INSTITUTO POLITECNICO NACIONAL -...

93
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD PROFESIONAL AZCAPOTZALCO DISEÑO, INSTALACIÓN Y PUESTA EN MARCHA DE UN EQUIPO CON TECNOLOGÍA DE NUEVOS MATERIALES DE INGENIERÍA, PARA UN SISTEMA DE REFRIGERACIÓN INDUSTRIAL CON AMONIACO Y CIRCUITO DE GLICOL TESIS PROFESIONAL QUE PARA OBTENER EL TÍTULO DE INGENIERO MECÁNICO P R E S E N T A: GERSAIN ALEJANDRO FERNÁNDEZ GUTIÉRREZ Asesores: Ing. Dagoberto García Alvarado Ing. Idelfonso Juan Martínez Sánchez Octubre 2010

Transcript of INSTITUTO POLITECNICO NACIONAL -...

Page 1: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA

UNIDAD PROFESIONAL AZCAPOTZALCO

DISEÑO, INSTALACIÓN Y PUESTA EN MARCHA DE UN EQUIPO CON TECNOLOGÍA DE NUEVOS MATERIALES DE INGENIERÍA, PARA UN SISTEMA DE REFRIGERACIÓN INDUSTRIAL CON AMONIACO Y CIRCUITO DE GLICOL

TESIS PROFESIONAL

QUE PARA OBTENER EL TÍTULO DE

INGENIERO MECÁNICO

P R E S E N T A:

GERSAIN ALEJANDRO FERNÁNDEZ GUTIÉRREZ

Asesores: Ing. Dagoberto García Alvarado Ing. Idelfonso Juan Martínez Sánchez

Octubre 2010

Page 2: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica
Page 3: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

AGRADECIMIENTOS

A MIS PADRES Y HERMANOS POR LOS CONSEJOS Y APOYO INCONDICIONAL

QUE ME HAN DADO DURANTE TODA LA VIDA, Y POR BRINDARME LA OPORTUNIDA DE ESTUDIAR UNA

CARRERA A NIVEL SUPERIOR

A MIS MAESTROS POR LOS CONOCIMIENTOS, CONSEJOS Y ENSEÑANZAS QUE ME

FACILITARON DURANTE MI ETAPA DE ESTUDIANTE

A MÓNICA POR ENSEÑARME A DISFRUTAR DE LA VIDA CADA SEGUNDO, POR APOYARME EN

TODOS LOS PROYECTOS EMPRENDIDOS JUNTOS Y POR ORIENTARME EN LOS MOMENTOS DIFÍCILES

Page 4: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Índice general Resumen Introducción

Justificación

Objetivo Objetivos específicos Planteamiento del problema

Alcance del trabajo

1. Introducción a los sistemas de refrigeración con amoniaco 01 1.1 Definición de conceptos básicos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02

1.2 Principios de refrigeración. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04

1.2.1 Significado de refrigeración. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04

1.2.2 Porque se puede enfriar un objeto en el refrigerador. . . . . . . . . . . . . . . . . 04

1.2.3 Calor y método de transferencia de calor. . . . . . . . . . . . . . . . . . . . . . . . . . 04

1.2.4 Ciclo de refrigeración normal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04

1.2.5 Que sucede con el calor extraído de los productos al ser refrigerados por

evaporador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05

1.2.6 Tipos de compresor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05

1.3 Funcionamiento del ciclo de refrigeración por compresión. . . . . . . . . . . . . . . . . . . . 07

1.3.1 Comportamiento del refrigerante en el ciclo de refrigeración por

Compresión. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07

1.3.2 Efecto del aire residual como gas no condensable en un refrigerante

en estado gaseoso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

1.3.3 Funcionamiento del compresor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

1.3.3.1 Compresión de vapor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

1.3.3.2 Compresión isotérmica, politrópica, adiabática. . . . . . . . . . . . . 10

1.3.4 Funcionamiento del condensador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.5 Funcionamiento del evaporador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.6 Funcionamiento de la válvula de expansión. . . . . . . . . . . . . . . . . . . . . . . 13

1.3.7 Sistema de refrigeración por expansión directa y por salmuera. . . . . . . . 14

1.4 Transferencia de calor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Transferencia de calor y resistencia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Transferencia de calor por convección. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Transferencia de calor por conducción. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3.1 Proporción de transferencia de calor “K”. . . . . . . . . . . . . . . . . . 15

1.4.3.2 Diferencia de temperatura. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Page 5: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

1.5 Refrigerantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Refrigerantes y presión. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.2 Propiedades del refrigerante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.3 Salmuera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Diagrama P-h y cálculos básicos para el compresor. . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.1 Diagrama p-h (Diagrama de Molliere). . . . . . . . . . .. . . . . . . . . . . . . . . . . . 28

1.6.2 Entalpía. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.3 Líneas isobaricas, isoentalpicas, isoentrópicas, isotérmicas, de liquido

saturado, de vapor saturado, isovolumétricas y líneas de calidad. . . . . . 29

1.6.4 Dimensión del compresor y eficiencia volumétrica. . . . . . . . . . . . . . . . . . 31

1.6.5 Fuerza motriz requerida por el compresor. . . . . . . . . . . . . . . . . . . . . . . . . 33

2. Características del cuarto de maquinas (compresores) y aislamiento de tuberías 36 2.1 Características del cuarto de maquinas. (Servicios). . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Bases de cimentación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.2 Agua de enfriamiento suavizada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.3 Malla de tierras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.4 Energía eléctrica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Compresor de refrigeración. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Tipos de compresor reciprocante para refrigeración. . . . . . . . . . . . . . . . 43

2.3 Aislamiento de tuberías. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Tipos de aislamiento de tuberías (Características). . . . . . . . . . . . . . . . . . 44

3. Ingeniería aplicada y cálculo del sistema de refrigeración

propuesto 46 3.1 Calculo del sistema de refrigeración propuesto. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Definición de los datos disponibles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Determinación de la carga térmica de diseño. . . . . . . . . . . . . . . . . . . . . . 48

3.1.3 Definición de quipos de acuerdo a la carga termina de diseño. . . . . . . . . 49

3.2 Desarrollo de diagramas de flujo de sistema propuesto. . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Diagrama de flujo de sistema de amoniaco. . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Diagrama de flujo de sistema de glycol. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. Instalación y puesta en marcha del equipo de refrigeración con amoniaco 55

4.1 Desarrollo de planos de anclaje de equipos y bases de cimentación. . . . . . . . . . . . 56

4.2 Desarrollo de lay-out de base de cimentación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Desarrollo de lay-out de vistas y cortes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 y 59

4.4 Desarrollo de isométrico de líneas de amoniaco. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Desarrollo de isométrico de líneas de refrigeración. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Desarrollo de lay-out de equipos de refrigeración sala de maquinas. . . . . . . . . . . . . 62

Page 6: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

5. Mantenimiento de sistemas de refrigeración con amoniaco 63 5.1 Introducción. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Aspectos de seguridad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Mantenimiento e inspección periódica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Inspección periódica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Mantenimiento preventivo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Causas de anormalidades y solucione. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Conclusiones 74

Bibliografía 75

Page 7: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Índice de figuras

1. Cuarto de maquinas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Diagrama del ciclo de refrigeración normal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05

1.2 Compresor reciprocante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06

1.3 Compresor rotativo o tornillo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06

1.4 Proceso de compresión en un compresor reciprocante. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Líneas de líquido saturado y línea de vapor saturado seco. . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Puesta a tierra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Forma de ejecución de la toma de tierra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1a Corrida del intercambiador del equipo mixer (carbonatador). . . . . . . . . . . . . . . . . . . . . . . 47

3.1b Corrida del intercambiador del equipo mixer (carbonatador). . . . . . . . . . . . . . . . . . . . . . . 48

Page 8: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Índice de tablas

1.1 Relación entre temperatura y presión del amoniaco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08

1.2 Valores de K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Coeficiente de transferencia de calor (λ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Clases y propiedades del refrigerante. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Clases de usos de medios refrigerantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Propiedades termodinámicas del refrigerante freon para el uso en el compresor . . . . . . 23

tipo alternativo

1.6b Propiedades termodinámicas del refrigerante para el uso en el compresor tipo. . . . . . . . 23

alternativo

1.7 Propiedades termodinámicas del refrigerante para el uso en el turbocompresor. . . . . . . 24

1.8 Propiedades termodinámicas del amoniaco saturado. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.9 Propiedades termodinámicas del freon 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.10 Propiedades termodinámicas de freon 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Relación entre la temperatura del condensador de vapor de agua y la del bulbo

Húmedo del aire en la entrada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Niveles recomendados para el agua del condensador. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Mycom screw compressor performance single stage/Booster. . . . . . . . . . . . . . . . . . . . . . 51

3.2 Mycom recipro compressor performance single stage/Booster. . . . . . . . . . . . . . . . . . . . . 52

5.1 Respuesta fisiológica al vapor de amoniaco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 El efecto del amoniaco en periodos cortos de tiempo. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Actividades de mantenimiento de acuerdo a horas de trabajo. . . . . . . . . . . . . . . . . . . . . 66

5.4 Parámetros de operación y limites compresor tipo tornillo. . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Causas de anormalidades y soluciones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68-73

Page 9: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Índice de graficas

1.1 Presión de vapor saturado de varios tipos de gas refrigerante. . . . . . . . . . . . . . . . . . . . . 17

1.2 Concentración y temperatura de congelación de la salmuera de cloruro de calcio. . . . . . 19

1.3 Cantidad de adición de cloruro de calcio y cantidad de extracción de la salmuera. . . . . . 20

1.4 Diagrama p-h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Capacidad del compresor de amoniaco y fuerza requerida. . . . . . . . . . . . . . . . . . . . . . . . 35

Page 10: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Resumen

En este trabajo se diseña un sistema de refrigeración por medio del amoniaco… para una line de envasado. Se calcula y diseñan los accesorios y equipos del sistema, se incluye un plan de mantenimiento, se debe de tener cuidado con tres factores importantes que definen básicamente la arquitectura del sistema a instalar, estos tres puntos son los siguientes:

1. Características de las instalaciones del cuarto de maquinas y dimensiones disponibles del mismo.

2. Toneladas de refrigeración que requiere el sistema a alimentar. 3. Tipo de control a manejar con el equipo de envasado. Comunicación entre ambos

sistemas Básicamente definiendo estas tres variables, podemos iniciar con el cálculo del sistema, ya que contamos con las herramientas necesarias para poder tomar las decisiones adecuadas durante el desarrollo del proyecto. El presente proyecto cubre la necesidad de suministrar el servicio de monopropilenglicol al 70% de la relación agua-monopropilenglicol al equipo Mixer, que es el encargado de carbonatar la bebida (agregar dióxido de carbono a la bebida), considerando que el servicio tiene que ser constante, tanto en temperatura de envío de glicol, como flujo y presión del sistema propuestos; de igual manera en el presente proyecto se diseñarán los recipientes a presión a utilizar, se calcularán los evaporadores, y se determinarán las toneladas de refrigeración para satisfacer el sistema y de esta manera determinar los tipos de compresores a utilizar en el sistema de enfriamiento. Previo a estas consideraciones se toma la premisa que este sistema se diseña únicamente para abastecer glycol a una sola línea de envasado, por lo que el sistema únicamente se diseña y se calcula como servicio dedicado a esta, ya que; de abastecer a dos líneas de envasado o más, el sistema tendría que ser completamente diferente, tendría que implementarse un tanque de balance o tanque estratificado para poder manejar la estabilidad del sistema. Este sistema de refrigeración debe de trabajar en automático con la operación del Mixer, dependiendo de las condiciones en que se encuentre el proceso de elaboración de la bebida en el equipo, si el equipo Mixer tiene un paro, es decir si su consumo de carga energética deja de operar, el equipo de refrigeración debe de parar por temperatura, ya que de no ser así podría llegar a congelar el circuito de glicol y con esto dañar las bombas de envío de glicol, así que la comunicación entre estos equipos juega un papel importantísimo para no estar parando continuamente los compresores, ya que esta acción daña severamente a los motores eléctricos de los compresores.

Page 11: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Introducción

Industrialmente, la refrigeración para el proceso y almacenamiento de los alimentos se obtiene principalmente con el uso del refrigerante amoniaco, refrigerante natural, 100% ecológico, muy eficiente, económico y seguro. Hay organizaciones mundiales que apoyan la investigación y desarrollo de nuevos sistemas y aplicaciones de la refrigeración con amoniaco. Últimamente se ha manejado información equivocada sobre éste, indicando que es un refrigerante obsoleto, que no es ecológico y que es tóxico e inseguro. Por lo que en este presente trabajo se aclarará a los procesadores y usuarios la realidad y ventajas de este refrigerante. El desarrollo de la refrigeración mecánica data de los primeros años de la revolución industrial. Al día de hoy, el amoniaco permanece como el refrigerante más utilizado en sistemas de refrigeración industrial para procesar y conservar la mayoría de los alimentos y bebidas, incluyendo el sector de alimentos marinos. Aproximadamente el 90% de los sistemas de refrigeración industrial para alimentos son con refrigerante amoniaco. El amoniaco ha estado en el liderazgo de los avances de tecnología en refrigeración, incluso la NASA ha reconocido sus ventajas como refrigerante, seleccionándolo para su uso en una Estación Espacial. Las ventajas del amoniaco son bien conocidas: No destruye la capa de ozono y no contribuye al efecto invernadero asociado al calentamiento global. De hecho el amoniaco, es un compuesto muy comúnmente encontrado en la naturaleza, es esencial en el ciclo del nitrógeno de la tierra y su liberación a la atmósfera es inmediatamente reciclada. Esto lo hace consistente con los acuerdos internacionales de reducción del calentamiento global y destrucción de la capa de ozono. Desde un punto de vista operacional, el amoniaco es generalmente aceptado como el refrigerante industrial más eficiente y económicamente efectivo, un importante beneficio para los consumidores ya que costos menores de operación representan un costo menor de los productos alimenticios. Hace muchos años, la industria de alimentos y bebidas adoptó la refrigeración con amoniaco. Sus ventajas económicas lo hacían el refrigerante de elección para almacenes refrigerados, plantas de procesamiento e Industria alimenticia. Casi toda la comida del día pasa a través de alguna instalación de refrigeración con amoniaco antes de llegar a tiendas y supermercados El amoniaco es un compuesto común y que existe naturalmente en el ambiente, que se descompone naturalmente en moléculas de hidrógeno y nitrógeno (la atmósfera está formada en un 80% de nitrógeno e hidrógeno). Es un elemento clave en el ciclo del nitrógeno, y bajo condiciones normales, es esencial para muchos procesos biológicos, se puede encontrar en el agua, la tierra y el aire, y es fuente del nitrógeno esencial para plantas y animales.

