hormigon10.pdf

22
TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc. Escuela Politécnica del Ejército – Ecuador [email protected] Octubre-2008 316 CAPÍTULO X INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO 10.1 INTRODUCCIÓN: La cimentación es la parte de la estructura que permite la transmisión de las cargas que actúan, hacia el suelo o hacia la roca subyacente. Cuando los suelos reciben las cargas de la estructura, se comprimen en mayor o en menor grado, y producen asentamientos de los diferentes elementos de la cimentación y por consiguiente de toda la estructura. Durante el diseño se deben controlar tanto los asentamientos absolutos como los asentamientos diferenciales. 10.2 EL SUELO DE CIMENTACIÓN: El suelo constituye el material de ingeniería más heterogéneo y más impredecible en su comportamiento, es por ello que los coeficientes de seguridad que suelen utilizarse son al menos de 3 con relación a la resistencia. La presencia de diferentes tipos de suelos y de distintos tipos de estructuras da lugar a la existencia de distintos tipos de cimentaciones. 10.3 TIPOS DE CIMENTACIONES: Dependiendo de la ubicación y de las características de los estratos resistentes de suelos, las cimentaciones se clasifican en cimentaciones superficiales y cimentaciones profundas. Entre las cimentaciones superficiales destacan los plintos aislados, las zapatas corridas, las zapatas combinadas, las vigas de cimentación y las losas de cimentación. Entre las cimentaciones profundas se suelen utilizar los pilotes prefabricados hincados, los pilotes fundidos en sitio y los caissons. a. Plintos Aislados: Se los utiliza como soporte de una sola columna, o de varias columnas cercanas en cuyo caso sirve de elemento integrador. Pueden utilizar una zapata de hormigón armado, o un macizo de hormigón simple o de hormigón ciclópeo. Las zapatas de hormigón armado deberían tener al menos 40 cm de peralte en edificaciones de varios pisos, para asegurar una mínima rigidez a la flexión. Se pueden admitir espesores inferiores en el caso de estructuras livianas no superiores a dos pisos como viviendas unifamiliares con entramados de luces pequeñas, como pasos cubiertos, etc.

Transcript of hormigon10.pdf

Page 1: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 316

CAPÍTULO X INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE

HORMIGÓN ARMADO 10.1 INTRODUCCIÓN: La cimentación es la parte de la estructura que permite la transmisión de las cargas que actúan, hacia el suelo o hacia la roca subyacente.

Cuando los suelos reciben las cargas de la estructura, se comprimen en mayor o en menor grado, y producen asentamientos de los diferentes elementos de la cimentación y por consiguiente de toda la estructura. Durante el diseño se deben controlar tanto los asentamientos absolutos como los asentamientos diferenciales. 10.2 EL SUELO DE CIMENTACIÓN: El suelo constituye el material de ingeniería más heterogéneo y más impredecible en su comportamiento, es por ello que los coeficientes de seguridad que suelen utilizarse son al menos de 3 con relación a la resistencia. La presencia de diferentes tipos de suelos y de distintos tipos de estructuras da lugar a la existencia de distintos tipos de cimentaciones. 10.3 TIPOS DE CIMENTACIONES: Dependiendo de la ubicación y de las características de los estratos resistentes de suelos, las cimentaciones se clasifican en cimentaciones superficiales y cimentaciones profundas.

Entre las cimentaciones superficiales destacan los plintos aislados, las zapatas corridas, las zapatas combinadas, las vigas de cimentación y las losas de cimentación.

Entre las cimentaciones profundas se suelen utilizar los pilotes prefabricados hincados, los pilotes fundidos en sitio y los caissons. a. Plintos Aislados:

Se los utiliza como soporte de una sola columna, o de varias columnas cercanas en cuyo caso sirve de elemento integrador. Pueden utilizar una zapata de hormigón armado, o un macizo de hormigón simple o de hormigón ciclópeo.

Las zapatas de hormigón armado deberían tener al menos 40 cm de peralte en edificaciones de varios pisos, para asegurar una mínima rigidez a la flexión. Se pueden admitir espesores inferiores en el caso de estructuras livianas no superiores a dos pisos como viviendas unifamiliares con entramados de luces pequeñas, como pasos cubiertos, etc.

