INFORME DE INGLES2.docx

23
1 II RESUMEN La investigación se realizó con el fin de comprender más sobre el GPS Galileo; por ello fue de gran ayuda el tutor, para así optimizar el amplio campo en que se desarrolla dicho tema. Así logramos desglosar los diferentes puntos a tratar del GPS Galileo de acuerdo al número de integrantes para el desarrollo y comprensión del mismo. Al principio de la investigación surgieron muchas confusiones respecto a la elección del título; para que fuese corto, concreto y preciso, de manera que se le facilite al lector y a la audiencia en el momento de la explicación de dicho tema. Otro inconveniente fue el desarrollo de la información, ya que es un tema muy extenso y a su vez hay poca información del mismo. La optimización de la investigación se debió a la comunicación entre el tutor y cada uno de los que trabajamos en el tema, cumpliendo con cada asignación; para que así nos guiara y corrigiera las traducciones, la utilización de la información apropiada, etc. Sin obstaculizar nuestro tiempo y el del profesor.

Transcript of INFORME DE INGLES2.docx

IIRESUMENLa investigacin se realiz con el fin de comprender ms sobre el GPS Galileo; por ello fue de gran ayuda el tutor, para as optimizar el amplio campo en que se desarrolla dicho tema.

As logramos desglosar los diferentes puntos a tratar del GPS Galileo de acuerdo al nmero de integrantes para el desarrollo y comprensin del mismo. Al principio de la investigacin surgieron muchas confusiones respecto a la eleccin del ttulo; para que fuese corto, concreto y preciso, de manera que se le facilite al lector y a la audiencia en el momento de la explicacin de dicho tema. Otro inconveniente fue el desarrollo de la informacin, ya que es un tema muy extenso y a su vez hay poca informacin del mismo.

La optimizacin de la investigacin se debi a la comunicacin entre el tutor y cada uno de los que trabajamos en el tema, cumpliendo con cada asignacin; para que as nos guiara y corrigiera las traducciones, la utilizacin de la informacin apropiada, etc. Sin obstaculizar nuestro tiempo y el del profesor.

IIIESQUEMA

GPS GALILEO

RECOMENDACIONESDISEO DEL SISTEMAUSOSPROYECTOSQUE ES?HISTORIA

APLICACIONES, COSTOS Y VENTAJAS

Es un Sistema global de navegacin por satlite Desarrollado por la Unin Europea (UE)

Proyecto y Desarrollo El proyecto Galileo empez a definirse en junio de 1999 para terminarse a finales del 2000 Del 2005 en adelante, se esperaba que toda la constelacin ya estuviese en rbita para su completa operacin y puesta en marcha en el ao 2008.

GPS GALILEOUsosGlobal: ofreciendo cobertura mundial. Regional: tpicamente ofreciendo cobertura europea. Local: tpicamente para aeropuertos o cobertura urbana.

Administracin, mejoras y seguridad en los sistemas de transporte areo y terrestre.

Aplicaciones y Costos En conjunto con otros sistemas GPS permite una mejor determinacin de la posicin as como nuevos servicios.El coste total de Galileo durante el perodo 1999-2008se estima entre 2.200y 2.950millones de euros, dependiendo del grado de cooperacin con los Estados Unidos y del uso de sistemas terrestres.

