GUIA - RESUMEN - MATERIALES NO METALICOS

65
MATERIALES INDUSTRIALES I [email protected] 1 - REPASO - TABLA PERIODICA DE LOS ELEMENTOS - EL CARBONO - PROPIEDAD DE LOS MATERIALES - CAUCHO - EL PETROLEO. POLIMEROS Y DERIVADOS - PLASTICOS DEFINICIONES: Sólido Dicho de un cuerpo: Que, debido a la gran cohesión de sus moléculas, mantiene forma y volumen constantes Polímero. Compuesto químico, natural o sintético, formado por polimerización y que consiste esencialmente en unidades estructurales repetidas. REPASO - TABLA PERIODICA DE LOS ELEMENTOS Tabla periódica de Mendeleiev La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación computacional de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia (columnas monocromáticas de hipotenusa a cuadrado PI) se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.

description

Resumen de materiales no metalicos

Transcript of GUIA - RESUMEN - MATERIALES NO METALICOS

Page 1: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

1

- REPASO - TABLA PERIODICA DE LOS ELEMENTOS - EL CARBONO - PROPIEDAD DE LOS MATERIALES - CAUCHO - EL PETROLEO. POLIMEROS Y DERIVADOS - PLASTICOS

DEFINICIONES:

Sólido Dicho de un cuerpo: Que, debido a la gran cohesión de sus moléculas, mantiene forma y volumen constantes

Polímero. Compuesto químico, natural o sintético, formado por polimerización y que consiste esencialmente en unidades estructurales repetidas. REPASO - TABLA PERIODICA DE LOS ELEMENTOS Tabla periódica de Mendeleiev

La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación computacional de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia (columnas monocromáticas de hipotenusa a cuadrado PI) se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.

Page 2: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

2

Grupos

las columnas verticales de la Tabla Periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre si. Por ejemplo los elementos en el grupo IA tienen valencia de 1 (un electrón su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los Gases Nobles, los cuales tienen su último nivel de energía lleno (regla del octeto) y por ello son todos extremadamente no-reactivos.

Los grupos de la Tabla Periódica, numerados de izquierda a derecha son:

Grupo 1 (IA): los metales alcalinos Grupo 2 (IIA): los metales alcalinotérreos Grupo 3 al Grupo 12: los metales de transición , metales nobles y metales mansos Grupo 13 (IIIA): Térreos Grupo 14 (IVA): carbonoideos Grupo 15 (VA): nitrogenoideos Grupo 16 (VIA): los calcógenos o anfígenos Grupo 17 (VIIA): los halógenos Grupo 18 (Grupo VIII): los gases nobles

Períodos

Las filas horizontales de la Tabla Periódica son llamadas Períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca de acuerdo a su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio, ambos tienen solo el orbital 1s.

La tabla periódica consta de siete períodos:

• Período 1 • Período 2 • Período 3 • Período 4 • Período 5 • Período 6 • Período 7

Page 3: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

3

Aplicaciones

La agrupación de los elementos en la tabla periódica hace que resalten sus propiedades y características. Por ejemplo, al ganar electrones los elementos aumentan en electronegatividad y lo hacen los elementos que están a la derecha y hacia arriba de la tabla periódica. Así, flúor es el elemento más electronegativo de la tabla periódica. La reactividad de los elementos aumenta al aumentar los períodos, haciendo que helio sea el elemento más inerte de la tabla periódica.

Las diferencias en energía de ionización también se pueden visualizar en la tabla periódica, aumentando con incrementos en el número atómico de los elementos. Así, los elementos del grupo 1 tienen la energía de ionización más baja y los gases nobles, la más alta.

Los elementos del grupo 1 son los más metálicos de la tabla periódica disminuyendo esta propiedad al aumentar el grupo hacia la derecha de la tabla.

Moleculas

Page 4: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

4

EL CARBONO Quimica del Carbono ( C )

Numero Atomico Z = 6 Peso Atomico A = 12

Su Núcleo cuenta con 6 Cargas electricas Positivas (Protones (H)) y 6 Cargas electricas (Neutrones) y con 6 Elecrones ( e¯ ) derredor del núcleo, los cuales se situan en el Nivel de Numero Cuantico principal n=1, con 2 e¯, mientras que en el Nivel siguiente n=2, mas alejado del núcleo, con los 4 e¯ de valencia. El “C” es moderadamente electronegativo. C + 4 e = C ¯4 ˙C˙ + 4e = [:C¨:]¯4 El ATOMO puede unirse a otro ATOMO diferente compartiendo: Un par de electrones, dos pares de electrones o tres pares de electrones; consecuentemente habrá tres tipos de enlaces covalentes: SIMPLE, DOBLE y TRIPLE (Regla del Octeto)

Page 5: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

5

GEOMETRIA DEL CARBONO Y EL HIDROGENO

TETRAEDRICO

El carbono es único en la química porque forma un número de compuestos mayor que la suma total de todos los otros elementos combinados.

Con mucho, el grupo más grande de estos compuestos es el constituido por carbono e hidrógeno. Se estima que se conoce un mínimo de 1.000.000 de compuestos orgánicos y este número crece rápidamente cada año. Aunque la clasificación no es rigurosa, el carbono forma otra serie de compuestos considerados como inorgánicos, en un número mucho menor al de los orgánicos.

El carbono elemental existe en dos formas alotrópicas cristalinas bien definidas: diamante y grafito. Otras formas con poca cristalinidad son carbón vegetal, coque y negro de humo (usado en la composición del caucho). El carbono químicamente puro se prepara por descomposición térmica del azúcar (sacarosa) en ausencia de aire. Las

Page 6: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

6

propiedades físicas y químicas del carbono dependen de la estructura cristalina del elemento. La “densidad” fluctúa entre 2.25 g/cm³ para el grafito y 3.51 g/cm³ para el diamante.

El punto de fusión del grafito es de 3500ºC y el de ebullición extrapolado es de 4830ºC.

El carbono elemental es una sustancia inerte, insoluble en agua, ácidos y bases diluidos, así como disolventes orgánicos.

A temperaturas elevadas se combina con el oxígeno para formar monóxido o dióxido de carbono. Con agentes oxidantes calientes, como ácido nítrico y nitrato de potasio, se obtiene ácido melítico C6(CO2H)6. De los halógenos sólo el flúor reacciona con el carbono elemental. Un gran número de metales se combinan con el elemento a temperaturas elevadas para formar carburos.

Con el oxígeno forma tres compuestos gaseosos: monóxido de carbono, CO, dióxido de carbono, CO2, y subóxido de carbono, C3O2. Los dos primeros son los más importantes desde el punto de vista industrial.

El carbono forma compuestos de fórmula general CX4 con los halógenos (Grupo VII), donde X es flúor, cloro, bromo o yodo. A temperatura ambiente el tetrafluoruro de carbono (CF4) es gas, el tetracloruro es un líquido y los otros dos compuestos son sólidos. También se conocen tetrahalogenuros de carbono mixtos. Quizá el más importante de ellos es el diclorodifluorometano, CCl2F2 llamado freón (Gas usado en la refrigeración).

El carbono y sus compuestos se encuentran distribuidos ampliamente en la naturaleza. Se estima que el carbono constituye 0.032% de la corteza terrestre.

El carbono libre se encuentra en grandes depósitos como hulla, forma amorfa del elemento con otros compuestos complejos de carbono-hidrógeno-nitrógeno. El carbono cristalino puro se halla como grafito y diamante.

Grandes cantidades de carbono se encuentran en forma de compuestos. El carbono está presente en la atmósfera en un 0.03% por volumen como dióxido de carbono. Varios minerales, como caliza, dolomita, yeso y mármol, tienen carbonatos.

Todas las plantas y animales vivos están formados de compuestos orgánicos complejos en donde el carbono está combinado con hidrógeno, oxígeno, nitrógeno y otros elementos. Los vestigios de plantas y animales vivos forman depósitos: de petróleo, alfalto y betún. Los depósitos de gas natural contienen compuestos formados por carbono e hidrógeno.

El elemento libre tiene muchos usos, que incluyen desde las aplicaciones ornamentales del diamante en joyería hasta el pigmento de negro de humo en llantas de automóvil (caucho) y tintas de imprenta. Otra forma del carbono, el grafito, se utiliza para crisoles de alta temperatura, electrodos de celda seca y de arco de luz, como puntillas de lápiz y como lubricante. El carbón vegetal, una forma amorfa del carbono, se utiliza como absorbente de gases y agente decolorante.

Los compuestos de carbono tienen muchos usos. El dióxido de carbono se utiliza en la carbonatación de bebidas, en extintores de fuego y, en estado sólido, como enfriador (hielo seco). El monóxido de carbono se utiliza como agente reductor en muchos procesos metalúrgicos. El tetracloruro de carbono y el disulfuro de carbono son disolventes industriales importantes. El freón se utiliza en aparatos de refrigeración. El carburo de calcio se emplea para preparar acetileno; es útil para soldar y cortar metales, así como para preparar otros compuestos orgánicos. Otros carburos metálicos tienen usos importantes como refractarios y como cortadores de metal.

Efectos del Carbono sobre la salud

El carbono elemental es de una toxicidad muy baja. Los datos presentados aquí de peligros para la salud están basados en la exposición al negro de carbono (…caucho), no carbono elemental. La inhalación continuada de negro de carbón puede resultar en daños temporales o permanentes a los pulmones y el corazón.

Se ha encontrado pneumoconiosis en trabajadores relacionados con la producción de negro de carbón. También se ha dado parte de afecciones cutáneas tales como inflamación de los folículos pilosos, y lesiones de la mucosa bucal debidos a la exposición cutánea.

Carcinogenicidad: El negro de carbón ha sido incluído en la lista de la Agencia Internacional de Investigación del Cáncer.

Page 7: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

7

El carbono-14 es uno de los radionucleidos involucrados en las pruebas nucleares atmosféricas, que comenzó en 1945, con una prueba americana, y terminó en 1980 con una prueba china. Se encuentra entre los radionucleidos de larga vida que han producido y continuarán produciendo aumento del riesgo de cáncer durante décadas y los siglos venideros. También puede atravesar la placenta, ligarse orgánicamente con células en desarrollo y de esta forma poner a los fetos en peligro.

Efectos ambientales del Carbono

No se tiene constancia de que el carbono tenga efectos negativos sobre el medio ambiente.

Page 8: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

8

Propiedad de los Materiales

Temas 1. Historia de los materiales y su clasificación 2. Tipos de materiales

3. enlaces existentes 4. ALEACIONES 5. Regla de las fases de GIBBS

1. Historia de los materiales y su clasificación

Los Materiales comúnmente encontrados son madera , hormigón , ladrillo , acero , plástico , vidrio , caucho , aluminio , cobre y papel . Existen muchos mas tipos de materiales y uno solo tiene que mirar a su alrededor para darse cuenta de ello . Debido al progreso de los programas de investigación y desarrollo , se están creando continuamente nuevos materiales. La búsqueda de nuevos materiales progresa continuamente . Por ejemplo los ingenieros mecánicos buscan materiales para altas temperaturas , de modo que los motores de reacción puedan funcionar mas eficientemente . Los ingenieros eléctricos procuran encontrar nuevos materiales para conseguir que los dispositivos electrónicos puedan operar a mayores velocidades y temperaturas con menor caida de tension, etc.

2. Tipos de materiales

Por conveniencia la mayoria de los materiales de estan divididos en tres grupos principales materiales metálicos , poliméricos , y cerámicos

Materiales metálicos; son sustancias inorgánicas que están compuestas de uno o mas elementos metálicos , pudiendo contener también algunos elementos no metálicos, ejemplo de elementos metalicos son hierro cobre , aluminio , niquel y titanio mientras que como elementos no metalicos podriamos mencionar al carbono.

Los materiales de cerámica , como los ladrillos , el vidrio, la loza , los ailantes y los abrasivos , tienen escasas conductividad tanto electrica como termica y aunque pueden tener buena resistencia y dureza son deficientes en ductilidad , conformabilidad y resistencia al impacto..

Polímero. (Definicion) Compuesto químico, natural o sintético, formado por polimerización y que consiste esencialmente en unidades estructurales repetidas.

Polimeros , en estos se incluyen el caucho (…contiene “C”) (el hule) , los plásticos y muchos tipos de adhesivos . Se producen creando grandes estructuras moleculares apartir de moléculas orgánicas obtenidas del petroleo o productos agrícolas (en este tema ahondaremos mas adelante).

Fases componentes de un sólido desde su estructura intermolecular

Una sustancia pura como el agua puede existir en las fases sólido, liquido y gas, dependiendo de las condiciones de temperatura y presión.

Un ejemplo familiar para todos de dos fases de una sustancia pura en equilibrio es un vaso de agua con cubos de hielo. En este caso el agua sólida y liquida, da lugar a dos fases distintas separadas por una fase limite, la superficie de los cubos de hielo.

Durante la ebullición del agua, el agua líquida y el agua vapor son dos fases en equilibrio. Una representación de las fases acuosas que existen bajo diferentes condiciones de presión y temperatura se muestra en el diagrama de fases presión-temperatura (PT) del agua que existe un punto triple a baja presión (4579 torr) (6.10 Bar o 6.03 Atm) y baja temperatura (0,0098 0C) donde las fases sólida, liquida y gaseosa coexisten.

Las fases liquida y gaseosa existen a lo largo de la línea de vaporización y las fases líquida y sólida a lo largo de la línea de congelación. Estas lineas son lineas de equilibrio entre dos fases.

Page 9: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

9

Diagrama de Fases del Agua (P-T)

PUNTO DE EBULLICION

Page 10: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

10

3. Enlaces existentes

Enlaces metálicos En metales en estado sólido , los átomos se encuentran empaquetados relativamente muy juntos en una ordenación sistemática o estructura cristalina . Por ejemplo la disposición de los átomos de cobre en el cobre cristalino consiste que los átomos están tan juntos que sus electrones externos de valencia son atraídos por los núcleos de sus numeroso vecinos . En el caso del cobre sólido cada átomo está rodeado por otros 12 átomos más próximos . Los electrones de valencia no están por lo tanto asociados férreamente a un núcleo en particular y así es posible que se extiendan entre los átomos en forma de una nube electrónica de carga de baja densidad o gas electrónico. Los átomos en un enlace metálico sólido se mantienen juntos por enlace metálico para lograr un estado de más baja energía ( o más estable) . Para el enlace metálico no hay restricciones sobre pares electrónicos como en el enlace covalente o sobre la neutralidad de carga como en el enlace iónico . En el enlace metálico los electrones de valencia más externos de los átomos son compartidos por muchos átomos circundantes y de este modo , en general , el enlace metálico no resulta direccional

Fuerzas de van der Waals Excepto en un gas muy dispersado las moléculas ejercen atracciones y repulsiones entre sí . Estas proceden fundamentalmente de interacciones dipolo-dipolo . Las moléculas no polares se atraen entre sí mediante interacciones débiles dipolo-dipolo llamadas fuerzas de London que surgen como consecuencia de dipolos inducidos en una molécula por otra. En este caso los electrones de una molecula son debilmente atraídos hacia el nucleo de otra pero entonces los electrones de esta son repelidos por los electrones de la primera. El resultado es una distribución desigual de la densidad electrónica y , en consecuencia , un dipolo incluido . Las diferentes interacciones dipolo-dipolo (atractivas y repulsivas) se denominan conjuntamente fuerzas de van der Waals . La distancia entre las moléculas juega un importante papel en la intensidad de dichas fuerzas . Se llama radio de van der Waals a la distancia a la que la fuerza atractiva es máxima .Cuando dos átomos se aproxima a distancias mas cortas que el radio de van der Waals , se desarrollan fuerzas repulsivas entre los núcleos y las capas electrónicas . Cuando la distancia entre dos moléculas es mayor al radio de van der Waals las fuerzas atractivas entre las moléculas disminuyen.

Page 11: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

11

Enlace iónico Los enlaces iónicos se pueden formar entre elementos muy electropositivos (metálicos) y elementos muy electronegativos (no metales) . En el proceso de ionización los electrones son transferidos desde los átomos de los elementos electropositivos a los átomos de los elementos electronegativos , produciendo cationes cargados positivamente y aniones cargados negativamente . Las fuerzas de enlace son debidas a la fuerza de atracción electrostática o culombiana entre iones con carga opuesta . Los enlaces ionicos se forman entre iones opuestamente cargados por que se produce una disminución neta de la energía potencial para los iones enlazados

Enlace covalente Un segundo tipo de enlace atómico primario es el enlace covalente . Mientras el enlace iónico involucra átomos muy electropositivos y electronegativos , el enlace covalente se forma entre átomos con pequeñas diferencias de electronegatividad y ubicados muy próximos en la tabla periódica . En el enlace covalnete los átomos generalmente comparten sus electrones externos s y p como otros átomos , de modo que cada átomo alcanza la configuración de gas noble. En un enlace covalente sencillo cada uno de los átomos contribuye con un electrón a la formación del par de electrones de enlace , y las energías de los dos átomos asociadas con el enlace covalente son menores (mas estables) como consecuencia de la interacción de los electrones . En el enlace covalente , se pueden formar enlaces mútiples de pares de eletrones por un átomo consigo mismo o con otros átomos.

4. ALEACIONES

Page 12: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

12

1 - ALEACION

Page 13: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

13

3 PROPIEDADES

Page 14: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

14

EJEMPLO – ALEACIONES METALICAS

Acero inoxidable.

1. Aleación de acero y cromo, níquel, etc., especialmente resistente a la corrosión.

Acero rápido.

1. El que contiene una proporción elevada de volframio, lo cual permite emplearlo para construir herramientas que han de actuar a gran velocidad.

-------------------------------------0------------------------------------

5. Regla de las fases de GIBBS

A partir de consideraciones termodinámicas, J. W. Gibbs1 obtuvo una ecuación que permitía calcular el número de fases que pueden coexistir en equilibrio en cualquier sistema. Esta ecuación, llamada regla de fases de Gibbs (aplicable únicamente a sistemas denominados Heterogéneos, en los que dos o mas fases fisicamente diferentes se encuentran en equilibrio, sin contener mas de una fase gaseosa), es:

P+F= C+2

Donde:

P = número de fases que pueden coexistir en el sistema elegido

C = número de componentes quimicos del sistema

F = Numero de Variables (Normalmente; Temperatura, Presion y Concentración) grados de libertad

2 = Constante

Normalmente, un componente C es un elemento, compuesto, o solución en el sistema. F son los grados de libertad, es decir, el número de variables (presión, temperatura y composición) que se pueden cambiar independientemente sin variar el número de fases en equilibrio en el sistema elegido.

Consideremos la aplicación de la regla de Gibbs al diagrama de fases presión-temperatura PT del agua pura. En el punto triple coexisten tres fases en equilibrio, y como hay un componente en el sistema (agua), se puede calcular el número de grados de libertad:

P+F=C+2 3 +F= 1+2

F = 3 - 3 F = O (cero grados de libertad)

Como ninguna de las variables (presión o temperatura) se puede cambiar e incluso manteniendo las tres fases de coexistencia, el punto triple es un punto invariante.

