HCANALES CAP1

29
1 Capítulo 1 VERTEDORES 1.1 Introducción Los vertedores son estructuras hidráulicas (ref.1), placas o muros, en las que la descarga del agua se efectúa por encima de las mismas (Fig. 1); por lo que, también reciben el nombre de obras de excedencias. Se llama vertedor (ref.4) a un dispositivo hidráulico que consiste en una escotadura a través de la cual se hace circular el agua. Pueden usarse como dispositivos de aforo en laboratorio y canales, así como obras de control en presas. Se clasifican, según el espesor de la placa o muro de descarga (Fig. 1.2), en: 1. Vertedores de pared delgada y 2. Vertedores de pared gruesa.

Transcript of HCANALES CAP1

Page 1: HCANALES CAP1

1

Capítulo 1

VERTEDORES 1.1 Introducción

Los vertedores son estructuras hidráulicas (ref.1), placas o muros, en las que la descarga del agua se efectúa por encima de las mismas (Fig. 1); por lo que, también reciben el nombre de obras de excedencias.

Se llama vertedor (ref.4) a un dispositivo hidráulico que consiste en una

escotadura a través de la cual se hace circular el agua.

Pueden usarse como dispositivos de aforo en laboratorio y canales, así como

obras de control en presas. Se clasifican, según el espesor de la placa o muro de descarga (Fig. 1.2), en:

1. Vertedores de pared delgada y 2. Vertedores de pared gruesa.

Page 2: HCANALES CAP1

2

El punto más alto de la pared vertedora recibe el nombre de cresta del vertedor y el desnivel, entre la superficie libre del agua y su cresta, se conoce como carga sobre el vertedor, simbolizada por la mayoría de los investigadores, con la letra h.

Fig. 1.2-a Vertedor de pared delgada Fig. 1.2-b Vertedor de pared gruesa

1.2 Vertedores de pared delgada Para deducir la ecuación general del gasto se usa la figura 1.3 en la que, al aplicar la ecuación de la energía entre los puntos “0” y “1”, se obtiene la velocidad teórica V en cualquier punto de la sección “1”.

Fig. 1.3 Vertedor de pared delgada, sección general.

Page 3: HCANALES CAP1

3

1

0

2

111

2

000

22rh

g

vpz

g

vpz

(1-1)

De la geometría de la figura se observa (tomando como plano de referencia el piso del canal) que: w + h = z0 + h0, por lo que, z0 = (w + h –h0). Así también z1 = w + y.

La presión en el punto “0” es gh0, la velocidad V0 puede despreciarse y la presión

en el punto “1” es cero (por ser atmosférica). Con esta información y despreciando las pérdidas, la ecuación de la energía queda como:

02

0)(0)(2

100

g

vyw

hhhw

de donde

yhgv 21

De la ecuación de continuidad, el gasto teórico que pasa por la sección elemental (Fig. 1.3-b) es:

dAvdQ .1 (1-2)

donde v1 es la velocidad media y el diferencial de área dA = 2xdy; por tanto:

xdyyhgdQ 2.2 (1-3)

Por la trayectoria curva de las líneas de corriente y la fricción entre el flujo y el perímetro de la sección vertedora, el gasto real es menor que el obtenido por ecuación (1-3), es decir:

xdyyhgdQreal .22 (1-4)

Por consiguiente, el gasto en toda la sección transversal queda definido por

la integración de todas las secciones elementales:

xdyyhgQh

vertedor ..2.20 (1-5)

Esta ecuación se conoce como ecuación general del gasto, en vertedores de pared delgada, la cual se puede integrar, si se conoce la geometría de la

sección vertedora; además, el símbolo μ es conocido como coeficiente de gasto.

Page 4: HCANALES CAP1

4

A continuación se integra la ecuación general del gasto, para las secciones transversales más usadas en el ejercicio profesional. 1.2.1 Vertedores de sección rectangular Para esta sección transversal, la parte derecha de figura 1.3 queda como:

Fig. 1.4-a Idealización de un vertedor rectangular

En este caso x =b/2, por lo que, la sustitución en la ecuación general del

gasto, conduce a la fórmula

h

dyyhgbQ0

2.

En la cual, la integral se obtiene con facilidad haciendo la sustitución de z = h-y; es decir, dz = - dy; por consiguiente, los límites de integración son: cuando y = 0, z= h; cuando y = h, z = 0. De esta forma la integral se transforma en:

2/30

0 3

2hdzzdyyh

h

h

con lo que la ecuación del gasto, para este tipo de vertedores queda:

2/323

2bhgQ (1-6)

El coeficiente µ se estima con una de las cinco fórmulas de tabla 1.1,

observando el cumplimiento de los límites de aplicación. En caso de que no sean cumplidos todos, se deja el valor del coeficiente µ, para el cual se hayan cumplido más límites.