Page 12: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

La refrigeración con amoniaco es el método más económico y más eficiente energéticamente para el proceso y almacenaje de alimentos congelados y refrigerados. Es el caballo de batalla para el enfriamiento post-cosecha de frutas y vegetales, el enfriamiento de carne, pollo, pescados y mariscos, refrigeración para la industria de bebidas, para leche y queso, y para la congelación del helado. En la Figura 1 se observa la arquitectura de un cuarto de maquinas constituido por compresores de tornillo.

Figura 1: Cuarto de maquinas

Como refrigerante, el amoniaco ofrece cuatro claras ventajas económicas sobre otros refrigerantes comúnmente utilizados. • El amoniaco es compatible con el medio ambiente. No destruye la capa de ozono y no contribuye al calentamiento global de la tierra. • El amoniaco tiene propiedades termodinámicas superiores, por lo que los sistemas de refrigeración con amoniaco consumen menos energía eléctrica. • El olor característico del amoniaco es su mayor cualidad de seguridad. A diferencia de otros refrigerantes industriales que no tienen olor, porque las fugas son detectadas fácil y rápidamente. El olor punzante del amoniaco motiva a los individuos a abandonar el área donde se presente una fuga antes de que se acumule una concentración peligrosa. • Costo y disponibilidad. El costo del amoniaco es mucho menor que cualquier refrigerante sintético, de manera general cuesta de un 10 a un 20% menos en instalación y al ser una sustancia natural, no tiene una fecha límite en que se pueda producir o usar, a diferencia de otros refrigerantes sintéticos cuyo uso o producción está limitada a una cierta cantidad de años.

Page 13: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Carbonatación de bebidas. La carbonatación de las bebidas depende de tres factores primordiales:

1. Presión del jarabe. Si se incrementa la presión, la carbonatación se incrementa, es decir; que a mayor presión mayor solubilidad del gas en el liquido.

2. Temperatura del jarabe: Mientras se reduce la temperatura, la habilidad del agua o

producto para absorber CO2, se incrementa. A diferencia de la variación de presión, la influencia de temperatura no va en línea recta sino en curva que refleja proporción mayor de absorción de CO2 a más bajas temperaturas.

3. Cantidad de aire en el jarabe. El efecto del aire en el jarabe ocasiona una pobre

carbonatación, espuma en la llenadora y por ende baja calidad en el producto. El aire esta normalmente presente en el agua del proceso en cantidades variables, pero aproximadamente podríamos decir que está entre 15 ppm expresada como Oxígeno disuelto. El proceso de deaireación reduce drásticamente hasta 1.5 a 2.0 ppm expresadas como Oxígeno disuelto.

Como se describe anteriormente, unos de los factores que influyen en la correcta carbonatación de una bebida es la temperatura a la que se carbonata la bebida, por lo que este es el primordial motivo de establecer un sistema de refrigeración eficiente para la demanda que solicite la línea de envasado, que proporcione el servicio de glicol constante en sus variables de diseño como son la presión, temperatura y flujo, para que de esta manera se establezca una baja temperatura del producto, actualmente se esta manejando entre 0 grados centígrados y 2 grados centígrados.

Page 14: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Justificación Calcular, instalar y poner en marcha un sistema de refrigeración industrial base amoniaco y con circuito de glicol subenfriado hacia un intercambiador de calor, de un equipo denominado Mixer, para una nueva línea de envasado de productos gasificados, manteniendo las condiciones de temperatura, presión y flujo constantes durante cada etapa del proceso, estableciendo una baja temperatura de carbonatación de la bebida, y de esta manera eliminar las mermas de consumo de Co2 al realizar la mezcla agua-jarabe en el proceso de elaboración de la bebida terminada.

Page 15: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Objetivo Instalar un nuevo sistema de refrigeración industrial a base de amoniaco que enfrié indirectamente un circuito de mono propilenglicol a una temperatura determinada, para poder poner en marcha una línea de envasado de bebidas gaseosas a las velocidades establecidas en el diseño de la línea de envasado.

Objetivos específicos

Construir las instalaciones adecuadas para la correcta instalación de los compresores de amoniaco necesarios para la operación de un sistema de refrigeración industrial con amoniaco.

Calcular, diseñar los accesorios y equipos del sistema, para que proporcione la cantidad de toneladas de refrigeración solicitados por la línea de envasado.

Poner en marcha el sistema de manera automática controlando los paros del equipo de

refrigeración y evitar un posible daño de los motores de los compresores por constantes paros y arranques.

Page 16: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Planteamiento del problema En base a un proyecto desarrollado en el año 2000, de desalojar la maquinaria de Planta Sur, ubicada en México D.F. para trasladar la producción de bebidas de 3 litros gaseosas a la nueva planta ubicada en Tizayuca Hidalgo, ya que los terrenos de Planta Sur fueron perdidos en un juicio con el primer dueño de la Cooperativa, se contempla una inversión inicial de Cien Millones de Pesos, pronosticada a recuperarse en dos años según la demanda de producto actualmente establecida, con el objetivo de adquirir una nueva línea de envasado totalmente automatizada ya no manual y de mayor velocidad que la actual. Al hacer el análisis de servicios, se encuentra que se tiene la necesidad de diseñar un sistema de refrigeración nuevo, ya que con el equipo que actualmente se tiene en planta no se cubre la demanda de enfriamiento para abastecer a una nueva línea de envasado, debido a que ya se cuenta en planta con dos líneas más trabajando y la carga termina adicional no se cubre con los equipos actuales. De no instalar este nuevo sistema simplemente no se podría poner en funcionamiento la nueva línea de envasado, podría abastecerse del actual sistema de enfriamiento instalado que igual trabaja con glicol, pero se tendrían que parar las otras dos líneas para que la nueva trabaje a un 50 % de su velocidad, lo cual no es rentable. Para el puro sistema de enfriamiento como tal dispone de un presupuesto proyectado de 4 millones de pesos. Esta línea de envasado requiere se le suministre glycol a un flujo de 100,000 litros por hora y a una temperatura de -2 grados centígrados a la entrada del intercambiador del equipo Mixer, para esto se cuenta con la corrida de calculo del intercambiador antes mencionado proporcionada por el fabricante de la línea de envasado, con esta corrida se tienen que realizar los cálculos de los equipos del sistema, los cuales serán, determinar las toneladas de refrigeración requeridas en el sistema para satisfacer la velocidad de operación de la línea de envasado, y con esta misma información determinar la cantidad de compresores y condensadores requeridos, calcular el tamaño del intercambiador de calor lado amoniaco-glicol, así como los recipientes a presión requeridos para la unidad URL (unidad receptora de liquido). Como equipos disponibles en planta se cuenta con 2 compresores N6WB, 1 compresor N4WB, 1 compresor N8WA, además un condensador Evapco, modelo PMCA-230P, todos estos equipos son de uso y requieren de un mantenimiento preventivo para su puesta en operación, por tal motivo dentro del análisis de los equipos a requerir se tiene que hacer la evaluación de factibilidad de ocupar estos equipos y cual de ellos son los mas aptos para instalarse en el sistema de refrigeración. Como parte final dependiendo de la arquitectura de sistema de refrigeración se tendrá que diseñar el cuarto de maquinas, disponiendo de una área de 300 metros cuadrados para colocar los compresores y sus bases, los condensadores de amoniaco, intercambiador de calor lado amoniaco-glicol y la unidad URL, y de esta manera tener el circuito de tubería de glicol hacia la línea de envasado debidamente aislados todos los equipos para evitar pérdidas de temperatura por la acción del medio ambiente el cual genera condensación en las tuberías,

Page 17: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

el aislamiento del área de llenado tendrá que ser de lamina de acero inoxidable, con el objetivo de mantener sanitaria el área de envasado, únicamente los accesorios no serán aislados.

Page 18: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

Alcance del trabajo Desarrollar un sistema de refrigeración, partiendo de la reutilización del equipo disponible en planta, el cual ya es de uso, dentro de este desarrollo se contempla la construcción del cuarto de maquinas con los servicios adecuados para la correcta operación de los compresores, el cálculo de los equipos a instalar y el análisis de la factibilidad de ocupar los equipos ya existentes, así como la instalación y puesta en marcha de acuerdo al diseño que se determine según los cálculos.

Page 19: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

1

CAPITULO 1 Introducción a los sistemas de

Refrigeración con amoniaco

1.1 Definición de conceptos básicos 2

1.2 Principios de refrigeración 4

1.3 Funcionamiento del ciclo de refrigeración por compresión 7

1.4 Transferencia de calor 14

1.5 Refrigerantes 16

1.6 Diagrama P-h y cálculos básicos para el compresor 28

Page 20: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

2

Capitulo 1 Introducción a los sistemas de refrigeración con amoniaco 1.1 Definición de conceptos básicos Calor específico: El calor específico de una sustancia es su capacidad relativa de absorber calor tomando como base la unidad de agua pura, y se define como la cantidad de kilocalorías (BTU), necesarias para aumentar la temperatura de un kilo (libra) de cualquier sustancia 1 grado centígrado (1 °F). Por definición el calor específico del agua es 1.0, pero la cantidad de calor necesario para aumentar la temperatura de otras sustancias varía. Se requieren únicamente 0.64 kilocalorías por kilo (0.64 BTU por libra), para aumentar la temperatura de un kilo (libra) de mantequilla 1 °C (1 °F), y solo 0.22 kilocalorías (BTU), para aumentar la temperatura de un kilo (libra) de aluminio 1 °C (1 °F). Por lo tanto los calores específicos de estas sustancias dos sustancias son 0.64 y 0.22 respectivamente. Calor sensible: Se define como el calor que provoca un cambio de temperatura en una sustancia. En otras palabras, es como su nombre lo indica, el calor que puede percibirse por medio de los sentidos. Cuando la temperatura del agua se eleva de 0 °C a 100 °C, hay también un aumento de calor sensible. Calor latente: Es el calor necesario para cambiar un sólido en estado liquido, o un liquido es estado gaseoso sin variar la temperatura de la sustancia. La palabra latente significa oculto, ósea, que este calor requerido para cambiar el estado físico de una sustancia no es percibido por los sentidos. Calor latente de fusión: El cambio de una sustancia de sólido a líquido o de líquido a sólido, requiere calor latente de fusión. Este también puede llamarse calor latente de licuefacción o calor latente de congelación. Cuando se derrite un kilo (libra) de hielo, este absorbe 80 kilocalorías (144BTU), a una temperatura constante de 0*C (32 °C), del mismo modo, cuando se congela un kilo (libra) de agua para convertirla en hielo, deben sustraerse 80 kilocalorías (144BTU) a una temperatura constante de 0 °C (32 °F). En la congelación de productos alimenticios, únicamente se considera el calor latente del porcentaje de agua que contienen, por lo tanto; el calor latente se conocerá determinando el porcentaje de agua que existe en dichos productos. Generalmente los usuarios confunden la palabra refrigeración con frío y con enfriamiento, sin embargo; en la práctica de ingeniería la refrigeración trata casi enteramente con la transmisión de calor. La termodinámica es una rama de la ciencia que trata sobre la acción mecánica del calor. Existen ciertos principios fundamentales como las leyes termodinámicas, las cuales son básicas para el estudio de la refrigeración, la primera y mas importante de estas leyes dice “la energía no puede ser creada ni destruida, solo puede transformarse de un tipo de energía en otra. Calor: Es una forma de energía creada principalmente por la transformación de otros tipos de energía de calor. Por ejemplo la energía mecánica que opera una rueda causa fricción y crea calor. Calor es definido frecuentemente como energía en transito, ya que siempre esta transmitiéndose de los cuerpos calidos a los cuerpos fríos. Existe a cualquier temperatura arriba de cero absoluto, incluso en cantidades extremadamente pequeñas. Cero absoluto es el termino usado por los científicos para describir la temperatura mas baja que teóricamente es posible lograr en la cual no existe calor y que es de -273 °C (460 °F).

Page 21: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

3

La temperatura más fría que podemos sentir en la tierra es mucho mas alta en comparación con esta base. Temperatura de saturación: Saturación es la condición de temperatura y presión en la cual el liquido y el vapor pueden existir en ebullición (para el nivel del mar, la temperatura de saturación del agua es de 100°C (212°F)). A presiones más altas, la temperatura de saturación aumenta. Vapor sobrecalentado: Cuando el líquido cambia a vapor, cualquier cantidad de calor adicional aumentara su temperatura (calor sensible), siempre y cuando la presión a la que se encuentre expuesto se mantenga constante. El termino vapor sobrecalentado, se emplea para denominar un gas cuya temperatura se encuentre arriba de su punto de ebullición o saturación. El aire a nuestro alrededor contiene vapor sobrecalentado. Líquidos subenfriados: Cualquier liquido que tenga una temperatura inferior a la temperatura de saturación, correspondiente a la presión existente; se dice que se encuentra subenfriado. El agua a cualquier temperatura por debajo de su temperatura de ebullición (100 °C al nivel del mar), esta subenfriada. Presión atmosférica: La atmosfera, alrededor de la tierra esta compuesta de gases como el oxigeno y el nitrógeno, el peso de esta atmosfera sobre la tierra crea la presión atmosférica. La presión atmosférica es relativamente constante, excepto por pequeños cambios debidos a las diferentes condiciones atmosféricas. Con el objeto de estandarizar y como un referencia básica para su comparación, la presión atmosférica a nivel del mar ha sido universalmente aceptada y establecida a 1.03 kilos por centímetro cuadrado (14.7 libras por pulgada cuadrada) lo cual es equivalente a la presión causada por una columna de mercurio de 760 milímetros de (22.92) pulgadas de alto. En alturas sobre el nivel del mar, la altitud de la capa atmosférica que existe sobre la tierra es menor por lo tanto la presión atmosférica es solo de 0.86 kilos por centímetro cuadrado (12.2 libras por pulgada cuadrada). Presión absoluta: Generalmente la presión absoluta se expresa en términos de Kg/cm2 (lb/in2), y se cuenta a partir del vacío perfecto en el cual no existe presión. Por lo tanto, en el aire a nuestro alrededor, la presión absoluta y la atmosférica son iguales. Presión manométrica: Un manómetro de presión esta calibrado para leer 0.0 kilos por centímetro cuadrado (0 libras por pulgada cuadrada), cuando no esta conectado a algún recipiente con presión, por lo tanto la presión absoluta de un sistema cerrado será siempre la presión manométrica mas la presión atmosférica. Las presiones inferiores a 0 kg/cm2 (PSIG) sin realmente lecturas negativas en los manómetros U, se llaman milímetros (pulgadas) de vacío. Un manómetro de refrigeración mixto (compound), esta calibrado en el equivalente de milímetros (pulgadas) de mercurio por las lecturas negativas. Puesto que 1.03 kg/cm2 (14.7 psi) son equivalentes a 760 milímetros (29.92 pulgadas) de mercurio, un kg/cm2 (PSI) equivale aproximadamente a 738 milímetros (29.05 pulgadas) de mercurio. Tonelada americana de refrigeración: Aún en nuestro país es muy frecuente hablar de toneladas de refrigeración, la cual es realmente una unidad americana, basada en el efecto frigorífico de la fusión del hielo. La tonelada de refrigeración puede definirse como la cantidad de calor absorbida por la fusión de una tonelada de hielo sólido puro en 24 horas, puesto que el calor latente de fusión de una libra de hielo es de 144 BTU, el calor latente de una tonelada (2000 libras) de hielo será 144 x 2000; ósea 288,000 BTU por 24 horas. Para obtener el calor por hora es necesario dividir entre las 24 horas, lo cual da la cantidad de 12,000 BTU/HORA, que recibe el nombre de “Tonelada de Refrigeración”.