Consideremos ahora un punto de la curva de congelación sólido-liquido. En cualquier punto de esa línea hay dos fases que coexisten. Así, aplicando la regla de fases,

2+ F= 1+2 F = 1 (un grado de libertad)

Este resultado nos indica que tenemos un grado de libertad, y así, una variable (T o P) se puede cambiar manteniendo aun un sistema con dos fases que coexisten. Por tanto, si se específica una presión determinada, sólo hay una temperatura en la que las fases sólida y líquida coexisten.

Para un tercer caso, consideremos un punto, dentro de una fase única, en el diagrama de fases PT del agua. Sólo habrá una fase presente (P = 1), y sustituyendo en la ecuación de la regla de las fases:

1 +F= 1+2 F = 2 (dos grados de libertad)

Page 15: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

15

Este resultado nos indica que pueden ser cambiadas dos variables independientemente (presión y temperatura), y el sistema permanecerá en una única fase.

La mayor parte de los diagramas de fase binarios usados en Ciencia de Materiales son diagramas temperatura-composición, en los que la presión se mantiene constante, normalmente a una atm. En este caso, tenemos la regla de fases condensada, dada por

P+F=C+ 1

Sistemas de aleaciones isomorfas binarias Consideremos ahora una mezcla o aleación de dos metales en vez de sustancias puras. Una mezcla de dos metales se llama aleación binaria y constituye un sistema de dos componentes, puesto que cada elemento metálico en una aleación se considera un componente separado. Así, el cobre puro es un sistema de un único componente, mientras que una aleación de cobre y níquel es un sistema de dos componentes. Algunas veces un componente en la aleación se considera también un componente separado. Por ejemplo, aceros de carbono ordinario que contienen principalmente hierro y carburo se consideran sistemas de dos componentes.

En algunos sistemas binarios metálicos, los dos componentes son completamente solubles entre sí, tanto en estado sólido como liquido. En estos sistemas sólo existe un único tipo de estructura cristalina para todas las composiciones de los componentes y, por tanto, se llaman sistemas isomorfos. En relación a los dos elementos que se disuelven completamente entre si, normalmente satisfacen una o más de las siguientes condiciones formuladas por Hume-Rothery1 y conocidas como reglas de solubilidad de sólidos de Hume-Rothery: 1. Las estructuras cristalinas de cada elemento de la muestra deben ser iguales. 2. El tamaño de cada uno de los dos elementos no deben diferir en más del 15%. 3. Los elementos no deben formar compuestos entre si. No debe haber diferencias apreciables en las electronegatividades de los dos elementos. 4. Los elementos deben tener la misma valencia.

Todas las reglas de Hume-Rothery no son siempre aplicables para todos los pares de elementos que presentan solubilidad sólida. Un ejemplo importante de un sistema isomorfo de aleación binaria es el sistema cobre-níquel. Un diagrama de fase de este sistema con la temperatura como ordenada y la composición química en tanto por 100 en peso, como abscisa. Este diagrama se ha determinado para un sistema que se enfría lentamente o en condiciones de equilibrio con la presión atmosférica y no tiene aplicación para aleaciones que se enfrían rápidamente en el rango de la temperatura de solidificación. El área sobre la línea superior del diagrama, llamada liquidus, corresponde a la región de estabilidad de la fase líquida, y el área por debajo de la línea inferior, o solidus, representa la región de estabilidad para la fase sólida. Entre ambas líneas se representa una región de dos fases donde liquido y sólido coexisten.

En la región de una sola fase de solución sólida, tanto la temperatura como la composición han de ser especificadas si se quiere situar un punto en el diagrama de fases. Por ejemplo, a la temperatura de 1050 0C y 20 por 100 de Ni, se especifica el punto a del diagrama de fases Cu-Ni. La microestructura de la solución sólida a esta temperatura y composición aparece como la de un metal puro. Es decir, el único rasgo observable en el microscopio óptico serán los límites de grano. Sin embargo, debido a que la aleación es una solución sólida del 20% de Ni en Cu, ésta tendrá mucha más dureza y resistividad eléctrica que el cobre puro.

En la región entre las líneas liquidus y solidus, ambas fases existen. La cantidad de cada fase presente depende de la temperatura y la composición química de la aleación. Consideremos una aleación de 53% en peso de Ni, 47% en peso de Cu a 1300 0C. Puesto que esta aleación contiene las fases líquida y sólida a 1300 0C, ninguna de estas fases puede tener la composición promedio de 53% Ni y 47% Cu. La composición de las fases líquida y sólida se puede determinar al dibujar una isoterma desde la línea de liquidus a la de solidus a 1300 0C, y luego bajar verticales hasta el eje horizontal de las composiciones. La composición de la fase líquida (w1) a 1300 0C es 45% en peso de Ni y la de la fase sólida (w,> es del 58% en peso de Ni, como indica la intersección de las líneas verticales de trazos con el eje de composición.

Los diagramas binarios de equilibrio para componentes que son completamente solubles entre si en el estado sólido, se pueden construir a partir de una serie de curvas de enfriamiento liquido-sólido, Cu-Ní.

Las curvas de enfriamiento para metales puros muestran horizontales de estabilización térmica en sus puntos de solidificación, para el cobre y níquel puros en AB y CD. Las soluciones sólidas binarias presentan cambios de inclinación en sus curvas de enfriamiento en las líneas liquidus y solidus, con composiciones de 80% Cu-20% Ni, 50% Cu-50% Ni, y 20% Cu-80% Ni.

Page 16: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

16

CAUCHO

1.Propiedades físicas y químicas

El caucho bruto en estado natural es un hidrocarburo blanco o incoloro. El compuesto de caucho más simple es el isopreno o 2-metilbutadieno, cuya fórmula química es C5H8. A la temperatura del aire líquido, alrededor de -195 ºC, el caucho puro es un sólido duro y transparente. De 0 a 10 ºC es frágil y opaco, y por encima de 20 ºC se vuelve blando, flexible y translúcido. Al amasarlo mecánicamente, o al calentarlo por encima de 50 ºC, el caucho adquiere una textura de plástico pegajoso. A temperaturas de 200 ºC o superiores se descompone.

El caucho puro es insoluble en agua, álcalis o ácidos débiles, y soluble en benceno, petróleo, hidrocarburos clorados y disulfuro de carbono. Con agentes oxidantes químicos se oxida rápidamente, pero con el oxígeno de la atmósfera lo hace lentamente.

2.Origen histórico

Algunas propiedades y usos del caucho ya eran conocidos por los indígenas del continente americano mucho antes de que, a partir de 1492, los viajes de Colón llevaran el caucho a Europa. Los indios peruanos lo llamaban cauchuc, ‘impermeable’, de ahí su nombre. Durante muchos años, los españoles intentaron imitar, sin éxito, los productos de los nativos resistentes al agua (calzados, abrigos y capas). El caucho fue en Europa una mera curiosidad de museo durante los dos siglos posteriores.

En 1731, el gobierno francés envió en una expedición geográfica a América del Sur al geógrafo matemático Charles de La Condamine, quien, en el año 1736, hizo llegar a Francia varios rollos de caucho crudo junto con una descripción de los productos que fabricaban con ello las tribus del valle del Amazonas. Esto reavivó el interés científico por el caucho y sus propiedades. En 1770, el químico británico Joseph Priestley descubrió que las marcas y trazos hechos con lápices se borraban frotando con caucho, y de ahí surgió su nombre en inglés, rubber. La primera aplicación comercial del caucho fue obra, en 1791, del fabricante inglés Samuel Peal, que patentó un método para impermeabilizar tejidos, tratándolos con caucho disuelto en trementina. Charles Macintosh, químico e inventor

Page 17: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

17

británico, fundó en 1823 una fábrica en Glasgow para manufacturar tejidos impermeables y ropa para la lluvia, que lleva desde entonces su nombre.

Page 18: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

18

3.

Desarrollo de los procesos de producción

En 1834, el químico alemán Friedrich Ludersdorf y su colega estadounidense Nathaniel Hayward descubrieron que si le añadían azufre a la goma de caucho, reducían y eliminaban la pegajosidad de los artículos de caucho. En 1839, el inventor estadounidense Charles Goodyear, basándose en las averiguaciones de los químicos anteriores, descubrió que cociendo caucho con azufre desaparecían las propiedades no deseables del caucho, en un proceso denominado vulcanización. El caucho vulcanizado tiene más elasticidad y mayor resistencia a los cambios de temperatura que el no vulcanizado; además es impermeable a los gases y resistente a la abrasión, a los agentes químicos, al calor y a la electricidad. También posee un alto coeficiente de rozamiento en superficies secas y un bajo coeficiente de rozamiento en superficies mojadas por agua.

4.Recuperación de desechos

Poco después de la invención del neumático o llanta de goma en 1887, el fabricante estadounidense Chapman Mitchel fundó una nueva rama de la industria introduciendo un proceso de recuperación del caucho de desecho con ácido, reciclándolo para usarlo en nuevos productos. Para ello empleó ácido sulfúrico, que destruye los tejidos incorporados al caucho, y después, al calentarlo, consiguió que el caucho adquiriera la plasticidad suficiente para incorporarlo en lotes de caucho crudo. Alrededor de 1905, el químico estadounidense Arthur H. Marks inventó el proceso de recuperación alcalina y estableció el primer laboratorio de fábrica de caucho. Este método permitió reciclar grandes cantidades de caucho sin rebajar sustancialmente la calidad del producto acabado. Al año siguiente, el químico estadounidense George Oenslager, que trabajaba en el laboratorio de Marks investigando el uso de caucho de baja graduación en los procesos de fabricación, descubrió aceleradores orgánicos de la vulcanización, como la fenilamina y la tiocarbanilida. Estos aceleradores no sólo reducían en un 60-80% el tiempo necesario de calentamiento para la vulcanización, sino que además mejoraban la calidad del producto.

5.

Prolongación de la vida del caucho

El siguiente gran avance en la tecnología del caucho llegó una década más tarde con la invención del horno acelerador del envejecimiento del caucho para medir su deterioro. Este horno conseguía duplicar en pocos días los resultados de años de uso corriente. Ello permitió a los técnicos medir rápidamente el deterioro causado por ciertas condiciones, en especial la exposición al oxígeno de la atmósfera. El uso de estos hornos llevó a los científicos a añadir agentes antioxidantes al caucho, consiguiendo prolongar la vida de productos como los neumáticos de los automóviles. En pocos años surgieron nuevos compuestos químicos que ralentizaron marcadamente el deterioro de artículos de caucho blando, como guantes, láminas y tuberías.

Otro gran avance en la tecnología del caucho ha sido el empleo de látex no coagulado. Se desarrollaron métodos para moldear el caucho en fibras finas destinadas a la manufactura de tejidos, como los usados para ropa elástica, y también para el electrochapado del caucho en metales y otros materiales.

6. Aditivos

En la mayoría de los casos, el caucho bruto se mezcla con numerosas sustancias que modifican sus características. Existen aditivos que estiran el caucho pero no lo endurecen materialmente, como el carbonato de calcio y la baritina o sulfato de bario. También se añaden otras sustancias reforzantes para dar dureza al producto final, como el negro de humo, el óxido de cinc, el carbonato de magnesio y ciertas arcillas. Otros aditivos que se emplean son pigmentos, como el óxido de cinc, el litopón y muchos tintes orgánicos, y ablandadores, como ciertos derivados del petróleo (aceites y ceras), la brea de pino o los ácidos grasos, que se usan cuando el caucho es demasiado rígido para mezclarse con otras sustancias.

El principal agente vulcanizante sigue siendo el azufre. El selenio y el teluro también se emplean, pero generalmente con una elevada proporción de azufre. En la fase de calentamiento del proceso de vulcanización, se mezcla el azufre con el caucho a la vez que con el resto de los aditivos. La proporción azufre-caucho varía entre un 1:40 para el caucho blando hasta un 1:1 en el caucho duro. La vulcanización en frío, que se utiliza para fabricar artículos de caucho blando como guantes y artículos de lencería, se lleva a cabo por exposición al vapor de cloruro de azufre (S2Cl2). Los agentes aceleradores de la vulcanización que se empleaban en un principio eran solamente óxidos

Page 19: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

19

metálicos como el blanco de plomo y la cal. A partir de los descubrimientos de Oenslager se empezaron a utilizar una gran variedad de aminas orgánicas.

7. Máquinas masticadoras

Antes de mezclarlo con otras sustancias, el caucho es sometido a un proceso de trituración, llamado masticación, que lo vuelve suave, pegajoso y plástico. En este estado, el caucho está en mejores condiciones para mezclarse con otras sustancias como pigmentos, agentes vulcanizantes y otros aditivos secos.

8.

Máquinas mezcladoras

El siguiente paso del proceso son las máquinas mezcladoras. Éstas se asemejan a las máquinas masticadoras, ya que en ambos casos tienen dos rodillos, pero en las mezcladoras, ambos rodillos giran en sentidos opuestos, mientras que en las masticadoras giran en el mismo sentido, pero a diferente velocidad. También se utilizan máquinas mezcladoras de cilindros cerrados para elaborar disoluciones y pegamentos de caucho mezclado con disolventes. Estos productos líquidos del caucho se emplean en tejidos impermeables y en artículos a los que se da forma introduciendo un molde en la disolución, como en el caso de los guantes de goma. Sin embargo, los ingredientes se mezclan casi siempre en frío para su posterior satinación, extrusión u otro proceso previo a la vulcanización.

9.

Satinación

Una vez plastificado y mezclado con otros ingredientes, el caucho pasa a un proceso de satinación o extrusión, dependiendo del uso que se le quiera dar. Las satinadoras son máquinas que consisten en tres, cuatro o cinco rodillos del mismo diámetro. La velocidad de rotación y la distancia entre los rodillos son regulables, según el producto que se desee elaborar. Las satinadoras se usan para producir láminas de caucho con o sin dibujos, como las estrías en los neumáticos de los automóviles, para comprimir el caucho y darle textura de tejidos o cuerdas, y para revestimiento del caucho con más capas. Los productos obtenidos con las satinadoras pasan generalmente por otros procesos, como en el caso de la fabricación de neumáticos, antes de su vulcanización.

Page 20: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

20

10.

Extrusión

En este proceso se prensa el caucho a través de troqueles, haciendo tiras aplastadas, tubulares o de una forma determinada. Este proceso se emplea en la fabricación de tuberías, mangueras y productos para sellar puertas y ventanas. También existen procesos de extrusión específicos para el revestimiento de fibras en forma de tubo para mangueras a presión.

11.

Vulcanización

Una vez fabricados, la mayoría de los productos del caucho se vulcanizan bajo presión y alta temperatura. Muchos productos se vulcanizan en moldes y se comprimen en prensas hidráulicas, aunque la presión necesaria para una vulcanización eficaz se puede conseguir sometiendo el caucho a la presión externa o interna del vapor durante el calentamiento. Algunos tipos de mangueras para jardinería se revisten con plomo, y se vulcanizan haciendo pasar vapor a alta presión por la abertura de la manguera, comprimiéndose la manguera de caucho contra el plomo. Una vez acabado el proceso, el plomo se saca de la manguera y se funde para volverlo a usar. Del mismo modo se emplea el revestimiento de estaño para producir ciertos aislantes eléctricos de alta capacidad.

12. Aplicaciones

Comparado con el caucho vulcanizado, el caucho no tratado tiene muy pocas aplicaciones. Se usa en cementos, cintas aislantes, cintas adhesivas y como aislante en mantas y zapatos. El caucho vulcanizado tiene otras muchas aplicaciones. Por su resistencia a la abrasión, el caucho blando se utiliza en los dibujos de los neumáticos de los automóviles y en las cintas transportadoras; el caucho duro se emplea para fabricar carcasas de equipos de bombeo y tuberías utilizadas para perforaciones con lodos abrasivos.

Por su flexibilidad, se utiliza frecuentemente para fabricar mangueras, neumáticos y rodillos para una amplia variedad de máquinas, desde los rodillos para escurrir la ropa hasta los instalados en las rotativas e imprentas. Por su elasticidad se usa en varios tipos de amortiguadores y mecanismos de las carcasas de máquinas para reducir las vibraciones. Al ser relativamente impermeable a los gases se emplea para fabricar mangueras de aire, globos y colchones. Su resistencia al agua y a la mayoría de los productos químicos líquidos se aprovecha para fabricar ropa impermeable, trajes de buceo, tubos de laboratorio y sondas para la administración de medicamentos, revestimientos de tanques de almacenamiento, máquinas procesadoras y vagones aljibes para trenes. Por su resistencia a la electricidad, el caucho blando se utiliza en materiales aislantes, guantes protectores, zapatos y mantas, y el caucho duro se usa para las carcasas de teléfonos, piezas de aparatos de radio, medidores y otros instrumentos eléctricos. El coeficiente de rozamiento del caucho, alto en superficies secas y bajo en superficies húmedas, se aprovecha para correas de transmisión y cojinetes lubricados con agua en bombas para pozos profundos.

Page 21: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

21

CAUCHO SINTÉTICO

1.

Desarrollo

Hubo que esperar hasta 1930 para que dos químicos, el estadounidense Wallace Hume Carothers y el alemán Hermann Staudinger, investigaran y contribuyeran al descubrimiento de los polímeros como moléculas gigantes, en cadena, compuestas de un gran número de monómeros. Entonces se consiguió sintetizar caucho de monómeros distintos al isopreno.

La investigación iniciada en Estados Unidos durante la II Guerra Mundial condujo a la síntesis de un polímero de isopreno con una composición química idéntica al caucho natural.

El isopreno que es la base que forma el caucho “natural”, tiene una estructura conjugada.

2.

Tipos de caucho sintético

Se producen varios tipos de caucho sintético: neopreno, buna, caucho de butilo y otros cauchos especiales.

Page 22: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

22

1.

Neopreno

Uno de los primeros cauchos sintéticos logrados gracias a la investigación de Carothers fue el neopreno, el polímero

del monómero cloropreno, de fórmula Las materias primas del cloropreno son el etino y el ácido clorhídrico. El neopreno fue desarrollado en 1931 y es resistente al calor y a productos químicos como aceites y petróleo. Se emplea en tuberías de conducción de petróleo y como aislante en cables y maquinaria.

2. Buna o caucho artificial

Químicos alemanes sintetizaron en 1935 el primero de una serie de cauchos sintéticos llamados buna o cauchos buna, obtenidos por copolimerización, que consiste en la polimerización de dos monómeros denominados comonómeros. La palabra buna se deriva de las letras iniciales de butadieno, uno de los comonómeros, y natrium

(sodio), empleado como catalizador. En la buna N, el otro comonómero es el propenonitrilo , que se produce a partir del ácido cianhídrico. La buna N es muy útil en aquellos casos en los que se requiere resistencia a la acción de aceites y a la abrasión. También se obtiene caucho industrialmente por copolimerización de butadieno y estireno (buna S).

3.

Caucho de butilo

Este tipo de caucho sintético, producido por primera vez en 1949, se obtiene por copolimerización de isobutileno con butadieno o isopreno. Es un plástico y puede trabajarse como el caucho natural, pero es difícil de vulcanizar. Aunque no es tan flexible como el caucho natural y otros sintéticos, es muy resistente a la oxidación y a la acción de productos corrosivos. Debido a su baja permeabilidad a los gases, se utiliza en las cámaras interiores de los neumáticos.

4.