Page 5: HCANALES CAP1

5

Taba 1.1 Fórmulas experimentales para determinar el coeficiente de gasto m aplicables a la ecuación (1-6). En el caso de vertedores

sin contracciones laterales haga b = B.

Autor Fórmula Límites de aplicación

Observaciones

Hegly (1921)

xhB

bB

0041.0045.06075.0

22

55.01wh

h

B

b

0.10 m ≤ h ≤ 0.60 m 0.50 m ≤ b ≤ 2.00 m 0.20 m ≤ w ≤ 1.13 m

El primer límite de aplicación es el más importante. Para h/b > 0.13 tiene mayor precisión que la SIAS.

Sociedad de Ingenieros y Arquitectos Suizos (SIAS)

x

h

Bb

B

b

6.11000

/3625.3037.0578.0

22

24

5.01wh

h

B

b

0.025 m ≤ h ≤ 0.80 m b ≤ 0.3B

w 0.30 m

en el caso de contracciones laterales:

1w

h

Para h/b ≦0.13, es más

precisa que la de Hegly.

Hamilton –Smith

B

b

101616.0

0.075 m ≤h ≤0.60 m

0.30 m ≤b

0.30 m ≤w

2

wh

Si B(h + w) < 10bh, se deberá tomar en cuenta la velocidad de llegada y en la ecuación del gasto se sustituye h por:

g

VhH

24.1

2

0

, con

Page 6: HCANALES CAP1

6

hb 2

5.0b

h

)(0

whB

QV

Francis

2/32

0

2/32

0

2211.01623.0

gh

V

gh

V

b

hn

0.18 m ≤ h ≤ 0.50 m 2.40 m ≤ b ≤ 3.00 m 0.60 m ≤ w ≤ 1.50 m

hb 3

V0 es la velocidad de llegada y: n = 2 en vertedores con contracciones laterales y n = 0, para vertedores sin contracciones laterales.

Rehbock (1929) 2/3

0011.01

0011.00813.06035.0

hw

h

0.01 m ≤ h ≤0.08

m

mb 30.0

mw 06.0

1w

h

Vale solo para vertedores sin contracciones laterales. Es muy precisa y de las más usadas por su sencillez.

Page 7: HCANALES CAP1

7

Cuando el vertedor se localiza al centro de un canal de ancho B, mayor que la longitud de la cresta vertedora b, Fig. 1.4-b, se producen contracciones laterales. En este caso, para el cálculo del gasto se sigue usando (1-6), sólo que, se sustituye H en lugar de h, donde H está dada por:

g

VhH

2

2

0 (1-7)

y la velocidad de llegada (V0), se calcula aguas arriba de la sección vertedora, por lo que está dada por la ecuación.

hwB

QV

0 (1-8)

Fig. 1.4-b Vertedor rectangular, con contracciones laterales

1.2.2 Vertedores de sección triangular

W

Si la sección vertedora es triangular, simétrica con respecto al eje vertical y con ángulo Ө en el vértice (Fig. 1.5), se obtiene la relación, para x:

2tan.

yx (1-9)

Con esta información, la ecuación general del gasto queda:

Fig 1.3 Vertedor triangular

Page 8: HCANALES CAP1

8

h

dyyhygQ02

2).tan(2

la cual se puede integrar por un proceso de sustitución, análogo al llevado a cabo en la sección rectangular, obteniendo:

2/50 0

2/32/10

0 15

4)( hdzzdzhzdzzzhdyyhy

h hh

h

Sustituyendo en la ecuación del gasto, ésta queda como:

2/5

2)tan(.2.

15

8hgQ (1-10)

El coeficiente de gasto, µ, se calcula con alguna de las fórmulas dadas en Tabla 1.2, sin omitir la verificación de los límites de aplicación. Tabla 1.2 Fórmulas experimentales para determinar el coeficiente de gasto μ, aplicable a

ecuación (1-10), para vertedores triangulares con diferentes ángulos θ en el vértice. B

representa el ancho del canal de llegada y w el desnivel entre el vértice del vertedor y el piso del canal.