Page 2: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 317

Figura 10.1: Plintos aislados de peralte constante o variable, que se utilizan como

apoyo de columnas aisladas o columnas vecinas. b. Zapatas Corridas:

Se las utilizan para cimentar muros o elementos longitudinales continuos de distintos materiales como hormigón o mampostería.

Figura 10.2: Zapata corrida para cimentar un muro.

c. Zapatas Combinadas:

Se las suele emplear para integrar el funcionamiento de una zapata inestable o ineficiente por sí sola, con otra zapata estable o eficiente, mediante una viga de rigidez.

Figura 10.3: Zapata combinada para cimentar 2 columnas separadas, que incluye una

viga de rigidez.

Page 3: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 318

d. Vigas de Cimentación: Se las emplea en suelos poco resistentes, para integrar linealmente la cimentación de varias columnas. Cuando se integran las columnas superficialmente mediante vigas de cimentación en dos direcciones, se forma una malla de cimentación.

Figura 10.4: Viga de cimentación y malla de cimentación que integran la transmisión

de cargas de uno o varios ejes de columnas. e. Losas de Cimentación:

Se emplean en suelos poco resistentes, para integrar superficialmente la cimentación de varias columnas. Cuando al diseñar la cimentación mediante plintos aislados, la superficie de cimentación supera el 25% del área total, es recomendable utilizar vigas de cimentación o losas de cimentación.

Page 4: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 319

Figura 10.5: Losa de cimentación que integra la transmisión de cargas de varios ejes

de columnas, en 2 direcciones ortogonales. f. Pilotes:

Se los emplea cuando los estratos resistentes de suelo son muy profundos. Los pilotes pueden ser hincados (clavados en el suelo) o barrenados (pilotes metálicos huecos hincados en el suelo, que luego se convierten en encofrado del verdadero pilote; luego se excava el suelo y roca dentro del pilote metálico, y se funde internamente el pilote de hormigón armado). El hincado o el barrenado y fundido de pilotes permite que se alcancen los estratos resistentes.

Los pilotes suelen acoplarse, en su parte superior, a zapatas, vigas o losas de cimentación. Se utilizan varios pilotes para sustentar a cada unidad de cimentación.

Figura 10.6: Malla de pilotes hincados que transmiten las cargas a estratos profundos

del suelo, integrados a través de un cabezal.

Page 5: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 320

Mientras los pilotes hincados desarrollan su resistencia vertical mediante reacciones en la punta, y fuerzas de fricción a lo largo del pilote, los pilotes barrenados solamente desarrollan resistencia en la punta.

g. Caissons:

Son una variedad de pilotes que se emplean cuando los estratos resistentes de suelo son medianamente o poco profundos y pueden excavarse pozos mediante procedimientos manuales o mecánicos, los mismos que son rellenados con hormigón simple u hormigón armado. Se comportan como columnas enterradas.

Figura 10.7: Caisson que transmite las cargas a estratos profundos del suelo.

10.4 CRITERIOS PARA EL DISEÑO DE PLINTOS: Los esfuerzos en el suelo no deben sobrepasar los esfuerzos admisibles bajo condiciones de carga sin factores de mayoración [ACI 15.2.2].

Cuando las combinaciones de carga incluyan el efecto de solicitaciones eventuales como sismos y viento, los esfuerzos admisibles pueden incrementarse en un 33.3%.

Los asentamientos de las estructuras deberán calcularse incluyendo el efecto en el tiempo de suelos compresibles o consolidables como arcillas y suelos orgánicos.

El recubrimiento mínimo para el hierro, cuando el hormigón es fundido en obra en contacto con el terreno y queda permanentemente expuesto a él, es de 7 cm [CEC 7.7].

Page 6: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 321

Figura 10.8: Recubrimiento mínimo del acero en cimentaciones.

Los plintos deberán diseñarse para resistir fuerzas cortantes tipo viga en cada dirección independientemente, tomando como sección crítica a una distancia d desde la cara de las columnas o elementos verticales [ACI 11.12].

Figura 10.9: Sección crítica al cortante tipo viga en una zapata.

La capacidad resistente del hormigón a cortante tipo viga se calcula con la siguiente expresión [ACI 11.3.1.1]:

c'f53.0vc = Ecuación (10.1)

Donde tanto f’c como vc se expresan en Kg/cm2.