Otros cauchos especiales

Se han desarrollado numerosos tipos de cauchos con propiedades específicas para aplicaciones y usos especiales. Uno de estos cauchos especiales es el coroseal, un polímero de cloruro de vinilo (CH2=CHCl). Estos polímeros son resistentes al calor, la corrosión y la electricidad, y no se deterioran por la acción de la luz ni por un almacenamiento prolongado. El coroseal no se puede vulcanizar, pero mientras no se le someta a altas temperaturas, se muestra más resistente a la abrasión que el caucho natural o el cuero.

Otro tipo de caucho especial es el tiocol, que se obtiene por copolimerización de dicloruro de etileno (CHCl]CHCl) y tetrasulfuro de sodio (Na2S4). Puede trabajarse y vulcanizarse como el caucho natural y es resistente a la acción de los aceites y los disolventes orgánicos usados en barnices; se emplea para aislamientos eléctricos pues no se deteriora con la luz ni la electricidad.

Muchos otros tipos de caucho sintético se producen con métodos parecidos a los antes descritos. La introducción de algunos cambios en los procesos de polimerización ha mejorado la calidad de los productos y abaratado costes. Uno de los mayores avances ha sido la utilización del petróleo como aditivo, bajando los costes al poder conservarse grandes cantidades de caucho sintético almacenado. Gracias a ello se ha conseguido fabricar neumáticos de larga duración. Otros dos avances importantes son el desarrollo de la espuma de caucho sintética, que se usa en tapicería, colchones y almohadas, y el caucho bruto de superficie arrugada, para la industria del calzado.

Page 23: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

23

EJEMPLO DE MATERIALES DE LA INDUSTRIA EN GENERAL DONDE SE ENCUENTRA EL CAUCHO:

MANGUERAS, CINTAS TRANPORTADORAS, O´RINGS

CINTAS TRANSPORTADORAS

Page 24: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

24

MANGUERAS PARA INYECCION DE LODO DE PERFORACION

MANGUERA PARA CONDUCCION DE LODO DE PERFORACION, GASES Y CRUDO.

Page 25: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

25

MANGUERA PARA IMPULSION DE PETROLEO CON AGUA DE FORMACION

-------------------------0-----------------------

Page 26: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

26

El petróleo. Polímeros y derivados

Temas

1. Introducción 2. Las Aminas 3. El Amoniaco 4. El Petróleo 5. Proceso de separación y obtención 6. Derivados y usos del petróleo 7. Los polímeros

INTRODUCCIÓN

El petróleo es la fuente de energía más importante de la sociedad actual, si nos ponemos a pensar qué pasaría si se acabara repentinamente, enseguida nos daríamos cuenta de la dimensión de la catástrofe: los aviones, los automóviles y autobuses, gran parte de los ferrocarriles, los barcos, las máquinas de guerra, centrales térmicas, muchas calefacciones dejarían de funcionar; además de que los países dependientes del petróleo para sus economías se hundirían en la miseria.

Así mismo, sus derivados son de gran importancia en nuestra vida moderna, puesto que casi todo los que compramos, vemos, y tocamos están fabricados con polímeros u algún otro tipo de material subderivado de los polímeros. Es así que en el presente trabajo de investigación estudiaremos a fondo lo que son los polímeros, sus características, productos obtenidos ó fabricados con ellos, los tipos de polímeros existentes, las aminas, y demás conceptos relacionados con el petróleo, sus derivados y su proceso de obtención.

Page 27: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

27

LAS AMINAS.

Estructura

Casi todos los compuestos orgánicos vistos hasta ahora son bases, aunque muy débiles Gran parte de la química de los alcoholes, éteres, ésteres y aun alquenos e hidrocarburos aromáticos puede comprenderse en función de la basicidad de estos compuestos.

De las sustancias orgánicas que muestran basicidad apreciable (por ejemplo, aquellas con fuerza suficiente para azulear al tornasol rojo), las más importantes son las aminas. Una amina tiene la fórmula general RNH2, R2NH o R3N, donde R es un grupo alquilo o arilo.

Por ejemplo:

Clasificación

Las aminas se clasifican en primarias, secundarias o terciarias, según el número de grupos que se unen al nitrógeno.

Page 28: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

28

En relación con sus propiedades fundamentales basicidad y la nucleofilicidad que la acompañan-, las aminas de tipo diferentes son prácticamente iguales. Sin embargo, en muchas de sus reacciones, los productos finales dependen del número de átomos de hidrógeno unidos al de nitrógeno, por esa razón son diferentes para aminas de distintos tipos.

Nomenclatura

Las aminas alifáticas se nombran por el grupo, o grupos, alquilo unido al nitrógeno seguido de la palabra amina. Las más complejas se suelen nombrar colocando junto al nombre de la cadena matriz el prefijo amino (o N-metilamino, N,N-dimetilamino, etc.).

Las aminas aromáticas, donde el nitrógeno está directamente unido a un anillo aromático, por lo general se nombran como derivados de la más sencilla de ellas, la anilina. Un aminotolueno recibe la denominación especial de toluidina. Por ejemplo:

Las sales de las aminas suelen tomar su nombre al reemplazar amina por amonio (o anilina por anilino) y anteponer el nombre del anión (cloruro de, nitrato de, sulfato de, etc.).

Page 29: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

29

Propiedades físicas de las aminas

Como el amoniaco, las aminas son compuestos polares y pueden formar puentes de hidrógeno intermoleculares, salvo las terciarias. Las aminas tienen puntos de ebullición más altos que los compuestos no polares de igual peso molecular, pero inferiores a los de alcoholes o ácidos carboxílicos.

Los tres tipos de aminas pueden formar enlaces de hidrógeno con el agua. Como resultados, las aminas menores son bastantes solubles en agua y tienen solubilidad límite al tomar unos seis átomos de carbono. Son solubles en disolventes menos polares, como éter, alcohol, benceno, etc. Las metil y etilaminas huelen muy semejante al amoniaco. Las alquilaminas superiores tienen olor a pescado en descomposición.

Las aminas aromáticas suelen ser muy tóxicas, ya que son absorbidas por la piel, con resultados a menudo fatales. Las aminas aromáticas se oxidan fácilmente al aire y con frecuencia se las encuentra coloreadas por productos de oxidación, aunque son incoloras cuando están puras.

Fuente industrial

Algunas de las aminas más sencillas e importantes se preparan a escala industrial mediante procesos que no tienen aplicación como métodos de laboratorio. La amina más importante de todas, la anilina, se prepara de varias maneras: (a) por reducción de nitrobenceno con hierro y ácido clorhídrico, que son reactivos baratos (o bien, por hidrogenación catalítica,) (b) por tratamiento del clorobenceno con amoniaco a

Page 30: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

30

Temperaturas y presiones elevadas, en presencia de un catalizador, Veremos que el proceso (b) es una sustitución nucleofílica aromática.La metilamina, dimetilamina y trimetilamina se sintetizan industrialmente con metanol y amoniaco:

Los halogenuros de alquilo se emplean para hacer algunas alquilaminas superiores, lo mismo que en el laboratorio. Los ácidos obtenidos de las grasas.

Pueden convertirse en 1-aminoalcanos de cadena larga con número par de carbonos por la reducción de nitrilos.

EL AMONIACO. Amoníaco o amoniaco es un compuesto químico cuya molécula consiste en un átomo de nitrógeno (N) y tres átomos

de hidrógeno (H) de acuerdo a la fórmula NH3

La molécula no es plana, sino que tiene la forma de un tetraedro con un vértice vacante. Esto se debe a la formación de orbitales híbridos sp3. En disolución acuosa se puede comportar como una base y formarse el ión amonio, NH4

+, con un átomo de hidrógeno en cada vértice del tetraedro:

Nitrógeno:

El nitrógeno fue descubierto por el botánico escocés Daniel Rutherford en 1772. Este científico observo que cuando encerraba u ratón en un frasco sellado, el animal consumía rápidamente el oxígeno y moría. Cuando se eliminaba el aire fijo (CO2) del recipiente quedaba un aire nocivo, el nitrógeno. El nitrógeno constituye el 78% en volumen de la atmósfera terrestre donde esta presente en forma de moléculas de N2. Aunque es un elemento clave en los organismos vivos los compuestos de nitrógeno no abundan en la corteza terrestre, los depósitos naturales de nitrógeno son los de KNO3 en la India y NaNO3 en Chile y otras regiones desérticas de América.

Propiedades

• Gas incoloro, inodoro, insípido compuesto por moléculas de N2 • Punto de fusión es de –210ºC • Punto de ebullición normal es de –196ºC • La molécula es muy poco reactiva a causa del fuerte enlace triple entre los átomos de nitrógeno • Cuando las sustancias arden en el aire normalmente reaccionan con el O2 pero no con el N2. Sin embargo

cuando el Magnesio arde en el aire, también ocurre la reacción con el N2 para formar nitruro de magnesio (Mg3N2) • El elemento exhibe todos los estadios de oxidación desde +5 hasta –3, los estados +5, 0 y –3 son los mas

comunes (HNO3, N2 y HN3 resp.) y estables.

Compuestos hidrogenados de nitrógeno:

El amoníaco (NH3) es uno de los compuestos mas importantes de nitrógeno. Es un gas tóxico incoloro que tiene un olor irritante característico. En el laboratorio se puede preparar por la acción del NaOH con una sal de amonio (NH4). El ion NH4+ que es el ácido conjugado del amoniaco (NH3) transfiere un protón al OH-. El NH3 resultante es volátil y se expulsa de la solución por calentamiento moderado: NH4Cl (ac) + NaOH (ac) NH3 (g) + H2O (l) + NaCl (ac)

La producción comercial de NH3 se lleva a cabo por el proceso Haber: N2 (g) + 3 H2 (g) 2 NH3 (g).

Asimilación: Predominantemente las plantas verdes asimilan nitrógeno como nitrato, si bien el amoniaco puede también servir como fuente de nitrógeno. El nitrógeno que se asimila bajo la forma de nitrato tiene que ser reducido en la célula a amoniaco para que pueda incorporarse como grupo amino a dos aminoácidos: el ácido glutámico y ácido apartijo. Estos dos aminoácidos son los precursores de todos los compuestos nitrogenados de la materia viva. Las proteínas y ácidos nucleicos son los principales componentes nitrogenados del material celular.

Page 31: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

31

Transformaciones del nitrógeno orgánico y formación de amoniaco:

Los compuestos orgánicos nitrogenados que sintetizan las plantas son utilizados como fuentes de nitrógeno por todo el reino animal. Cuando los animales asimilan materias vegetales, hidrolizan en mayor o menor grado los complejos compuestos nitrogenados pero el nitrógeno queda en su mayor parte en forma orgánica reducida. La excreción del nitrógeno varía según los grupos: los invertebrados excretan predominantemente amoniaco, en tanto que los vertebrados eliminan además productos orgánicos. El ser humano (como los animales) elimina el nitrógeno en forma de urea. La urea que desechan los animales es rápidamente mineralizada por microorganismos del suelo transformándola en CO2 y NH3. Algunos grupos de bacteria que producen la ureasa están adaptados especialmente para llevar a cabo esta reacción, por lo tanto se benefician no solo por obtener una fuente de amoniaco sino por provocar la inhibición de otros microorganismos que no resisten ambientes alcalinos.

Cuando una planta o animal muere las sustancias que componen sus cuerpos son atacadas por microorganismos, y los compuestos nitrogenados se descomponen formando amoniaco. Parte de ese nitrógeno es asimilado por los microorganismos pasando a formar parte de los componentes del a célula microbiana. Al morir estas células el nitrógeno se convierte en amoniaco nuevamente

Amonificación: Consiste en la hidrólisis de proteínas y ácidos nucleicos con liberación de aminoácidos y bases orgánicas nitrogenadas. Estos compuestos se descomponen por respiración o fermentación.

Nitrificación: Es la conversión de amoniaco en nitrato, forma en que el nitrógeno es asimilado por las plantas. La nitrificación tiene lugar en dos fases

• la primera, el amoniaco es oxidado a nitrito por la acción de los organismos del grupo Nitrosomas • la segunda, el nitrito es oxidado a nitrato por acción de los organismos del grupo Nitrobacter

Como consecuencia de la acción combinada de estas bacteria, el amoniaco que se forma durante la mineralización de la materia orgánica se oxida rápidamente a nitrato, que es la principal sustancia nitrogenada del suelo.

Desnitrificaron: Muchos tipos de bacterias usan nitrato en lugar de oxigeno como aceptor final de hidrogeno. Cuando, a consecuencia de la respiración de las bacterias, la materia orgánica del suelo se descompone y el ambiente se hace anaerobio, el nitrato que puede haber principal producto de la desnitrificación es el nitrógeno molecular. Por lo tanto, por medio de este proceso, el nitrógeno es removido del suelo y se convierte en gas pasando nuevamente a la atmósfera.

Fijación de nitrógeno: clases En la naturaleza existen dos tipos principales de fijación de nitrógeno:

• fijación simbiótica: es consecuencia de la asociación intima entre una planta y una bacteria (en este caso), ninguna de las cuales puede fijar nitrógeno aisladamente.

• fijación no simbiótica: es poco significativa..

Propiedades

General

Nombre Amoníaco

Fórmula química NH3

Apariencia Gas incoloro

Físicas

Masa molecular 17.0 uma

Punto de fusión 195 K (-78 °C)

Page 32: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

32

Punto de ebullición 240 K (-33 °C)

Densidad 8.0 ×103 kg/m3 (líquido)

Solubilidad 46 g en 100g agua

Riesgos

Ingestión Es peligroso. Síntomas incluyen nausea y vómitos; daño a los labios, boca y esófago.

Inhalación Los vapores son extremadamente irritantes y corrosivos.

Piel Soluciones concentradas pueden producir quemaduras severas y necrosis.

Ojos Puede causar daños permanentes, incluso en cantidades pequeñas.

Más información Chemical Database

Unidades del SI. Salvo indicación en contra en condiciones normales de presión y temperatura.

Exenciones y referencias

EL PETROLEO.

La etimología de la palabra PETROLEO, PETRO= roca y OLEUM= aceite, gramaticalmente significa aceite de roca. Si este aceite se analiza para verificar su constitución química orgánica , por contener el elemento Carbono (C) en sus moléculas, se encontrará una extensiva variedad de compuestos formados con hidrogeno (H) denominados HIDROCARBUROS. Los hidrocarburos son gaseosos, líquidos, semisólidos y sólidos, como aparecen en sitios de la superficie terrestre, o gaseosos y líquidos en la formaciones geológicas del subsuelo.

CARACTERISTICAS FISICAS Y QUIMICAS DEL PETROLEO.

• Color:

Generalmente se piensa que todos los crudos son de color negro, lo cual ha dado origen a cierta sinonimia y calificativos: "oro negro", "más negro que el petróleo crudo". Sin embargo por transmisión de la luz, los crudos pueden tener color amarillo pálido, tonos de rojo y marrón hasta llegar a negro. Por reflexión de la luz pueden aparecer verdes, amarillos con tonos azules, rojo, marrón y negro. Los crudos pesados y extrapesados son negro casi en su totalidad. Crudos con altísimo contenido de cera son livianos y de color amarillo; por la noche al bajar bastante la temperatura tienden a solidificarse notablemente y durante el día, cuando arrecia el sol, muestra cierto hervor en el tanque. El crudo más liviano o condensado llega a tener un color blanquecino, lechoso y a veces se usa en el campo como gasolina cruda.

• Olor:

El olor de los crudos es aromático como el de la gasolina, del querosene u otros derivados. Si el crudo contiene azufre tiene un olor fuerte y hasta repugnante, como el de huevo podrido. Si contiene sulfuro de hidrogeno, los vapores son irritantes, tóxicos y hasta mortíferos. Para atestiguar la buena o rancia calidad de los crudos es común que la industria los designe como dulces o agrios.

• Densidad:

Los crudos pueden pesar menos que el agua (livianos y medianos) o tanto o más que el agua (pesados y extrapesados). De allí que la densidad pueda tener un valor de 0,75 a 1,1. Estos dos rangos equivalen a 57,2 y -3 ºAPI.

La densidad, la gravedad especifica o los grados API (API es la abreviatura de American Petroleum Institute ). Denota la relación correspondiente de peso específico y de fluidez de los crudos con respecto al agua.

Gravedad Especifica = 140 / 130 + n.

Gravedad Especifica = 145 / 145 – n.

Page 33: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

33

N = representa la lectura en grados indicada por el hidrometro Baumé inmerso en el liquido.

La ecuación general de API es la siguiente:

Gravedad especifica = 141,5 / 131,5 + ºAPI.

(a 60 ºF ó 15,5 ºC).

ºAPI = 141,5 / gravedad especifica – 131,5

La clasificación de los crudos por rango de gravedad ºAPI utilizada en la industria venezolana de los hidrocarburos, a 15,5 ºC (60 ºF) es como sigue:

Extrapesados, menos de 16 º.

Pesados, menos de 21,9 º.

Medianos 22,0 – 29,9 º.

Livianos 30 º y más.

Superlivianos 40 º en adelante.

• Sabor:

El sabor de un crudo es una propiedad que se torna importante cuando el contenido de sal es bastante alto. Esta circunstancia requiere que el crudo sea tratado adecuadamente en las instalaciones de producción del campo para ajustarle la sal al mínimo (gramos por metro cúbico) aceptable por compradores y refinerías.

• Índice de refracción:

Medido con un refractómetro, los hidrocarburos acusan valores de 1,39 a 1,49. Se define como la relación de la velocidad de la luz al pasar de uno a otro cuerpo.

• Coeficiente de expansión:

Varía entre 0,00036 y 0,00096. Temperatura ºC por volumen.

• Punto de ebullición:

No es constante, Debido a sus constituyentes varía algo menos que la temperatura atmosférica hasta la temperatura igual o por encima de 300 ºC.

• Punto de congelación:

Varía desde 15,5 ºC hasta la temperatura de -45 ºC. Depende de las propiedades y características de cada crudo o derivado. Este factor es de importancia al considerar el transporte de los hidrocarburos y las estaciones, principalmente el invierno y las tierras gélidas.

• Punto de deflagración:

Varía desde -12 ºC hasta 110 ºC. Reacción vigorosa que produce calor acompañado de llamas y/o chispas.

• Punto de quema:

Varía desde 2 ºC hasta 155 ºC.

• Poder calorífico:

Puede ser entre 8.500 a 11.350 calorías/gramo. Entre BTU/libra puede ser de 15.350 a 22.000. (BTU es la unidad térmica británica).

• Calor especifico:

Varía entre 0,40 y 0,52. El promedio de la mayoría de los crudos es de 0,45. Es la relación de cantidad de calor requerida para elevar su temperatura un grado respecto a la requerida para elevar un grado la temperatura de igual volumen o masa de agua.

Page 34: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

34

• Calor latente de vaporización:

Para la mayoría de los hidrocarburos parafínicos y metilenos acusa entre 70 a 90 kilocalorías/kilogramo ó 130 a 160 BTU/libra.