IV

DIAGRAMA

VINFORME DEL TEXTOGPS(Global Positioning System) es unsistema de posicionamiento global) oNAVSTAR-GPSes unsistema global de navegacin por satlite(GNSS) que permite determinar en todo el mundo la posicin de un objeto, una persona o un vehculo con una precisin hasta de centmetros (si se utiliza GPS diferencial), aunque lo habitual son unos pocos metros de precisin. El sistema fue desarrollado, instalado y actualmente operado por elDepartamento de Defensa de los Estados Unidos.En cambio Galileoes un sistema global de navegacin por satlite (GNSS) desarrollado por laUnin Europea(UE), con el objeto de evitar la dependencia de los sistemasGPSyGLONASS.Al contrario de estos dos, ser de uso civil. El sistema se espera poner en marcha en 2014despus de sufrir una serie de reveses tcnicos y polticos para su puesta en marcha. La primera etapa del programa Galileo fue acordada oficialmente el 26 de mayo de 2003 por la Unin Europea y la Agencia Espacial Europea.El sistema est diseado principalmente para uso civil, a diferencia del sistema de los Estados Unidos.Los EE.UU. se reservan el derecho de limitar la potencia de la seal o la precisin del GPS, o cerrar el acceso pblico GPS completo, por lo que slo los militares de EE.UU. y sus aliados sera capaz de utilizarlo en tiempo de conflicto.El proyecto Galileo ha tenido muchas dificultades en su desarrollo ya que un 17 de enero de 2002, un portavoz del proyecto dijo que, como resultado de la presin de EE.UU. y las dificultades econmicas que se presentaban, "Galileo est casi muerto". Unos meses ms tarde, sin embargo, la situacin cambi radicalmente.Unin Europea los Estados miembros decidieron que era importante contar con un posicionamiento basado en satlites y la infraestructura de tiempo que los EE.UU. no podra apagar en tiempos de conflicto poltico. La Unin Europea y la Agencia Espacial Europea acordaron en 2002 para financiar el proyecto de mayo, en espera de una revisin en 2003 (que finaliz el 26 de mayo de 2003).El costo inicial para el perodo finalizado en el ao 2005 se estimo en 1,1 mil millones.Los satlites necesarios fueron 30 o fue lo previsto, el proyecto se pondr en marcha durante todo el perodo 2011-2014 y el sistema esta propuesto para finalizar en el 2019.El costo final se estima en 3 millones, incluyendo la infraestructura en la Tierra, que se construyo en los aos 2006 y 2007.El plan era que las empresas privadas y los inversores invirtieran por lo menos dos tercios de los costos de implementacin, con la UE y la ESA, dividiendo el costo restante.Al pasar de los aos el desarrollo del sistema Galileo a tenido muchos avances y se han lanzado varios prototipos como por el ejemplo el GIOVE-A y el GIOVE-B, para el ao 2009 se tuvo que reducir la cantidad de satlites a 22 debido a los costos y por el hecho de no recibir mucho apoyo por parte de los inversores. El grupo de reflexin Open Europe, ha estimado que el coste total de Galileo de principio a fin, y luego correr durante un perodo de 20 aos, es de 22,2 mil millones, En noviembre de 2009, una estacin terrestre de Galileo se inaugur cerca de Kourou (Guayana Francesa).El sistema Galileo tiene 3 componentes que representan 3 niveles de desempeo; Global, Regional y Local. Este debe estar concebido de manera que tenga una cobertura planetaria y posibilite aplicaciones para el pblico en general. Adems, tiene que proporcionar, como, mnimo una precisin horizontal inferior a 10metros. En materia de seguridad, el sistema ha de garantizar la proteccin fsica de infraestructuras vitales y el suministro de unas seales de navegacin precisas en caso de crisis o guerra. Finalmente podemos asegurar que el sistema GPS Galileo constara de diferentes ventajas como una precisin mucho mayor que la de GPS, con un margen de error 10 veces ms pequeo, mejor rango y disponibilidad de la seal. El aumento de la seal emitida por los satlites permitir que estos lleguen a lugares donde el GPS no llegaba, como dentro de edificios o en bosques, entre otros aspectos importantes.

VIRECOMENDACIONES

Con el siguiente trabajo se intenta dar a conocer el proyecto Galileo el cual es un sistema d posicionamiento que tiene mayor precisin que el

VIIANEXOS

VII.AGPS GalileoGalileois aglobal navigationsatellite system (GNSS) developed by theEuropean Union (EU)in order toavoid dependence onGPS andGLONASS.Unlikethese two, it will befor civilian use.The system isexpected to launchen2014after sufferinga series oftechnical and politicalsetbacksforimplementation.The first stage of the Galileo programmer was agreed upon officially on 26 May 2003 by theEuropean Unionand theEuropean Space Agency. The system is intended primarily for civilian use, unlike the United States system, which theU.S. militaryruns and uses on a primary basis. The U.S. reserves the right to limit the signal strength or precision ofGPS, or to shut down public GPS access completely, so that only the U.S. military and its allies would be able to use it in time of conflict. Until 2000, the precision of the signal available to non-U.S.-military users was limited (due to a timing pulse distortion process known asselective availability). The European system will only be subject to shutdown for military purposes in extreme circumstances. It will be available at its full precision to bothcivilandmilitaryusers.