Los plintos deberán diseñarse para resistir fuerzas cortantes de punzonamiento en dos direcciones simultáneamente [ACI 11.11.1.2], tomando como sección crítica a aquella que se ubica a una distancia d/2 alrededor del elemento vertical de carga (columna, muro, etc.).

Figura 10.10: Sección crítica al cortante por punzonamiento.

La resistencia al cortante por punzonamiento que puede desarrollar el hormigón se calcula con el menor valor de las siguientes expresiones [ACI 11.11.2.1], también utilizadas en losas:

Page 7: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 322

c'f06.1vc = Ecuación (10.2)

⎟⎟⎠

⎞⎜⎜⎝

⎛β

+=21c'f53.0vc Ecuación (10.3)

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⋅α= 2

bd

c'f27.0vo

sc Ecuación (10.4)

Donde:

β: relación del lado largo al lado corto de la columna αs: parámetro que vale 40 para columnas interiores, 30 para columnas de borde y 20

para columnas esquineras d: altura efectiva de la losa (distancia desde el centro de gravedad del acero de

tracción hasta la cara comprimida extrema. bo: perímetro de la sección crítica de cortante de la losa o zapata

Tanto f’c como vc se expresan en Kg/cm2.

La sección crítica de flexión en una dirección se ubicará en las caras de los elementos verticales de carga [ACI 15.4.2].

Figura 10.11: Sección crítica a la flexión en cimentaciones de columnas y muros de

hormigón fundidos monolíticamente con la zapata.

En cimentaciones de muros de mampostería, la sección crítica de diseño a la flexión se considerará ubicada en la mitad, entre el eje medio y el borde del muro.

Figura 10.12: Sección crítica a la flexión en cimentaciones de muros de mampostería

no integrados monolíticamente con la zapata.

En zapatas reforzadas en una dirección y en zapatas cuadradas reforzadas en dos direcciones, el acero de refuerzo debe distribuirse uniformemente a través del ancho total de la zapata [ACI 15.4.3].

En zapatas inclinadas o escalonadas, el ángulo de inclinación o la altura y colocación de los escalones serán tales que se satisfagan los requisitos de diseño en cada sección.

Page 8: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 323

Figura 10.13: Secciones críticas para el diseño a flexión, por variabilidad del peralte

de la zapata.

Las zapatas inclinadas o escalonadas que se dimensionen como una unidad, deben construirse para asegurar su comportamiento como tal (deberán ser monolíticas). EJEMPLO 10.1: Diseñar el plinto C3 (cruce de los ejes C y 3) que está sometido a las siguientes solicitaciones correspondientes a estados de carga gravitacionales de servicio y último: • Carga de Servicio (S = D + L):

P = 80 T. Mx = 12 T-m My = 8 T-m

Donde:

P: carga axial de servicio Mx: momento de servicio alrededor del eje x My: momento de servicio alrededor del eje y

• Carga Ultima (U = 1.4D + 1.7L)

Pu = 120 T Mux = 19 T-m Muy = 13 T-m

Donde:

Pu: carga axial última Mux: momento último alrededor del eje x Muy: momento último alrededor del eje y

Page 9: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 324

La capacidad resistente admisible del suelo es qa = 2 Kg/cm2; la resistencia última del hormigón es 210 Kg/cm2, el esfuerzo de fluencia del acero es Fy = 4200 Kg/cm2, y el nivel de cimentación es 1.50 m por debajo de la superficie del suelo. • Criterios para el dimensionamiento de plintos:

En una estructura en que las losas están sometidas a cargas gravitacionales, y están soportadas por vigas perimetrales de mayor peralte, tanto la sección transversal de las columnas como las dimensiones en planta de los plintos conviene que guarden proporciones similares a los módulos de las losas, para que el diseño sea lo más económico posible. Este criterio obedece a que se espera que se presenten momentos flectores mayores en la dirección de las luces más largas.

En el presente diseño se espera que la dimensión L del plinto sea aproximadamente un 25% mayor que la dimensión b (6.00 / 4.80 = 1.25).