• Viscosidad:

La viscosidad es una de las características más importantes de los hidrocarburos en los aspectos operacionales de producción, transporte, refinación y petroquímica. La viscosidad, que indica la resistencia que opone el crudo al flujo interno, se obtiene por varios métodos y se le designa por varios valores de medición. El poise o centipoise (0,01 poise) se define como la fuerza requerida en dinas para mover un plano de un centímetro cuadrado de área, sobre otro de igual área y separado un centímetro de distancia entre sí y con el espacio relleno del líquido investigado, para obtener un desplazamiento de un centímetro en un segundo. La viscosidad de los crudos en el yacimiento puede tener 0,2 hasta más de 1.000 centipoise. Es muy importante el efecto de la temperatura sobre la viscosidad de los crudos, en el yacimiento o en la superficie, especialmente concerniente a crudos pesados y extrapesados.

o Viscosidad relativa: es la relación de la viscosidad del fluido respecto a la del agua. A 20 ºC la viscosidad del agua pura es de 1.002 centipoise.

o Viscosidad cinemática: es equivalente a la viscosidad expresada en centipoises dividida por la gravedad específica, a la misma temperatura. Se designa en stokes o centistokes.

o Viscosidad Universal Saybolt: representa el tiempo en segundos para que un flujo de 60 centímetros cúbicos salga de un recipiente tubular por medio de un orificio, debidamente calibrado y dispuesto en el fondo del recipiente, el cual se ha mantenido a temperatura constante.

LOS PROCESOS DE SEPARACIÓN Y

TRANSFORMACIÓN DEL PETROLEO.

El petróleo crudo una vez extraído del pozo, sube por los cabezales de producción que se encuentran ubicados en la parte superior (boca del pozo) del pozo. Este crudo sigue un trayecto y va a un tren de separadores que se encuentran ubicados en los campos de producción. Debido a que el petróleo en su forma natural se encuentra en los pozos acompañado de gas, agua, sedimentos e impurezas, debe ser separado de cada uno de estos elementos, He allí donde aparecen los trenes de separadores, los cuales son unas especies de tanques donde el petróleo crudo entra por la parte superior y debido a la gravedad él se va separando. Los sedimentos se van al fondo, el agua se queda en la parte media entre los sedimentos y el crudo y el gas en la parte superior.

Este crudo una vez que sale del separador, sale acompañado con el gas. Este gas se separa del crudo mediante dispositivos especiales para esta tarea, donde el gas es secado o atrapado por medio de absorción ó adsorción.

Una vez que el crudo se encuentra totalmente limpio, se transporta por medio de oleoductos a los puntos de refinación ó refinarías.

Los procesos de refinación son muy variados y se diferencian unos de otros por los conceptos científicos y tecnológicos que los fundamentan para conformar una cadena de sucesos que facilitan:

o La destilación de crudos y separación de productos. o La destilación, la modificación y la reconstitución molecular de los hidrocarburos. o La estabilidad, la purificación y mejor calidad de los derivados obtenidos.

Todo esto se logra mediante la utilización de plantas y equipos auxiliares, que satisfacen diseños y especificaciones de funcionamiento confiables, y por la introducción de substancias apropiadas y/o catalizadores que sustentan reacciones químicas y/o físicas deseadas durante cada paso del proceso.

• Procesos de Destilación:

Los procesos de destilación atmosférica y al vacío son clásicos en la industria del petróleo. La diferencia entre el proceso atmosférico y el de vacío es que este último permite obtener más altas temperaturas a muy bajas presiones y lograr la refinación de fracciones más pesadas.

La carga que entra a la torre de destilación atmosférica se somete previamente a temperatura de unos 350 ºC en un horno especial. El calentamiento del crudo, permite que, por orden de punto de ebullición de cada fracción o producto, se desprendan de las cargas, y a medida que se condensan en la torre salen de ésta por tuberías laterales apropiadamente dispuestas desde el tope hasta el fondo. La torre lleva en su interior bandejas circulares que tiene bonetes que facilitan la condensación y la recolección de las fracciones. Además, al salir los productos de la torre pasan por otras torres o recipientes auxiliares para continuar los procesos.

Cuando la temperatura de ebullición de ciertos hidrocarburos es superior a 375 ºC se recurre a la destilación al vacío o a una combinación de vacío y vapor. La carga con que se alimenta el proceso al vacío proviene del fondo de la torre de destilación atmosférica.

Page 35: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

35

• Desasfaltación:

A medida que se obtienen los productos por los diferentes procesos, muchos de estos requieren tratamiento adicional para remover impurezas o para aprovechar ciertos hidrocarburos. Para estos casos se emplea solvente. La desasfaltación con propano se utiliza para extraer aceites pesados del asfalto para utilizarlos como lubricantes o como carga a otros procesos. Este proceso se lleva a cabo en una torre de extracción líquido-líquido.

• Proceso térmico continuo ("THERMOFOR") con utilización de arcilla:

Varios procesos de crepitación catalítica (descomposición térmica molecular) tienen uso en los grandes complejos refineros. De igual manera, los procesos para desulfuración de gasolina. Casi todos estos procesos tienen sus características propias y aspectos específicos de funcionamiento. El proceso de thermofor tiene por objeto producir lubricantes de ciertas características y es alimentado por los productos semielaborados que salen de las plantas de procesos con disolventes (refinación y desparafinación).

• Descomposición Térmica:

Al proceso de descomposición o desintegración molecular o crepitación térmica se le bautizo "Cracking", onomatopéyicamente craqueo, craquear. Fundamentalmente, la carga para este proceso la constituyen gasóleo pesado y/o crudo reducido, suplido por otras plantas de la refinería. Las temperaturas para la descomposición térmica están en el rango de 200 – 480 ºC y presión de hasta 20 atmósferas. La descomposición térmica se aplica también para la obtención de etileno, a partir de las siguientes fuentes: etano, propano, propileno, butano, querosén o combustóleo. Las temperaturas requeridas están en el rango de 730 – 760 ºC y presiones bajas de hasta 1,4 atmósferas.

• Reformación Catalítica:

Este proceso representa un gran avance en el diseño, utilización y regeneración de los catalizadores y del proceso en general. Los catalizadores de platino han permitido que mayores volúmenes de carga sean procesados por kilogramos de catalizador utilizado. Además, se ha logrado mayor tiempo de utilización de los catalizadores. Esta innovación ha permitido que su aplicación sea muy extensa para tratar gasolinas y producir aromáticos.

La reforma catalítica cubre una gran variedad de aplicaciones patentadas que son importantes en la manufactura de gasolinas (Ultraforming, Houdriforming, Rexforming y otros). La carga puede provenir del procesamiento de crudos nafténicos y parafínicos, que rinden fracciones ricas en sustancias aromáticas. Por la reforma catalítica se logra la deshidrogenación y deshidroisomerización de naftenos, y la isomerización, el hidrocraqueo y la ciclodeshidrogenación de las parafinas, como también la hidrogenación de olefinas y la hidrosulfuración. El resultado es un hidrocarburo muy rico en aromáticos y por lo tanto de alto octanaje.

• Proceso Flexicocking (Exxon):

La aplicación general se basa en el manejo de cualquier carga de hidrocarburo que pueda ser bombeada, inclusive arena bituminosa. Es particularmente adaptable para mover el alto contenido de metales y/o carbón que quedan en los residuos de la carga tratada a temperaturas de 565 ºC o más en plantas al vacío.

Los productos líquidos logrados pueden ser mejorados mediante la hidrogenación. El coque bruto puede ser gasificado. Luego de removerle el sulfuro de hidrogeno, el gas puede ser utilizado en los hornos de procesamiento, inclusive los de las plantas de hidrogeno. Además del coque producido, las otras fracciones más livianas producidas pueden ser procesadas en equipos convencionales de tratamientos.

La planta seleccionada tiene una capacidad de procesamiento de 52.000 b/d, y convierte el asfalto o residuo de procesos al vacío en destilados. De acuerdo con las especificaciones y detalles de funcionamiento de la planta Flexicocking, lo requerimientos de servicios por barril de carga son los siguientes:

Page 36: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

36

DESCRIPCIÓN VALORES

Vapor (a 42 kg/cm2man), kilos 91

Vapor requerido (a 9 kg/cm2man), kilos 45

Electricidad, kwh 13

Agua para enfriamiento, litros 1.325

Agua para alimentación de calderas, litros 114

Aire para instrumentos y servicios, m3 0,71

La desintegración catalítica hace posible el tratamiento de una serie de crudos en su estado original y de los derivados tratados por hidrogenación, desintegración o desasfaltación para lograr productos de menor peso molecular como olefinas, gasolina de alto octanaje, destilados medios y otros que se pueden convertir adecuadamente.

• Proceso de Isomerización "Butamer" (Universal Oil Products):

Este proceso permite, mediante reacción catalítica, transformar butano normal en su isomero, isobutano. El isobutano se requiere como insumo para producir componentes de la gasolina de muy alto octanaje en el proceso de alquilación.

• Proceso de Alquilación "HF" (Acido fluorhídrico, Universal Oil Products):

El proceso se emplea para la combinación de isobutano con olefinas tales como propileno o butileno para producir componentes para la gasolina de alto octanaje. El isobutano logrado mediante el proceso de isomerización se emplea como carga para su alquilación con propileno, butileno, amilenos u olefinas de alto ponto de ebullición.

La carga entra en intimo contacto con el catalizador, que lo constituye el ácido fluorhídrico. El efluente pasa por un recipiente de asentamiento. La parte ácida, o sea el ácido fluorhídrico es bombeado al reactor. El producto que sale por la parte superior del recipiente de asentamiento, se despoja de isobutano y componentes más livianos en la despojadora y lo que sale del fondo de esta es alquilato para gasolina de motor. La producción diaria de alquilatos en Amuy es de 14.200 b/d.

DERIVADOS Y USOS DEL PETRÓLEO

Los siguientes son los diferentes productos derivados del petróleo y su utilización:

Gasolina motor corriente y extra - Para consumo en los vehículos automotores de combustión interna, entre otros usos.

Turbocombustible o turbosina - Gasolina para aviones jet, también conocida como Jet-A.

Gasolina de aviación - Para uso en aviones con motores de combustión interna.

ACPM o Diesel - De uso común en camiones y buses.

Queroseno - Se utiliza en estufas domésticas y en equipos industriales. Es el que comúnmente se llama "petróleo".

Cocinol - Especie de gasolina para consumos domésticos. Su producción es mínima.

Gas propano o GLP - Se utiliza como combustible doméstico e industrial.

Bencina industrial - Se usa como materia prima para la fabricación de disolventes alifáticos o como combustible doméstico

Combustóleo o Fuel Oil - Es un combustible pesado para hornos y calderas industriales.

Disolventes alifáticos - Sirven para la extracción de aceites, pinturas, pegantes y adhesivos; para la producción de thinner, gas para quemadores industriales, elaboración de tintas, formulación y fabricación de productos agrícolas, de caucho, ceras y betunes, y para limpieza en general.

Asfaltos - Se utilizan para la producción de asfalto y como material sellante en la industria de la construcción.

Bases lubricantes - Es la materia prima para la producción de los aceites lubricantes.

Ceras parafínicas - Es la materia prima para la producción de velas y similares, ceras para pisos, fósforos, papel parafinado, vaselinas, etc.

Page 37: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

37

Polietileno - Materia prima para la industria del plástico en general

Alquitrán aromático (Arotar) - Materia prima para la elaboración de negro de humo que, a su vez, se usa en la industria de llantas. También es un diluyente

Acido nafténico - Sirve para preparar sales metálicas tales como naftenatos de calcio, cobre, zinc, plomo, cobalto, etc., que se aplican en la industria de pinturas, resinas, poliéster, detergentes, tensoactivos y fungicidas

Benceno - Sirve para fabricar ciclohexano.

Ciclohexano - Es la materia prima para producir caprolactama y ácido adípico con destino al nylon.

Tolueno - Se usa como disolvente en la fabricación de pinturas, resinas, adhesivos, pegantes, thinner y tintas, y como materia prima del benceno.

Xilenos mezclados - Se utilizan en la industria de pinturas, de insecticidas y de thinner.

Ortoxileno - Es la materia prima para la producción de anhídrido ftálico.

Alquilbenceno - Se usa en la industria de todo tipo de detergentes, para elaborar plaguicidas, ácidos sulfónicos y en la industria de curtientes.El azufre que sale de las refinerías sirve para la vulcanización del caucho, fabricación de algunos tipos de acero y preparación de ácido sulfúrico, entre otros usos. En Colombia, de otro lado, se extrae un petróleo pesado que se llama Crudo Castilla, el cual se utiliza para la producción de asfaltos y/o para mejoramiento directo de carreteras, así como para consumos en hornos y calderas.

POLIMERO:

ESTRUCTURA DE LOS POLIMERO

Page 38: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

38

Page 39: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

39

Page 40: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

40

Page 41: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

41

Tipos de Polímeros Más Comunes

El consumo de polímeros o plásticos ha aumentado en los últimos años. Estos petroquímicos han sustituido parcial y a veces totalmente a muchos materiales naturales como la madera, el algodón, el papel, la lana, la piel, el acero y el cemento. Los factores que han favorecido el mercado de los plásticos son los precios competitivos y a veces inferiores a los de los productos naturales, y el hecho de que el petróleo ofrece una mayor disponibilidad de materiales sintéticos que otras fuentes naturales. La crisis petrolera de 1974 también influyó en el aumento del consumo de los plásticos, sobre todo en la industria automotriz. Los plásticos permitían disminuir el peso de los vehículos, lo cual repercutía en un ahorro en el consumo de combustible por kilómetro recorrido. Entre los polímeros usados para reducir el peso de los automóviles se encuentran los poliésteres, polipropileno, cloruro de polivinilo, poliuretanos, polietileno, nylon y ABS (acrilonitrilo-butadienoestireno). Sin embargo, el mercado más grande de los plásticos es el de los empaques y embalajes.

Veamos en qué forma los polímeros derivados del petróleo constituyen una parte muy importante de nuestra vida. Los encontramos en nuestros alimentos, medicinas, vestidos, calzado, casas, edificios, escuelas, oficinas, campos, fábricas y en todos los vehículos usados como medios de transporte.

POLÍMEROS TERMOPLÁSTICOS

Los termoplásticos son polímeros de cadenas largas que cuando se calientan se reblandecen y pueden moldearse a presión. Representan el 78-80% de consumo total. Los principales son:

• Polietileno:

Éste es el termoplástico más usado en nuestra sociedad. Los productos hechos de polietileno van desde materiales de construcción y aislantes eléctricos hasta material de empaque. Es barato y puede moldearse a casi cualquier forma, extruírse para hacer fibras o soplarse para formar películas delgadas. Según la tecnología que se emplee se pueden obtener dos tipos de polietileno

Polietileno de Baja Densidad. Dependiendo del catalizador, este polímero se fabrica de dos maneras: a alta presión o a baja presión. En el primer caso se emplean los llamados iniciadores de radicales libres como catalizadores de polimerización del etileno. El producto obtenido es el polietileno de baja densidad ramificado;

Cuando se polimeriza el etileno a baja presión se emplean catalizadores tipo Ziegler Natta y se usa el buteno-1 como comonómero. De esta forma es como se obtiene el propileno de baja densidad lineal, que posee características muy particulares, como poder hacer películas más delgadas y resistentes.

Polietileno de alta densidad (HDPE). Cuando se polimeriza el etileno a baja presión y en presencia de catalizadores ZieglerNatta, se obtiene el polietileno de alta densidad (HDPE). La principal diferencia es la flexibilidad, debido a las numerosas ramificaciones de la cadena polimérica a diferencia de la rigidez del HDPE.

Se emplea para hacer recipientes moldeados por soplado, como las botellas y los caños plásticos (flexibles, fuertes y resistentes a la corrosión).

El polietileno en fibras muy finas en forma de red sirve para hacer cubiertas de libros y carpetas, tapices para muros, etiquetas y batas plásticas.

• Polipropileno:

El polipropileno se produce desde hace más de veinte años, pero su aplicación data de los últimos diez, debido a la falta de producción directa pues siempre fue un subproducto de las refinerías o de la desintegración del etano o etileno.

Como el polipropileno tiene un grupo metilo (CH3) más que el etileno en su molécula, cuando se polimeriza, las cadenas formadas dependiendo de la posición del grupo metilo pueden tomar cualquiera de las tres estructuras siguientes:

1. Isotáctico, cuando los grupos metilo unidos a la cadena están en un mismo lado del plano.

2. Sindiotáctico, cuando los metilos están distribuidos en forma alternada en la cadena.

3. Atáctico, cuando los metilos se distribuyen al azar.

Posee una alta cristalinidad, por lo que sus cadenas quedan bien empacadas y producen resinas de alta calidad.

El polipropileno se utiliza para elaborar bolsas de freezer y microondas ya que tienen una buena resistencia térmica y eléctrica además de baja absorción de humedad. Otras propiedades importantes son su dureza, resistencia a la abrasión e impacto, transparencia, y que no es tóxico. Asimismo se usa para fabricar carcazas, juguetes, valijas, jeringas, baterías, tapicería, ropa interior y ropa deportiva, alfombras, cables, selladores, partes automotrices y suelas de zapatos.

Page 42: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

42

• Cloruro de polivinilo (PVC):

Este polímero se obtiene polimerizando el cloruro de vinilo. Existen dos tipos de cloruro de polivinilo, el flexible y el rígido. Ambos tienen alta resistencia a la abrasión y a los productos químicos. Pueden estirarse hasta 4 veces y se suele copolimerizar con otros monómeros para modificar y mejorar la calidad de la resina. Las resinas de PVC casi nunca se usan solas, sino que se mezclan con diferentes aditivos.

El PVC flexible se destina para hacer manteles, cortinas para baño, muebles, alambres y cables eléctricos; El PVC rígido se usa en la fabricación de tuberías para riego, juntas, techado y botellas.

• Poliestireno (PS):

El poliestireno (ps) es el tercer termoplástico de mayor uso debido a sus propiedades y a la facilidad de su fabricación. Posee baja densidad, estabilidad térmica y bajo costo. El hecho de ser rígido y quebradizo lo desfavorecen. Estas desventajas pueden remediarse copolimerizándolo con el acrilonitrilo (más resistencia a la tensión).

Es una resina clara y transparente con un amplio rango de puntos de fusión. Fluye fácilmente, lo que favorece su uso en el moldeo por inyección; Posee buenas propiedades eléctricas, absorbe poco agua (buen aislante eléctrico), resiste moderadamente a los químicos, pero es atacado por los hidrocarburos aromáticos y los clorados. Se comercializa en tres diferentes formas y calidades:

De uso común, encuentra sus principales aplicaciones en los mercados de inyección y moldeo.

Poliestireno de impacto (alto, medio y bajo) que sustituye al de uso general cuando se desea mayor resistencia. Utilizada para fabricar electrodomésticos, juguetes y muebles.

Expandible se emplea en la fabricación de espuma de poliestireno que se utiliza en la producción de accesorios para la industria de empaques y aislamientos.

Los usos más comunes son

Poliestireno de medio impacto: Vasos, cubiertos y platos descartables, empaques, juguetes.

Poliestireno de alto impacto: Electrodomésticos (radios, TV, licuadoras, teléfonos lavadoras), tacos para zapatos, juguetes.

Poliestireno cristal: piezas para cassettes, envases desechables, juguetes, electrodomésticos, difusores de luz, plafones.

Poliestireno Expandible: envases térmicos, construcción (aislamientos, tableros de cancelería, plafones, casetones, etc.).

