominada relación de Poisson. La extensión axial causa contracción lateral, y viceversa.

ESFUERZO DE TORSION

Se define como la capacidad torsión de objetos en rotación alrededor de un eje fijo. En otras palabras, es la multiplicación de la fuerza y la distancia más corta entre el punto de aplicación de la fuerza y el eje fijo. De la definición, también se puede inferir que, el par es una cantidad vectorial que tiene tanto la dirección como en magnitud. Sin embargo, ya que está girando alrededor de un eje fijo de su dirección puede ser en sentido horario o antihorario.

ESFUERZO POR TRACCION

Hace que se separen entre sí las distintas partículas que componen una pieza, tendiendo a alargarla. Por ejemplo, cuando se cuelga de una cadena una lámpara, la cadena queda sometida a un esfuerzo de tracción, tendiendo a aumentar su longitud

ESFUERZO POR COMPRESION

Hace que se aproximen las diferentes partículas de un material, tendiendo a producir acortamientos o aplastamientos. Cuando nos sentamos en una silla, sometemos a las patas a un esfuerzo de compresión, con lo que tiende a disminuir

su altura.

ESFUERZO POR CORTADURA

Se produce cuando se aplican fuerzas perpendiculares a la pieza, haciendo que las partículas del material tiendan a resbalar o desplazarse las unas sobre las otras. Al cortar con unas tijeras un papel estamos provocando que unas partículas tiendan a deslizarse sobre otras. Los puntos sobre los que apoyan las vigas están sometidos a cizallamiento

ESFUERZO POR FLEXION

Es una combinación de compresión y de tracción. Mientras que las fibras superiores de la pieza sometida a un esfuerzo de flexión se alargan, las inferiores se acortan, o viceversa. Al saltar en la tabla del trampolín de una piscina, la tabla se flexiona. También se flexiona un panel de una estantería cuando se carga de libros

o la barra donde se cuelgan las perchas en los armarios.

ELASTICIDAD La elasticidad es aquella propiedad de un material por virtud de la cual las

deformaciones causadas por el esfuerzo desaparecen al removérsele. Algunas sustancias, tales como los gases poseen únicamente elasticidad volumétrica, pero los sólidos pueden poseer, además, elasticidad de forma. Un cuerpo perfectamente elástico se concibe como uno que recobra completamente su forma y sus dimensiones originales al retirarse el esfuerzo.

No se conocen materiales que sean perfectamente elásticos a través del rango de esfuerzos completo hasta la ruptura, aunque algunos materiales como el acero, parecen ser elásticos en un considerable rango de esfuerzos. Algunos materiales, como el hierro fundido, el concreto, y ciertos metales no ferrosos, son imperfectamente elásticos aun bajo esfuerzos relativamente reducidos, pero la magnitud de la deformación permanente bajo carga de poca duración es pequeña, de tal forma que para efectos prácticos el material se considera como elástico hasta magnitudes de esfuerzos razonables.

ELASTICIDAD Si una carga de tensión dentro del rango elástico es aplicada, las deformaciones

axiales elásticas resultan de la separación de los átomos o moléculas en la dirección de la carga; al mismo tiempo se acercan más unos a otros en la dirección transversal. Para un material relativamente isotropito tal como el acero, las características de esfuerzo y deformación son muy similares respectivamente de la dirección de la carga (debido al arreglo errático de los muchos cristales de que está compuesto el material), pero para materiales anisotrópicos, tales como la madera, estas propiedades varían según la dirección de la carga.

Una medida cuantitativa de la elasticidad de un material podría lógicamente expresarse como el grado al que el material puede deformarse dentro del límite de la acción elástica; pero, pensando en términos de esfuerzos que en deformación, un índice práctico de la elasticidad es el esfuerzo que marca el límite del comportamiento

elástico.

ELASTICIDAD El comportamiento elástico es ocasionalmente asociado a otros dos fenómenos; la

proporcionalidad lineal del esfuerzo y de la deformación, y la no-absorción de energía durante la variación cíclica del esfuerzo. El efecto de absorción permanente de energía bajo esfuerzo cíclico dentro del rango elástico, llamado histéresis elástica o saturación fraccional, es ilustrado por la decadencia de la amplitud de las vibraciones libres de un resorte elástico; estos dos fenómenos no constituyen necesarios criterios sobre la propiedad de la elasticidad y realmente son independientes de ella.