Autor Fórmula Límites de aplicación

Observaciones

Universidad Católica de Chile

KgC )tan(.215

82

Válida para

150≤θ≤120

0

. La profundidad w no tiene influencia en el coeficiente de gasto

μ, coeficiente

experimental que

depende de h y θsegún

Fig. 1.6. K es otro coeficiente que depende de B/h, según Fig. 1.7 y

vale 1 si B/h≥5 para θ=

900 y si B/h≥2.75 para

θ=450

Gourley y Crimp

03.0

2tan32.1

hC

Vale para

ángulos θ de

450, 60

0 y 90

0

y para profundidades w grandes.

Esta fórmula sustituida en la (1-10-b), conduce a la ecuación:

48.22tan32.1 hQ

Hegly

22

100375.0

5812.0whB

h

h

Vale para ángulos

θ=900

0.10

≤h≤0.50 m y

w pequeñas.

Es de las fórmulas más precisas para vertedores con ángulos en el vértice

θ=900

Barr

h

0087.0565.0

Vale para ángulos

θ=900, con

cargas: 0.05

≤h≤0.25 m

3h ≤w

8h ≤B

El valor medio

m=0.593 que resulta

de esta fórmula corresponde bastante el resultado de Thompson y que sustituido en (1-10.a), conduce a la ecuación:

5.24.1 hQ

Page 9: HCANALES CAP1

9

Koch y Yarmall

58.0

Vale para

ángulos θ=900,

con cargas grandes

3h ≤w y 8h ≤B

No se imita con precisión el rango.

Heyndrickx

22

25.1 1214.05775.0whB

hh

Vale

paraθ=600, y

cargas normales

Es bastante precisa.

1.2.3 Vertedores de sección trapecial Partiendo del principio geométrico de que esta sección transversal (Fig. 1.6), se compone de una sección rectangular, al centro, más dos triangulares, uno en cada extremo, entonces, el gasto vertido por toda la sección será, en teoría, las suma de los gastos que vierte cada sección, es decir:

2/3..23

2bhgQ r + 2/5

2tan.2.

15

8hgt

(1-11)

Donde la “r” y la “t”, en el coeficiente µ, se refiere al vertedor rectangular y triangular, respectivamente.

Fig. 1.6 Sección típica trapecial

Ejemplos de aplicación

Page 10: HCANALES CAP1

10

1.1.a) Un vertedor rectangular de pared delgada, con contracciones laterales (Fig. 1.4-b), tiene una longitud de 1m. ¿A qué altura w se debe colocar, en un canal, de ancho B = 2 m, para conseguir un tirante de llegada de h + w = 2 m y un gasto Q = 0.25 m3/s? 1.1. b) ¿Cuál sería la carga sobre un vertedor triangular (figura 1.5), con ángulo central igual a 90º, para descargar el mismo gasto? Solución a) En este caso, ecuación (1-6) se escribe como:

2/32

0

22

3

2

g

VhbgQ

(1.a)

De la ecuación de continuidad, la velocidad de llegada, es:

0625.022

25.00

hwB

QV m/s y m

g

V0002.0

2

2

0

puesto que (h +w = 2), se sigue que: h = 2 –w y b = 1 m; la ecuación (1.a) queda como:

2/30002.02)1(2

3

225.0 wg

Para estimar el coeficiente de gasto, m, se usó la fórmula de Hamilton –Smith, con

la que se obtuvo.

5852.0)2(10

11616.0

101616.0

B

b

valor que al sustituir en la ecuación del gasto y resolver, se obtiene que w = 1.725 m y de la condición: h + w = 2 m, h = 2 -1.725 = 0.275 m. Revisión de los límites de aplicación 0.075 m h 0.60 m (h = 0.275 m, se cumple) 0.300 m b (b = 1 m, la cumple) 0.300 m w (w= 1.725 m, la cumple)

2/wh (w/2 =0.862 m, esto es mayor que 0.275 m, se cumple)

mhBmb 45.12)1( , se cumple

5.0275.0/ bh , se cumple.

Page 11: HCANALES CAP1

11

Puesto que se cumplen los límites de aplicación, de la fórmula seleccionada, se concluye que la solución es correcta. Solución b) En este caso ecuación (1-10) queda, al sustituir los datos dados en el enunciado del problema:

2/5

20

2

0625.045tan.2.

15

825.0

ghg

agrupando, los término conocido en el primer miembro, queda.