• Estireno-acrilonitrilo (SAN):

Este copolímero tiene mejor resistencia química y térmica, así como mayor rigidez que el poliestireno. Sin embargo no es transparente por lo que se usa en artículos que no requieren claridad óptica. Algunas de sus aplicaciones son la fabricación de artículos para el hogar.

• Copolímero acrilonitrilo-butadieno-estireno (ABS):

Estos polímeros son plásticos duros con alta resistencia mecánica, de los pocos termoplásticos que combinan la resistencia con la dureza. Se pueden usan en aleaciones con otros plásticos. Así por ejemplo, el ABS con el PVC nos da un plástico de alta resistencia a la flama que le permite encontrar amplio uso en la construcción de televisores. Sus cualidades son una baja temperatura de ablandamiento, baja resistencia ambiental y baja resistencia a los agentes químicos

RESINAS TERMOFIJAS

Estos materiales se caracterizan por tener cadenas poliméricas entrecruzadas, formando una resina con una estructura tridimensional que no se funde. Polimerizan irreversiblemente bajo calor o presión formando una masa rígida y dura. Las uniones cruzadas se pueden obtener mediante agentes que las provoquen, como en el caso de la producción de las resinas epóxicas.

Los polímeros termofijos pueden reforzarse para aumentar su calidad, dureza y resistencia a la corrosión. El material de refuerzo más usado es la fibra de vidrio (la proporción varían entre 20-30%) El 90% de las resinas reforzadas son de poliéster.

Cuando se hace reaccionar un glicol y un isocianato con más de dos grupos funcionales, se forma un polímero termofijo

Page 43: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

43

• Poliuretanos:

Los poliuretanos pueden ser de dos tipos, flexibles o rígidos, dependiendo del poliol usado. Los flexibles se obtienen cuando el di-isocianato se hace reaccionar con diglicol, triglicol, poliglicol, o una mezcla de éstos; Los poliuretanos rígidos se consiguen utilizando trioles obtenidos a partir del glicerol y el óxido de propileno. El uso más importante del poliuretano flexible son el relleno de colchones.

En el pasado, los paragolpes de los autos se hacían de metal; actualmente se sustituyeron por uretano elastomérico moldeado, el mismo material usado para los volantes, defensas y tableros de instrumentos, puesto que resisten la oxidación, los aceites y la abrasión. Otros usos: bajo alfombras, recubrimientos, calzado, juguetes y fibras.

Por su resistencia al fuego se usa como aislante de tanques, recipientes, tuberías y aparatos domésticos como refrigeradores y congeladores.

• Urea, resinas y melamina:

La urea se produce con amoníaco y bióxido de carbono; La melamina está constituida por tres moléculas de urea. Tanto la urea como la melamina tienen propiedades generales muy similares, aunque existe mucha diferencia en sus aplicaciones. A ambas resinas se les conoce como aminorresinas. Estos artículos son claros como el agua, fuertes y duros, pero se pueden romper. Tienen buenas propiedades eléctricas.

Se usan principalmente como adhesivos para hacer madera aglomerada, gabinetes para radio y botones. Las resinas melamina-formaldehído se emplean en la fabricación de vajillas y productos laminados que sirven para cubrir muebles de cocina, mesas y escritorios.

• Resinas fenólica:

La reacción entre el fenol y el formaldehído tiene como resultado las resinas fenólicas o fenoplast. Existen dos tipos de resinas fenólicas, los resols y el novolac.

Los resols se obtienen cuando se usa un catalizador básico en la polimerización. El producto tiene uniones cruzadas entre las cadenas que permiten redes tridimensionales Termofijas. El novolac se hace usando catalizadores ácidos. Aquí las cadenas no tienen uniones cruzadas por lo que el producto es permanentemente soluble y fundible.

Las propiedades más importantes de los termofijos fenólicos son su dureza, su rigidez y su resistencia a los ácidos. Tienen excelentes propiedades aislantes y se pueden usar continuamente hasta temperaturas de 150'C. Se usan para producir controles, manijas, aparatos, pegamentos, adhesivos, material aislante., laminados para edificios, muebles, tableros y partes de automóviles. Estas resinas son las más baratas y las más fáciles de moldear. Pueden reforzarse con aserrín de madera, aceites y fibra de vidrio. Las tuberías de fibra de vidrio con resinas fenólicas pueden operar a 150'C y presiones de 10 kg/cm².

• Resinas epóxicas:

Casi todas las resinas epóxicas comerciales se hacen a partir del bisfenol A (obtenido a partir del fenol y la acetona), y la epiclorhidrina (producida a partir del alcohol alílico). Sus propiedades más importantes son: alta resistencia a temperaturas hasta de 500°C, elevada adherencia a superficies metálicas y excelente resistencia a los productos químicos. Se usan principalmente en recubrimientos de latas, tambores, superficies de acabado de aparatos y como adhesivo.

• Resinas poliéster:

Estas resinas se hacen principalmente a partir de los anhídridos maleico y ftálico con propilenglicol y uniones cruzadas con estireno. E uso de estas resinas con refuerzo de fibra de vidrio ha reemplazado a materiales como los termoplásticos de alta resistencia, madera, acero al carbón, vidrio y acrílico, lámina, cemento, yeso, etc.

Las industrias que más la utilizan son la automotriz, marina y la construcción. Las resinas de poliéster saturado se usan en las lacas para barcos, en pinturas para aviones y en las suelas de zapatos.

HOMOPOLÍMEROS Y COPOLÍMEROS

Los materiales como el polietileno, el PVC, el polipropileno, y otros que contienen una sola unidad estructural, se llaman homopolímeros. Los homopolímeros, a demás, contienen cantidades menores de irregularidades en los extremos de la cadena o en ramificaciones.

Por otro lado los copolímeros contienen varias unidades estructurales, como es el caso de algunos muy importantes en los que participa el estireno.

Estas combinaciones de monómeros se realizan para modificar las propiedades de los polímeros y lograr nuevas aplicaciones. Lo que se busca es que cada monómero imparta una de sus propiedades al material final; así, por

Page 44: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

44

ejemplo, en el ABS, el acrilonitrilo aporta su resistencia química, el butadieno su flexibilidad y el estireno imparte al material la rigidez que requiera la aplicación particular.

Evidentemente al variar las proporciones de los monómeros, las propiedades de los copolímeros van variando también, de manera que el proceso de copolimerización permite hasta cierto punto fabricar polímeros a la medida.

No solo cambian las propiedades al variar las proporciones de los monómeros, sino también al variar su posición dentro de las cadenas. Así, existen los siguientes tipos de copolímeros.

Las mezclas físicas de polímeros, que no llevan uniones permanentes entre ellos, también constituyen a la enorme versatilidad de los materiales poliméricos. Son el equivalente a las aleaciones metálicas.

En ocasiones se mezclan para mejorar alguna propiedad, aunque generalmente a expensas de otra. Por ejemplo, el óxido de polifenilo tiene excelente resistencia térmica pero es muy difícil procesarlo. El poliestireno tiene justamente las propiedades contrarias, de manera que al mezclarlos se gana en facilidad de procedimiento, aunque resulte un material que no resistirá temperaturas muy altas.. Sin embargo en este caso hay un efecto sinergístico, en el sentido en que la resistencia mecánica es mejor en algunos aspectos que a la de cualquiera de los dos polímeros. Esto no es frecuente, porque puede ocurrir únicamente cuando existe perfecta compatibilidad ente los dos polímeros y por regla general no la hay, así que en la mayoría de los casos debe agregarse un tercer ingrediente para compatibilizar la mezcla. Lo que se emplea casi siempre es un copolímero injertado, o uno de bloque que contenga unidades estructurales de los dos polímeros. Otras veces se mezcla simplemente para reducir el costo de material.

En otros casos, pequeñas cantidades de un polímero de alta calidad puede mejorar la del otro, al grado de permitir una nueva aplicación.

Copolímeros estireno-butadieno:

Son plásticos sintéticos que han sustituido prácticamente en su totalidad al natural, en algunas aplicaciones como las llantas para automóviles; contienen 25 % de estireno y 75 % butadieno; sus aplicaciones incluyen en orden de importancia:

• Llantas, Espumas, • Empaques, Suelas para zapatos, • Aislamiento de alambres y cables eléctricos, • Mangueras.

Los copolímeros de estireno-butadieno con mayor contenido de batadieno, se usan para hacer pinturas y recubrimientos. Para mejorar la adhesividad, en ocasiones se incorpora el ácido acrílico o los ésteres acrílicos, que elevan la polaridad de los copolímeros.

Polímeros isómeros:

Los polímeros isómeros son polímeros que tienen esencialmente la misma composición de porcentaje, pero difieren en la colocación de los átomos o grupos de átomos en las moléculas. Los polímeros isómeros del tipo vinilo pueden diferenciarse en las orientaciones relativas de los segmentos consecutivos (Monómeros).

Los Lubricantes y los Polímeros:

Los lubricantes mejoran la procesabilidad de los polímeros, realizando varias importantes funciones.

• Reducen la fricción entre las partículas del material, minimizando el calentamiento por fricción y retrasando la fusión hasta el punto óptimo.

• Reducen la viscosidad del fundido promoviendo el buen flujo del material. • Evitan que el polímero caliente se pegue a las superficies del equipo de procesamiento.

A los lubricantes se los clasifican en:

• Externos: Reducen la fricción entre las moléculas del polímero y disminuyen la adherencia polímero metal. • Ceras parafínicas: con pesos moleculares entre 300 y 1500, y temperaturas de fusión entre 65 a 75 °C. Las

lineales son más rígidas, por su mayor cristalinidad. En las ramificadas, la cristalinidad es menor y los cristales más pequeños.

• Ceras de polietileno: son polietilenos de muy bajo peso molecular, ligeramente ramificadas, con temperaturas de fusión de 100 a 130 °C. Son más efectivas que las parafinas.

• Ceras tipo éster: obtenidos de cebos. Contienen ácidos grasos con 16 a 18 átomos de carbono. El más importante es el triesterato.

Procesos de polimerización:

Existen diversos procesos para unir moléculas pequeñas con otras para formar moléculas grandes. Su clasificación se basa en el mecanismo por el cual se unen estructuras monómeros o en las condiciones experimentales de reacción.

Page 45: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

45

Mecanismos de polimerización. La polimerización puede efectuarse por distintos métodos a saber (ya visto mas arriba):

Polimerización por adición:

• Adición de moléculas pequeñas de un mismo tipo unas a otras por apertura del doble enlace sin eliminación de ninguna parte de la molécula (polimerización de tipo vinilo.).

• Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un anillo sin eliminación de ninguna parte de la molécula (polimerización tipo epóxi.).

• Adición de pequeñas moléculas de un mismo tipo unas a otras por apertura de un doble enlace con eliminación de una parte de la molécula (polimerización alifática del tipo diazo.).

• Adición de pequeñas moléculas unas a otras por ruptura del anillo con eliminación de una parte de la molécula (polimerización del tipo a -aminocarboxianhidro.).

• Adición de birradicales formados por deshidrogenación (polimerización tipo p-xileno.).

Polimerización por condensación:

• Formación de poliésteres, poliamidas, poliéteres, polianhidros, etc., por eliminación de agua o alcoholes, con moléculas bifuncionales, como ácidos o glicoles, diaminas, diésteres entre otros (polimerización del tipo poliésteres y poliamidas.).

• Formación de polihidrocarburos, por eliminación de halógenos o haluros de hidrógeno, con ayuda de catalizadores metálicos o de haluros metálicos (policondensación del tipo de Friedel-Craffts y Ullmann.).

• Formación de polisulfuros o poli-polisulfuros, por eliminación de cloruro de sodio, con haluros bifuncionales de alquilo o arilo y sulfuros alcalinos o polisulfuros alcalinos o por oxidación de dimercaptanos (policondensación del tipo Thiokol.).

Polimerización en suspensión, emulsión y masa:

• Polimerización en suspensión En este caso el peróxido es soluble en el monómero. La polimerización se realiza en agua, y como el monómero y polímero que se obtiene de él son insolubles en agua, se obtiene una suspensión. Para evitar que el polímero se aglomere en el reactor, se disuelve en el agua una pequeña cantidad de alcohol polivinílico, el cual cubre la superficie de las gotitas del polímero y evita que se peguen.

• Polimerización en emulsión La reacción se realiza también en agua, con peróxidos solubles en agua pero en lugar de agregarle un agente de suspensión como el alcohol polivinílico, se añade un emulsificante, que puede ser un detergente o un jabón. En esas condiciones el monómero se emulsifica, es decir, forma gotitas de un tamaño tan pequeño que ni con un microscopio pueden ser vistas. Estas microgotitas quedan estabilizadas por el jabón durante todo el proceso de la polimerización, y acaban formando un látex de aspecto lechoso, del cual se hace precipitar el polímero rompiendo la emulsión. posteriormente se lava, quedando siempre restos de jabón, lo que le imprime características especiales de adsorción de aditivos.

• Polimerización en masa En este tipo de reacción, los únicos ingredientes son el monómero y el peróxido. El polímero que se obtiene es muy semejante al de suspensión, pero es más puro que éste y tiene algunas ventajas en la adsorción de aditivos porque no esta contaminado con alcohol polivinílico.

ESTRUCTURAS QUÍMICAS QUE INFLUYEN SOBRE LAS CADENAS POLIMÉRICAS.

Enlaces dobles. Los enlaces unidos por la doble ligadura no pueden girar, pero en cambio los segmentos de cadena que le siguen gozan de gran movilidad, precisamente porque los carbonos del doble enlace tienen un sustituyente menos, que si se trata de enlaces sencillos.

Grupos aromáticos. Los anillos bencénicos producen rigidez en las moléculas y a veces evitan la cristalización y en otros casos la reducen. El polietileno atáctico, por ejemplo es completamente amorfo. Esto no necesariamente es un defecto. Cuando se desea transparencia en un polímero, se selecciona uno amorfo, y el poliestireno tiene precisamente esta cualidad. Las cualidades de alta polaridad y alta cristalinidad son esenciales para que un polímero forme buenas fibras. Sólo así tendrá la resistencia ténsil que se requiere.

Grupos alquilos. Los grupos metílicos del propileno, estorban mucho para el giro de los segmentos y obligan a la molécula a tomar una forma helicoidal, en la que se minimizan las interacciones de estos grupos metilos con otros átomos de la molécula de polipropileno. La consecuencia es una densidad muy baja (0,91) por el espacio libre que queda dentro de la hélice.

REGULARIDAD ESTRUCTURAL.

a) Simetría: la presencia de anillos de fenileno en una cadena puede dar origen a tres distintas estructuras.

De ellas, la primera es la de mayor simetría y representa un polímero más cristalino que los otros.

b) Número par vs. Número de átomos de carbono entre grupos funcionales: en el caso de las poliamidas y de los poliésteres, cristalizan mejor los materiales con número par de carbonos entre grupo amídicos o grupos éster

Page 46: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

46

respectivamente y cuanto mayor es la cristalinidad, más alto es el punto de fusión. Cuando el número es par, las cadenas son asimétricas

c) Tacticidad: los polímeros isotácticos y los sindiotácticos tienen regularidad estructural y son cristalinos, mientras que los atácticos son amorfos. Los polímeros isotácticos y los sindiotácticos tienen mayor cristalinidad, mayor resistencia mecánica, mayor densidad, más alta temperatura de fusión, son más resistentes a la acción de los disolventes, y poseen menor transparencia, en comparación con los mismos materiales en la variedad táctica.

d) Configuración CIS vs. TRANS: existen dos tipos de hule natural que provienen del isopreno. La primera se llama configuración CIS y así es el hule de la hevea y el de Guayule que se caracterizan por su flexibilidad y su elasticidad, la cual deben en parte a su estructura CIS, que es irregular y les impide cristalizar.

En cambio, la configuración TRANS, con gran regularidad estructural, está presente en el hule de gutapercha, que es cristalino, mucho menos elástico, con alta adherencia, por lo que se lo emplea como cubierta de pelotas de golf.

e) Ramificaciones: El ejemplo más claro de las ramificaciones sobre el grado de cristalinidad es el polietileno. Estas ramificaciones dificultan la aproximación de las cadenas y su colocación ordenada, disminuyendo el grado de cristalinidad, dejando grandes espacios entre las cadenas y por ello el material tiene mayor densidad. Por lo mismo, las fuerzas de atracción entre cadenas adyacentes no pueden actuar plenamente y, al ser menor la fuerza de cohesión, el calor separa con mayor facilidad las cadenas y el polímero se reblandece a menor temperatura, tiene menor rigidez, mejor resistencia al impacto y mayor transparencia y flexibilidad que el de alta densidad.

f) El peso molecular: Los grupos químicos que se encuentran en los extremos de las cadenas, no son iguales que el resto de las unidades estructurales y le restan regularidad a la estructura. También tienen mayor movilidad, puesto que están unidos a la cadena de un solo lado. Estos dos factores interfieren en la cristalización. Como los polímeros de bajo peso molecular tienen una alta concentración de extremos, también tienen, en general, una baja cristalinidad. Por otra parte, los polímeros de muy alto peso molecular tienen dificultad para cristalizar, debido a que las cadenas muy largas se enmarañan más.

La consecuencia de todo esto es que para cada polímero, hay un intervalo intermedio de pesos moleculares en que el grado de cristalinidad es máxima.

g) Copolimerización: La copolimerización por lo general destruye la regularidad estructural y baja el grado de cristalinidad a lo menos de que se trate de copolímeros alternados.

La copolimerización se usa industrialmente para reducir la temperatura de fusión de poliésteres y poliamidas que se usan en adhesivos de fusión en caliente (hot melts.).

Otro caso es el de cloruro de vinilo ¾ acetato de vinilo, un copolímero mucho más flexible que el PVC, y que se emplea para hacer discos fonográficos.

h)Plastificantes: Los plastificantes son sustancias que se agregan a los polímeros para impartirles mayor flexibilidad. Si se incorpora un plastificante a un polímero cristalino, se reduce la cristalinidad, se vuelve más flexible y se reblandece a menor temperatura.

Page 47: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

47

Plasticos

Temas

1. Introducción 2. Historia del plástico 3. Características Generales de los Plásticos 4. Distintos tipos de plástico 5. Tipos de Polímeros más comunes 6. Propiedades Mecánicas de los Polímeros 7. Propiedades Mecánicas de los Polímeros Reales 8. Proceso de transformación del plástico 9. Aplicaciones Posteriores a 1990 10. Técnicas de moldeo de los Plásticos 11. El plástico como problema 12. Reciclaje y reuso del Plástico 13. Características principales de las maquinas utilizadas para el proceso de transformación del plástico 14. Inyectoras de plástico

INTRODUCCIÓN

¿En qué pensamos cuando decimos o escuchamos la palabra plástico?

Hace cien años, al mencionar el término plástico, éste se podía entender como algo relativo a la reproducción de formas o las artes plásticas, la pintura, la escultura, el moldeado. En la actualidad, esta palabra se utiliza con mayor frecuencia y tiene un significado que implica no sólo arte, sino también tecnología y ciencia. PLÁSTICOS es una palabra que deriva del griego "Plastikos" que significa "Capaz de ser Moldeado", sin embargo, esta definición no es suficiente para describir de forma clara a la gran variedad de materiales que así se denominan.