Para medir la resistencia elástica, se han utilizado varios criterios a saber: el límite elástico, el límite proporcional y la resistencia a la cadencia. El límite elástico se define como el mayor esfuerzo que un material es capaz de desarrollar sin que ocurra la deformación permanente al retirar el esfuerzo. El límite proporcional se define cómo el mayor esfuerzo que un material es capaz de desarrollar sin desviarse de la proporcionalidad rectilínea entre el esfuerzo y la deformación; se ha observado que la mayoría de los materiales exhiben esta relación lineal entre el esfuerzo y la deformación dentro del rango elástico. El concepto de proporcionalidad entre el esfuerzo y la deformación es conocido como Ley de Hooke, debido a la histórica generalización por Robert Hooke de los resultados de sus observaciones sobre el comportamiento de los resortes (MOORE, 1928).

LA RESISTENCIA ÚLTIMA El término resistencia última está relacionado con el esfuerzo máximo que un

material puede desarrollar. La resistencia a la tensiones el máximo esfuerzo de tensión que un material es capaz de desarrollar. La figura 17 muestra, esquemáticamente, las relaciones entre esfuerzo y deformación para un metal dúctil y un metal no dúctil cargado hasta la ruptura por tensión

LA RESISTENCIA ÚLTIMA La resistencia a la compresión es el máximo esfuerzo de compresión que un

material es capaz de desarrollar. Con un material quebradizo que falla en compresión por ruptura, la resistencia a la compresión posee un valor definido. En el caso de los materiales que no fallan en compresión por una fractura desmoronarte (materiales dúctiles, maleables o semiviscosos), el valor obtenido para la resistencia a la compresión es un valor arbitrario que depende del grado de distorsión considerado como falla efectiva del material. La figura 18 muestra diagramas característicos de esfuerzo y deformación para materiales dúctiles y no dúctiles en compresión:

LA RESISTENCIA ÚLTIMA La dureza, la cual es una medida de la resistencia a indentación superficial o a la

abrasión, puede, en términos generales, considerarse como una función del esfuerzo requerido para producir algún tipo especificado de deformación superficial. La dureza se expresa simplemente como un valor arbitrario, tal como la lectura de la báscula del instrumento particular usado.

PLASTICIDAD La plasticidad es aquella propiedad que permite al material sobrellevar

deformación permanente sin que sobrevenga la ruptura. Las evidencias de la acción plástica en los materiales estructurales se llaman deformación, flujo plástico y creep.

Las deformaciones plásticas son causadas por deslizamientos inducidos por esfuerzos cortantes. Tales deformaciones pueden ocurrir en todos los materiales sometidos a grandes esfuerzos, aun a temperaturas normales. Muchos metales muestran un efecto de endurecimiento por deformación al sobrellevar deformaciones plásticas, ya que después de que han ocurrido deslizamientos menores por corte no acusan deformaciones plásticas adicionales hasta que se aplican esfuerzos mayores. No se presentan cambios apreciables de volumen como resultado de las deformaciones plásticas.

La plasticidad es importante en las operaciones de formación, conformación y extrusión. Algunos metales se conforman en frío, por ejemplo, la laminación profunda de láminas delgadas.

PLASTICIDAD Muchos metales son conformados en caliente, por ejemplo, la laminación de

perfiles de acero estructural y el forjado de ciertas partes para máquinas; los metales como el hierro fundido se moldean en estado de fusión; la madera se flexiona mejor mientras está seca y caliente. Los materiales maleables son aquellos que pueden martillarse para formar láminas delgadas sin fractura; la maleabilidad depende tanto de la suavidad como de la plasticidad del material.

Otra manifestación de la plasticidad en los materiales es la ductilidad. La ductilidad es la propiedad de los materiales que le permiten ser estirados a un grado considerable antes de romperse y simultáneamente sostener una carga apreciable. Se dice que un material no dúctil es quebradizo, esto es, se quiebra o rompe con poco o ningún alargamiento.

RIGIDEZ La rigidez tiene que ver con la deformabilidad relativa de un material bajo carga.

Se le mide por la velocidad del esfuerzo con respecto a la deformación. Mientras mayor sea el esfuerzo requerido para producir una deformación dada, más rígido se considera que es el material.