Cuando las estructuras están sometidas a sismos (no es el caso de este ejemplo), se pueden hacer crecer, a criterio del diseñador, las dimensiones de ciertas columnas en una dirección (dirección x), y hacer crecer otras columnas en la dirección ortogonal (dirección y). En este caso, las dimensiones de los plintos conviene que se aproximen a la proporcionalidad con las dimensiones de las columnas y no con las dimensiones de los módulos de losas, debido a que los momentos flectores causados por los sismos serán mayores en la dirección de la mayor dimensión de las columnas.

Cuando el área de cimentación de los plintos de una edificación supera aproximadamente el 25% del área del suelo de construcción, generalmente resulta más económico reemplazar los plintos por vigas de cimentación, o por losas de cimentación con vigas de cimentación.

Page 10: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 325

• Dimensionamiento de la superficie de contacto entre el plinto y el suelo de soporte:

Los estados de carga de servicio (S = D + L) se utilizan para dimensionar la superficie de contacto entre el plinto y el suelo de soporte [ACI 15.2.2], debido a que la resistencia del suelo se la cuantifica mediante esfuerzos admisibles.

Si se desprecia la diferencia de peso específico entre el suelo sobre el nivel de cimentación y el peso específico del hormigón armado del plinto, las solicitaciones que actúan sobre el plinto son:

P = 80 T. Mx = 12 T-m My = 8 T-m

Si no existieran momentos flectores, la sección transversal requerida sería:

22

acm 40000

cm/Kg 2Kg 80000

qPA ===

Las dimensiones aproximadas requeridas para carga axial pura serían:

b = 1.80 m L = 2.20 m

Las excentricidades de carga son:

Kg 80000cmKg 800000

PM

e yx

−==

cm 10ex =

Kg 80000cmKg 1200000

PM

e xy

−==

cm 15ey =

Se verifica si la carga está ubicada en el tercio medio de la cimentación:

ex < b / 6 10 cm < (180 cm / 6) (O. K.) ey < L / 6 15 cm < (220 cm / 6) (O.K.)

Page 11: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 326

Si se supone que el suelo trabaja con un comportamiento elástico, y debido a que la carga se encuentra en el tercio medio de la cimentación, puede aplicarse la siguiente expresión para calcular el esfuerzo máximo en el suelo, la misma que es una variante en presentación de las ecuaciones tradicionales de la Resistencia de Materiales para carga axial más flexión en dos direcciones ortogonales:

⎥⎥⎦

⎢⎢⎣

⎡++=

Le6

be6

1APq yx

xám

2xám cm/Kg 52.3

cm 220)cm 15(6

cm 180)cm 10(61

)cm 220)(cm 180(Kg 80000q =⎥⎦

⎤⎢⎣⎡ ++=

El esfuerzo máximo (3.52 Kg/cm2) es superior al esfuerzo permisible (2 Kg/cm2), por lo que se requiere incrementar la sección transversal de cimentación en aproximadamente el 76% (3.52 / 2.00 = 1.76).

A = 1.76 (40000 cm2) = 70400 cm2

De donde las dimensiones básicas podrían ser:

b = 2.40 m L = 3.00 m A = (240 cm) (300 cm) = 72000 cm2

Luego del recalculo de dimensiones, la carga permanece ubicada en el tercio medio de la cimentación, por lo que el esfuerzo máximo de reacción del suelo es:

⎥⎦

⎤⎢⎣

⎡++=

Le6

be6

1APq yx

xám

⎥⎦⎤

⎢⎣⎡ ++=

cm 300)cm 15(6

cm 240)cm 10(61

)cm 300)(cm 240(Kg 80000q xám

2xám cm/Kg 72.1q =

El esfuerzo máximo de reacción del suelo (1.72 Kg/cm2) es inferior al esfuerzo permisible (2 Kg/cm2), por lo que vale la pena disminuir la sección transversal de cimentación en aproximadamente el 14% (1.72 / 2.00 = 0.86).

A = 0.86 (72000 cm2) = 61920 cm2

De donde las dimensiones básicas podrían ser:

b = 2.20 m L = 2.90 m A = (220 cm) (290 cm) = 63800 cm2

La carga está ubicada nuevamente en el tercio medio de la cimentación, por lo que el esfuerzo máximo de reacción del suelo es:

⎥⎦

⎤⎢⎣

⎡++=

Le6

be6

1APq yx

xám

Page 12: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 327

2xám cm/Kg 99.1

cm 290)cm 15(6

cm 220)cm 10(61

)cm 290)(cm 220(Kg 80000q =⎥⎦

⎤⎢⎣⎡ ++=

Las dimensiones en planta propuestas para el plinto son apropiadas.