Page 22: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

4

Puesto que el calor latente del hielo en el sistema métrico es de 80 kilocalorías, y que una tonelada americana es igual a 907.185 kilos, la tonelada de refrigeración es igual a 80 x 907.185; ósea 72,575 kilocalorías por 24 horas ósea 3024 kilocalorías por hora. 1.2 Principios de refrigeración 1.2.1 Significado de refrigeración Se entiende por refrigeración el acto de enfriar un objeto para que su temperatura sea mas baja que la ambiental. Es por ello que el convertir el agua hirviendo en agua caliente no es refrigeración si no enfriamiento. 1.2.2 Porque se puede enfriar un objeto en el refrigerador El principio del refrigerador es en resumidas cuentas, enfriar un objeto quitándole calor por medio de la evaporación de un líquido, propenso a esta acción, tal como el amoniaco o el freon licuado que se evaporan a bajas temperaturas. Supongamos que el amoniaco o el freon licuado que se usan para los refrigeradores hacen contacto con nuestro cuerpo, los líquidos mencionados se evaporan, de la misma forma que el alcohol, nos quitan calor del cuerpo, este calor es equivalente al calor de la evaporación de los líquidos mencionados. Una característica importante de estos líquidos es que tienen una alta propensión a evaporarse. En términos mas concretos, se tratan de sustancias que se evaporan activamente a temperaturas bajo cero (el caso del amoniaco esta e de -33 °C). Por esta razón el líquido que se haya pegado al cuerpo humano, enfría a este al convertirse en un líquido frío o más bien lo congela si se trata de cantidades mayores. En lo que se refiere al mecanismo del refrigerador un líquido del tipo químico como el amoniaco o el freon, que tienen una acción intensa de enfriamiento, se someten a una evaporación en el tubo de enfriamiento, en cantidades masivas, de tal manera que el mismo tubo se enfría ocasionando también que se enfríe el refrigerador, en general se trata de enfriar un producto quitándole el calor necesario para evaporar el liquido propenso a evaporación en el tubo de enfriamiento. 1.2.3 Calor y método de transferencia de calor Podemos definir al calor como una energía en movimiento constante, el calor de fusión es el calor necesario para derretir un objeto sólido, el calor de vaporización es el calor necesario para convertir un líquido en estado gaseoso, el calor de sublimación es el calor necesario para convertir un sólido en estado gaseoso. El calor se transmite por medio de las tres acciones: Conducción: La acción del calor que se transmite en el objeto. Convección: La acción de calor que se transmite mediante un movimiento de gas o liquido. Radiación: La acción de calor que se transmítela igual que la luz, sin contar con ningún vehiculo. 1.2.4 Ciclo de refrigeración normal El principio de la refrigeraron se basa en la evaporación del amoniaco liquido que fluye en el evaporador, el refrigerante liquido no se puede evaporar a una temperatura de inferior a los 0 grados centígrados cuando tiene una presión alta, es por ello que se debe succionar el amoniaco evaporado del evaporador por medio del compresor,

Page 23: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

5

con el fin de que no se altere la presión dentro de dicho evaporador, al bajar la presión el amoniaco liquido se evapora a una temperatura baja. Por otro lado, el vapor tiene que ser licuado nuevamente para restituirlo al estado en que su capacidad como refrigerante permita reutilizarlo, para lograr nuevamente el estado liquido es necesario aumentar la presión del gas, el compresor aumenta la presión y esta elevación de presión ocasiona se eleve la temperatura del gas (al estar el gas dentro del compresor, se contamina con partículas de aceite, provenientes de la lubricación del mismo, estas se eliminan en el separador de aceite). El gas se introduce en el condensador para enfriarse con agua. Es por ello que el gas con alta presión se convierte en líquido al ser enfriado en el condensador. Este gas licuado retorna al recipiente en que estaba al principio, alimentándose denuedo al evaporador primeramente pasando por la válvula de expansión que hace que baje la presión del refrigerante y controla la capacidad del sistema, a este proceso se le conoce como ciclo de refrigeración. Cabe agregar que al recipiente que contiene el líquido de refrigeración se le denomina recibidor. En la Figura 1.1 se observa el ciclo de refrigeración.

Figura 1.1: Diagrama del ciclo de refrigeración normal 1.2.5 Que sucede con el calor extraído de los productos al ser refrigerados por el evaporador El vapor que se genero en el evaporador, al absorber el calor de los productos refrigerados, pasa por el compresor y llega al condensador, en donde se descarga dicho calor. 1.2.6 Tipos de compresor Los compresores de tamaño chico y mediano, son de tipo reciprocante. Los compresores de mayor capacidad en cambio, son del tipo rotativo o tipo tornillo (véase Figura 1.2 y 1.3). El compresor de tamaño mas grande a estos es del tipo centrifugo (compresor turbo), que comprime es gas bajo el mismo principio teórico que la bomba espiral. Este compresor centrífugo comprime el vapor arrojado a una alta velocidad, por medio de la turbina que gira a muy altas RPM.

1

2

3

4

5

6

7

8

9

10

1. Separador de aceite.

2. Compresor.

3. Agua de enfriamiento.

4. Condensador.

5. Calor.

6. Recibidor.

7. Tubo de enfriamiento.

8. Válvula de expansión.

9. Evaporador.

10. Calor.

Page 24: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

6

Su uso principal es para aire acondicionado en edificios grandes. Consta de dos rotores helicoidales de ejes paralelos, engranados entre sí que giran dentro de una carcaza o envolvente. Uno de los tornillos presenta lóbulos y otros entrantes en que se introducen los lóbulos. El rotor de lóbulos suele ser el movido por el motor e imprime movimiento al otro mediante el engrane. Las velocidades de rotación suelen no ser menores de 2000 rpm. ni mayores de 12000 rpm. El gas ingresa al interior de la carcaza por uno de los extremos de los tornillos; es atrapado en el espacio entre dos filetes consecutivos y la envolvente, y trasladado hasta la boca de salida, en el otro extremo de los tornillos. Dicho espacio conteniendo gas reduce su volumen al llegar a la pared posterior de la cámara, antes de descubrirse la lumbrera de escape. Cuando se tiene que enfriar mucho el evaporador, a veces, no se puede comprimir el vapor al mismo nivel de la presión del evaporador con un solo compresor, ya que se registra una considerable caída de presión del vapor contenido en el evaporador. En este tipo de compresor, conocido como compresor para baja temperatura, lo primero que se hace es comprimir el vapor a baja presión generado en el evaporador, hasta que dicho vapor obtenga una presión media por medio de un compresor a baja presión. El gas que se caliente debe ser comprimido, se enfría en el interenfriador, succionándose por el compresor de alta presión, el cual lo comprime una vez más hasta que el gas alcance a tener la misma presión que el condensador. Este sistema se conoce como compresión de doble etapa. El compresor para amoniaco o freon utiliza este sistema de compresión de doble etapa cuando la temperatura de vaporización es de -30 °C. Cuando se trata de una temperatura mas baja entre 60 y 70 °C bajo cero a veces se tiene que comprimir el gas en tres etapas. El compresor de este tipo se le conoce como de tres etapas. Sin embargo, el sistema de compresión de doble o triple etapa casi no se utiliza en la actualidad, ya que el refrigerante de uso ordinario por ser tan baja la temperatura, el vapor del refrigerante baja de densidad por cual un solo compresor reciprocante no succiona el vapor suficiente. Los anteriores compresores mencionados son del tipo mecánico, existen también otro tipo de compresores como los de tipo de inyección de vapor, de succión y de absorción. Pero estos casos no se explicaran en presente proyecto. Figura 1.2: Compresor reciprocante Figura 1.3: Compresor rotativo o tornillo

Page 25: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

7

1.3 Funcionamiento del ciclo de refrigeración por compresión 1.3.1 Comportamiento del refrigerante en el ciclo de refrigeración por compresión El ciclo de refrigeración por compresión consiste en efectuar la refrigeración aprovechando el calor que se genere al evaporarse un refrigerante líquido, frío y a baja presión (amoniaco liquido, por ejemplo). Brevemente, el ciclo de refrigeración se puede iniciar cuando el compresor succiona el vapor de amoniaco comprimiéndolo de manera que se incremente su presión, este gas de amoniaco a alta presión, se enfría en el condensador, mediante el agua de enfriamiento y se almacena en el recibidor en forma liquida, pasa por la válvula d expansión, por el evaporador y retorna al compresor. El alimentar amoniaco líquido al evaporador, no significa que se pueda obtener amoniaco frío, o que ese liquido se evapore por si solo, si no que requiere del ciclo de refrigeración. El que el amoniaco liquido cuya temperatura no difiera mucho de la temperatura atmosférica; se enfría al pasar del recibidor del liquido al evaporador, así como que dicho liquido se evapore aún frío, se debe a que tanto la válvula de expansión como el compresor mantienen la presión ideal en el interior del evaporador de un nivel mucho mas bajo que la del recibidor de liquido. El líquido suele evaporarse aun estando frío al reducirse la presión. La temperatura a la que un líquido hierve a determinada presión atmosférica se denomina punto de ebullición. Lo mismo puede decirse del amoniaco líquido, mientras este no se evapora al permanecer en el recibidor de líquido debido a su alta presión, una parte del amoniaco liquido que esta tibio se evapora, por que la válvula de expansión actúa como reductora de presión antes de entrar al evaporador. En resumen un ciclo de refrigeración, se puede iniciar cuando el compresor succiona, el vapor refrigerante, comprimiéndolo de manera que se incremente su presión; este gas refrigerante de alta presión se enfría o se condensa (cambia de fase gaseosa a liquida), denominándole calor latente, después pasa por un dispositivo de expansión cuya función principal es la de bajar la presión del liquido refrigerante, para que este pueda evaporarse, y así ceder su calor latente de vaporización en el evaporador o enfriador de salmuera para retornar al compresor iniciando nuevamente el ciclo. El amoniaco líquido se evapora utilizando plenamente su propio calor, es por ello que el amoniaco líquido se va enfriando hasta tener una temperatura determinada que corresponda a la presión en el interior del evaporador. Hasta que valor se debe reducir la presión para obtener amoniaco liquido frío?. La tabla 1.1 nos indica la relación entre la temperatura y la presión del amoniaco.

Page 26: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

8

Presión de evaporización Presión de condensación

Temp. (°C) de saturación

Presión (escala de saturación kgf/cm2)

Temp. (°C) de saturación

Presión (escala de saturación kgf/cm2)

0 3.34 40 14.8

-2 3.03 35 12.7

-4 2.73 30 10.9

-6 2.45 28 10.2

-8 2.18 26 9.51

-10 1.93 24 8.88

-12 1.70 22 8.28

-14 1.48 20 7.71

-16 1.23 18 7.16

-18 1.08 16 6.64

-20 0.91 14 6.15

-22 0.74 12 5.68

-24 0.59 10 5.24

-26 0.44 8 4.81

-28 0.31 6 4.42

-30 0.19 4 4.04

Tabla 1.1: Relación entre temperatura y presión del amoniaco Para poder evaporar el amoniaco liquido a una temperatura determinada basta conocer la presión correspondiente a dicha temperatura que se localiza en el Cuadro anterior. En otras palabras, se puede obtener la temperatura de amoniaco líquido frío que se desea solamente manteniéndose la presión en el interior del evaporador. Eso es indicativo, que cuanto mas baja la presión en el evaporador, mas frío se encuentra el amoniaco liquido. Por tener una temperatura mas baja que los que lo rodean, este amoniaco se calienta por el calor emitido por el medio circundante sin que se eleve la temperatura, por el solo hecho de evaporarse, al igual que lo que sucede con el agua al llegar a su punto de ebullición. El vapor de amoniaco, consecuencia de la evaporación del amoniaco liquido, es igualmente frío en la medida en que se mantiene la temperatura del liquido, y se puede afirmar que mientras haya residuos de liquido, su temperatura no sube por encima de un valor determinado, ya que en este contexto si funciona la relación presión temperatura del anterior cuadro mostrado. Si el líquido se continúa calentando aun después de que se evapore totalmente dentro de un recipiente hermético, se termina la evaporación y a partir de este momento, se eleva la temperatura de este amoniaco gaseoso. También el condensador es un recipiente en donde coexisten líquido y gas. Por lo tanto, se puede determinar la presión del condensador a partir de la temperatura del líquido generado al condensarse en el condensador. La presión del condensador puede medirse con cierto grado de precisión por medio del manómetro de alta presión (manómetro de descarga), instalado en el compresor.