Técnicamente los plásticos son sustancias de origen orgánico formadas por largas cadenas macromoleculares que contienen en su estructura carbono e hidrógeno principalmente. Se obtienen mediante reacciones químicas entre diferentes materias primas de origen sintético o natural. Es posible moldearlos mediante procesos de transformación aplicando calor y presión.

Los plásticos son parte de la gran familia de los Polímeros.

Polímeros es una palabra de origen latín que significa Poli:" muchas" y meros: "partes", de los cuales se derivan también otros productos como los adhesivos, recubrimientos y pinturas.

HISTORIA DEL PLÁSTICO

El desarrollo del plástico surge, cuando se descubrió que las resinas naturales podían emplearse para elaborar objetos de uso práctico. Estas resinas como el betún, la gutapercha, la goma laca y el ámbar, son extraídas de ciertos árboles, y se tienen referencias de que ya se utilizaban en Egipto, Babilonia, la India, Grecia y China. En América se conocía otro material utilizado por sus habitantes antes de la llegada de Colón, conocido como hule o caucho.

El hule y otras resinas presentaban algunos inconvenientes y, por lo tanto, su aplicación resultaba limitada. Sin embargo, después de muchos años de trabajos e investigaciones se llegaron a obtener resinas semisintéticas, mediante tratamientos químicos y físicos de resinas naturales.

Se puede decir que la primera resina semisintética fue el hule vulcanizado, obtenida por Charles Goodyear en 1839 al hacer reaccionar azufre con la resina natural caliente. El producto obtenido resultó ser muy resistente a los cambios de temperatura y a los esfuerzos mecánicos.

A mediados del siglo XIX, el inventor inglés Alexander Parkes obtuvo accidentalmente nitrocelulosa, mediante la reacción de la celulosa con ácido nítrico y sulfúrico, y la llamó"Parkesina", que con aceite de ricino se podía moldear. Sin embargo debido a su flamabilidad, no tuvo éxito comercial.

Alrededor de 1860, en los Estados Unidos surgió el primer plástico de importancia comercial gracias a un concurso para encontrar un material que sustituyen al marfil en la fabricación de las bolas de billar (en esa época se utilizaban tanto marfil, que se sacrificaba 12,000 elefantes anualmente para cubrir la demanda). Casualmente los hermanos Hyatt trabajaban con el algodón tratado con ácido nítrico, siendo un producto muy peligroso que podía utilizarse como explosivo.

Page 48: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

48

Aprovechando la idea de Parkes, sustituyeron el aceito de ricino por alcanfor y al producto obtenido le llamaron "Celuloide", el cual hizo posible la producción de varios artículos como peines, bolas de billar y películas fotográficas.

Otro plástico semisintética que tuvo buena aceptación comercial fue el que desarrollaron Krische y Spitteler en 1897, debido a la demanda de pizarrones blanco en las escuelas alemanas. Este material se fabricó a base de Caseína, una proteína extraída de la leche al hacerla reaccionar con formaldehído. Su principal aplicación fue la elaboración de botones.

En 1899 Leo H. Baeklan, descubrió una resina considerada totalmente sintética, "la baquelita", la cual se obtienen mediante la reacción del fenol con formaldehído. Aunque en el siglo XIX se observó en diversos laboratorios que, por acción de la luz o del calor, muchas sustancias simples, gaseosas o líquidas se convertían en compuestos viscosos o incluso sólidos, nunca se imaginó el alcance que tendrían estos cambios como nuevas vías de obtención de plásticos.

El siglo XX puede considerarse como el inicio de "La Era del Plástico", ya que en esta época la obtención y comercialización de los plásticos sintéticos ha sido continuamente incrementada y el registro de patente se presenta en número creciente. La consecución de plásticos sintéticos se originó de la Química Orgánica que se encontraba entonces en pleno auge.

En 1907 salió al mercado la resina fenólica "Baquelita", mientras Staundinger trabajaba en la fabricación de poli estireno y Otto Rhom enfocaba sus estudios al acrílico, que para 1930 ya se producían industrialmente.

Por su parte el PVC, aunque había sido sintetizado desde 1872 por Bauman, fue hasta 1920 cuando Waldo Semon, mezclándolo con otros compuestos, obtuvo una masa parecida al caucho, iniciándose así la comercialización del PVC en 1938.

El químico Herman Staundinger, premio Nóbel de 1953 con sus trabajos revolucionarios iniciados en 1920, demostró que muchos productos naturales y todos los plásticos, contienen macromoléculas. Este descubrimiento hizo que se considerara como el "Padre de los Plásticos". Muchos laboratorios de Universidades y grandes Industrias Químicas concentraron sus esfuerzos en el desarrollo de nuevos plásticos, aprendiendo las técnicas para encausar y dirigir casi la voluntad las reacciones químicas.

Entre los años de 1930 y 1950, debido a la segunda Guerra Mundial surge la necesidad de desarrollar nuevos materiales que cumplan con mejores propiedades, mayor resistencia, menor costo y que sustituyeran a otros que escaseaban. Es en este período, cuando surgieron plásticos como el Nylon, Polietileno de Baja densidad y el Teflón en un sector de gran volumen, y la industria química adquirió de suministrador importante de materiales.

Otro momento exitoso dentro de la historia de los plásticos fue en 1952, cuando K. Ziegler, premio Nóbel en 1964 junto con G. Natta, descubren que el etileno en fase gaseosa resultaba muy lento para reaccionar. Ambos logran su polimerización de manera más rápida por contacto con determinadas substancias catalizadas a presión normal y temperatura baja. Por su parte, G. Natta descubrió en 1954 que estos catalizadores y otros similares daban lugar a las macromoléculas de los plásticos con un lato ordenamiento.

La década de los sesenta se distinguió porque se lograron fabricar algunos plásticos mediante nuevos procesos, aumentando de manera considerable el número de materiales disponibles. Dentro de este grupo destacan las llamadas "resinas reactivas" como: Resinas Epoxi, Poli ésteres Insaturados, y principalmente Poliuretanos, que generalmente se suministran en forma líquida, requiriendo del uso de métodos de transformación especiales.

En los años siguientes, el desarrollo se enfocó a la investigación química sistemática, con atención especial a la modificación de plásticos ya conocidos mediante espumación, cambios de estructura química, copolimerización, mezcla con otros polímeros y con elementos de carga y de refuerzo. En los años setentas y ochentas se inició la producción de plásticos de altas propiedades como la Polisulfornas, Poliariletercetonas y Polímeros de Cristal Líquido. Algunas investigaciones en este campo siguen abiertas.

Las tendencias actuales van enfocadas al desarrollo de catalizadores para mejorar las propiedades de los materiales y la investigación de las mezclas y aleaciones de polímeros con el fin de combinar las propiedades de los ya existentes.

Page 49: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

49

Características Generales de los Plásticos

Los plásticos se caracterizan por una relación resistencia/densidad alta, unas propiedades excelentes para el aislamiento térmico y eléctrico y una buena resistencia a los ácidos, álcalis y disolventes. Las enormes moléculas de las que están compuestos pueden ser lineales, ramificadas o entrecruzadas, dependiendo del tipo de plástico. Las moléculas lineales y ramificadas son termoplásticos (se ablandan con el calor), mientras que las entrecruzadas son termoendurecibles (se endurecen con el calor).

Fabricación

La fabricación de los plásticos y sus manufacturas implica cuatro pasos básicos: obtención de las materias primas, síntesis del polímero básico, composición del polímero como un producto utilizable industrialmente y moldeo o deformación del plástico a su forma definitiva.

Materias primas

En un principio, la mayoría de los plásticos se fabricaban con resinas de origen vegetal, como la celulosa (del algodón), el furfural (de la cáscara de la avena), aceites (de semillas), derivados del almidón o el carbón. La caseína de la leche era uno de los materiales no vegetales utilizados. A pesar de que la producción del nylon se basaba originalmente en el carbón, el aire y el agua, y de que el nylon 11 se fabrique todavía con semillas de ricino, la mayoría de los plásticos se elaboran hoy con derivados del petróleo. Las materias primas derivadas del petróleo son tan baratas como abundantes. No obstante, dado que las existencias mundiales de petróleo tienen un límite, se están investigando otras fuentes de materias primas, como la gasificación del carbón.

Aditivos

Con frecuencia se utilizan aditivos químicos para conseguir una propiedad determinada. Por ejemplo, los antioxidantes protegen el polímero de degradaciones químicas causadas por el oxígeno o el ozono. De una forma parecida, los estabilizadores ultravioleta lo protegen de la intemperie. Los plastificantes producen un polímero más flexible, los lubricantes reducen la fricción y los pigmentos colorean los plásticos. Algunas sustancias ignífugas y antiestáticas se utilizan también como aditivos.

Muchos plásticos se fabrican en forma de material compuesto, lo que implica la adición de algún material de refuerzo (normalmente fibras de vidrio o de carbono) a la matriz de la resina plástica. Los materiales compuestos tienen la resistencia y la estabilidad de los metales, pero por lo general son más ligeros. Las espumas plásticas, un material compuesto de plástico y gas, proporcionan una masa de gran tamaño pero muy ligera.

El color del plástico

El puesto de un mercado en la ciudad india de Bombay ofrece una multicolor variedad de productos de plástico. Los plásticos son resinas sintéticas cuyas moléculas son polímeros, grandes cadenas orgánicas. Los plásticos son duraderos y ligeros. El petróleo se refina para formar moléculas orgánicas pequeñas, llamadas monómeros, que luego se combinan para formar polímeros resinosos, que se moldean o extruyen para fabricar productos de plástico.

Page 50: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

50

DISTINTOS TIPOS DE PLÁSTICO

Si bien existen más de cien tipos de plásticos, los más comunes son sólo seis, y se los identifica con un número dentro de un triángulo a los efectos de facilitar su clasificación para el reciclado, ya que las características diferentes de los plásticos exigen generalmente un reciclaje por separado.

TIPO / NOMBRE CARACTERISTICAS USOS / APLICACIONES

PET

Polietileno Tereftalato

Se produce a partir del Ácido Tereftálico y Etilenglicol, por poli condensación; existiendo dos tipos: grado textil y grado botella. Para el grado botella se lo debe post condensar, existiendo diversos colores para estos usos.

Envases para gaseosas, aceites, agua mineral, cosmética, frascos varios (mayonesa, salsas, etc.). Películas transparentes, fibras textiles, laminados de barrera (productos alimenticios), envases al vacío, bolsas para horno, bandejas para microondas, cintas de video y audio, geotextiles (pavimentación /caminos); películas radiográficas.

PEAD

Polietileno de Alta Densidad

El polietileno de alta densidad es un termoplástico fabricado a partir del etileno (elaborado a partir del etano, uno de los componentes del gas natural). Es muy versátil y se lo puede transformar de diversas formas: Inyección, Soplado, Extrusión, o Rotomoldeo.

Envases para: detergentes, lavandina, aceites automotor, shampoo, lácteos, bolsas para supermercados, bazar y menaje, cajones para pescados, gaseosas y cervezas, baldes para pintura, helados, aceites, tambores, caños para gas, telefonía, agua potable, minería, drenaje y uso sanitario, macetas, bolsas tejidas.

PVC

Cloruro de Polivinilo

Se produce a partir de dos materias primas naturales: gas 43% y sal común (*) 57%.

Para su procesado es necesario fabricar compuestos con aditivos especiales, que permiten obtener productos de variadas propiedades para un gran número de aplicaciones. Se obtienen productos rígidos o totalmente flexibles (Inyección - Extrusión - Soplado).

(*) Cloruro de Sodio (2 NaCl)

Envases para agua mineral, aceites, jugos, mayonesa. Perfiles para marcos de ventanas, puertas, caños para desagües domiciliarios y de redes, mangueras, blister para medicamentos, pilas, juguetes, envolturas para golosinas, películas flexibles para envasado (carnes, fiambres, verduras), film cobertura, cables, cuerina, papel vinílico (decoración), catéteres, bolsas para sangre.

PEBD

Polietileno de Baja Densidad

Se produce a partir del gas natural. Al igual que el PEAD es de gran versatilidad y se procesa de diversas formas: Inyección, Soplado, Extrusión y Rotomoldeo.

Su transparencia, flexibilidad, tenacidad y economía hacen que esté presente en una diversidad de envases, sólo o en conjunto con otros materiales y en variadas aplicaciones.

Bolsas de todo tipo: supermercados, boutiques, panificación, congelados, industriales, etc. Películas para: Agro (recubrimiento de Acequias), envasamiento automático de alimentos y productos industriales (leche, agua, plásticos, etc.). Streech film, base para pañales descartables. Bolsas para suero, contenedores herméticos domésticos. Tubos y pomos (cosméticos, medicamentos y alimentos), tuberías para riego.

Page 51: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

51

PP

Polipropileno

El PP es un termoplástico que se obtiene por polimerización del propileno. Los copolímeros se forman agregando etileno durante el proceso. El PP es un plástico rígido de alta cristalinidad y elevado punto de fusión, excelente resistencia química y de más baja densidad. Al adicionarle distintas cargas (talco, caucho, fibra de vidrio, etc.), se potencian sus propiedades hasta transformarlo en un polímero de ingeniería. (El PP es transformado en la industria por los procesos de inyección, soplado y extrusión/ termoformado)

Película/Film (para alimentos, snack, cigarrillos, chicles, golosinas, indumentaria). Bolsas tejidas (para papas, cereales). Envases industriales (Big Bag). Hilos cabos, cordelería. Caños para agua caliente. Jeringas descartables. Tapas en general, envases. Bazar y menaje. Cajones para bebidas. Baldes para pintura, helados. Potes para margarina. Fibras para tapicería, cubrecamas, etc. Telas no tejidas (pañales descartables). Alfombras. Cajas de batería, paragolpes y autopartes.

PS

Poliestireno

PS Cristal: Es un polímero de estireno monómero (derivado del petróleo), cristalino y de alto brillo.

PS Alto Impacto: Es un polímero de estireno monómero con oclusiones de Polibutadieno que le confiere alta resistencia al impacto.

Ambos PS son fácilmente moldeables a través de procesos de: Inyección, Extrusión/Termoformado, Soplado.

Potes para lácteos (yogurt, postres, etc.), helados, dulces, etc. Envases varios, vasos, bandejas de supermercados y rotiserías. Heladeras:

Contrapuertas, anaqueles. Cosmética: envases, máquinas de afeitar descartables. Bazar: platos, cubiertos, bandejas, etc. Juguetes, casetes, blisteres, etc. Aislantes: planchas de PS espumado.

Tipos de Polímeros Más Comunes (ya visto mas arriba)

El consumo de polímeros o plásticos ha aumentado en los últimos años. Estos petroquímicos han sustituido parcial y a veces totalmente a muchos materiales naturales como la madera, el algodón, el papel, la lana, la piel, el acero y el cemento. Los factores que han favorecido el mercado de los plásticos son los precios competitivos y a veces inferiores a los de los productos naturales, y el hecho de que el petróleo ofrece una mayor disponibilidad de materiales sintéticos que otras fuentes naturales.

La crisis petrolera de 1974 también influyó en el aumento del consumo de los plásticos, sobre todo en la industria automotriz. Los plásticos permitían disminuir el peso de los vehículos, lo cual repercutía en un ahorro en el consumo de combustible por kilómetro recorrido.

Entre los polímeros usados para reducir el peso de los automóviles se encuentran los poliésteres, polipropileno, cloruro de polivinilo, poliuretanos, polietileno, nylon y ABS (acrilonitrilo-butadieno estireno). Sin embargo, el mercado más grande de los plásticos es el de los empaques y embalajes.

Veamos en qué forma los polímeros derivados del petróleo constituyen una parte muy importante de nuestra vida. Los encontramos en nuestros alimentos, medicinas, vestidos, calzado, casas, edificios, escuelas, oficinas, campos, fábricas y en todos los vehículos usados como medios de transporte.

Page 52: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

52

POLÍMEROS TERMOPLÁSTICOS

Los termoplásticos son polímeros de cadenas largas que cuando se calientan se reblandecen y pueden moldearse a presión. Representan el 78-80% de consumo total. Los principales son:

• Polietileno

Éste es el termoplástico más usado en nuestra sociedad. Los productos hechos de polietileno van desde materiales de construcción y aislantes eléctricos hasta material de empaque. Es barato y puede moldearse a casi cualquier forma, extruírse para hacer fibras o soplarse para formar películas delgadas. Según la tecnología que se emplee se pueden obtener dos tipos de polietileno

Polietileno de Baja Densidad. Dependiendo del catalizador, este polímero se fabrica de dos maneras: a alta presión o a baja presión. En el primer caso se emplean los llamados iniciadores de radicales libres como catalizadores de polimerización del etileno. El producto obtenido es el polietileno de baja densidad ramificado;

Cuando se polimeriza el etileno a baja presión se emplean catalizadores tipo Ziegler Natta y se usa el buteno-1 como comonómero. De esta forma es como se obtiene el propileno de baja densidad lineal, que posee características muy particulares, como poder hacer películas más delgadas y resistentes.

Polietileno de alta densidad (HDPE). Cuando se polimeriza el etileno a baja presión y en presencia de catalizadores Ziegler Natta, se obtiene el polietileno de alta densidad (HDPE). La principal diferencia es la flexibilidad, debido a las numerosas ramificaciones de la cadena polimérica a diferencia de la rigidez del HDPE.

Se emplea para hacer recipientes moldeados por soplado, como las botellas y los caños plásticos (flexibles, fuertes y resistentes a la corrosión).

El polietileno en fibras muy finas en forma de red sirve para hacer cubiertas de libros y carpetas, tapices para muros, etiquetas y batas plásticas.

• Polipropileno

El polipropileno se produce desde hace más de veinte años, pero su aplicación data de los últimos diez, debido a la falta de producción directa pues siempre fue un subproducto de las refinerías o de la desintegración del etano o etileno.

Como el polipropileno tiene un grupo metilo (CH3) más que el etileno en su molécula, cuando se polimeriza, las cadenas formadas dependiendo de la posición del grupo metilo pueden tomar cualquiera de las tres estructuras siguientes:

1. Isotáctico, cuando los grupos metilo unidos a la cadena están en un mismo lado del plano.

2. Sindiotáctico, cuando los metilos están distribuidos en forma alternada en la cadena.

3. Atáctico, cuando los metilos se distribuyen al azar.

Posee una alta cristalinidad, por lo que sus cadenas quedan bien empacadas y producen resinas de alta calidad.

El polipropileno se utiliza para elaborar bolsas de freezer y microondas ya que tienen una buena resistencia térmica y eléctrica además de baja absorción de humedad. Otras propiedades importantes son su dureza, resistencia a la abrasión e impacto, transparencia, y que no es tóxico. Asimismo se usa para fabricar

Page 53: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

53

carcazas, juguetes, valijas, jeringas, baterías, tapicería, ropa interior y ropa deportiva, alfombras, cables, selladores, partes automotrices y suelas de zapatos.

• Cloruro de polivinilo (PVC)

Este polímero se obtiene polimerizando el cloruro de vinilo. Existen dos tipos de cloruro de polivinilo, el flexible y el rígido. Ambos tienen alta resistencia a la abrasión y a los productos químicos. Pueden estirarse hasta 4 veces y se suele copolimerizar con otros monómeros para modificar y mejorar la calidad de la resina. Las resinas de PVC casi nunca se usan solas, sino que se mezclan con diferentes aditivos.