• Diagrama de reacciones del suelo de cimentación bajo cargas últimas:

Las solicitaciones últimas son:

Pu = 120 T Mux = 19 T-m Muy = 13 T-m

Las excentricidades de carga son:

Kg 120000cmKg 1300000

PuMu

e yx

−==

cm 8.10ex =

Kg 120000cmKg 1900000

PuMu

e xy

−==

cm 8.15ey =

Page 13: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 328

La carga está ubicada en el tercio medio de la cimentación, por lo que los cuatro esfuerzos últimos que definen el volumen de reacciones del suelo se pueden calcular mediante las siguientes expresiones:

⎥⎦

⎤⎢⎣

⎡++=

Le6

be6

1APuq yx

1

⎥⎦

⎤⎢⎣

⎡+−=

Le6

be6

1APuq yx

2

⎥⎦

⎤⎢⎣

⎡−+=

Le6

be6

1APuq yx

3

⎥⎦

⎤⎢⎣

⎡−−=

Le6

be6

1APuq yx

4

⎥⎦⎤

⎢⎣⎡ ++=

cm 290)cm 8.15(6

cm 220)cm 8.10(61

)cm 290)(cm 220(Kg 120000q1

21 cm/Kg 05.3q =

⎥⎦⎤

⎢⎣⎡ +−=

cm 290)cm 8.15(6

cm 220)cm 8.10(61

)cm 290)(cm 220(Kg 120000q2

22 cm/Kg 94.1q =

⎥⎦⎤

⎢⎣⎡ −+=

cm 290)cm 8.15(6

cm 220)cm 8.10(61

)cm 290)(cm 220(Kg 120000q3

23 cm/Kg 82.1q =

⎥⎦⎤

⎢⎣⎡ −−=

cm 290)cm 8.15(6

cm 220)cm 8.10(61

)cm 290)(cm 220(Kg 120000q4

24 cm/Kg 71.0q =

Page 14: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 329

Los estados de carga últimos (U = 1.4D + 1.7L) se emplean para calcular el espesor del plinto y el refuerzo requerido, debido a que la capacidad resistente del hormigón y del acero se cuantifica mediante esfuerzos de rotura y esfuerzos de fluencia.

• Diseño a Cortante Tipo Viga:

El peralte de los plintos está definido por su capacidad resistente a cortante tipo viga y a cortante por punzonamiento. Para ambos casos se utilizan los estados de carga últimos.

Se asume una altura tentativa de 40 cm. para el plinto, y una distancia desde la cara inferior de hormigón hasta la capa de refuerzo de 10 cm en la dirección x y 8 cm en la dirección y (se ha supuesto un recubrimiento mínimo de 7.5 cm para el acero, y un diámetro aproximado de las varillas de refuerzo en las dos direcciones del orden de 15 mm.).

La sección crítica al cortante tipo viga se encuentra a 30 cm (d) de la cara de la columna en la dirección x, y a 32 cm (d) de la cara de la columna en la dirección y, en las dos orientaciones básicas, hacia el lado en que están presentes los esfuerzos máximos.

Page 15: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 330

⇒ Diseño en la Dirección x:

La variación lineal de los esfuerzos de reacción del suelo, y el hecho de que la carga está ubicada en el tercio medio de la cimentación, determina que el promedio de todos los esfuerzos del suelo en la dirección x sean los esfuerzos sobre el eje centroidal, en dicha dirección.