Additionally, following theSeptember 11, 2001 attacks, the United States Government wrote to the European Union opposing the project, arguing that it would end the ability of the United States to shut down satellite navigation in times ofmilitary operations. On 17 January 2002 a spokesman for the project stated that, as a result of U.S. pressure and economic difficulties, "Galileo is almost dead. A few months later, however, the situation changed dramatically. European Union member states decided it was important to have a satellite-based positioning and timing infrastructure that the US could not easily turn off in times of political conflict.

The European Union and the European Space Agency agreed in March 2002 to fund the project, pending a review in 2003 (which was finalised on 26 May 2003). The starting cost for the period ending in 2005 is estimated at1.1billion. The required satellites (the planned number is 30) will be launched throughout the period 20112014 and the system will be up and running and under civilian control from 2019. The final cost is estimated at 3billion, including the infrastructure onEarth, which is to be constructed in the years 2006 and 2007. The plan was for private companies and investors to invest at least two-thirds of the cost of implementation, with the EU and ESA dividing the remaining cost. An encrypted higher-bandwidthCommercial Servicewith improved precision would be available at an extra cost, with the baseOpen Servicefreely available to anyone with a Galileo-compatiblereceiver. Costs for the project have run 50% over initial estimates.

In June 2004, in a signed agreement with the United States, the European Union agreed to switch to a modulation known as BOC(1,1) (Binary Offset Carrier1.1) allowing the coexistence of both GPS and Galileo, and the future combined use of bothsystems. The European Union also agreed to address the "mutual concerns related to the protection of allied and U.S. national security capabilities. The first experimental satellite,GIOVE-A, was launched in 2005 and was followed by a second test satellite,GIOVE-B, launched in 2008. The first four operational satellites for navigation will be launched in 2011 and once this In-Orbit Validation (IOV) phase has been completed, additional satellites will be launched. On 30 November 2007 the 27 EU transportation ministers involved reached an agreement that it should be operational by 2013,but later press releases suggest it was delayed to 2014.

Early 2007, the EU had yet to decide how to pay for the system and the project was said to be "in deep crisis" due to lack of more public funds. German Transport Minister Wolfgang Tiefensee was particularly doubtful about the consortium's ability to end the infighting at a time when only one testbed satellite had been successfully launched.

In June 2009, theEuropean Court of Auditorspublished a report, pointing out governance issues, substantial delays and budget overruns that led to project stalling in 2007, leading to further delays and failures. In October 2009, theEuropean Commissioncut the number of satellites from 28 to 22, with plans to order the remaining six at a later time. It also announced that the first OS, PRS and SoL signal will be available in 2013 and the CS and SOL sometime later. Current budget for 20062013 period planned for 3.4billion was also considered as insufficient. The think tank Open Europe has estimated the total cost of Galileo from start to completion, and then running it over a 20 year period, at a 22.2 billion, which will be borne entirely by taxpayers. Under the original estimates (from 2000) this cost would have been 7.7 billion, of which only 2.6 billion was to be borne by taxpayers and the rest by private investors. In November 2009, a ground station for Galileo was inaugurated nearKourou(French Guiana).

The launch of the first four in-orbit validation (IOV) satellites was planned for the 2nd half of 2011, while the launch of full operational capability (FOC) satellites is planned to start in late 2012.As of March 2010 it was verified that the budget for Galileo would only be available to provide the 4 IOV and 14 FOC satellites by 2014, with no funds currently committed to bring the constellation above this 60% capacity.Paul Verhoef, the then current satellite navigation program manager at the European Commission indicated that this limited funding would have serious consequences commenting at one point "To give you an idea, that would mean that for three weeks in the year you will not have satellite navigation" in reference to the currently proposed 18 vehicle constellation.

In July 2010 the European Commission estimated further delays and additional costs of the project to grow up to 1.5-1.7 billion and moved the estimated date of completion to 2018. After it's completed, the system will need to be subsidized by governments at 750 million per year. An additional 1.9 billion was planned to be spent bringing the system up to the full complement of 30 satellites (27 operational + 3 active spares).