Page 27: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

9

Así mismo se puede decir del recipiente de amoniaco (bomba), que contiene amoniaco líquido, en la parte superior de dicho recipiente prevalece el vapor amoniaco y en la parte inferior del mismo se encuentra el amoniaco líquido. La presión del vapor de amoniaco puede determinarse a partir de la temperatura del amoniaco líquido. 1.3.2 Efecto del aire residual como gas no condensable en un refrigerante en estado gaseoso Supongamos la siguiente situación: el manómetro de alta presión (manómetro de presión de descarga) del compresor para amoniaco esta indicando 15 kgf/cm2; por otra parte, la temperatura del agua de enfriamiento del condensador no ha rebasado los 25 °C y mantiene un flujo suficiente. Los tubos de enfriamiento del condensador no están sucios y la temperatura de condensación del amoniaco liquido no es superior a 30°C, si el calculo de la presión se hace a partir del Cuadro 1.1 y bajo estas condiciones de operación, la presión de descarga debería de ser 10.9 kgf/cm2, entonces en donde radica el problema?. Podemos atribuir en primera instancia que la causa de esta diferencia es que se haya mezclado aire con amoniaco vaporizado y que éste permanezca en el condensador. La relación Presión-Temperatura señaladas en el Cuadro 1.1 tienen como condición previa que el amoniaco sea puro, libre de aire. La mezcla de aire impide que el vapor de amoniaco se convierta en líquido sin aumentar la presión por la parte correspondiente de aire, esto se puede expresar en la siguiente formula: = + La presión del Cuadro 1.1 no toma en consideración la presión del aire, por lo cual, la presión real se tiene que obtener agregando la presión del aire con las cifras proporcionadas por dicha tabla. Dicho residuo de aire obstaculiza la licuefacción de vapor de amoniaco, lo cual incrementa aún más la presión del condensador. Los lugares más susceptibles de admitir el aire al sistema se encuentran en los empaques del compresor, los acoplamientos de tubo, válvulas etc. 1.3.3 Funcionamiento del compresor

1.3.3.1 Compresión de vapor El compresor sirve para elevar la presión del refrigerante evaporado, comprimiendo el vapor. Por medio del compresor, el refrigerante transfiere el calor desde un lugar frío hasta uno caliente, haciéndolo fluir por lo que se llama ciclo de refrigeración.

Presión del gas

en el interior del

condensador

Presión del

refrigerante

gaseoso

Presión del aire

Page 28: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

10

Está provisto de una cámara de compresión constituida por un cilindro de sección circular, con una "tapa" fija ("cabeza" o "culata") y otra móvil l ("pistón"). Válvulas de admisión y escape permiten el acceso del gas a comprimir y la salida del gas comprimido. Un motor hace girar un cigüeñal. A través de una biela, el pistón adquiere un movimiento alternativo entre las dos posiciones extremas, de velocidad nula, llamadas punto muerto superior (P.M.S.) la más alejada del cigüeñal y punto muerto inferior (P.M.I.) la otra. Véase la Figura 1.4 del proceso de operación del equipo.

Figura 1.4: Proceso de compresión en un compresor reciprocante Al moverse el pistón hacia abajo, pasa vapor de baja presión a través de la válvula de succión. En la carrera ascendente el vapor es comprimido y luego es descargado como vapor a alta presión a través de la válvula de descarga.

1.3.3.2 Compresión de isotérmica, politrópica y adiabática Compresión isotérmica: El esquema de compresión en que el enfriamiento del cilindro y del pistón sea perfecto, de manera que no se altere la temperatura del vapor antes y después de la compresión, es solo posible a nivel teórico por ser mínimo el trabajo requerido para la compresión. La elevación de la presión que se registra al comprimirse un gas se expresa con la siguiente formula: p1V1=p2V2 Donde: P1= Presión absoluta del vapor antes de comprimirse P2= Presión absoluta del vapor después de comprimirse V1= Volumen del vapor antes de la compresión V2= Volumen del vapor después de la compresión Compresión politrópica: Pese a las pequeñas fugas de calor que se registran durante la compresión, se observa un incremento de la temperatura del vapor después de la compresión. Este es el sistema más utilizado en compresores;

Page 29: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

11

el trabajo requerido para la compresión es mayor que el de la compresión isotérmica, pero menor que el de la compresión adiabática. Por otra parte la proporción de presiones que se registran en mayor que en la compresión isotérmica pero menor que en la compresión adiabática. El incremento de la presión que se registra al comprimirse el vapor queda mostrada por la siguiente formula:

p1Vn

1=p2Vn

2 1<n<cp/cv Donde: Cp: Temperatura especifica isobarica (medida cuando se calienta manteniendo la presión del vapor constante). Cv: temperatura especifica isovolumétrica (medida cuando se calienta manteniendo el volumen del vapor constante). Compresión adiabática: Es una forma de compresión en la que se evita completamente la fuga de calor hacia el exterior por medio de un aislamiento perfecto en el cilindro y el pistón. El ascenso de temperatura que se registra después de la compresión es mayor que las dos formas de compresión antes mencionadas, requiriéndose mayor trabajo para efectuar la compresión. La proporción de la elevación de presión es mayor que las dos primeras y se expresa por la siguiente formula: p1Vk/2=p2V2k/2 Donde K=Cp/Cv Con respecto a la elevación de la temperatura del gas se tiene lo siguiente:

k

k

p

p

T

T1

2

1

2

1

Para los valores de K observe la tabla 1.2

Valores de K

Aire 1.4 Amoniaco 1.3

Freon12 1.135 Freon 22 1.18

Freon 500 1.127 Freon 502 1.132

Cloruro de metilo 1.2

Tabla 1.2: Valores de K

Page 30: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

12

1.3.4 Funcionamiento del condensador El condensador sirve para licuar el gas enfriándolo; en la mayoría de los casos, se utiliza agua para enfriar el gas (sistema de enfriamiento por agua), sin que se descarte el uso de aire (sistema de enfriamiento por aire), en condensadores de tamaño pequeño. Actualmente los condensadores ocupan ambas opciones pera mejorar la operación del sistema. El sistema de enfriamiento por agua permite la transferencia del calor que tiene el refrigerante gaseoso al agua de enfriamiento por la pared del tubo de enfriamiento. El grosor de la pared del tubo oscila entre 3 y 5 milímetros, realmente no obstruye dicha transferencia calorífica, dado que algunos metales como el hierro, cobre y latón son buenos conductores de calor. La transferencia calorífica se vuelve ineficiente cuando se deposita sarro o una película de aceite en el interior o exterior del tubo según sea el caso por mas delgadas que sean. El sarro y la película de aceite no son buenos conductores de calor, estos apenas conducen 1/40 y 1/400 del calor que conduce el hierro respectivamente, por consiguiente 1 mm de sarro depositado, 0.1 mm de la película de aceite formado en la superficie del tubo de hierro, equivale a que el tubo tenga 40 mm de grosor. 1.3.5 Funcionamiento del evaporador El evaporador es en donde el refrigerante líquido se evapora a temperaturas bajas y se lleva acabo la acción de refrigeración. Existe gran variedad en cuanto a su estructura, desde una forma U de tubo de acero o cobre hasta una cilíndrica hecha con lámina de acero. Independientemente de la diferencia de forma, lo importante es que se transfiera bien el calor desde el exterior hasta el refrigerante líquido que contiene el evaporador. Es por ello que el evaporador se diseña para cumplir con este requisito. El tubo de enfriamiento colocado en el interior del refrigerador es un ejemplo de evaporador, al enfriarse el evaporador, la humedad que prevalece en el aire se condensa, convirtiéndose en hielo y cubriendo el exterior del tubo de enfriamiento, este hielo no conduce bien el calor, impidiendo la transferencia de calor como si el evaporador fuera cubierto de una capa aislante. Una caída de presión en el evaporador exige una mayor compresión, obligando a una considerable expansión del volumen, aun cuando el peso de mantenga constante, esto ocasiona como consecuencia que el vapor quede diluido. El calor sin embargo, cambia en función de su peso y no de su volumen, cuando se duplica el peso del vapor, producto de la evaporación; también se duplica el calor de la evaporación, por lo que la capacidad de evaporación solo concierne al peso del vapor al ser succionado por el compresor y no tiene nada que ver con su volumen. Sucede entonces que cuando la presión del vapor sufre alguna caída y se incrementa su volumen en relación a su peso, la capacidad de refrigeración se ve reducida considerablemente. Es preciso hacer todo lo posible para no reducir la temperatura de evaporación. Queda de manifiesto con todo lo anterior, que la temperatura del evaporador debe ser mantenida al nivel en que el líquido se evapore completamente a la salida del evaporador.

Page 31: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

13

1.3.6 Funcionamiento de la válvula de expansión La válvula de expansión esta diseñada para oponer una resistencia al flujo del refrigerante liquido. El que se mantenga baja la presión del evaporador, se atribuye a la función de la válvula de expansión y del compresor, aun cuando el compresor succione el refrigerante evaporado sin cesar, la presión del evaporador no se puede reducir de haber un flujo cuantioso del líquido proveniente de la válvula de expansión. Así que el ajuste de la presión del evaporador se hace por medio de la apertura y cierre de la válvula de expansión. Cuando la válvula esta demasiado abierta, la presión en el evaporador se incrementa, ocasionando que el compresor succione vapor mezclado con liquido, al presentarse esta situación el cabezal del cilindro del compresor genera escarcha y se denomina compresión en húmedo, es decir el compresor comprime el vapor que contiene gotas microscópicas de liquido, estas se evaporan, y se enfría el gas de descarga dejando la escarcha en el cilindro. La base de la refrigeración es el utilizar la capacidad de refrigeración del refrigerante en su totalidad, por lo que al succionar vapor que aun tiene capacidad de refrigeración se provoca desperdicio del mismo. Además estas gotas succionadas por el cilindro, que se convierten en vapor dentro del mismo impiden la succión del vapor en el volumen adecuado, reduciendo aun más la capacidad de refrigeración. El fenómeno conocido como regreso de liquido, es el acumulamiento de liquido en el compresor, a medida que se realiza el proceso de compresión se tiene una cantidad de liquido cada vez mayor dentro del mismo, el liquido opone mayor resistencia para fluir por la válvula de descarga, dando lugar a que el cilindro quede lleno de liquido, esto genera una presión de liquido extremadamente alta, ocasionado lo que se conoce como bloqueo de liquido, reconociéndose por los ruidos anormales en el compresor. Estas altas presiones pueden llegar al extremo de romper el compresor cuando el bloqueo del líquido es sumamente violento. Una solución a este problema es cerrar un poco la válvula de expansión; esta medida implica que el flujo de líquido se reduzca aumentando, en consecuencia, la resistencia al flujo, reduce la presión, con la consecuente reducción en la temperatura del evaporador. Al cerrar la válvula de expansión, se transfiere un gran volumen de calor desde el exterior ocasionando que el liquido alimentado al evaporador se evapore por completo, el compresor trabaja succionando gas totalmente seco y se conoce como compresión en seco. En lo que se refiere al compresor de amoniaco, la compresión en seco que se hace, en base a un gas ligeramente calentado, o para ser mas concreto, un gas con 5 °C mas alto que el liquido a ser evaporado, muestra la mayor eficacia; así la escarcha alcanza apenas la válvula de succión y no se deposita en el cilindro del compresor. De cerrar demasiado la válvula de expansión, sin embargo, se incrementa la resistencia al flujo del líquido provocando que se reduzca el volumen que entra y la presión del evaporador. Al mismo tiempo, baja la temperatura junto con la disminución en la presión. Ello permite que un gran volumen de calor se transfiera desde el exterior al interior del evaporador, por lo cual el liquido se convierte completamente en vapor antes de llegar a la salida del evaporador, este vapor se caliente bastante, debido al calor; cuando es succionado por el compresor y al comprimirlo le incrementa mas su temperatura, lo cual impide que se deposite escarcha en el tubo de succión, produciéndose una serie de anomalías tales como el deterioro en la calidad del aceite lubricante, se genera hollín.

Page 32: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

14

1.3.7 Sistema de refrigeración por expansión directa y por salmuera Los sistema de refrigeración que se aplican en los equipos de refrigeración se dividen en dos, uno conocido como de expansión directa, que consiste el pasar el refrigerante directamente por el tubo de enfriamiento que se encuentra en contacto con el área a refrigerar; y otro que se denomina sistema de refrigeración por salmuera, que cuenta con un flujo de salmuera (en general se utiliza una solución acuosa de cloruro de calcio) enfriada previamente por el refrigerante en el tubo de enfriamiento (intercambiador de calor). 1.4 Transferencia de calor 1.4.1 Transferencia de calor y resistencia El calor se transfiere de una zona de mayor temperatura a una de menor temperatura. Cuando hay una mayor resistencia en el medio por el cual fluye el calor, resulta más difícil que se transfiera el calor a menos que haya una considerable diferencia de temperaturas. Es sabido que la resistencia al flujo de calor es una característica específica de algunos materiales y se refleja en la forma en que fluye el calor en dicho material. Los materiales como el oro, plata, cobre, aluminio y hierro, entre otros, se caracterizan por su alta conductividad térmica y por eso se conocen como buenos conductores. Tales características revisten mayor importancia al ser cuantificadas por medio del manejo del coeficiente de transferencia de calor (Kcal/m h °C). Se sabe que (Kcal/h), son las calorías que se transfieren por hora y es proporcional a la diferencia de temperaturas que existen entre dos fases en (°C) así como, a la superficie de transferencia de calor “A” (m2) y esta en razón inversa a la distancia que se traslada el calor “L” (m). La constante proporcional se conoce como coeficiente de transferencia de calor. La siguiente Tabla 1.3 se muestra dicho coeficiente de transferencia de calor de varios materiales (λ).