5.22

2

0625.0.1058259.0

gh

(1.b) Seleccionando µ=0.58 (fórmula de Koch y Yarnall-tabla 1.2), se obtiene h = 0.506 m y como h+ w = 2, entonces, w = 1.494 m. Revisión de los límites de aplicación Ө = 90º; la cumple )518.1(3)494.1( mhmw ; no la cumple

B(=2 m) 8h(=4.048 m); no la cumple. De los resultados obtenidos, se concluye que es necesario probar con otra fórmula, para obtener el coeficiente de gasto, µ. Por ejemplo, si se aplica la fórmula de Hegly, por ser una de las más precisas, para vertedores triangulares con ángulo en el vértice de 90º, se tiene que:

22

22

)2(21.

00375.05812.01.

00375.05812.0

h

hwhB

h

h

Al sustituir en ecuación (1.b) se convierte en:

5.22

22

2

0625.0.

41.

00375.05812.01058259.0

gh

h

h

Resolviendo esta ecuación por ensayo y error (ver tabla de cálculo abajo), se obtiene que h = 0.50 m y por consiguiente w = 1.50 m.

Page 12: HCANALES CAP1

12

h producto 0.1058259

0.10000 0.6187000 1.0006250 0.0031780 0.0019675 menor

0.50000 0.5887000 1.0156250 0.1769527 0.1057998 menor

0.50005 0.5886993 1.0156281 0.1769969 0.1058264 aprox

.00375.0

5812.0

h.

41.

22

h5.2

2

2

0625.0

gh

Problema 1.2 Calcular la carga h, sobre el vertedor rectangular de pared delgada, instalado en la parte superior de un tanque al que ingresa, a través de una tubería, un gasto constante de 50 litros por segundo (Q = 0.05 m3/s). El canal de acceso al vertedor tiene un ancho de 3 m (B = 3 m) y la cresta vertedora tiene una longitud de 1.2 m (b = 1.2 m). Asimismo, la altura del vertedor, desde el piso del canal de acceso es w = 1 m (como se muestra en la figura).

H

1.2 m

h

w

Q = 0.05 m3/s

Solución. De acuerdo con las condiciones físicas del vertedor, el gasto se calcula con la ecuación:

232

0

22

3

2/

g

Vhg.bQ

(1.2.1)

Donde Vo es la velocidad de llegada, calculada con ecuación (1-8), esto es:

h

.

hwB

QV

13

0500

Usando la fórmula de Hegly para estimar el coeficiente de gasto, se llegó a:

22

550100410

045060750wh

h

B

b..

h

.

B

bB..

sustituyendo B = 3 m, b = 1.2 m y w = 1 m, se tiene:

Page 13: HCANALES CAP1

13

2

108801

0041058050

h

h..

h

.. (1.2.3)

Finalmente, ecuación (1.2.1) se plantea como:

2/3

2

2

)1(18

0025.02

1088.01

0041.05805.0).2.1(

3

205.0

hg

hgh

h

h

2/3

2

2

)1(18

0025.0

1088.01

0041.05805.00141101.0

hg

hh

h

h

que resolviendo, por ensaye y error, para “h”, se obtiene que: h = 0.07923 m, como se muestra en la siguiente tabla.

h 0.0141101

0.10000 0.62150 1.00073 0.03163 0.01967

0.04000 0.68300 1.00013 0.00800 0.00547

0.05000 0.66250 1.00020 0.01118 0.00741

0.06000 0.64883 1.00028 0.01470 0.00954

0.07000 0.63907 1.00038 0.01853 0.01184

0.08000 0.63175 1.00048 0.02263 0.01431

0.07923 0.63225 1.00047 0.02231 0.01411

h

0041.05805.0

2

1088.01

h

h 2/3

2)1(18

0025.0

hgh

1.3 Vertedores de pared gruesa Cuando la arista en bisel tiene un espesor mayor a 2 mm, se presume la existencia de un vertedor de pared gruesa. Para eliminar esa incertidumbre, se

revisa la relación e/h. Cuando esta relación es mayor que 0.67 (e/h > 0.67), el

funcionamiento es diferente, debido a que la lámina vertiente se adhiere a la cresta del vertedor (Fig. 1.2.-a) y la fricción empieza a tener importancia, afectando la descarga.