⎥⎦

⎤⎢⎣

⎡ +=be6

1APuq x

xám

⎥⎦

⎤⎢⎣

⎡ −=be6

1APuq x

ínm

⎥⎦⎤

⎢⎣⎡ +=

cm 220)cm 8.10(61

)cm 290)(cm 220(Kg 120000q xám

2xám cm/Kg 43.2q =

⎥⎦⎤

⎢⎣⎡ −=

cm 220)cm 8.10(61

)cm 290)(cm 220(Kg 120000q ínm

2ínm cm/Kg 33.1q =

La fuerza cortante que actúa sobre la sección crítica es:

Kg 36446)cm 290)(cm 55(2

cm/Kg 14.2cm/Kg 43.2V22

u =⎟⎟⎠

⎞⎜⎜⎝

⎛ +=

El esfuerzo cortante que actúa sobre la sección es:

)cm 30)(cm 290)(85.0(Kg 36446

d.b.V

v uu =

φ=

2u cm/Kg 93.4v =

El esfuerzo de corte que es capaz de resistir el hormigón es:

21053.0c'f53.0vc == 2

c cm/Kg 68.7v =

El esfuerzo de corte solicitante es inferior a la capacidad resistente del hormigón, por lo que el peralte del plinto es aceptable para la solicitación analizada.

Page 16: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 331

vu < vc (O.K.)

⇒ Diseño en la Dirección y:

Los esfuerzos de reacción del suelo sobre el eje centroidal en la dirección y son:

⎥⎦

⎤⎢⎣

⎡+=

Le6

1APuq y

xám

⎥⎦

⎤⎢⎣

⎡−=

Le6

1APuq y

ínm

⎥⎦⎤

⎢⎣⎡ +=

cm 290)cm 8.15(61

)cm 290)(cm 220(Kg 120000q xám

2xám cm/Kg 50.2q =

⎥⎦⎤

⎢⎣⎡ −=

cm 290)cm 8.15(61

)cm 290)(cm 220(Kg 120000q ínm

2ínm cm/Kg 27.1q =

La fuerza cortante que actúa sobre la sección crítica es:

)cm 220)(cm 83(2

cm/Kg 15.2cm/Kg 50.2V22

u ⎟⎟⎠

⎞⎜⎜⎝

⎛ +=

Kg 42455Vu =

El esfuerzo cortante que actúa sobre la sección es:

)cm 32)(cm 220)(85.0(Kg 42455

d.b.V

v uu =

φ=

2u cm/Kg 09.7v =

El esfuerzo de corte solicitante es inferior a la capacidad resistente del hormigón, por lo que el peralte del plinto es aceptable para la solicitación analizada.

vu < vc (O.K.)

Page 17: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 332

• Diseño a Cortante por Punzonamiento:

La sección crítica a punzonamiento se sitúa alrededor de la columna con una separación de d/2 de sus caras (15 cm en la dirección x, y 16 cm en la dirección y).

La variación lineal de los esfuerzos de reacción del suelo, y el hecho de que la carga está ubicada en el tercio medio de la cimentación, determina que el promedio de todos los esfuerzos del suelo de cualquier sección cuyo centroide coincida con el centroide del plinto, sea el esfuerzo centroidal.

)cm 290)(cm 220(Kg 120000

APuq ==

2cm/Kg 88.1q =

La fuerza cortante que actúa sobre la sección crítica es:

[ ]V cmu = − + + + +( . / ) ( )( ) ( )( )188 220 290 50 15 15 60 16 162 Kg cm cm cm cm cm cm cm cm Vu = 106107 Kg

El esfuerzo cortante por punzonamiento que actúa sobre la sección es:

[ ])cm 32)(cm 92cm 92()cm 30)(cm 80cm 80()85.0(Kg 106107

d.b.V

v uu +++

=

2u cm/Kg 68.11v =

El esfuerzo resistente a corte por punzonamiento es:

21006.1c'f06.1vc == 2

c cm/Kg 36.15v =

El esfuerzo de corte por punzonamiento solicitante es inferior a la capacidad resistente del hormigón, por lo que el peralte del plinto es aceptable para la solicitación analizada.

vu < vc (O.K.)

Page 18: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 333

• Diseño a Flexión:

Las secciones críticas de diseño a flexión en las dos direcciones principales se ubican en las caras de la columna.

⇒ Diseño a Flexión en la Dirección x:

El refuerzo requerido por flexión será mayor en la franja en que se encuentra el máximo esfuerzo espacial de reacción del suelo (q1 ⇔ q2).