Tipo de material Coeficiente de transferencia de

calor Kcal/mh*C

Acero 40---50

Cobre 300

Aluminio 175

Aire 0.02

Agua 0.51

Hielo 1.9

Componentes de pared aislante

Madera 0.09---0.11

Hormigón armado 0.7---1.2

Placa de corcho carbonizado 0.045

Espuma de poliuretano 0.02---0.03

Espuma de poliestireno 0.03---0.035

Colchonete de fibra 0.03---0.04

Tabla 1.3: Coeficiente de transferencia de calor (λ)

Page 33: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

15

1.4.2 Transferencia de calor por convección Cuando existen dos fluidos con temperaturas diferentes, separado por una superficie, el calor que tiene el fluido con mayor grado de temperatura se transfiere al otro fluido más frío mediante la pared. Todo lo que se refiere al mecanismo global de transferencia de calor, es necesario que exista una diferencial de temperaturas, la que permite que el calor de un refrigerante se transfiera, al agua de enfriamiento, como ejemplo de un condensador, en donde circula amoniaco a alta temperatura y presión en el interior del serpentín y en el exterior circula agua de enfriamiento la cual por medio de convección elimina el calor del amoniaco. Dicha diferencial de temperaturas tendrá que ser mayor cuando se tenga una mayor resistencia al mecanismo de transferencia de calor, por ejemplo cuando se pega una película de aceite al tubo de enfriamiento en contacto con el refrigerante, o se deposita sarro en la superficie en contacto con el agua, es necesario que el diferencial de temperaturas sea mayor que cuando no se presentan dichos problemas, puesto que el aceite y el sarro no son buenos conductores térmicos. Esto implica que la temperatura del agua de enfriamiento se mantenga sin cambio y que la del refrigerante (temperatura de condensación del refrigerante) se vea incrementada, lo que se traduce en la caída en la eficiencia del ciclo de refrigeración. De manera general el flujo de calor que ocurre entre un fluido y la superficie de un cuerpo sólido se le conoce como transferencia de calor por convección. Ahora bien en lo que respecta a la transferencia de calor entre el fluido y la superficie de un cuerpo sólido, se observa que al ser mayor la velocidad del fluido disminuye el espesor de la capa inmóvil del fluido ubicado cerca de la superficie del cuerpo sólido, lo cual permite que el calor se transfiera con mayor facilidad. Dicho de otro modo el coeficiente de transferencia de calor se incrementa. 1.4.3 Transferencia de calor por conducción Se entiende un fenómeno en el que se transmite el calor por medio de un sólido, al igual que el calor se transmite desde el vapor del refrigerante al agua de enfriamiento a través de la pared del tubo de transferencia de calor, o bien el calor del exterior que alcanza a penetrar la pared aislante de un refrigerador, el termino equivalente al concepto de conducción es “flujo penetrante de calor”. El volumen de transferencia de calor unitario Kcal/h se expresa por la siguiente formula Ф= K(A)(t1-t2) (t1-t2) representan las temperaturas de los fluidos medidos en ambos lados de la pared. A superficie que cubra el calor transferido (m2). Ф Volumen de transferencia de calor (Kcal/h). 1.4.3.1 Proporción de transferencia de calor El valor “K” (Kcal/m2h), se determina en función de la proporción de transferencia de calor entre las dos superficies de la pared, el espesor de la misma y la proporción de transferencia de calor de los componentes de la pared. Puesto que la transferencia de calor varia en cada capa que es constitutiva de la pared, la resistencia en la transferencia de calor en la totalidad de la pared, aparece como la suma de las resistencias que se dan en cada capa. Tomando lo anterior en consideración, la proporción de transferencia de calor en su totalidad se determina con la siguiente formula.

Page 34: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

16

23211

1...

1

1

lll

K

Donde:

21, Coeficiente de transferencia de calor en la superficie de la pared en Kcal/m2h°C.

L Espesor de la pared en (m). Λ Coeficiente de transferencia de calor en (Kcal/mh°C).

1.4.3.2 Diferencia de temperatura Ya se ha mencionado que la transferencia de calor se debe al diferencial de temperatura entre dos medios. Tratándose de la pared aislante de un refrigerador, se determina con mucha claridad la diferencia de temperatura, a partir de la temperatura interior del refrigerador y la temperatura en la parte exterior de dicha pared. Ello no sucede por ejemplo en el caso de un condensador de refrigeración enfriado por agua, debido que aquí la temperatura del refrigerante corresponde a la de saturación y es considerada constante, que aparece expresada como temperatura de condensación, el agua de enfriamiento empieza a subir de temperatura a medida que avanza en el tubo de enfriamiento hasta alcanzar a tener una determinada temperatura a la salida del condensador, debido a la variación constante de la temperatura se recurre a tomar la diferencia media de temperatura como medición de la temperatura. 1.5 Refrigerantes 1.5.1 Refrigerantes y presión El refrigerante que se utiliza en un equipo fluye en un ciclo cerrado para efectuar la refrigeración. Una operación de alta eficiencia no se logra sin que todas las propiedades del refrigerante sean utilizadas plenamente. El amoniaco y el freon constituyen los refrigerantes mas utilizados en la actualidad. El primer criterio para seleccionar un refrigerante es su punto de ebullición, entendido como la temperatura a la que un líquido llega a hervir a presión atmosférica. Es sabido que cuanto mas bajo es el punto de ebullición a una misma temperatura, mas se incrementa la presión de saturación. Tomaremos como ejemplo el freon 22 cuyo punto de ebullición es -40 °C, al mantener la temperatura de evaporación a -35, la presión del freon 22 es de 1.35 y comparada con la del freon 12 que es de 0.82 es mucho mayor bajo las mismas condiciones. Las relaciones de presión de vapor saturado y temperatura de saturación se expresan en la Grafica 1.1 mostrada a continuación en donde se visualizan estos datos para varios tipos de refrigerantes. En la actualidad el freon 22 abarca casi todos los campos relacionados con el aire acondicionado, exceptuando el del automóvil. Esto no se debe a que le punto de ebullición sea mayor, si no a la mayor concentración de vapor que se registra en la succión del compresor (lo que significa una menor proporción de volumen de vapor), por lo que en este sentido el freon 22 permite ahorrar un 40 % de volumen de descarga de los pistones del compresor sin perjuicio de la capacidad de refrigeración, que representa un mayor empequeñecimiento, aligeramiento y costo del compresor.

Page 35: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

17

Existen varios tipos de gas licuado que se emplean como refrigerantes en el campo de la refrigeración, algunos como el freon 11, freon 21 y freon 114 tienen relativamente baja presión, en tanto que otros como el amoniaco, freon 12, freon 22, freon 500 y freon 502 se caracterizan por su alta presión. Es por ello que se requiere un manejo sumamente cuidadoso del segundo grupo, que esta sujeto al control de las autoridades respectivas y del reglamento en materia de manejo de gases de alta presión.

Grafica 1.1: Presión de vapor saturado de varios tipos de gas refrigerante

Page 36: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

18

1.5.2 Propiedades del refrigerante La propiedad más importante de los refrigerantes consiste en que se convierta de gas líquido sin dificultad y que el calor latente al efectuarse la evaporación tenga un valor elevado. Cabe decir que con un volumen pequeño de refrigerante liquido, con alto valor de calor de evaporación, se puede realizar las operaciones de refrigeración que se desee. El amoniaco se destaca por tener mayor volumen de calor de evaporación por lo que el equipo de refrigeración en que se usa amoniaco como refrigerante, es mas compacto en comparación que el que usa freon, pero la capacidad de refrigeración del primero es mayor que la del segundo. Por otra parte el costo del amoniaco es una quinta parte del costo del freon. Gracias a estas ventajas el amoniaco se considera como el refrigerante ideal para ser usado en los sistemas de refrigeración industrial o equipos para fabricar hielo. Sin embargo el amoniaco tiene sus desventajas, como su alta toxicidad, la flamabilidad, corrosión en el cobre, y los metales con aleaciones de cobre, debido a estas desventajas el amoniaco no podrá ser usado en lugares concurridos o en lugares en donde se tengan posibilidades de incendio. En tales situaciones el freon es el que se emplea ya que es el menos dañino al cuerpo humano. El freon 12 es un refrigerante de uso común, aunque con menor capacidad de refrigeración que el amoniaco y como alternativa a este tenemos el freon 22, ya que sus características en cuanto a capacidad de refrigeración y presión, etc., son similares con la ventaja adicional de que es menos toxico que este. Cabe decir además, que el freon 22 es adecuado para la refrigeración de baja temperatura. Existe el peligro de que los refrigerantes de la familia del freon produzcan gases altamente tóxicos como el fosgeno y el fluoruro de hidrogeno al ser expuesto al fuego o cuando llegan a tener una temperatura elevada. No obstante esta situación preocupante se puede contrarrestar hasta cierto punto, ya que por ser pesado el gas freon cubre las llamas del fuego desplazando el oxigeno, de esta manera lo extingue. Fosgeno es un tipo de gas toxico que emplearon los militares alemanes durante la Primera Guerra Mundial. Existe una amplia variedad y tienen diferentes características que los hacen más aptos según la aplicación. Algunos requerimientos para la selección del refrigerante apropiado son toxicidad, inflamabilidad, aspectos económicos y ambientales. Toxicidad: es un término relativo al grado de concentración y el tiempo de exposición. La National Fire Underwriters ha establecido una categorización en una escala de 1 a 6 en donde los refrigerantes del grupo 1 son altamente tóxicos en bajas concentraciones y poco tiempo de exposición. En el otro extremo, grupo 6, se consideran no tóxicos (en condiciones normales). Por ejemplo, el Amoníaco pertenece al grupo 2 y el R22 al grupo 5. Inflamabilidad y explosividad: en general no son inflamables ni explosivos a excepción del amoníaco (cuando se mezcla con aire) y los de la serie de los hidrocarburos. Otras consideraciones: no contaminante de los productos que se manejan en caso de que entrar en contacto con ellos. Por ejemplo escapes de amoniaco pueden causar danos ligeros (decoloraciones) o danos mas serios inutilizando el producto.

Page 37: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

19

Existen también los llamados refrigerantes secundarios Estos se enfrían en evaporadores o unidades enfriadoras de un sistema y se trasladan por tuberías al lugar que se desea refrigerar. Incluyen los anticongelantes y las salmueras. En el grupo de los anticongelantes están los glicoles (etilénico, dietilénico, trietilénico y propilénico). Dos de las salmueras mas populares son las soluciones de cloruro de calcio y de cloruro de sodio. Para su selección importa sus propiedades físicas (viscosidad, punto de congelación, capacidad calorífica, etc) así como sus propiedades no contaminantes. Son de especial interés las salmueras ya que no son tóxicas con las personas o alimentos. 1.5.3 Salmuera Salmuera de cloruro de calcio. La salmuera mas usada es la solución acuosa de cloruro de calcio. Esta solución tiene la característica de no ser congelada aun a temperaturas tan bajas como -55 °C al tener un determinado grado de concentración. El único inconveniente es que si esta salmuera toca directamente los alimentos, estos saben amargos o agrios, por lo que se utiliza la solución acuosa de cloruro sódico. La Grafica 1.2 muestra las relaciones entre la concentración de cloruro de calcio y la temperatura de concentración de la salmuera.

Grafica 1.2: Concentración y temperatura de congelación de la salmuera de cloruro de calcio Agua de cloruro sódico. Esta se utiliza cuando los alimentos se congelan mediante el contacto directo con la salmuera. El agua de cloruro sódico con un 22 % de concentración no se congela hasta que llega a tener una temperatura de -22 °C, la cual; no es tan baja como la salmuera de cloruro de calcio. Por lo tanto, el agua de cloruro sódico se puede emplear para la fabricación de hielo, por ejemplo; se requiere un cuidado especial al manejo del equipo cuando se enfría con un enfriador normal de

Page 38: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

20

salmuera para que la solución no se congele dentro del tubo de enfriamiento de manera que no rompa el equipo. Dado que las salmueras de cloruro de calcio y cloruro sódico tienen la característica de diluirse por la absorción del agua contenida en el aire, resulta pertinente agregar una cierta cantidad de cloruro de calcio o cloruro sódico según se trate, así como extraer una parte de la salmuera para mantener el grado de concentración adecuado. La grafica 1.3 señala la cantidad de cloruro de calcio a agregar y la de salmuera a extraer, en esta Grafica 1.3 se toma el dato de 22 ° en términos de Baume (a la temperatura de 15 °C), como concentración de la salmuera estándar. Por ejemplo la concentración de la salmuera en una tina para fabricación de hielo baja a 18 ° en términos de Baume, los pasos a seguir en este caso son:

1. Extraer 145 litros de salmuera por cada ton/día de hielo en dicha tina. 2. Agregar 210 kg de cloruro de calcio por cada ton/día de hielo. 3. Para preparar una salmuera, por primera vez, basta con disponer de 1 tonelada de cloruro de

calcio por cada ton/día de hielo. Para preparar una salmuera nueva, solo basta con disolver 1 tonelada de cloruro de calcio (que contiene el 30 % de agua), en cada 2300 litros de agua limpia, de este modo se tiene lista una salmuera con 22 ° en términos de Baume, adecuada para la fabricación del hielo. Últimamente se utilizan otros tipos de salmuera como el etil-glicol y propil-glicol, la primera es menos toxica y corrosiva que la salmuera de cloruro de sodio o cloruro de calcio. La segunda se destaca por no ser toxica y estar casi libre de efectos de corrosión, por lo cual se utiliza para enfriar alimentos.

Grafica 1.3: Cantidad de adición de cloruro de calcio y cantidad de extracción de la salmuera (que contiene el 35% de agua) a partir del supuesto de que la cantidad de la salmuera es de 106 cf por cada tonelada de hielo.

Page 39: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

21

Tabla 1.4: Clases y propiedades de refrigerante

Page 40: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

22

Tabla 1.5: Clases de usos de medios refrigerantes

Page 41: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

23

Tabla 1.6: Propiedades termodinámicas del refrigerante freon para el uso en el compresor de tipo alternativo Tabla 1.6b: propiedades termodinámicas del refrigerante para el uso en el compresor de tipo alternativo

Page 42: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

24

Tabla 1.7: Propiedades termodinámicas del refrigerante para el uso en el turbocompresor

Page 43: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

25

Tabla 1.8 Propiedades termodinámicas del amoniaco saturado

Page 44: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

26

Tabla 1.9: Propiedades termodinámicas de freon 12

Page 45: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

27

Tabla 1.10: Propiedades termodinámicas de freón 22

Page 46: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

28

1.6 Diagrama p-h y cálculos básicos para el compresor 1.6.1 Diagrama p-h (Diagrama de Molliere) El refrigerante sufre un complicado proceso de cambio al llevar acabo el efecto de refrigeración. Por lo tanto, resulta demasiado molesto hacer el cálculo de todas y cada una de las fases que surgen en el comportamiento del refrigerante. Pero si expresamos el comportamiento de un refrigerante en un mapa, por medio del cual se puedan realizar los cálculos del cambio que experimenta un refrigerante, se agiliza mucho la labor. Esta grafica nos permite obtener:

1. Tamaño de compresor. 2. Capacidad de refrigeración. 3. El tamaño del motor requerido para la operación del compresor. 4. Determinar fácilmente las fases de un equipo de refrigeración.