Bajo un esfuerzo simple dentro del rango proporcional, la razón entre el esfuerzo y la deformación correspondiente es denominada módulo de elasticidad (E). Existen tres módulos de elasticidad: el módulo en tensión, el módulo en compresión y el módulo en cortante. Bajo el esfuerzo de tensión, esta medida de rigidez se denomina módulo de Young; bajo corte simple la rigidez se denomina módulo de rigidez. En términos del diagrama de esfuerzo y deformación, el módulo de elasticidad es la pendiente del diagrama de esfuerzo y deformación en el rango de la proporcionalidad del esfuerzo y la deformación

CAPACIDAD ENERGETICA La capacidad de un material para absorber o almacenar energía se denomina

capacidad energética del material. La cantidad de energía absorbida al esforzar un material hasta el límite elástico, o la cantidad de energía que puede recobrarse cuando el esfuerzo es liberado del límite elástico, es llamada la resiliencia elástica. La energía almacenada por unidad de volumen en el límite elástico es el módulo de resiliencia.

El módulo de resiliencia es una medida de lo que puede llamarse la resistencia a la energía elástica del material y es de importancia en la selección de materiales para servicio, cuando las partes están sometidas a cargas de energía, pero cuando los esfuerzos deben mantenerse dentro del límite elástico (SEELEY y SMITH, 1956).

CAPACIDAD ENERGETICA Cuando un material es sometido a una carga repetida, durante cualquier ciclo de

carga o descarga, o viceversa, alguna energía es absorbida o perdida. Este fenómeno de la energía perdida es llamado generalmente histéresis, y dentro del rango elástico, histéresis elástica.

La resistencia involucra la idea de la energía requerida para romper un material. Puede medírsele por la cantidad de trabajo por volumen unitario de un material requerida para conducir el material a la falla bajo carga estática, llamada el módulo de resistencia. La resistencia es una medida de lo que puede llamarse la resistencia energética última de un material y es de importancia en la selección de un material para tipos de servicio en los cuales las cargas de impacto aplicadas puedan causar esfuerzos sobre el punto de falla de tiempo en tiempo (SEELEY y SMITH, 1956).

ASPECTOS GENERALES DE LA FALLA EN LOS MATERIALES

La falla puede considerarse como la alteración del comportamiento característico de acuerdo con alguna propiedad física básica. Por ejemplo, el es forzamiento o deformación de un material más allá del límite elástico, es decir sin recuperación de su forma o longitud original. A nivel macroescala la falla puede concebirse como el grado de deformación qué sea excesivo en relación con el desempeño aceptable de un miembro de alguna estructura o máquina.

La falla puede ocurrir de tres maneras fundamentales: por deslizamiento o flujo, por separación, y por pandeo. El deslizamiento o flujo ocurre bajo la acción de esfuerzos cortantes. Esencialmente, los planos paralelos dentro de un elemento de un material se mueven (se deslizan o desplazan) en direcciones paralelas; la acción continua de esta manera, a un volumen constante y sin desintegración del material, se denomina creep, o flujo plástico. El deslizamiento puede terminar por ruptura cuando las fuerzas moleculares (o esfuerzos de escala similar) son rebasadas. Estos esfuerzos cortantes que causan el deslizamiento son originados por cargas tensivas o compresivas, cargas torsionales, o cargas flexionantes.

ASPECTOS GENERALES DE LA FALLA EN LOS MATERIALES La separación es una acción inducida por los esfuerzos tensivos. Se verifica

cuando el esfuerzo normal a un plano excede las fuerzas internas que aglutinan el material; la falla por separación es frecuentemente denominada fractura por fisura. Los estados de esfuerzos que involucran esfuerzos tensivos suficientes para causar la fractura por fisura pueden ser inducidos por cargas diferentes de las primarias tensivas

ASPECTOS GENERALES DE LA FALLA EN LOS MATERIALES El pandeo es un fenómeno de compresión. Una falla por pandeo puede inducirse

mediante una carga diferente de la carga primaria compresiva; por ejemplo, la carga torsional de un tubo de pared delgada puede arrojar pandeo causado por los esfuerzos compresivos inducidos; o en una viga de madera, bajo carga flexionarte, la falla puede iniciarse por el pandeo localizado de las fibras de madera en la superficie en compresión de la viga.

Ejercicio

Ejercicios

¿Cuál es el momento de torsión resultante en torno del pivote de la figura? Considerando que el peso de la barra curva es insignificante?

Ejercicios