El PVC flexible se destina para hacer manteles, cortinas para baño, muebles, alambres y cables eléctricos; El PVC rígido se usa en la fabricación de tuberías para riego, juntas, techado y botellas.

• Poliestireno (PS)

El poliestireno (PS) es el tercer termoplástico de mayor uso debido a sus propiedades y a la facilidad de su fabricación. Posee baja densidad, estabilidad térmica y bajo costo. El hecho de ser rígido y quebradizo lo desfavorecen. Estas desventajas pueden remediarse copolimerizándolo con el acrilonitrilo (más resistencia a la tensión).

Es una resina clara y transparente con un amplio rango de puntos de fusión. Fluye fácilmente, lo que favorece su uso en el moldeo por inyección; Posee buenas propiedades eléctricas, absorbe poco agua (buen aislante eléctrico), resiste moderadamente a los químicos, pero es atacado por los hidrocarburos aromáticos y los clorados. Se comercializa en tres diferentes formas y calidades:

De uso común, encuentra sus principales aplicaciones en los mercados de inyección y moldeo.

Poliestireno de impacto (alto, medio y bajo) que sustituye al de uso general cuando se desea mayor resistencia. Utilizada para fabricar electrodomésticos, juguetes y muebles.

Expandible se emplea en la fabricación de espuma de poliestireno que se utiliza en la producción de accesorios para la industria de empaques y aislamientos.

• Poliuretanos

Los poliuretanos pueden ser de dos tipos, flexibles o rígidos, dependiendo del poliol usado. Los flexibles se obtienen cuando el di-isocianato se hace reaccionar con diglicol, triglicol, poliglicol, o una mezcla de éstos; Los poliuretanos rígidos se consiguen utilizando trioles obtenidos a partir del glicerol y el óxido de propileno. El uso más importante del poliuretano flexible es el relleno de colchones.

En el pasado, los paragolpes de los autos se hacían de metal; actualmente se sustituyeron por uretano elastomérico moldeado, el mismo material usado para los volantes, defensas y tableros de instrumentos, puesto que resiste la oxidación, los aceites y la abrasión.

Otros usos: bajo alfombras, recubrimientos, calzado, juguetes y fibras.

Por su resistencia al fuego se usa como aislante de tanques, recipientes, tuberías y aparatos domésticos como refrigeradores y congeladores.

Page 54: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

54

Los usos más comunes son:

Poliestireno de medio impacto: Vasos, cubiertos y platos descartables, empaques, juguetes.

Poliestireno de alto impacto: Electrodomésticos (radios, TV, licuadoras, teléfonos lavadoras), tacos para zapatos, juguetes.

Poliestireno cristal: piezas para cassettes, envases desechables, juguetes, electrodomésticos, difusores de luz, plafones.

Poliestireno Expandible: envases térmicos, construcción (aislamientos, tableros de cancelería, plafones, casetones, etc.).

Propiedades Mecánicas de los Polímeros

Resistencia

La resistencia es una propiedad mecánica que se podría relacionar cuando se habla de polímeros. En primer lugar, existen varios tipos de resistencia. Una de ellas es la ténsil. La resistencia ténsil es importante para un material que va a ser extendido o va a estar bajo tensión.

Luego está la resistencia a la compresión. El concreto es un ejemplo de material con buena resistencia a la compresión. Cualquier cosa que deba soportar un peso encima, debe poseer buena resistencia a la compresión.

También está la resistencia a la flexión. Existen otras clases de resistencia de las que se pueden hablar. Un polímero tiene resistencia a la torsión si es resistente cuando es puesto bajo torsión. También está la resistencia al impacto. Una muestra tiene resistencia al impacto si es fuerte cuando se la golpea agudamente de repente, como con un martillo.

Para medir la resistencia ténsil de una muestra polimérica, se estira con una máquina llamada Instron. Esta máquina simplemente sujeta cada extremo de la muestra y luego procede a estirarla. Mientras dura el estiramiento de la muestra, va midiendo la fuerza (F) que está ejerciendo. Cuando conocemos la fuerza que se está ejerciendo sobre la muestra, dividimos ese número por el área (A) de la muestra. El resultado es la tensión que está experimentando la muestra.

Elongación

Pero las propiedades mecánicas de un polímero no se remiten exclusivamente a conocer cuán resistente es. La resistencia nos indica cuánta tensión se necesita para romper algo. Pero no nos dice nada de lo que ocurre con la muestra mientras estamos tratando de romperla. Ahí es donde corresponde estudiar el comportamiento de elongación de la muestra polimérica. La elongación es un tipo de deformación. La deformación es simplemente el cambio en la forma que experimenta cualquier cosa bajo tensión. Cuando hablamos de tensión, la muestra se deforma por estiramiento, volviéndose más larga. Obviamente llamamos a esto elongación.

Por lo general, hablamos de porcentaje de elongación, que es el largo de la muestra después del estiramiento (L), dividido por el largo original (L0), y multiplicado por 100.

Existen muchas cosas relacionadas con la elongación, que dependen del tipo de material que se está estudiando. Dos mediciones importantes son la elongación final y la elongación elástica.

La elongación final es crucial para todo tipo de material. Representa cuánto puede ser estirada una muestra antes de que se rompa. La elongación elástica es el porcentaje de elongación al que se puede llegar, sin una deformación permanente de la muestra. Es decir, cuánto puede estirársela, logrando que ésta vuelva a su longitud original luego de suspender la tensión. Esto es importante si el material es un elastómero. Los elastómeros tienen que ser capaces de estirarse bastante y luego recuperar su longitud original. La mayoría de ellos pueden estirarse entre el 500% y el 1000% y volver a su longitud original es inconveniente.

Módulo

Los elastómeros deben exhibir una alta elongación elástica. Pero para algunos otros tipos de materiales, como los plásticos, por lo general es mejor que no se estiren o deformen tan fácilmente. Si queremos conocer cuánto un material resiste la deformación, medimos algo llamado módulo. Para medir el módulo ténsil, hacemos lo mismo que

Page 55: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

55

para medir la resistencia y la elongación final. Esta vez medimos la resistencia que estamos ejerciendo sobre el material, tal como procedimos con la resistencia ténsil. Incrementamos lentamente la tensión y medimos la elongación que experimenta la muestra en cada nivel de tensión, hasta que finalmente se rompe.

Luego graficamos la tensión versus elongación, de este modo:

Este gráfico se denomina curva de tensión-estiramiento. (Estiramiento es todo tipo de deformación, incluyendo la elongación. Elongación es el término que usamos cuando hablamos específicamente de estiramiento ténsil). La altura de la curva cuando la muestra se rompe, representa obviamente la resistencia ténsil, y la pendiente representa el módulo ténsil. Si la pendiente es pronunciada, la muestra tiene un alto módulo ténsil, lo cual significa que es resistente a la deformación. Si es suave, la muestra posee bajo módulo ténsil y por lo tanto puede ser deformada con facilidad.

Hay ocasiones en que la curva tensión-estiramiento no es una recta, como vimos arriba. Para algunos polímeros, especialmente plásticos flexibles, obtenemos curvas extrañas, como ésta:

A medida que la tensión se incrementa, la pendiente, es decir el módulo, no es constante, sino que va experimentando cambios con la tensión. En casos como éste, generalmente tomamos como módulo la pendiente inicial, como puede verse en la curva de arriba. En general, las fibras poseen los módulos ténsiles más altos, y los elastómeros los más bajos, mientras que los plásticos exhiben módulos ténsiles intermedios.

El módulo se mide calculando la tensión y dividiéndola por la elongación. Pero dado que la elongación es adimensional, no tiene unidades por cual dividirlas. Por lo tanto el módulo es expresado en las mismas unidades que la resistencia, es decir, en N/cm2.

Dureza

El gráfico de tensión versus estiramiento puede darnos otra valiosa información. Si se mide el área bajo la curva tensión-estiramiento, coloreada de rojo en la figura de abajo, el número que se obtiene es algo llamado dureza.

Page 56: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

56

La dureza es en realidad, una medida de la energía que una muestra puede absorber antes de que se rompa.Si la altura del triángulo del gráfico es la resistencia y la base de ese triángulo es el estiramiento, entonces el área es proporcional a resistencia por estiramiento. Dado que la resistencia es proporcional a la fuerza necesaria para romper la muestra y el estiramiento es medido en unidades de distancia (la distancia que la muestra es estirada), entonces resistencia por estiramiento es proporcional a fuerza por distancia, y según recordamos de la física, fuerza por distancia es energía.

La resistencia nos dice cuánta fuerza es necesaria para romper una muestra, y la dureza nos dice cuánta energía hace falta para romper una muestra. Pero en realidad no nos dice cuáles son las diferencias desde el punto de vista práctico.

Lo importante es saber que justamente, dado que un material es resistente, no necesariamente debe ser duro. Veamos algunos otros gráficos para comprender mejor esto. Observemos el de abajo, que tiene tres curvas, una en azul, otra en rojo y otra en rosa.

La curva en azul representa la relación tensión-estiramiento de una muestra que es resistente, pero no dura. Como puede verse, debe emplearse mucha fuerza para romperla, pero no mucha energía, debido a que el área bajo la curva es pequeña.

Asimismo, esta muestra no se estirará demasiado antes de romperse. Los materiales de este tipo, que son resistentes, pero no se deforman demasiado antes de la ruptura, se denominan quebradizos.

Por otra parte, la curva en rojo representa la relación tensión-estiramiento para una muestra que es dura y resistente. Este material no es tan resistente como el de la curva en azul, pero su área bajo la curva es mucho mayor. Por lo tanto puede absorber mucha más energía que el de la curva en azul.

Propiedades Mecánicas de los Polímeros Reales

El siguiente gráfico compara curvas típicas tensión-estiramiento para diferentes clases de polímeros. Puede verse en la curva verde, que plásticos rígidos como el polietileno, el polimetil metacrilato o los policarbonatos pueden soportar una gran tensión, pero no demasiada elongación antes de su ruptura. No hay una gran área bajo la curva.

Page 57: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

57

Decimos entonces que estos materiales son resistentes, pero no muy duros. Además, la pendiente de la recta es muy pronunciada, lo que significa que debe ejercerse una considerable fuerza para deformar un plástico rígido. Los plásticos rígidos tienden a ser resistentes, soportan la deformación, pero no suelen ser duros, es decir, son quebradizos.

Los plásticos flexibles como el polietileno y el polipropileno difieren de los plásticos rígidos en el sentido que no soportan tan bien la deformación, pero tampoco tienden a la ruptura. El módulo inicial es elevado, o sea que resisten por un tiempo la deformación, pero si se ejerce demasiada tensión sobre un plástico flexible, finalmente se deformará.

Es posible alterar el comportamiento tensión-estiramiento de un plástico con aditivos denominados plastificantes. Un plastificante es una molécula pequeña que hace más flexible al plástico. Por ejemplo, sin plastificantes, el policloruro de vinilo, o PVC, es un plástico rígido, que se usa tal cual para cañerías de agua. Pero con plastificantes, el PVC puede ser lo suficientemente flexible como para fabricar juguetes inflables para piletas de natación.

Las fibras como el Kevlar, la fibra de carbono y el nylon tienden a exhibir curvas tensión estiramiento como la de color celeste que se ve en el gráfico de arriba. Al igual que los plásticos rígidos, son más resistentes que duras, y no se deforman demasiado bajo tensión. Pero cuando es resistencia lo que se requiere, las fibras tienen mucho que ofrecer. Son mucho más resistentes que los plásticos, aún los rígidos, y algunas fibras poliméricas como el Kevlar la fibra de carbono y el polietileno de peso molecular ultra-alto poseen mejor resistencia ténsil que el acero.

Los elastómeros como el poliisopreno, el poli butadieno y el poliisobutileno muestran un comportamiento mecánico completamente diferente al de los otros tipos de materiales. Al observar la curva de color rosa en el gráfico de arriba apreciamos que los elastómeros tienen módulos muy bajos, puede verse en la suave pendiente de la recta. Si los elastómeros no tuvieran módulos bajos, no serían buenos elastómeros. Para que un polímero sea un elastómero, le hace falta algo más que tener módulo bajo. El hecho de ser fácilmente estirado no le da demasiada utilidad, a menos que el material pueda volver a su tamaño y forma original una vez que el estiramiento ha terminado. Las banditas de goma no servirían de nada si sólo se estiraran y no recobraran su forma original. Obviamente, los elastómeros recobran su forma y eso los hace tan sorprendentes. No poseen sólo una elevada elongación, sino una alta elongación reversible.

PROCESO DE TRANSFORMACIÓN DEL PLÁSTICO

Generalidades A la par del descubrimiento y síntesis de los materiales plásticos, la creatividad del hombre ha ideado formas para moldearlos con el objeto de satisfacer sus necesidades. Por ejemplo: la sustitución de los materiales tradicionales como el vidrio, metal, madera o cerámica, por otros nuevos que permiten obtener una mejoría de propiedades, facilidad de obtención y, por las necesidades del presente siglo, la posibilidad de implementar producciones masivas de artículos de alto consumo a bajo costo.

Historia

El nacimiento de los procesos de moldeo de materiales plásticos, se remota a épocas bíblicas con el uso del bitúmen, para la confección de la canasta en la que se puso al patriarca hebreo Moisés en el río Nilo y en el uso de este material en vez de cemento para edificar Babilonia. Al seguir el curso de la historia, se detectan otros usos de resinas naturales como el ámbar en joyería en la antigua roma, la laca como recubrimiento en la India, pelotas de hule natural para juegos rituales en América Central, y otras. En 1839, Charles Goodyear descubrió el proceso de vulcanización del hule con azufre, pero aún no se puede hablar de procesos de moldeos comerciales o industriales. En 1868 Parkes, en Londres, idea el moldeo de nitrato de celulosa utilizando rodillo, una pequeña cantidad de solvente y calor para plastificar el compuesto. Los intentos para el desarrollo de productos y proceso para moldear

Page 58: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

58

continuaron, y en 1872 se patenta la primera máquina de inyección, para moldear nitrato de celulosa, pero debido a la flamabilidad de este material y peligrosidad de trabajar, el proceso no se desarrolló.

Al término del siglo XIX, los únicos materiales plásticos disponibles para usos prácticos eran el Shellac (laca), la Gutta Percha, la Ebonita y el Celuloide, el ámbar y el bitúmen, moldeados en formas artesanales. En 1926, la expansión de materiales poliméricos y las experiencias en el diseño de máquinas para procesarlos, estimulan la creación de máquinas con aplicación industrial, en la construcción y fabricación en serie de inyectores de émbolo impulsada por la Síntesis del Poli estireno (PS) y Acrílico (PMMA). En 1935 Paúl Toroester, en Alemania, construye una máquina extrusora de termoplásticos, basada en diseños anteriores para el procesamiento de hules. A Partir de estas fechas inicia el uso de electricidad para el calentamiento, que sustituye al vapor. En Italia se genera el concepto del uso de husillos gemelos. En 1938, se concibe la idea industrial de termo formado, y en 1940 el moldeo por soplado. Otro descubrimiento fundamental en la década de 1930 fue la síntesis del nylon, el primer plástico de ingeniería de alto rendimiento.

Durante la II Guerra Mundial, tanto los aliados como las fuerzas del Eje sufrieron reducciones en sus suministros de materias primas. La industria de los plásticos demostró ser una fuente inagotable de sustitutos aceptables. Alemania, por ejemplo, que perdió sus fuentes naturales de látex, inició un gran programa que llevó al desarrollo de un caucho sintético utilizable. La entrada de Japón en el conflicto mundial cortó los suministros de caucho natural, seda y muchos metales asiáticos a Estados Unidos. La respuesta estadounidense fue la intensificación del desarrollo y la producción de plásticos. El nylon se convirtió en una de las fuentes principales de fibras textiles, los poliésteres se utilizaron en la fabricación de blindajes y otros materiales bélicos, y se produjeron en grandes cantidades varios tipos de caucho sintético.

Durante los años de la posguerra se mantuvo el elevado ritmo de los descubrimientos y desarrollos de la industria de los plásticos. Tuvieron especial interés los avances en plásticos técnicos, como los policarbonatos, los acetatos y las poliamidas. Se utilizaron otros materiales sintéticos en lugar de los metales en componentes para maquinaria, cascos de seguridad, aparatos sometidos a altas temperaturas y muchos otros productos empleados en lugares con condiciones ambientales extremas. En 1953, el químico alemán Karl Ziegler desarrolló el polietileno, y en 1954 el italiano Giulio Natta desarrolló el polipropileno, que son los dos plásticos más utilizados en la actualidad. La década de los sesenta se distinguió porque se lograron fabricar algunos plásticos mediante nuevos procesos, aumentando de manera considerable el número de materiales disponibles. Dentro de este grupo destacan las llamadas "resinas reactivas" como: Resinas Epoxi, Poliésteres Insaturados, y principalmente Poliuretanos, que generalmente se suministran en forma líquida, requiriendo del uso de métodos de transformación especiales. En los años siguientes, el desarrollo se enfocó a la investigación química sistemática, con atención especial a la modificación de plásticos ya conocidos mediante espumación, cambios de estructura química, copolimerización, mezcla con otros polímeros y con elementos de carga y de refuerzo. En los años setentas y ochentas se inició la producción de plásticos de altas propiedades como la Polisulfornas, Poliariletercetonas y Polímeros de Cristal Líquido. Algunas investigaciones en este campo siguen abiertas.

Aplicaciones Posteriores a 1990

Los plásticos tienen cada vez más aplicaciones en los sectores industriales y de consumo. Algunas de ellas se mencionan a continuación:

Empaquetado Una de las aplicaciones principales del plástico es el empaquetado. Se comercializa una buena cantidad de LDPE (polietileno de baja densidad) en forma de rollos de plástico transparente para envoltorios. El polietileno de alta densidad (HDPE) se usa para películas plásticas más gruesas, como la que se emplea en las bolsas de basura. Se utiliza también en el empaquetado el polipropileno: buena barrera contra el vapor de agua; tiene aplicaciones domésticas y se emplea en forma de fibra para fabricar alfombras y sogas.

Construcción La construcción es otro de los sectores que más utilizan todo tipo de plásticos, incluidos los de empaquetados descritos anteriormente. El HDPE se usa en tuberías, del mismo modo que el PVC. Éste se emplea también en forma de lámina como material de construcción. Muchos plásticos se utilizan para aislar cables e hilos, y el poliestireno aplicado en forma de espuma sirve para aislar paredes y techos. También se hacen con plástico marcos para puertas, ventanas y techos, molduras y otros artículos.

Otras Aplicaciones

Otros sectores industriales, en especial la fabricación de motores, dependen también de estas sustancias. Algunos plásticos muy resistentes se utilizan para fabricar piezas de motores, como colectores de toma de aire, tubos de combustible, botes de emisión, bombas de combustible y aparatos electrónicos. Muchas carrocerías de automóviles están hechas con plástico reforzado con fibra de vidrio. Los plásticos se emplean también para fabricar carcasas para equipos de oficina, dispositivos electrónicos, accesorios pequeños y herramientas. Entre las aplicaciones del plástico en productos de consumo se encuentran los juguetes, las maletas y artículos deportivos.