Es por consiguiente apoyarnos en el diagrama p-h para lograr una operación racional y eficiente; para lo cual definiremos en términos concretos lo que es el diagrama p-h para cada uno de los refrigerantes como el amoniaco, freon 12, freon 22 y freon 502. Con respecto a este diagrama, cabe aclarar que se representan la presión en el eje vertical y la entalpía en el eje horizontal, en el caso del amoniaco queda sin mencionar el valor entalpico que va de 155 Kcal/kg a 355 Kcal/kg. 1.6.2 Entalpía Es la suma de las calorías que contiene un objeto con un peso de 1 kg a una presión determinada, mas el equivalente calorífico del trabajo requerido para llevarlo de un estado a otro siendo el volumen constante. La entalpía se ha expresado algunas veces como caloría total. Aunque ambos conceptos no coincidan en ciertos detalles desde el punto de vista meramente académico. Este termino nos da a entender que un objeto con una entalpía de 125 contiene aproximadamente 125 Kcal. Entalpía en el sentido puramente académico consiste en: h = u + A p v Donde: H: Entalpía U: Energía interna P= Presión absoluta V= Volumen especifico A=Equivalente calorífico del trabajo Dicho a la inversa, un objeto que contiene una caloría equivalente a 200 Kcal tiene aproximadamente 200 Kcal de entalpía, (calorías totales). Por ejemplo para hacer bajar un objeto con calorías totales de 200 Kcal a 125 Kcal, solo se requiere quitar una caloría equivalente a 75 Kcal, que se puede lograr al enfriarlo y viceversa, al calentar un objeto con 125 Kcal totales agregando 75 Kcal significa que su entalpía se incrementa a 200 Kcal.

Page 47: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

29

Para convertir agua a 0 °C en hielo a la misma temperatura es necesario eliminar 79.6 Kcal, calorías equivalentes al calor de fusión del agua por cada kilogramo de agua. Si la caloría total del agua a 0 °C es de 100 Kcal por kilogramo, la caloría total de 1 kilogramo de hielo es de 20.4 Kcal. Determinar la entalpía de un refrigerante en estado de líquido o vapor nos permite hacer el cálculo concerniente al mecanismo de un equipo de refrigeración de manera muy sencilla. Observe la Grafica 1.4 en donde aparece el diagrama de presión entalpía.

Grafica 1.4: Diagrama p-h

1.6.3 Líneas isobaricas, isoentalpicas, isoentrópicas, isotérmicas, de liquido saturado, de vapor saturado, isovolumétricas y líneas de calidad. Líneas isobaricas. Se refieren a la multitud de líneas trazadas horizontalmente a partir de la escala de presión, marcada al extremo izquierdo del diagrama de referencia y en dirección longitudinal. Se debe de notar que todos los refrigerantes representados en estas líneas están a una presión constante. Líneas isoentalpicas. Se refieren a la multitud de líneas trazadas verticalmente a partir de la escala de entalpía marcada al extremo superior del diagrama y en dirección horizontal, significa que los refrigerantes expresados con los puntos que se marcan sobre estas líneas tienen la misma entalpía.

Page 48: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

30

Ello permite aseverar que todos los refrigerantes expresados con las líneas trazadas verticalmente y leídas a partir de la lectura de la escala 100 Kcal/kg tienen 100 Kcal/kg de entalpía. Cabe agregar que en caso del diagrama p-h se considera el estado del líquido saturado a 0 °C como el de 100 Kcal de entalpía. Líneas de líquido saturado. Al observar la grafica 1.4 se encuentra una curva trazada a partir de la parte inferior izquierda hacia la parte superior derecha iniciándose en el valor de 20, en el extremo superior llega a un valor de 155 en la escala de entalpía. El liquido saturado a punto de hervir queda expresado con los puntos marcados sobre esta línea. Se puede mencionar como ejemplo que el liquido que se encuentra a punto de hervir a la presión de 12 Kgf/cm2 abs esta expresado en la intersección formada por la línea isobarica que marca 12 Kgf/cm2 abs con la línea de liquido saturado. La lectura de entalpía revela que el refrigerante tiene 134 Kcal/kg en lo referente a entalpía. (Ver Figura 1.5). Cabe indicar que la parte izquierda de la línea de líquido saturado representa el estado líquido del refrigerante subenfriado y la parte derecha el estado de mezcla de liquido-vapor o bien vapor saturado húmedo. Figura 1.5: Líneas de líquido saturado y línea de vapor saturado seco Líneas de vapor saturado seco. Línea curva que esta trazada desde un valor de entalpía de 372, el punto localizado al extremo inferior, un poco a la derecha del centro del diagrama p-h del amoniaco, (ver Grafica 1.4), hacia la parte superior derecha representa la línea de vapor saturado seco. El extremo superior de esta línea termina en donde la escala de entalpía tiene un valor de 408. Su denominación se debe a que los puntos marcados sobre esta línea expresan el vapor totalmente libre de líquido con la misma temperatura que la del liquido en evaporación, es decir, el vapor saturado seco, ya que el vapor del refrigerante recién evaporado queda expresado con esta línea en el diagrama en cuestión. Líneas isotérmicas. Se trata de una línea que se obtiene uniendo todos los puntos que tienen igual temperatura. En la parte izquierda de la línea de líquido saturado que representa el refrigerante liquido, las líneas isotermas se encuentran casi paralelas a las líneas isoentalpicas trazadas verticalmente. En la Grafica 1.4 estas líneas quedan expresadas por las líneas de puntos y rayas. Al lado de dichas líneas está indicada la temperatura que representa cada una de ellas.

Page 49: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

31

Debido a la correlación de la presión y la temperatura de cada refrigerante de que se trata y que se presentan entre la línea de líquido saturado y la línea de vapor saturado seco se establece que la determinación de la presión constituye una condición previa para la determinación de la temperatura. A lo mismo se debe que las líneas isotérmicas adquieren una forma paralela a las líneas isoentalpicas. Es por ello que no es indispensable poner las líneas isotérmicas en el diagrama. Se puede determinar la temperatura a partir de la lectura en la escala que marca la temperatura tanto en la línea de vapor saturado seco como en la línea de líquido saturado. Líneas isoentropicas. Se trata de las líneas llenas trazadas con una inclinación bastante pronunciada hacia la parte superior central y hacia la derecha de la escala de presión situada en el centro del diagrama p-h. Las líneas isoentropicas son aquellas que representan el efecto del estado del vapor sobre la presión, temperatura o volumen especifico que se registran sobre dichas líneas cuando el vapor se comprime intermitentemente. En la Grafica 1.4 se puede observar que también hay unas cuantas de las líneas isoentropicas trazadas en la parte izquierda de la escala de presión marcada en el centro que representa el vapor húmedo. Líneas isovolumetricas. Se obtienen uniendo los puntos que tienen igual volumen específico (volumen por un kilo de refrigerante). En el diagrama p-h estas líneas están expresadas en línea de puntos y trazos marcados en la zona que representa el vapor húmedo y el vapor sobrecalentado, respectivamente. En la zona de vapor húmedo esta trazada la línea isovolumetrica un poco mas inclinada hacia la derecha de la última. Se observa que hay una anotación de v=0.01 m3/kg al lado izquierdo de la línea de referencia, que indica que se trata de un refrigerante cuyo volumen es de 0.01 m3. A la izquierda de esta se encuentran muchos trazos de esta línea y en la parte derecha de la escala de presión marcada en el centro, la curva adquiere una forma muy próxima a la línea recta horizontal con un poco de inclinación hacia la parte superior derecha. Línea de calidad. Se trata de una línea que se obtiene uniendo los puntos que tienen igual humedad en el estado de gas húmedo. Por la calidad se entiende el valor que señala la proporción de peso que ocupa el vapor saturado seco en el gas húmedo. El gas saturado completamente seco se considera con un valor unitario de calidad, en tanto que 0.3 de calidad significa, que en determinado gas húmedo tiene un 30 % de vapor saturado seco (en términos de peso) y 70 % de líquido, y la fórmula queda establecida como x= 0.3 kg/kg o solamente 0.3. 1.6.4 Dimensión del compresor y eficiencia volumétrica El compresor debe tener la capacidad suficiente para que succione la totalidad del refrigerante evaporado. Las dimensiones de un compresor de amoniaco de 5 toneladas japonesas de refrigeración se pueden determinar de la siguiente manera, 1 ton japonesa de refrigeración (TJR) equivale a 3320 Kcal/h, de lo que se establece: Capacidad de refrigeración requerida: 5 x 3320= 16,600 Kcal/h Al no cambiar las condiciones como la del vapor de succión y la temperatura de condensación, entre otras cosas implica que el volumen del refrigerante evaporado al ser comprimido es de 6.28 m3 por cada TJR.

Page 50: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

32

Por lo tanto el volumen del mismo, para 5 TJR es de 5TJR x 6.28 m3/TJR = 31.3 m3 El volumen del vapor al ser succionado por el compresor por cada movimiento de ida y vuelta de pistón se determina de la siguiente manera:

a) Ya que el compresor trabaja a 400 rpm y con 2 cilindros, el numero de ciclos del compresor es de:

400 rpm x 60 min x 2 cilindros = 48,000 ciclos El volumen a desplazar es de 31.4 m3 por lo que: 31.44 m3/48,000 = 0.000655 m3, es decir; 655 cm3

El volumen del vapor que expulsa el pistón tiene que determinarse dividiendo el volumen del vapor a ser realmente succionado por la eficiencia volumétrica. La eficiencia volumétrica (Nv) queda señalada de la siguiente manera: Volumen de vapor real succionado por el pistón = Vvs Cantidad del vapor expulsado por el piston = Ve Por lo que Nv = Vvs/Ve Por la relación de compresión se entiende la cifra que se obtiene dividiendo la presión de descarga (abs) entre la presión de succión (abs). La eficiencia volumétrica de este compresor es de 0.75, de acuerdo a esto se puede decir que, el volumen requerido de descarga por cada movimiento de los pistones equivale a: 655 cm3/0.75 = 875 cm3 El pistón del compresor corre a una distancia conocida como carrera, y que es igual al desplazamiento del pistón dentro del cilindro (Desp); y que, junto con el diámetro del cilindro C, nos permite conocer el volumen que desplaza el compresor. Suponiendo que, el diámetro “D” y el desplazamiento “Desp” son iguales, en este caso podemos calcular el diámetro del pistón de la siguiente manera: ¼ x 3.14 x D2 x D = 0.785 D3 Por lo tanto para el compresor descrito anteriormente se tiene:

0.785 D3 = 875 cm3 D3 = 875/0.75 = 1,114.65 cm3

Por lo que D = 103.7 mm Redondeando a valores tenemos que, el diámetro D deberá ser de 105 mm.

Page 51: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

33

1.6.5 Fuerza motriz requerida por el compresor, eficiencia de compresión y eficiencia mecánica. Tomando el ejemplo mencionado anteriormente queda establecido que:

a) El amoniaco liquido a ser evaporado por cada TJR es de 12.3 kg/hr A partir de lo cual se deduce que la cifra correspondiente a 5 TJR es de: 12.3 Kg/hr x 5 TJR = 61.5 Kg/hr

b) por otra parte, el equivalente calorifico necesario para comprimir un kilo de amoniaco es de 56 Kcal.

c) Asi mismo, 1 kw equivale a 860 Kcal/h En base a lo anterior se puede establecer que:

d) Fuerza motriz requerida

56 Kcal x 61.5 kg/hr = 3,444 P = 3,444/860 = 4 kw

Ahora bien, el valor calculado de esta manera es correcto desde el punto de vista teórico, en realidad existe cierta resistencia que se genere al fluir el gas las válvulas de descarga y de succión, así como la compresión del gas en el compresor desde el nivel inferior (presión de succión) hasta el nivel superior (presión de descarga). Debido a lo anterior, el trabajo de compresión en términos reales es menor que el calculado teóricamente. La proporción de trabajo de compresión realmente necesario con respecto al trabajo de compresión determinado, teóricamente se conoce como eficiencia de compresión o eficiencia indicadora. En otras palabras la eficiencia de compresión se obtiene al dividir el valor del trabajo de compresión obtenido teóricamente (determinado en base a la lectura del diagrama p-h) y por el trabajo de compresión realmente necesario. Eficiencia de compresión Nc: Trabajo de compresión en términos teóricos = Pt Trabajo de compresión real = Pr

Nc = Pt/Pr = La eficiencia d compresión se reduce a medida que aumenta la relación de compresión, por tal motivo es necesario tomar en cuenta una fuerza motriz adicional, ya que aparte de la requerida para el trabajo de compresión, existe fricción entre el pistón y los cilindros así como los cojinetes. Por lo anterior expuesto es necesario que se agregue esta fuerza adicional a la realmente necesaria. La relación que se obtiene al dividir la fuerza motriz real requerida para la compresión del vapor y la fuerza motriz necesaria para operar el compresor se conoce como eficiencia mecánica la cual se expresa de la siguiente manera.

Page 52: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

34

Eficiencia mecánica = Nm Fuerza motriz para la compresión del gas = Pc Fuerza motriz consumida por fricciones = Pf

PfPc

PcN

Esta eficiencia mecánica señala la relación de la perdida que se genera a raíz de la fricción en la maquina. Cabe mencionar que una maquina de excelente calidad es la que dispone de una alta eficiencia mecánica. D e este modo, queda claro que es necesario dividir la fuerza motriz requerida para la compresión entre la eficiencia de compresión y la eficiencia mecánica. Para el compresor que nos hemos ocupado y bajo las siguientes suposiciones, tenemos: Ŋc = Eficiencia de compresión = 0.75 Ŋm = Eficiencia mecánica = 0.83 Pa = Fuerza motriz requerida para operar el compresor.

kW5.683.075.0

4

No obstante es preciso que el motor disponga de una potencia adicional a fin de prepararse para los imprevistos que se generan en la puesta en marcha del equipo. Ello nos proporciona el fundamento para incrementar la fuerza motriz en un 10 % Por lo que: 6.5 Kw x 1.1 = 7.15 kW Por lo tanto, el equipo de refrigeración referido en este ejemplo estar equipado con un motor de 7.5 kW. La Grafica 1.5 muestra la relación entre la capacidad de refrigeración y la fuerza motriz requerida por los compresores de uso común en la práctica.