In December 2010 EU ministers in Brussels have votedPrague(Czech Republic) as the headquarters of the Galileo project.In January 2011, infrastructure costs up to 2020 were estimated at 5.3billion. In that same month, Wikileaksrevealedthe opinion of CEO of German satellite companyOHB-System, Berry Smutny. He is quoted saying that Galileo "is a stupid idea that primarily serves French interests".The BBC understands 500m euros (440m) will become available to make the extra purchase, taking Europe's version of GPS from 18 operational satellites in the next few years to 24.

Galileo launch on a Soyuz rocket, 21 Oct 2011The first two Galileo In-Orbit Validation satellites were launched bySoyuzflown fromGuiana Space Centreon October 21, 2011. Two more are scheduled for launch in 2012. ProjectsThe Galilean project started being defined in June, 1999 to finish this phase at the end of 2000. A decision with relation to the implementation will become at the beginning of 2001 In case the decision is positive, Galilean it will be developed and implemented from the year 2001 until 2008. An initial test of the constellation to validate the suppositions of design and to obtain the necessary experience for the operations will be done at the end of 2003. Of 2005 in forward, the whole constellation already will be in orbit for his complete operation and putting in March in the year 2008.The cost of the system is directly related to the number of satellites involved in the constellation. There exist two preliminary versions that have been proposed: 21 satellites MEO with 3 satellites GEO or 36 satellites MEO with 9 satellites GEO.Galileo system designThe Galileo system will consist of 30 satellites.

The objective of Galileo is technically beyond the GPS. The European system has 30 satellites, six more than the American.

Unlike GPS operating under military control, Galileo will be aimed primarily at civilian applications.

According to the European Union, the margin of error of Galileo is one meter, compared to the U.S. is several meters."With these satellite navigation technologies in Europe, located at the U.S. level and because Galileo has a more modern signal structure, I think we're a little more advanced," said Evert Dudok, CEO of the Astrium satellite company, one of the companies that participated in the construction of the spacecraft.

But if they already have the GPS why need another global positioning system?

Because GPS is a military program, their signals are often diminished or extinguished, and though it is free, there is no guarantee continuous service and quality.

According to proponents of Galileo, the system will offer a guaranteed service and superior to the GPS and will respond to the needs of Europe.The proposal for Galileo is based on a constellation of satellites in medium earth orbit (MEO) and geostationary (GEO) combined with appropriate ground infrastructure and support systems. The space segment includes the constellation of satellites that provide signals to users. The ground segment consists of the telemetry and control stations required for the up and receive data from the Galileo satellites, on the other hand, the satellite control center is responsible for monitoring and controlling each of the satellites.The mission segment consists of the various applications and systems necessary to manage and control the system. The mission segment covers the MCC (Mission Control Centers), ICC (Integrity Control Centers), OSS (Orbitography and Synchronisation Stations and RIMS (Ranging and Integrity Monitoring Stations).The MCC performs the following tasks: generate all the benchmarks to be used by the system (time, timing parameters, scheduling), monitoring, validation and control other parts of the segment, archive data, evaluate and monitor system performance ; manage the navigation system Galileo.Beyond the MCC, the ICC monitors and validates the performance of the Galileo satellite signals in space, using data from measurement and control stations (such as RIMS and OSS). The OSS is a global network of stations that provide data that allow on-board computer ephemeris (orbital positions of satellites) and parameters to synchronize the clocks of the Galilean satellites with the time of Galileo. The RIMS are remote stations that act as data collection sites of the signal in space.The user segment includes different types of receptors responsible for processing the signals from the Galileo satellites and other systems such as EGNOS (European Geostationary Navigation Overlay Service), GPS and GLONASS.The Navstar GPS JPO has posted to itswebsitean Interface Specification (IS) defining the characteristics of an open access signal to be transmitted from GPS satellites to navigation receivers on L1 1575.42 MHz. While multiple open signals are broadcast within the L1 frequency band, this IS defines only the signal denoted L1 Civil (L1C).The United States has been working with Japan and the European Union to achieve interoperable signals. In the case of QZSS, the signals are so interoperable that Japan has adopted IS-GPS-800 as the baseline definition of their L1C signal. Only the minor differences are separately documented. The differences are greater with Galileo, but the signals will be fully interoperable.Within the U.S. GPS system, L1C is slated for implementation aboard GPS III satellites (see lead news story), with projected launch in 2013. L1C signal design uses a BOC modulation and consists of a pilot signal without any data message, spread by a ranging code, and a carrier spread by a ranging code and modulated for a data message.L1C availability will complete GPS signal modernization, while being compatible with all legacy GPS signals and interoperable with the Galileo L1 Open Service signal. The IS comes at the end of a years-long effort to collect input from international users and stakeholders, and is posted for review and comment.Galileo/GPS Signal Optimization.The European Commission (EC) and the United States issued a recommendation and statement on a common baseline signal structure that could be optimized for greater performance. The working group also verified that this signal satisfies all compatibility requirements and recommends it for broadcast by both constellations. Once implemented, the common signal will be jointly broadcast by as many as 60 Galileo and GPS satellites.Spread Mod.From the GPS-Galileo Working Group A's recommendation: "We intend to design signals for L1 OS and L1C that have an identical power spectral density (PSD) when computed using all signal components including pilot and data. This normalized (unit power) PSD (the MBOC PSD), specified without the effect of bandlimiting filters and payload imperfections, is given by