Para un ancho de diseño de 100 cm, se tiene la siguiente expresión para calcular el momento flector en la zona crítica, que subdivide la carga trapezoidal en una carga rectangular de ordenada 2.60 Kg/cm2, más una carga triangular de ordenada máxima 0.45 Kg/cm2 (3.05 - 2.60 = 0.45):

) 100()85(32

2) 85)(cm/Kg 45.0(

2) 85)(cm/Kg 60.2(Mu

222

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Mu = 1047625 Kg-cm

La sección de acero requerida, en la dirección x, para resistir el momento último en 100 cm de ancho es:

⎥⎥⎦

⎢⎢⎣

φ−−= 2d.b.c'f.85.0

Mu211Fy

d.b.c'f85.0As

Page 19: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 334

⎥⎥⎦

⎢⎢⎣

⎡−−= 2)30)(100)(210)(90.0(85.0

)1047625(2114200

)30)(100)(210(85.0As

As = 9.60 cm2

La cuantía mínima de armado a flexión es:

420014

Fy14

ním ==ρ

003333.0ním =ρ

La sección mínima de armado para 100 cm de ancho es:

Asmín = ρmín . b . d = (0.003333) (100 cm) (30 cm) Asmín = 10.00 cm2

Dado que la sección mínima es superior a la obtenida para resistir el momento flector, el armado requerido es el armado mínimo:

As = 10.00 cm2

Se puede colocar 1 varilla de 14 mm orientada en la dirección x cada 15 cm, proporcionándose un armado de 10.27 cm2 por cada 100 cm de ancho, lo que es equivalente a colocar 20 varillas de 14 mm de diámetro orientadas en la dirección x, en un ancho de 290 cm.

El gráfico anterior es incompleto pues queda pendiente la representación del armado en la dirección y.

⇒ Diseño a Flexión en la Dirección y:

El refuerzo requerido por flexión será mayor en la franja en que se encuentra el máximo esfuerzo espacial de reacción del suelo (q1 ⇔ q3).

Page 20: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 335

Para un ancho de diseño de 100 cm, se tiene la siguiente expresión para calcular el momento flector en la zona crítica, que subdivide la carga trapezoidal en una carga rectangular de ordenada 2.56 Kg/cm2, más una carga triangular de ordenada máxima 0.49 Kg/cm2 (3.05 - 2.56 = 0.49):

)100()115(32

2)115)(cm/Kg49.0(

2)115)(cm/Kg56.2(Mu

222

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Mu = 1908808 Kg-cm

La sección de acero requerida, en la dirección y, para resistir el momento último en 100 cm de ancho es:

⎥⎥⎦

⎢⎢⎣

φ−−= 2d.b.c'f.85.0

Mu211Fy

d.b.c'f85.0As

⎥⎥⎦

⎢⎢⎣

⎡−−= 2)32)(100)(210)(90.0(85.0

)1908808(2114200

)32)(100)(210(85.0As

As = 16.82 cm2

La sección mínima de armado para 100 cm de ancho es:

Asmín = ρmín . b . d = (0.003333) (100 cm) (32 cm) Asmín = 10.67 cm2

Dado que la sección de diseño a flexión es superior a la sección mínima, el armado requerido por flexión en la región crítica es el armado que debe utilizarse:

As = 16.82 cm2

A pesar de que el momento flector varía desde un extremo transversal del plinto hasta el otro extremo, resulta conveniente mantener este armado a todo lo ancho del plinto.

Se puede colocar 1 varilla de 18 mm orientada en la dirección y cada 15 cm, proporcionándose un armado de 16.93 cm2 por cada 100 cm de ancho, lo que es equivalente a colocar 15 varillas de 18 mm de diámetro orientadas en la dirección y, en un ancho de 220 cm.

Page 21: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 336

Los diagramas completos de la parrilla de armado por flexión son los siguientes:

Page 22: hormigon10.pdf

TEMAS DE HORMIGÓN ARMADO Marcelo Romo Proaño, M.Sc.

Escuela Politécnica del Ejército – Ecuador [email protected]

Octubre-2008 337

REFERENCIAS: 10.1 ACI 318S-08, (2008), Requisitos de Reglamento para Concreto Estructural y

Comentario, American Concrete Institute. 10.2 CEC-2001, (2001), Código Ecuatoriano de la Construcción, Instituto

Ecuatoriano de Normalización. 10.3 Nilson A., (1999), Diseño de Estructuras de Concreto, Mc Graw Hill.