Page 53: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

35

Grafica 1.5: Capacidad de compresor de amoniaco y fuerza motriz requerida

Page 54: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

36

CAPITULO 2 Características del cuarto de

Maquinas (compresores) y Aislamiento de tuberías

2.1 Características del cuarto de maquinas. (Servicios) 37

2.2 Compresor de refrigeración 43

2.3 Aislamiento de tuberías 44

Page 55: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

37

Capitulo 2 Características del cuarto de maquinas (compresores) y aislamientos de tuberías 2.1 Características del cuarto de maquinas (servicios) Una vez habiendo determinado los equipos a instalar en un sistema de refrigeración es preciso establecer los servicios que requerirán dichos equipos para operar de manera eficiente, ya que de no ser previstos con anterioridad a la construcción del cuarto de maquinas estos servicios podrán ser instalados de la manera no adecuada aunque cumplan el objetivo de abastecer dicho servicio, pero lo importante dentro de dicha instalación; es que exista un orden y se refleje en la operatividad del área creando de esta manera una área de operación segura del sistema de refrigeración. 2.1.1 Bases de cimentación Dependiendo del tipo de compresor a instalar y a su capacidad es como se determina las dimensiones de la base a construir y la posición de las anclas que se deben de dejar previstas para el anclaje del equipo. En la practica es recomendable utilizar concreto Fc=250 kg/cm2 con un revenimiento de 10 cm tipo Mr, ya que este tipo de concreto absorbe vibraciones y trabaja para flexión, siendo estas condiciones que genera el compresor tipo reciprocante durante su operación. Otro aspecto importante que se debe de considerar es el área de trabajo durante mantenimiento de cada equipo a instalar, para lo cual es muy recomendable que en la distribución de bases de cimentación de anclaje de equipos se deje un espacio entre cada base de alrededor de 1 metro del objeto mas cercano con el objetivo de maniobrar fácilmente durante las actividades de mantenimiento a realizar en los equipos. El armado del dado de cimentación es proporcionado por el fabricante del compresor, así como sus dimensiones. Prácticamente se que tiene que prevenir en la instalación es la distribución de los equipo que sea de una forma adecuada y conveniente para la operación del sistema. 2.1.2 Agua de enfriamiento suavizada El condensador evaporativo así como en la torre de enfriamiento se esparce el agua de enfriamiento de arriba abajo. Esto ocasiona que con el agua se mezclen sustancias contenidas en el aire como anhídrido sulfuroso y/0 partículas suspendidas incrementando la acides del agua con la siguiente corrosión del metal y la suciedad del agua. Para evitarlo es necesario llevar un control de calidad frecuente del agua a fin de que no falte agua limpia para reciclar como agua de enfriamiento. Por tal motivo de vez en cuando es pertinente analizar el agua circulatoria para revisar su acidez, si el resultado es positivo hay que neutralizarla o cambiarla por nueva. Es un hecho que si se utiliza agua acida se corroen los metales. Las partículas suspendidas que se adhieren a la superficie de enfriamiento empeoran el efecto de transferencia de calor, por lo que se reduce la capacidad funcional en los tubos de enfriamiento y aceleran la corrosión en las partes afectadas. Cuando se nota demasiado la suciedad del agua, es recomendable cambiar toda el agua, para medir la acidez del agua se puede usar un medidor de pH o papel reactivo de pH.

Page 56: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

38

Temperatura de bulbo húmedo °C

28 27 26 24 22 20

Temperatura de condensación °C

36 35 34 32.5 31 29.5

Presión de saturación amoniaco kgf/cm2

13.13 12.73 12.34 11.77 11.22 10.69

Tabla 2.1: Relación entre la temperatura del condensador de vapor de agua y la de bulbo húmedo del

aire en la entrada

Los condensadores evaporativos y las torres de circuito cerrado son normalmente suministrados con una bomba de recirculación montada en un lateral de la unidad, la cual incorpora una línea de purga con válvula. Se recomienda que la válvula de purga se mantenga siempre abierta para garantizar suficiente caudal de purga. Cuando el agua de aporte sea de buena calidad y este relativamente libre de impurezas, es posible reducir el volumen de purga, pero será necesario analizar periódicamente el agua para controlar los componentes químicos disueltos y las impurezas y comprobar que están equilibrados. En algunos casos el agua es de mala calidad y contiene altas cantidades de impurezas y componentes químicos, en cuyos casos no es suficiente con una purga para evitar incrustaciones o corrosiones entonces es necesario recurrir a compañías especializadas en el tratamiento de agua y que están familiarizadas con las condiciones de agua locales. Cuando se utilice un tratamiento químico del agua, los productos químicos elegidos deben ser medidos y las concentraciones controladas. Evitar los sistemas ablandadores de agua y el uso de ácidos. Observe en la Tabla 2.2 los niveles recomendados para el agua del condensador.

Parámetro Rango

pH 6.5 a 8.0

Dureza como CaCO3 50 a 300 ppm

Alcalinidad como CaCO3 50 a 300 ppm

Cloro como Cl <124 ppm

Tabla 2.2: Niveles recomendados para el agua del condensador

2.1.3 Malla de tierras Las funciones principales de un sistema de tierras son: 1.- Proveer un medio seguro para proteger al personal en la proximidad de sistemas o equipos

conectados a tierra, de los peligros de una descarga eléctrica bajo condiciones de falla. 2.- Proveer un medio para disipar las corrientes eléctricas a tierra, sin que se excedan los límites de

operación de los equipos.

Page 57: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

39

3.- Proveer una conexión a tierra para el punto neutro de los equipos que así lo requieran

(transformadores, reactores, etc.) 4.- Proveer un medio de descarga y desenergizacion de equipos antes de proceder a tareas de

mantenimiento. Se denomina puesta a tierra de una instalación dada a la unión eléctrica intencional entre todas las masas metálicas de la misma y un electrodo dispersor enterrado en el suelo, que suele ser generalmente una jabalina, placa o malla de cobre o hierro galvanizado (o un conjunto de ellas). Ver Figura 2.1. La instalación de un sistema de puesta a tierra permite la protección de las personas y los bienes contra los efectos de las caídas de rayos, descargas estáticas, señales de interferencia electromagnética y contactos indirectos por corrientes de fugas a tierra. Con la puesta a tierra se busca que las corrientes de falla a tierra encuentren un camino más fácil, que el que ofrecería el cuerpo de una persona que tocara la carcasa metálica bajo tensión. De esta manera, como la red de tierra tiene una resistencia mucho menor que la del cuerpo humano, la corriente de falla circulará por la red de tierra, en vez de hacerlo por el cuerpo de la persona. El propósito que se persigue con la existencia de los sistemas de tierra es:

1. Protección para el personal operativo, autorizado o no autorizado. 2. Protección a los equipos e instalaciones contra tensiones peligrosas. 3. Evitar que durante la circulación de falla a tierra, se produzcan diferencias de potencial entre

distintos puntos de la instalación, proporcionando para esto, un circuito de muy baja impedancia para la circulación de estas corrientes.

4. Apego a normas y reglamentos públicos en vigor.

Figura 2.1: Puesta a tierra

Electrodo dispersor. Es el conductor (jabalinas, perfiles, cables desnudos, cintas, etc.) o conjunto de conductores en contacto con la tierra que garantizan una unión íntima con ella.

Page 58: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

40

Cuando los electrodos de tierra están lo suficientemente distantes, como para que la corriente máxima susceptible de pasar por uno de ellos no modifique sensiblemente el potencial de los otros, se dice que los electrodos de tierra son independientes. La instalación de una puesta a tierra se compone esencialmente de electrodos, que son los elementos que están en íntimo contacto con el suelo (enterrados) y de conductores, utilizados para enlazar a los electrodos entre si y a éstos, con los gabinetes de los equipos y demás instalaciones expuestas a corrientes. La forma de ejecución de la toma de tierra (con placas, jabalinas, etc.) dependerá generalmente de la resistividad eléctrica del terreno y de las dificultades de instalación para conseguir una baja resistencia de contacto a tierra. El tipo más empleado tanto doméstica como industrialmente es el que se hace con jabalinas enterradas verticalmente en el terreno, generalmente de 1,5 a 3 metros de longitud. Ver Figura 2.2

Figura 2.2: Forma de ejecución de la toma de tierra La selección del mejor lugar de emplazamiento y el ensayo del suelo que rodeará a la toma, procurando localizar el área con la más baja resistividad. Las normas de aplicación establecen que deben ponerse a tierra las partes metálicas de los aparatos e instalaciones que no pertenezcan al circuito de servicio, y puedan entrar en contacto con partes sometidas a tensión en caso de avería o establecimiento de arcos.

ANSI:American National Standard Institute. NEMA:National Electric Manufactures Association. ASTM:American Society of Testing Materials. NMX-J-118:Norma Mexicana para Equipo Eléctrico. NFPANational Fire Protecction Association. NECNational Electrical Code. IEEEInstitute of Electrical and Elelctronic Engineers. NOM-001-SEDE-1999Norma Oficial Mexicana relativa a las instalaciones destinadas al

suministro y uso de la energía eléctrica

Page 59: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

41

Potencial de maya. Es el máximo voltaje que la red de tierra puede alcanzar, con respecto a un punto distante que se asume como el potencial de tierra remota. Criterios de diseño de la red de tierras. Mantener los potenciales de paso y toque en el área de la subestación por abajo de los valores máximos tolerables por una persona con peso de 50 kg.(IEEE, STD 80 1986. La resistencia eléctrica total del sistema de tierras deberá ser menor de 10 ohms de acuerdo a lo requerido por NOM-001-SEDE-1999. para Subestaciones 5 ohms, de acuerdo a las bases de diseño. Con base al valor de resistividad del terreno natural estimado en la zona de Coatzacoalcos se tiene un valor de 15 ohms–m. El tiempo de liberación de fallas se considera un tiempo de 0.1 segundos para un Peso promedio de una persona se considera un peso promedio de 50 Kg. El conductor de la malla de tierras se instalará una profundidad de 0.8 m bajo nivel de terreno natural y/o bajo nivel superior de piso terminado. La sección transversal mínima del conductor que puede transporta la corriente de falla monofásica sin sufrir degradaciones. I = Corriente rms en Kilo-Amperes A = Sección transversal de cobre en milímetros cuadrados TM = Máxima temperatura permisible en °C TA = Temperatura ambiente en °C TT = Temperatura de referencia para las constantes de materiales en °C Tt = Tiempo en que circula la corriente TCAP = Factor de capacidad térmica indicado en la tabla 1 del estándar ANSI / IEEE Std. 80 en

a

am

rrc

mm

TK

TT

TCAP

t

IA

0

4

|1ln

10.

2

Las uniones de la malla serán realizadas por medio de conexiones soldables exotérmicas. Este tipo de uniones forma una íntima unión entre los conductores y el material de la unión que tienen la misma temperatura de fusión. Por lo tanto, todas las conexiones y el conductor pueden ser consideradas como un conductor homogéneo Para el piso de concreto 100 mm, considerando que seco, se tendrá un valor de resistividad de 150000

- m (SE Harper) y para el terreno una resistividad de 15 - m.

Page 60: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

42

La longitud de la malla se determina de la siguiente forma L = Lc + 1.15 Lr Donde: Lc = Longitud de conductores enterrados en la malla. Lr = Longitud total de las varillas de tierra. La resistencia de la malla se conoce por medio de la siguiente formula:

AhALRg

/201

11

20

11

2.1.4 Energía eléctrica Para la instalación eléctrica del sistema de refrigeración es necesario preveer los siguientes puntos: Determinar la magnitud y características de todas las cargas individuales y de conjunto.

Localizar uno o más puntos de alimentación eléctrica lo más cerca posible a los centros de carga.

Seleccionar y arreglar las líneas de alimentación y el equipo de distribución para proporcionar la continuidad de energía necesaria.

Relacionar necesidades y requerimientos eléctricos de los equipos, con las características de flexibilidad, accesibilidad, regulación y seguridad del sistema.

Proporcionar una cantidad (calculada) de capacidad adicional en todos los componentes del sistema desde la alimentación a los dispositivos de carga, correlacionando cuidadosamente las capacidades adicionales de la línea principal y secundaria de alimentación con las demandas reales esperadas.

Usar equipo actualizado.

En los cálculos de diseño observar los valores mínimo y máximo de la norma NOM-001-SEMP-1994; para: conductores, tubería conduit, dispositivos de protección, interruptores y equipo de control.

Los alimentadores no deben proyectarse ahogados en losa.

Las canalizaciones y registros del sistema normal deben proyectarse separadores del sistema de emergencia.

Las trayectorias de las alimentaciones eléctricas deben proyectarse sobre

Cada uno de los tableros derivados debe ser alimentado por separado desde el tablero general o subgeneral.

Page 61: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

43

Los alimentadores que salen de un tablero y entran a otro, deben diseñarse en canalizaciones aéreas Independientemente de la carga instalada y la demanda máxima, el calibre de conductores alimentadores no debe ser menor del calibre 8 AWG.

La caída de tensión en conductores alimentadores debe ser del 3% máximo.

Cada circuito alimentador debe llevar su propio neutro y ser del mismo calibre que el de la (s) fase (s).

No se permite hacer derivaciones de un circuito alimentador.

El servicio a un inmueble debe abastecerse por medio de un solo alimentador.

Los alimentadores instalados en una canalización no deben contener a otros conductores, excepto conductores de puesta a tierra.

Los alimentadores deben calcularse considerando los siguientes factores que intervienen en el diseño: Factor de reserva. En carga eléctrica debe preverse una reserva de 25% en los alimentadores. Factor de demanda. Los alimentadores a tableros se deben calcular con los factores que se mencionan a continuación:

• Alumbrado interior y exterior 1.0

• Contactos de uso general 0.6. Para casos especiales consultar con la DGOC.

• Fuerza general, aire acondicionado y equipos de bombeo: 0.8.

k. Factor de corrección por temperatura ambiente mayor de 30ºC:

Tensiones de distribución. Baja tensión. Por requerimientos de la planta, los proyectos utilizan una o más de las tensiones que se mencionan a continuación: 127, 220 y 440 volts.