Page 59: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

59

Técnicas de Moldeo de los Plásticos

El moldeo de los plásticos consiste en dar las formas y medidas deseadas a un plástico por medio de un molde. El molde es una pieza hueca en la que se vierte el plástico fundido para que adquiera su forma. Para ello los plásticos se introducen a presión en los moldes. En función del tipo de presión, tenemos estos dos tipos:

Moldeo a Alta Presión

Se realiza mediante máquinas hidráulicas que ejercen la presión suficiente para el moldeado de las piezas. Básicamente existen tres tipos: compresión, inyección y extrusión.

• Compresión: en este proceso, el plástico en polvo es calentado y comprimido entre las dos partes de un molde mediante la acción de una prensa hidráulica, ya que la presión requerida en este proceso es muy grande.

Este proceso se usa para obtener pequeñas piezas de baquelita, como los mangos aislantes del calor de los recipientes y utensilios de cocina.

• Inyección: consiste en introducir el plástico granulado dentro de un cilindro, donde se calienta. En el interior del cilindro hay un tornillo sinfín que actúa de igual manera que el émbolo de una jeringuilla. Cuando el plástico se reblandece lo suficiente, el tornillo sinfín lo inyecta a alta presión en el interior de un molde de acero para darle forma. El molde y el plástico inyectado se enfrían mediante unos canales interiores por los que circula agua. Por su economía y rapidez, el moldeo por inyección resulta muy indicado para la producción de grandes series de piezas. Por este procedimiento se fabrican palanganas, cubos, carcasas, componentes del automóvil, etc.

• Extrusión: consiste en moldear productos de manera continua, ya que el material es empujado por un tornillo sinfín a través de un cilindro que acaba en una boquilla, lo que produce una tira de longitud indefinida. Cambiando la forma de la boquilla se pueden obtener barras de distintos perfiles. También se emplea este procedimiento para la fabricación de tuberías, inyectando aire a presión a través de un orificio en la punta del cabezal. Regulando la presión del aire se pueden conseguir tubos de distintos espesores.

Moldeo a Baja Presión

Se emplea para dar forma a láminas de plástico mediante la aplicación de calor y presión hasta adaptarlas a un molde. Se emplean, básicamente, dos procedimientos:

• El primero consiste en efectuar el vacío absorbiendo el aire que hay entre la lámina y el molde, de manera que ésta se adapte a la forma del molde. Este tipo de moldeado se emplea para la obtención de envases de productos alimenticios en moldes que reproducen la forma de los objetos que han de contener.

• El segundo procedimiento consiste en aplicar aire a presión contra la lámina de plástico hasta adaptarla al molde. Este procedimiento se denomina moldeo por soplado, como el caso de la extrusión, aunque se trata de dos técnicas totalmente diferentes. Se emplea para la fabricación de cúpulas, piezas huecas, etc.

Colada: La colada consiste en el vertido del material plástico en estado líquido dentro de un molde, donde fragua y se solidifica. La colada es útil para fabricar pocas piezas o cuando emplean moldes de materiales baratos de poca duración, como escayola o madera. Debido a su lentitud, este procedimiento no resulta útil para la fabricación de grandes series de piezas.

Espumado: Consiste en introducir aire u otro gas en el interior de la masa de plástico de manera que se formen burbujas permanentes. Por este procedimiento se obtiene la espuma de poliestireno, la espuma de poliuretano (PUR), etc. Con estos materiales se fabrican colchones, aislantes termo-acústicos, esponjas, embalajes, cascos de ciclismo y patinaje, plafones ligeros y otros.

Calandrado: Consiste en hacer pasar el material plástico a través de unos rodillos que producen, mediante presión, láminas de plástico flexibles de diferente espesor. Estas láminas se utilizan para fabricar hules, impermeables o planchas de plástico de poco grosor.

Las técnicas empleadas para conseguir la forma final y el acabado de los plásticos dependen de tres factores: tiempo, temperatura y fluencia (conocido como deformación). La naturaleza de muchos de estos procesos es cíclica, si bien algunos pueden clasificarse como continuos o semicontinuos.

Una de las operaciones más comunes es la extrusión. Una máquina de extrusión consiste en un aparato que bombea el plástico a través de un molde con la forma deseada. Los productos extrusionados, como por ejemplo los tubos, tienen una sección con forma regular.

La máquina de extrusión también realiza otras operaciones, como moldeo por soplado o moldeo por inyección.

Otros procesos utilizados son el moldeo por compresión, en el que la presión fuerza al plástico a adoptar una forma concreta, y el moldeo por transferencia, en el que un pistón introduce el plástico fundido a presión en un molde. El calandrado es otra técnica mediante la que se forman láminas de plástico. Algunos plásticos, y en particular los que tienen una elevada resistencia a la temperatura, requieren procesos de fabricación especiales. Por ejemplo, el

Page 60: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

60

politetrafluoretileno tiene una viscosidad de fundición tan alta que debe ser prensado para conseguir la forma deseada, y sinterizado, es decir, expuesto a temperaturas extremadamente altas que convierten el plástico en una masa cohesionada sin necesidad de fundirlo.

Aplicaciones

Los plásticos tienen cada vez más aplicaciones en los sectores industriales y de consumo.

Empaquetado

Una de las aplicaciones principales del plástico es el empaquetado. Se comercializa una buena cantidad de LDPE (polietileno de baja densidad) en forma de rollos de plástico transparente para envoltorios. El polietileno de alta densidad (HDPE) se usa para películas plásticas más gruesas, como la que se emplea en las bolsas de basura. Se utilizan también en el empaquetado: el polipropileno, el poliestireno, el cloruro de polivinilo (PVC) y el cloruro de polivinilideno. Este último se usa en aplicaciones que requieren estanqueidad, ya que no permite el paso de gases (por ejemplo, el oxígeno) hacia dentro o hacia fuera del paquete. De la misma forma, el polipropileno es una buena barrera contra el vapor de agua; tiene aplicaciones domésticas y se emplea en forma de fibra para fabricar alfombras y sogas.

Construcción

Aislamiento térmico

El aislante de poliestireno instalado en este edificio está lleno de pequeñas burbujas de aire que dificultan el flujo de calor. La capa exterior refleja la luz, lo que aísla aún más el interior del edificio.

La construcción es otro de los sectores que más utilizan todo tipo de plásticos, incluidos los de empaquetados descritos anteriormente. El HDPE se usa en tuberías, del mismo modo que el PVC. Éste se emplea también en forma de lámina como material de construcción. Muchos plásticos se utilizan para aislar cables e hilos, y el poliestireno aplicado en forma de espuma sirve para aislar paredes y techos. También se hacen con plástico marcos para puertas, ventanas y techos, molduras y otros artículos.

Otras aplicaciones

Otros sectores industriales, en especial la fabricación de motores, dependen también de estas sustancias. Algunos plásticos muy resistentes se utilizan para fabricar piezas de motores, como colectores de toma de aire, tubos de combustible, botes de emisión, bombas de combustible y aparatos electrónicos. Muchas carrocerías de automóviles están hechas con plástico reforzado con fibra de vidrio.

Los plásticos se emplean también para fabricar carcasas para equipos de oficina, dispositivos electrónicos, accesorios pequeños y herramientas. Entre las aplicaciones del plástico en productos de consumo se encuentran los juguetes, las maletas y artículos deportivos.

Page 61: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

61

El Plástico Como Problema

Muchas de las ventajas de los productos plásticos se convierten en una desventaja en el momento que desechamos ya sea el envase porque es descartable o bien cuando tiramos objetos de plástico porque se nos han roto. Si bien los plásticos podrían ser reutilizados o reciclados en su gran mayoría, lo cierto es que hoy estos desechos son un problema de difícil solución, fundamentalmente en las grandes ciudades. Es realmente una tarea costosa y compleja para los municipios encargados de la recolección y disposición final de los residuos ya que a la cantidad de envases se le debe sumar el volumen que representan. Por sus características los plásticos generan problemas en la recolección, traslado y disposición final. Algunos datos nos alertan sobre esto.

Por ejemplo, un camión con una capacidad para transportar 12 toneladas de desechos comunes, transportará apenas 6 ó 7 toneladas de plásticos compactado, y apenas 2 de plástico sin compactar. Dentro del total de plásticos descartables que hoy van a la basura se destaca en los últimos años el aumento sostenido de los envases de PET, proveniente fundamentalmente de botellas descartables de aguas de mesa, aceites y bebidas alcohólicas y no alcohólicas.

Las empresas, buscando reducir costos y amparadas en la falta de legislación, vienen sustituyendo los envases de vidrio por los de plástico retornables en un comienzo, y no retornables posteriormente. Esta decisión implica un permanente cambio en la composición de la basura. Este proceso se ha acelerado desde mediados de 1996, agravándose luego, cuando además, muchos envases retornables de vidrio se transformaron en vidrio descartable.

Reciclaje y Reuso del Plástico

Si bien existen más de cien tipos de plásticos, los más comunes son sólo seis, y se los identifica con un número dentro de un triángulo a los efectos de facilitar su clasificación para el reciclado, ya que las características diferentes de los plásticos exigen generalmente un reciclaje por separado.

La clasificación en distintos tipos de plásticos y la recolección diferenciada, es el primer paso en el camino hacia la recuperación de plásticos. A los efectos de reducir significativamente los costos, la clasificación debe realizarse en origen, es decir en los lugares en los que se genera el desecho, como ser los hogares, centros educativos, centros de salud, oficinas, etcétera.

Existen distintos criterios para clasificar los plásticos. Si consideramos su capacidad para volver a ser fundidos mediante el uso de calor, entonces los plásticos pueden clasificarse en termofijos y termoplásticos. Los termoplásticos son los de uso más común en la vida diaria. Son muchas las experiencias de recuperación de plásticos que hace años se desarrollan tanto en todos los países del mundo. Mencionemos por ejemplo algunos: bolsas, caños y mangueras, baldes, cerdas para cepillos y escobas, hilo para la industria textil, láminas, útiles escolares, muebles, piezas de máquinas y vehículos, relleno asfáltico y bancos.

También los plásticos pueden ser utilizados como fuente de energía, aunque la quema de los mismos no es aconsejable ya que algunos de ellos —por ejemplo el PVC— despide cloro, pudiendo generar la formación de corrosivos como el ácido clorhídrico, así como sustancias tóxicas y cancerígenas como las dioxinas y furanos.

Actualmente, las empresas embotelladoras vienen sustituyendo los envases de plástico retornable por los no retornable o descartables, generando de esta forma un impacto ambiental negativo permanente en las ciudades. La adopción del envase descartable le permite a las empresas transferir costos a la comunidad y el ambiente. Al dejar de ser retornables, las botellas no vuelven al circuito de venta y a la empresa embotelladora para su lavado y rellenado. De esta manera las embotelladoras evitan la recepción de envases vacíos, el almacenamiento y lavado de los mismos.

Existen también distintas posibilidades de reutilización de plásticos. Una de las más interesantes es la recuperación de vasos descartables para ser usados como macetines. El cultivo de distintas hortalizas en estos vasos permite un desarrollo mayor de los plantines, tanto en tamaño como en rapidez de crecimiento, logrando reducir hasta en 15 días la etapa de almácigo. Incluso los plantines, al contar con tierra suficiente, pueden mantenerse en el vaso más tiempo en caso de que no estén dadas las condiciones para su trasplante a la tierra donde crecerá hasta su cosecha.

CARACTERISTICAS PRINCIPALES DE LAS MAQUINAS UTILIZADAS PARA EL PROCESO DE TRANSFORMACION DEL PLASTICO

Tolva

La tolva es el depósito de materia prima en donde se coloca la materia prima. Debe tener dimensiones adecuadas para ser completamente funcional; los diseños mal planeados, principalmente en los ángulos de bajada de material, pueden provocar estancamientos de material y paros en la producción. En materiales que se compactan fácilmente, una tolva con sistema vibratorio puede resolver el problema, rompiendo los puentes de material formados y permitiendo la caída del material a la garganta de alimentación. Si el material a procesar es problemático aún con la tolva con sistema vibratorio puede resolver el problema, rompiendo puentes de material formados y permitiendo la caída del material a la garganta de alimentación. Si el material a procesar es problemático aún con la tolva en vibración, la tolva tipo cramer es la única que puede formar el material a fluir, empleando un tornillo para lograr la alimentación.

Page 62: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

62

Las tolvas de secado son usadas para eliminar la humedad del material que está siendo procesado, sustituyen a equipos de secado independientes de la máquina. En sistemas con mayor grado de automatización, se cuenta con sistemas de transporte de material desde contenedores hasta la tolva, por medios neumáticos o mecánicos. Otros equipos auxiliares son los dosificadores de aditivos a la tolva y los imanes o magnetos para la obstrucción del paso de materiales ferrosos, que puedan dañar el husillo y otras partes internas del equipo.

Barril O Cañón

Es un cilindro metálico que aloja al husillo y constituye el cuerpo principal de una máquina. El barril debe tener una compatibilidad y resistencia al material que esté procesando, es decir, ser de un metal con la dureza necesaria para reducir al mínimo cualquier desgaste. La dureza del cañón se consigue utilizando aceros de diferentes tipos y cuando es necesario se aplican métodos de endurecimiento superficial de las paredes internas del cañón, que son las que están expuestas a los efectos de la abrasión y la corrosión durante la operación del equipo. El cañón cuenta con resistencias eléctricas que proporcionan una parte de la energía térmica que el material requiere para ser fundido. El sistema de resistencias, en algunos casos va complementado con un sistema de enfriamiento que puede ser flujo de líquido o por ventiladores de aire. Todo el sistema de calentamiento es controlado desde un tablero, donde las temperaturas de proceso se establecen en función del tipo de material y del producto deseado. Para la mejor conservación de la temperatura a lo largo del cañón y prevenir cambios en la calidad de la producción por variaciones en la temperatura ambiente, se acostumbra aislar el cuerpo del cañón con algún material de baja conductividad térmica como la fibra de vidrio o el fieltro.

Husillo

Gracias a los intensos estudios del comportamiento del flujo de los polímeros, el husillo ha evolucionado ampliamente desde el auge de la industria plástica hasta el grado de convertirse en la parte que contiene la mayor tecnología dentro de una máquina. Por esto, es la pieza que en el alto grado determina el éxito de una operación de extrusión, inyección, etc. Con base al diagrama, se describen a continuación las dimensiones fundamentales para un husillo y que, en los diferentes diseños, varían en función de las propiedades de flujo de polímero fundido que se espera de la extrusora, inyectora, etc. Todas las dimensiones que a continuación se detallarán son muy importantes de considerar cuando se analice la compra de un equipo nuevo.

a) Alabes o Filetes

Los alabes o filetes, que recorren el husillo de un extremo al otro, son los verdaderos impulsores del material a través del cañón o barril. Las dimensiones y formas que éstos tengan, determinará el tipo de material que se pueda procesar y la calidad de mezclado de la masa al salir del equipo.

Profundidad del Filete en la Zona de Alimentación Es la distancia entre el extremo del filete y la parte central o raíz del husillo. En esta parte, los filetes son muy pronunciados con el objeto de transportar una gran cantidad de material al interior del cañón, aceptado el material sin fundir y aire que está atrapado entre el material sólido.

Profundidad del Filete en la zona de Descarga o Dosificación En la mayoría de los casos, es muchos menor a la profundidad de filete en la alimentación. Ellos tienen como consecuencia la reducción del volumen en que el material es transportado, ejerciendo una compresión sobre el material plástico. Esta compresión es útil para mejorar el mezclado del material y para la expulsión del aire que entra junto con la materia prima alimentada.

Relación de Compresión

Como la profundidad de los alabes no son constantes, las diferencias que diseñan dependiendo del tipo de material a procesar, ya que los plásticos tienen comportamiento distintos al fluir. La relación entre la profundidad del filete en la alimentación y la profundidad del filete en la descarga, se denomina relación de compresión. El resultado de este cociente es siempre mayor a uno y puede llegar incluso hasta 4.5 en ciertos materiales.

b. Longitud

Tienen una importancia especial; influye en el desempeño productivo de la máquina y en el costo de ésta. Funcionalmente, al aumentar la longitud del husillo, también aumenta la capacidad de plastificación y la productividad de la máquina. Esto significa que operando dos máquinas en las mismas condiciones de R.P.M. y temperatura que sólo se distingan en longitud no tenga capacidad de fundir o plastificar el material después de recorrer todo el barril, mientras que el barril de mayor longitud ocupará la longitud adicional para continuar la plastificación y dosificará el material perfectamente fundido, en condiciones de fluir por el dado. Otro aspecto que se mejora al incrementar la longitud es la calidad de mezclado y homogeneización del material. De esta forma, en un cañón pequeño la longitud es suficiente para fundir el material al llegar al final del mismo y el plástico se dosifica mal mezclado. En las mismas condiciones, un cañón mayor fundirá el material antes de llegar al final y en el espacio sobrante

Page 63: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

63

seguirá mezclando hasta entregarlo homogéneo. Esto es importante cuando se procesan materiales pigmentado o con lotes maestros (master batch), de cargas o aditivos que requieran incorporarse perfectamente en el producto.

c. Diámetro

Es la dimensión que influye directamente en la capacidad de producción de la máquina generalmente crece en proporción con la longitud del equipo. A diámetros mayores, la capacidad en Kg. /HR es presumiblemente superior. Al incrementar esta dimensión debe hacerlo también la longitud de husillo, ya que el aumento de la productividad debe ser apoyada por una mejor capacidad de plastificación.Como consecuencia de la importancia que tienen la longitud y el diámetro del equipo, y con base en la estrecha relación que guardan entre sí, se acostumbre especificar las dimensiones principales del husillo como una relación longitud / diámetro (L/D).

INYECTORAS DE PLASTICO

Los elementos producidos mediante la inyección de plástico reemplazaron a una gran cantidad de elementos producidos con otros materiales como madera y metal.

No siempre este cambio fue favorable al artículo producido o el plástico utilizado no correspondía a las exigencias requeridas en las piezas originales.

Esto generó un descrédito del plástico que costo revertir y que es necesario seguir consolidando.

Los plásticos técnicos de hoy permiten llegar a comportamientos similares al de las piezas producidas en otros materiales.

Una inyectora puede hoy funcionar en forma totalmente automática y una persona puede atender hasta 6 maquinas a la vez.

En una inyectora tipo no pueden faltar:

1. Motor con medición de torque para optimizar la velocidad de carga 2. Carga de la tolva mediante sistema automático con control de nivel, transporte desde silo y mezcla de colada

molida. 3. Control electrónico de temperatura con programa de valores cargado para cada matriz y material a procesar. 4. Refrigeración o calefacción del molde según el material a inyectar y medidor de presión de inyección en el

molde que evita la abertura del mismo y por lo tanto la rebaba. 5. Sistema de pesado de las piezas producidas para asegurar que toda la inyección ha salido antes de realizar

otro ciclo.

En inyecciones con machos largos esto es imprescindible, se pesan diferencias de hasta 1/4 de gramo.

Page 64: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

64

Imagen de "Inyectora Eléctrica"

Imágenes de "Inyectoras Hidráulicas"

Page 65: GUIA - RESUMEN - MATERIALES NO METALICOS

MATERIALES INDUSTRIALES I

[email protected]

65

Javier Quiroga

Movil 0297 156236545