where BOC (M,n) is the normalized PSD of a sine-phased binary offset carrier modulation with subcarrier frequency m x 1.023 MHz and spreading code chip rate n x 1.023 MHz."We understand that the Galileo and GPS systems may employ different time series, including different spreading symbols, to produce the MBOC PSD. Nonetheless, it is desirable for both Galileo and GPS to transmit time series using the same spreading symbols, and spreading codes from the same family."While news of the multiplexed binary offset carrier (MBOC) finds favor with manufacturers of high-precision receivers, it may carry liabilities for those making low-cost receivers for the mass market. These manufacturers typically use a narrower subsection of the spread spectrum, and a multiplexed signal could deliver lower effective received power. "We see some significant disadvantages in the MBOC proposal for high sensitivity receivers inside cell phones," stated an engineer at one company. "It is a far better proposal for those who care about getting high accuracy in strong signal environments than what our market is."A Qualcomm spokesperson provided this response: "Low-cost GPS consumer devices do not employ wideband receivers today. Furthermore, GPS consumer device manufacturers are unlikely to do so in the future due to the high cost. In addition, the proposed change to the GPS L1C and Galileo L1 OS signal to include BOC(6,1) modulation will penalize all devices that do not employ a wideband receiver, that is, most consumer devices and GPS/E911-enabled wireless phones, with (a) lower effective received signal power and (b) lower effective signal bandwidth, thereby reducing the devices' ability to operate in highly blocked environments. Granted this performance is better than using the legacy C/A signal, but it is worse that what would be achievable using the originally proposed BOC(1,1) modulation. This will result in performance degradation to the vast majority of GPS-enabled consumer devices, including those computing positions for vital emergency service applications relative to what would otherwise be achievable."Galileo gps applicationsThe Galileo system has three components that represent three levels of performance:

Global: providing global coverageRegional: Europe typically offering coverageLocal: typically for airports or urban coverage

In addition, three types of services are defined:"Open access service: basic service free and open to the public."Controlled access service level 1 (SAC 1): fee payment service with controlled access for commercial and professional applications."Controlled access service level 2 (SAC 2): service fee payment with controlled access to high security applications which should not suffer any interruption or distortion for security reasons.The precision must be less than 10 meters for the three types of services. SCA 2 service meets the criteria imposed by landing civil aviation, that is, an accuracy of 4 meters and 16 meters horizontal vertical with 99% availability.

Preliminary Requirements Galileo signal in spacePositional accuracy [95%] 4.0 meters [horizontal] 7.7 m [vertical]Accuracy in time [95%] 30 nanosecondsIntegrity risk 2x10-7 for 150 secondsTime to alarm 6 secondsAlarm Limit10-20 metersHorizontal, Vertical [12 meters recommended]Availability from 0.9 to 0997Continuity Risk 8x10-6 for 15 secondsCoverageGlobalGalileo in short:precision, availability, coveragePrecision: In a combined GPS-Galileo use (compared to GPS by itself) the higher number of satellites available to the user will offer higher precision. From most locations, six to eight Galileo satellites will be visible which, in combination with GPS signals, will allow positions to be determined up to within a few centimetres.Availability: The high number of satellites will also improve the availability of the signals in high-rise cities, where buildings can obstruct signals from satellites that are low on the horizon.Coverage: Galileo will also provide a better coverage at high latitudes than GPS, thanks to the location and inclination of the satellites. This will be particular ly interesting for Northern Europe.