Page 14: HCANALES CAP1

14

Fig. 1.7-a Vertedor de pared gruesa

1.3.1. Vertedor de pared gruesa - sección rectangular En estos vertedores, el gasto se sigue calculando con ecuación (1-6) y se

afecta el resultado obtenido con un factor, e1, llamado coeficiente de Bazín. Dicho

coeficiente se puede calcular con una de las siguientes fórmulas:

he /

185.070.01 , para 0.67 < e/h =3

he /

10.075.01 , para 3.0 < e/h =10

Cuando la relación e/h > 10 ó el umbral de entrada, del vertedor, está redondeado, como se muestra en figura 1.7-b; entonces, el gasto se calcula con la ecuación:

2/3.. hbCQ (1-12)

donde

2/3

2

004.022

3

.26.01

e

gwh

h

C (1-13)

En esta ecuación le es un factor de fricción que depende de la relación w/h,

según se muestra en Tabla 1.3 (toma el valor de cero cuando la entrada es redondeada) y n está dado por la relación ԑ/yc, donde yc es el tirante crítico del flujo. Puesto que para calcular el tirante crítico se requiere conocer el gasto que

Page 15: HCANALES CAP1

15

circula por el vertedor, no es posible calcular n, por lo que, se hace la sustitución de n = φyc, con lo que,

Fig. 1.7-b Vertedor de pared gruesa con umbral redondeado

h

e (1-14)

Los valores de ϕ, (para arista viva), son dados como una función de

h/(h+w) en Tabla 1.4; sin embargo, para arista redondeada se toma el valor aproximado de 1.5. Tabla 1.3 Valores de λe

h

w

2.04 1.78 1.48 1.19 0.91 0.67 0.314 0.162

e 0.33 0.328 0.315 0.282 0.240 0.188 0.110 0.056

cy

w

3.50 3.00 2.50 2.00 1.50 1.00 0.5 0.25

Tabla 1.4 Valores de

wh

h

0.33 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1.71 1.68 1.65 1.62 1.60 1.56 1.53 1.52

Problema 1.4 Un vertedor rectangular de pared gruesa, cuyo espesor de 0.45 m y longitud de b = 2.50 m, trabaja con una carga h = 0.30 m y una profundidad w = 0.60 m. Determinar el gasto vertido.

Page 16: HCANALES CAP1

16

Solución. Para relación e/h = 1.50 > 0.67, pero menor de 3; el gasto se calcula como la descarga por un vertedor rectangular de pared delgada y el resultado se multiplica por un coeficiente ε1, para tomar en cuenta el efecto de la fricción.

511 2

3

2 .h.b..gQ

donde he /

185.070.01 =0.8233

Para calcular el coeficiente de descarga μ, se usa la fórmula de Rehbock tomada de tabla 1.1, para los datos del problema (h = 0.30 m; w = 0.60 m)

647846.00011.0

1.0011.0

0813.06035.0

2/3

hw

h

por lo que, el gasto es:

647.030.0.50.2647846.023

28233.0 5.1

gQ m3/s.

Problema 1.5 Un vertedor de pared gruesa, con el umbral a 1.50 m de altura desde el fondo y 3 m de longitud, tiene el borde de aguas arriba redondeado (figura 1.7-b). Dicho vertedor se va a construir en el tramo recto de un arroyo para realizar aforos. Se desea determinar la gráfica que relacione el gasto contra las cargas, para ser proporcionada al aforador que efectuará las mediciones. Solución. En este caso se plantea la solución mediante la ecuación (1-12). El

coeficiente C será calculado con ecuación (1-13), con le = 0 debido a que el

vertedor tiene el borde de aguas arriba redondeado (ver figura) y f = 1.5.

Tomando en cuenta que la relación e/h > 0.67 y que h > 0.0 m; entonces, se debe proponer un espesor “e”, tal que, se cumpla dicha relación. Así también,

Page 17: HCANALES CAP1

17

considerando que la escala que se va a construir, para que el aforador tome lecturas, no supere los 3.0 m; el valor del espesor será de 2.20 m. Con estas precisiones se manejará un rango de valores de la carga, h, desde 0.10 m hasta 3.0 m. Si en la ecuación del gasto se sustituye la fórmula que permite estimar el coeficiente C, con las observaciones ya incluidas, se llega a la ecuación:

5.1

2/3

2

.3.2.2

006.02

3

.5.1

26.01

h

h

gh

h

Q

PERFIL

PLANTA

2.2 m

h

1.50

3 m

Este arreglo permitirá construir la gráfica, dando valores a “h”, en el rango establecido y calcular el gasto con la ecuación anterior. Por ejemplo: para: h = 0.10 m, la relación e/h = 2.2/0.10 = 22 y

143.010.0.3.

10.0

2.2006.0

2

3

.5.110.0

10.026.01

2/3

2/3

2

g

Q m3/s

Page 18: HCANALES CAP1

18

para: h = 0.20 m, la relación e/h = 2.2/0.20 = 11 y

430.020.0.3.

20.0

2.2006.0

2

3

.5.120.0

20.026.01

5.1

2/3

2

g

Q m3/s

y así para otros valores de h. Los valores y la gráfica se muestran a continuación:

h Q

(m) (m3/s)

0.10 0.143

0.20 0.430

0.30 0.811

0.40 1.267

0.50 1.790

0.60 2.375

0.70 3.017

0.80 3.713

0.90 4.461

1.00 5.258

1.10 6.102

1.20 6.992

1.30 7.925

1.40 8.902

1.50 9.920

1.60 10.978

1.70 12.075

1.80 13.210

1.90 14.383

2.00 15.592

2.10 16.836

2.20 18.115

2.30 19.428

2.40 20.775

2.50 22.154

2.60 23.565

2.70 25.007

2.80 26.481

2.90 27.984

3.00 29.518

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30 35

Val

ore

s d

e h

, en

me

tro

s

GASTO Q en m3/seg

Curva Q vs h

1.3.2. Vertedores de pared gruesa tipo cimacio Los vertedores tipo cimacio consisten de una cresta vertedora de pared gruesa, cuyo perfil tiene, aproximadamente, la forma de la superficie inferior de una lámina ventilada que vierte libremente sobre la cresta (Fig. 1.8); esto es, como si la descarga fuera la de un vertedor de pared delgada y el hueco que queda por

Page 19: HCANALES CAP1

19

abajo del filete de agua, en caída libre, se rellena monolíticamente con algún material sólido, generalmente concreto. El primero en presentar esta propuesta, fue el investigador W. P. Creager, por lo que, este tipo de vertedor lleva su nombre.

Paramento aguas arriba

Pt = punto de tangencia

X

Y

Pt

O

R1R2

X2

X1

1

a

V

H

HdHe

R

á

p

i

d

ykHx nd

n 1

g

vHH de

2

20

Fig. 1.8-a. Descripción genérica de un Cimacio.

El gasto vertido se calcula con una ecuación tipo (1-12), tomando en cuenta que “h” se sustituye por la carga de diseño, He; el coeficiente C se obtiene de manera distinta al dado por ecuación (1-13) y el ancho del vertedor se cambia de nomenclatura y simbología (L), pero físicamente se refiere al mismo concepto. Con lo dicho, la ecuación del gasto queda como:

5.1.. eHLCQ (1-15)

donde He es la carga total (carga efectiva) sobre la cresta vertedora. Pruebas en modelos sobre los vertedores han demostrado que la velocidad de llegada, Vo, es insignificante cuando la altura, h, del vertedor, es mayor que 1.33Hd, donde Hd es la altura de diseño (ver figura 1.8). En estas condiciones, el coeficiente de descarga, C, es Cd = 4.03.

En vertedores bajos con h/Hd < 1.33, la velocidad de llegada tendrá un efecto apreciable sobre el caudal o el coeficiente de descarga y, en consecuencia, sobre el perfil del agua. Puede usarse una gráfica adimensional (figura 1.9), preparada con los datos de la Waterway Experiment Station para mostrar el efecto de la velocidad de llegada, sobre la relación He/Hd y C/Cd, para vertedores diseñados con las formas WES con paramento de aguas arriba vertical. Para

Page 20: HCANALES CAP1

20

vertedores con el paramento de aguas arriba inclinada, el valor de C puede corregirse, para tener en cuenta el efecto de la pendiente de dicho paramento; multiplicando C por un factor de corrección, obtenido en el cuadro adjunto a la figura de referencia. Cuando existe pilas sobre el vertedor, la longitud real se reduce y la longitud efectiva, L, se obtiene con la expresión:

eap HkNkLL 20 (1-16)

Donde L0 es la longitud física de la cresta del vertedor; N el número de pilas; kp es un coeficiente de contracción por pila (ver figura 1.10-a); ka es un coeficiente de contracción por muros extremos (ver figura 1.10-b). La altura del vertedor afecta el coeficiente de gasto, como se observa en figura 1.11, la cual tiene, en el eje horizontal, la relación w/He y, en el eje vertical, el valor del coeficiente de descarga y es válida para vertedores con paramento agua arriba vertical. El diseño del perfil del cimacio toma en cuenta, principalmente, la carga de diseño, Hd o el gasto de diseño, Qd. La curva comprendida entre la cresta vertedora y el punto de tangencia (P. T.), se define por la ecuación tipo:

ykHx n

d

n 1

Por lo que,

1

n

d

n

kH

xy (1-17)

Page 21: HCANALES CAP1

21

Fig. 1.8-b. Detalle del perfil completo del Cimacio.

donde x, y son los ejes coordenados, con el origen en la parte más alta del vertedor (cresta), con direcciones positivas a la derecha y hacia abajo, respectivamente; k y n, son coeficientes que dependen del talud del paramento aguas arriba del vertedor, como se muestra en tabla 1.5 y Hd es la carga de diseño, medida como el desnivel entre la superficie del agua (aguas arriba del vertedor) y la cresta vertedora. La parte anterior al origen del sistema coordenado, se acostumbra diseñarla como una curva compuesta con R1 y R2, cuyos valores están en tabla 1.5. Tabla 1.5. Valores de k, n, R1 y R2.