Applications and FeesGalileo will revolutionize air traffic management, improve quality and safety of this mode of transport in regions where existing systems are inadequate, increase accuracy and control allowing the optimum use of airspace.This will help greatly to delays in flights.In addition, drivers of trucks and cars can avoid traffic congestion by reducing travel times between 15% and 25% and also reduce fuel consumption and pollutant emissions.

Emergency services arrived quickly at the scene to provide assistance to people in danger.Carriers will be able to monitor the position of their vehicles or containers and the fight against crime will be more effective to quickly and efficiently locate stolen vehicles.The list of potential applications will grow day by day.

Although the Galileo project is still in its early stages, expect major benefits to users when the project is completed in 2008.Galileo will be another option for determining the position in conjunction with other GPS and GLONASS systems provide a range of new services and applications.

Galileo should be designed so that it has a global coverage and enables applications to the general public.In addition, you must provide, as minimum horizontal accuracy less than 10 meters.

On security, the system must ensure the physical protection of critical infrastructures and the provision of a precise navigation signals in case of crisis or war.

The total cost of Galileo during the period 1999-2008 is estimated at between 2,200 and 2,950 million euros, depending on the degree of cooperation with the United States and the use of terrestrial systems.

The policy being implemented by the United States is to provide free basic GPS signal. The application of this type of approach at Galileo will create a major public borrowing because the private sector is not able to run only those costs that are necessary to provide a free service to users.Galileo is a key element of the trans and the common transport policy and, therefore, justified under EU funding mainly from the EU budget, especially the budgets of the RTE, the European Space Agencythe Fifth Framework Programmer for R & D.In addition, specific revenue could be generated by regulations such as the establishment of controlled access some services reserved to the subscribers or the collection of fees for signal receiver.Finally, it should promote the creation of a public-private partnership.

What Galileo issue?The Galileo system will have five different services:Open Access (open system).Free for any use, emitting in the bands 1563-1591 MHz and MHz 1164-124Commercial Service (trading system).And payment will be encrypted.Offer an accuracy of one meter and broadcast on the same frequencies as well as Open Access 1260-1300 MHzPublic Regulated Service (PRS).Will be encrypted and designed especially for use by the authorities (police, military ,...)Safety of Life Service (Safety of Life).Designed for applications requiring high accuracy with good control of errors, such as air traffic systems.Search and Rescue (search and rescue).Galileo will be able to detect signs of existing SAR systems and even send messages that vain to be rescued.

VII.BGLOSARIO

CONSTELLATION OF SATELLITES: grupo o conjunto de satelites conectados FREQUENCY BAND: canal digital destinado a la transmission de sealesGEO: (rbita Terrestre Geosncrona). Los satlites GEO orbitan a 35848 kilmetros sobre el ecuador terrestre y son un conjunto de satlites que giran en el mismo sentido de rotacin de la tierra lo cual hace parecer que estn inmviles en el cielo.GLONASS: es un Sistema Global de Navegacin por Satlite, desarrollado por la Unin Sovitica siendo hoy administrado por la Federacin Rusa y que representa la contrapartida al GPS estadounidense y al futuro Galileo europeo.GPS: (Global Positioning System)sistema de posicionamiento global, es un sistema global de navegacin por satliteMEDIUM EARTH ORBIT: orbita especifica destinada a la circulacion de satelitesMEO: (Satlites de rbita Media) A diferencia de los GEO, su posicin relativa respecto a la superficie no es fija. Al estar a una altitud menor, se necesita un nmero mayor de satlites para obtener cobertura mundial, pero la latencia se reduce substancialmente. En la actualidad no existen muchos satlites MEO, y se utilizan para posicionamiento. RECEIVERS: receptores de dataTASKS: conjunto de operaciones realizadas por un ordenadorUSERS: conjunto de personas q utilizan un sistema

16