Pendiente del paramento aguas arriba

K n R1 R2 X1 X2

Vertical 2.00 1.85 0.50Hd 0.20Hd 0.175Hd 0.282Hd

3V:3H 1.873 1.775 0.45Hd 0.119Hd

3V:2H 1.939 1.81 0.48Hd 0.22Hd 0.115Hd 0.214Hd

3V:1H 1.936 1.836 0.68Hd 0.21Hd 0.139Hd 0.237Hd

Page 22: HCANALES CAP1

22

Fig. 1.9. Relación de altura –caudal para las formas estándar de vertedores WES

Por razones de estabilidad estructural o de tipo geométrico, puede ser necesario abandonar la forma del perfil, en la zona del cuadrante aguas abajo y continuarlo con una rápida, cuya inclinación se define con la pendiente aH:1V. El punto de tangencia (ver figura 1.8), entre el perfil y la recta, se determina igualando la primer derivada de (1-16) con la tangente de la rápida, es decir, con (1/a); con lo que se obtiene el valor de la coordenada X y el de Y (con ecuación 1-16).

Page 23: HCANALES CAP1

23

Fig. 1.10-a Fig. 1.10-b.

Fig. 1.11. Valores del coeficiente de descarga, para paramento vertical

Problema 1.3 Se han realizado experimentos con un vertedor rectangular de pared delgada, con una longitud de cresta de 0.92 m, colocado en un canal de

Page 24: HCANALES CAP1

24

1.22 m de ancho, a una elevación de w = 0.61 m, de la cresta al piso del canal, obteniendo los siguientes resultados:

Q(m3/s) 0.286 0.538 0.835

h (m) 0.305 0.458 0.610

Demostrar que estas observaciones son consistentes con la fórmula Q = CbHn, tomando en cuenta que H es la carga total definida por ecuación (1-7); determinar los valores de C y n. Solución. Por definición de carga total, H [ecuación (1-7)], con la información dada se obtuvo la velocidad de acercamiento [ecuación (1-8)] y, finalmente la carga total; por ejemplo, cuando h + w = 0.305 + 0.610 = 0.915 m, por tanto el área A0 = b(h+w) = 1.1163 m2, así que V0 = Q/A0 = 0.286/1.1163 = 0.2562 m/s. De cuación (1-7): H = h + hv = 0.286 + (0.2562)2/2g = 0.308 m. De la misma forma se procedió para las demás cargas (h).

h w B A0 Q V0 V02/2g H

(m) (m) (m) (m2) (m3/s) (m/s) (m) (m)

0.305 0.610 1.220 1.116 0.286 0.256 0.003 0.308

0.458 0.610 1.220 1.303 0.538 0.413 0.009 0.467

0.610 0.610 1.220 1.488 0.835 0.561 0.016 0.626

Como la ecuación, con la que se busca la consistencia, es una ecuación de potencias, pueden obtenerse las constantes C y n mediante un ajuste por mínimos cuadrados. Para dicho ajuste, se lineariza la ecuación dada, mediante la aplicación de las propiedades de los logaritmos. Loge(Q)= Loge[(Cb)Hn]=Loge(Cb) + nLoge(H) Y = b + mX (recta de ajuste) Que por superposición de ambas ecuaciones se concluye que: Y = Loge (Q) b = Loge (0.92C)

m = n X = Loge (H). Organizando los datos para realizar el ajuste mediante una recta, se generó la siguiente información:

H Q X Y X2 XY

Page 25: HCANALES CAP1

25

(m) (m3/s) Ln(H) Ln(Q) 0.3083456 0.286 -1.176534 -1.251763 1.3842325 1.4727424 0.4666897 0.538 -0.762091 -0.619897 0.5807823 0.4724176 0.6260411 0.835 -0.468339 -0.180324 0.2193416 0.0844526 -2.406964 -2.051984 2.1843565 2.0296126

con lo que se formuló el sistema de ecuaciones lineales siguiente:

02961262

0519842

184356524069642

40696423

.

.

m

b.

..

.

Aplicando la rutina del método de Eliminación completa de Gauss –Jordan se llegó a la siguiente solución: b = 0.530468941 y m = 1.513687123; por lo que, aplicando antilogaritmos se obtiene:

6997291941920 5304689410 .eC. ).(

Por tanto, C = 1.84753, y n = 1.513687123 Entonces, la ecuación de ajuste es:

513687123.184753.1 HQ

Problema 1.6 Calcular el gasto Q, sobre el vertedor (ver figura), con ayuda de la ecuación del impulso y cantidad de movimiento; haciendo las siguientes hipótesis: 1ª Despreciar las fuerzas de fricción, ocasionadas por la pared del canal y el agua.

2ª Aceptar que wyy 122

1 y que el empuje debido a las presiones sobre la

cara vertical, del umbral, es igual a la que resulta de presión hidrostática medida a partir de la superficie libre aguas arriba. 3ª Suponer que el flujo es paralelo y que la distribución de presiones es hidrostática.

Page 26: HCANALES CAP1

26

Figura del ejemplo 1.6. Solución. Aplicando la ecuación del impulso y cantidad de movimiento, al volumen de control mostrado y con las fuerzas en él establecidas, se obtiene:

1221 VVQg

PPP w

E1-6

Nota: Por comodidad se dibujaron las fuerzas debidas a los empujes, por unidad de ancho. Tomando en cuenta que Q = V.A y que q = Vy, entonces,

i

iy

qV

12

2

21

2

1 .2

12.

2

1.

2

1

y

q

y

q

b

Q

gywywy

12

2

21

2

1 22

1

y

q

y

q

g

qywywy

Como y2 = ½(y1-w), entonces,

21

21

2

1

22

1 24

3

2

1

yy

yy

g

qwywy

Page 27: HCANALES CAP1

27

21

21

22

24

3

2

1

yy

yy

g

qy

De donde

22

212 .

8

3.

yy

yygyq

,

Por tanto, Q = q*b. Problema 1.7 Diseñar un vertedor tipo cimacio de manera que, con una avenida de diseño de 14,000 cfs (396.436 m3/s), la elevación del agua en el depósito no exceda de 15 pies (4.572 m) sobre la cresta vertedora, la cual está instalada en un canal de acceso de 75 pies (22.860 m) de longitud. El paramento de aguas arriba debe ser vertical y el cimacio conecta con una pendiente, aguas abajo, de 0.20. Determínese el ancho requerido del vertedor y trácese el perfil del cimacio. Solución. Con la ecuación del gasto se calcula el ancho del vertedor, para los siguientes datos: Q = 396.436 m3/s H = 4.572 m C = 2.18 (tomado de figura 1.10)

602.18572.418.2

436.3965.12/3

CH

QL real m.

De tabla 1.5 o de figura 1.8-b (pagada a la derecha), se observa que K = 2 y n = 1.85. Por lo que, la ecuación del perfil, del cimacio, queda como:

yHx d

85.085.1 2

De donde,

28.7572.422

85.1

85.0

85.1

85.0

85.1 xx

H

xy

d

(*)

Para encontrar las coordenadas del punto de tangencia que cumpla con las condiciones de que se enlaza con una pendiente de 1V:0.2H; se plantea:

Page 28: HCANALES CAP1

28

2.0

1

28.7

85.1

x

dx

d

dx

dy

De donde, al despejar x , resulta X = 33.29 m; lo que hace que y = 89.97 m. El perfil del cimacio queda determinado, para valores de 0 x 33.29 que al sustituir en ecuación con (*), se obtienen los valores respectivos de “y”.

Tabla de datos obtenidos y graficados. X 0 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00 33.29

Y 0 1.05 3.78 8.00 13.63 20.59 28.85 38.37 49.12 61.08 74.22 89.98

Problemas sugeridos (ref. 1) 7.5 Página 272 7.10 Página 274 7.14 Página 274 7.16 Página 274 7.17 Página 275 7.18 Página 275

Page 29: HCANALES CAP1

29

Referencias

1. Hidráulica general Vol. 1-Fundamentos: CAPÍTULO 7/Giberto Sotelo Ávila/LIMUSA

2. Hidráuica de canales abiertos/Ven Te Chow/Mc Graw-Hill 3. Apuntes de Hidráulica II-capítulo 8: Diseño hidráulico de

estructruras/Gilberto Sotelo Ávila/UNAM 4. Hidráulica/Samuel Trueba Coronel/CECSA