2.2 Compresor de refrigeración 2.2.1 Tipos de compresor reciprocante para refrigeración El compresor para refrigeración que se utiliza más comúnmente es el de tipo reciprocante. Estos se pueden clasificar, de acuerdo a sus dimensiones de la siguiente forma:

1) Compresor horizontal 2) Compresor vertical 3) Compresor de alta velocidad con cilindros múltiples

En la actualidad ya no se fabrican compresores horizontales por ser considerados obsoletos, ya que, en comparación con el compresor vertical opera a menor velocidad y requiere mayor espacio para su instalación por su tamaño.

Page 62: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

44

El compresor vertical desplazo al compresor horizontal por la ventaja de tener mayor velocidad y ser mas compacto. Sin embargo, su tamaño aun se considera grande al compararse con el compresor de alta velocidad con cilindros múltiples y que en la actualidad ha venido a sustituir al compresor horizontal. Compresor de alta velocidad con cilindros múltiples Alcanza a tener hasta 16 cilindros, el mínimo es de 2 cilindros. Cuenta con un número alto de cilindros siendo el diámetro de los cilindros relativamente pequeño, 100 mm con diámetro mínimo de 180 mm como máximo. Hay algunos modelos que según la colocación de sus cilindros se conocen como V, W, VV, etc. Sus revoluciones son del rango de las 1000 rpm, pero hay equipos con mayor velocidad que tienen más de 2,100 rpm. Por otra parte, se puede variar la capacidad del compresor desde el 100 % hasta el 25 % de su capacidad, ya que al haber fluctuaciones en la presión de succión opera el regulador de capacidad, permitiendo que uno o varios de los cilindros operen al vacío automáticamente. Las ventajas que presenta esta clase de compresor son las siguientes:

1. La alta velocidad que genera permite reducir las dimensiones del equipo, sin perjuicio de la capacidad, lo cual significa un ahorro en cuanto al espacio de instalación.

2. El hecho de ser ligero permite simplificar enormemente el trabajo de cimentación y anclaje, facilitando las reparaciones de tal manera que se puede cambiar en poco tiempo por un compresor nuevo al ocurrir alguna falla en el compresor.

3. Una camisa insertada al cilindro que ante el desgaste basta cambiar la camisa por una nueva sin que sea necesario maquinar el cilindro.

2.3 Aislamiento de tuberías Actualmente existen en el mercado diferentes maneras de aislar tuberías de enfriamiento una es por medio de armaflex y otra por medias cañas de poliestireno, que son las más usadas en el mercado, siendo la primera más costosa que la segunda. 2.3.1 Tipos de aislamientos de tuberías (características)

Armaflex – Insultube con recubrimiento elastomerico es el aislamiento profesional para prevenir la condensación en sistemas de refrigeración y climatización.

El aislamiento flexible de espuma elastomérica para múltiples aplicaciones este producto lo encontramos para tuberías, placas y rollos aislantes térmicos y elastomerico

El aislante para tuberías Armaflex se utiliza para retardar la ganancia de calor y controlar el goteo por condensación de las tuberías de agua fría, agua enfriada y líneas de refrigeración. Además, reduce eficientemente el flujo térmico en tuberías de temperatura dual. La gama de temperaturas recomendadas para utilizar el aislante para tuberías Armaflex es de -57 a +105 ºC.(-70 ºF a + 220 ºF).

Se adapta particularmente bien al aislamiento de tuberías y bridas grandes, a tanques y recipientes, sus accesorios y a ductos. Su flexibilidad permite aplicarlo sobre superficies curvas e irregulares. Las Placas Armaflex se adaptan muy fácilmente a la fabricación de todo tipo de cubiertas aislantes para bridas.

Page 63: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

45

La expandida estructura celular cerrada del aislamiento de tuberías Armaflex lo convierte en un aislamiento eficiente. Se fabrica sin el uso de compuestos de CFC (clorofluorocarbono), HFC (hidrofluorocarbono) o HCFC (droclorofluorocarbono). Tampoco contiene formaldehído, tiene bajo contenido orgánico volátil, carece de fibra y polvo y resiste el moho y los hongos.

Armaflex es el aislamiento de tuberías (tubos resistente al moho es un aislamiento térmico de espumaelastomérica flexible, de color negro, que se ofrece como tubos sin ranuras en: espesores nominales de pared de 3/8″, 1/2″, 3/4″, 1″y 1-1/2″ (10, 13, 19, 25 y 38 mm). dimensiones comunes de hasta 6″ (168 mm) IPS.

El aislamiento de tuberías Armaflex se utiliza para retardar la ganancia de calor y controlar la humedad condensada en sistemas de refrigeración y agua helada. También disminuye eficientemente el flujo de calor tanto en tuberías de agua caliente como en tuberías de calefacción de líquidos y de temperatura dual.

El margen de temperatura recomendado para usar con el aislamiento de tuberías Armaflex es -297° F a +220° F (-183° C a +105° C).

Cumple con los requisitos de NFPA 90A y NFPA 90B. Armaflex cumple los requisitos de códigos energéticos de ASHRAE 90.1, ASHRAE 90.2, Código Internacional de la Conservación de Energía (IECC) y otros códigos para construcciones.

La estructura celular cerrada del aislamiento Armaflex previene la propagación de humedad y lo convierte en un aislamiento eficiente. Por lo general, Armaflex no requiere protección suplementaria al vapor de agua. Puede que Armaflex necesite protección retardante al vapor de agua adicional si se instala en tuberías con temperaturas muy bajas, o cuando el aislamiento esté expuesto permanentemente a condiciones de alta humedad.

El aislamiento de tuberías Armaflex se ha diseñado para cumplir las siguientes especificaciones: ASTM C 534, Tipo I—Tubular Grado 1 ASTM E 84, NFPA 255, UL 723 CAN/ULC S102 UL 94 5V-A, V-O, Archivo E 55798 NFPA 90A, 90B UL 181 ASTM G-21/C1338, ASTM G-22 ASTM D 1056, 2B1 MIL-P-15280J, Especificación T MIL-C-3133C (Estándar Militar 670B), Grado SBE 3 MEA 96-85-M

Page 64: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

46

CAPITULO 3 Ingeniería aplicada y cálculo

Del sistema de refrigeración

Propuesto

3.1 Calculo del sistema de refrigeración propuesto 47

3.2 Desarrollo de diagramas de flujo de sistema propuesto 52

Page 65: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

47

Capitulo 3 Ingeniería aplicada y cálculo del sistema de refrigeración 3.1 Calculo del sistema de refrigeración 3.1.1 Definición de los datos disponibles Primeramente el calor requerido para cambiar la temperatura de cualquier sustancia se determina con la siguiente fórmula: Q= m Cp (Ti - Tf) Donde: Q = Calor a remover (BTU /hr ó Kcal /hr) m = Flujo de la sustancia (Lb /hr ó Kg/hr) Cp = calor especifico de la sustancia (BTU / Lb ºF ó Kcal / Kg °C) Ti = Temperatura inicial de la sustancia (ºF ó °C) Tf = Temperatura final de la sustancia (ºF ó °C) Además: 1 TR = 12,000 BTU/hr = 3,024 Kcal/hr Se cuenta con la información de la corrida del intercambiador del mixer, la cual fue proporcionada por el fabricante del equipo y en base a esta corrida es como se determinara el sistema de refrigeración a instalar. Ver Figura 3.1.

Figura 3.1a: Corrida del intercambiador del equipo mixer (carbonatador)

Page 66: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

48

Figura 3.1b: Corrida del intercambiador del equipo mixer (carbonatador)

El sistema de calculara con la mezcla glicol agua-propilen glicol al 30 %, ósea 70 % agua y 30 % glicol. El calor especifico del propilen glicol al 30 % es de: 0.94 kcal/kg °C La gravedad específica es de: 1.031kg/lt Las graficas tanto de la gravedad específica del agua propilenglicol al 30 % y la grafica del calor específico del agua propilenglicol no se adjuntan debido a que no son legibles, se encontraran el apéndice de la tesis. 3.1.2 Determinación de la carga térmica de diseño Para el enfriamiento del agua en una línea de embotellado con capacidad de 250 bot/min de 3.3 lts. Implica que se enfriaran 49, 500 lts/hr de refresco, de 25°C a 2°C, por lo tanto. Q = (49,500 Kgs/hr) (1 Kcal/Kg°C) (25°C – 2°C) = 1,138,500 Kcal/hr = 376.48 TR Pero se debe considerar un 20% adicional por perdidas y eficiencias de los intercambiadores de calor (agua-glicol y amoniaco-glicol), por lo tanto la carga térmica es TR= 376.48 x 1.20 = 451.78 TR. Sin embargo, con los datos proporcionados en la Figura 3.1 del enfriador suministrado por Krones que operará con el agua / agua-propilen glicol, los cuales son: m = 100,000 lts/hr de agua-propilen glicol al 30% Ti = 9.6°C Tf = -2°C

Page 67: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

49

Se obtiene la siguiente fórmula: Q=(100,000 x 1.031 Kgs/hr) (0.94 Kcal/Kg°C) (9.6°C - (-2°C)) =1’124,202.4 Kcal/hr = 371.76 TR Pero se debe considerar un 15% adicional por pérdidas y eficiencia del intercambiador de calor (amoniaco-glicol), por lo tanto: TR= 371.76 x 1.15 = 427.52 TR.

La carga térmica de diseño es 428 TR 3.1.3 Definición de equipos de acuerdo a la carga térmica de diseño a) 2 Compresores de pistón Mycom mod. N6WB con motor de 125 HP que dan: 91.9 TR C/U. b) 1 Compresor de Tornillo Mycom mod. N200VM con motor de 300 HP (nuevo) que da 247.1 TR. (ver Tabla 3.1 y 3.2)

Total: 430.9 TR

c) 1 Condensador evaporativo Evapco mod. PMCA-230P (usado) que da: 160.0 TR d) 1 Condenzador evaporativo Evapco mod. ATC-423B (nuevo) que da: 347.8 TR

Total: 507.8 TR e) 1 Enfriador Alfa Laval, mod. T20-BWFG (nuevo), operando con: Temperatura de evaporación = 23°F (-5°C) Flujo de agua–propilen glicol al 30% = 440 g.p.m. Temperatura de entrada = 49.28.4°F (9.6°C) Temperatura de salida = 28.4°F (-2°C)

Da una capacidad de: 425 TR f) Unidad para el retorno de amoniaco liquido (nueva), compuesta de: 1 Acumulador de succión general de 42” X 8’ 1 Trampa de transferencia de líquido de 20” X 6’

Da una capacidad de: 435 TR La capacidad de los equipos es considerando las siguientes condiciones de operación: Presión de succión = 33 lb/pulg.² (2.32 kg/cm² ) Temperatura de succión = 19.4°F (-7°C) Presión de descarga = 154.5 lb/pulg.² (10.86 kg/cm² ) Temperatura de condensación = 86 °F ( 30°C)Temperatura de bulbo húmedo = 66 °F (19°C) Se definió utilizar los compresores N6WB existente debido a que son los de mayor capacidad disponibles en planta y los que menor mantenimiento requieren para su puesta en operación, y prácticamente solo adquirir un compresor de 300 hp tipo tornillo modelo N200VM*LI, ya que con la suma de estos se cumple con la carga termina necesaria para satisfacer el sistema de refrigeración solicitado por la línea de envasado.

Page 68: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

50

La capacidad de condensación, planta dispone de un condensador PMCA-230 P, el cual no satisface totalmente la capacidad requerida de condensación de acuerdo al sistema propuesto, motivo por el cual se decide adquirir un condensador evaporativo modelo ATC-423B (nuevo) y aplicar un mantenimiento preventivo al condensador PMCA-230P antes de ponerlo en operación, ya que actualmente presenta incrustación y de no hacerlo la eficiencia en el sistema se caería un 40%. El evaporador, no se tiene uno disponible en planta para enfriar el glicol, por lo que se adquiere un modelo alfa laval que son de los mejores en el mercado con una capacidad de 425 TR de acuerdo a la capacidad de operación del sistema y bajo las condiciones de operación anteriormente descritas. En cuanto a la tubería a utilizarse se instalara tubería sin costura, con especificación ASTM A53°B, cedula 40 Gr B y se pintura con pintura anticorrosiva. El asilamiento térmico de las tuberías de succión y tuberías de agua propilenglicol se ejecutara considerando:

Medias de cañas de poliestireno con una densidad de 17 kg/m3

atado con cinchos de alambre galvanizado cal. 16, como barrera de vapor una cubierta a base de foil de aluminio adherido con cold fast y como acabado final una cubierta de lamina de acero inoxidable cal. 28, rolada, biselada y fijada con pijas autorroscantes; y conexiones se utilizara el mismo aislamiento.

Page 69: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

51

MYCOM SCREW COMPRESOR PERFORMANCE SINGLE STAGE (BOOSTER) MODEL: N200 VM*.LI REFRIGERANT: AMMONIA 1 RECOMMENDET PORT: L BOOSTER FALSE COMPRESSION RATIO 3.55 CAPACITY: (KBTU/HR) 2965.7 CAPACITY: (TR) 247.1 ABSORBED POWER: (HP) 258.8 DRIVE SHAFT SPEED: (RPM) 3550 COMPRESSOR SPEED: (RPM) 3550 INDICATOR POSITION: (%) 100 CONDENSING TEMP: (°F) 86.0 EVAPORATIVE TEMP: (°F) 19.4 SUCTION SUPERHEAT: (°F) 9.0 LUQUID SUBCOOLING: (°F) 0.00 SUCTION TEMP: (°F) 28.4 OIL SUPPLY TEMP: (°F) 113 SUCCION PRESS: (PSIA) 47.7 DISCHARGE PRESS: (PSIA) 169 OIL SUPPLY PRESS: (PSIA) 198 SUCTION PRES. DROP: (PSIA) 0.0 DISCHARGE PRES. DROP: (PSIA) 0.0 SWEPT VOLUME: (CFM) 718 LOAD (VOL. FLOW RATE): (%) 100 DISCHARGE TEMP: (°F) 113 REFRIG. FLOW RATE SUC: (CFM) 634 REFRIG. FLOW RATE DIS: (CFM) 235 REFRIG. FLOW RATE SUC: (LB/H) 6208 REFRIG. FLOW RATE DIS: (LB/H) 7175 INJECT. OIL FLOW RATE: (USGPM) 10.4 LUB. OIL FLOW RATE: (USGPM) 11.9 F. SIDE FLOW RATE: (USGPM) 1.96 *TOTAL* OIL FLOW RATE: (USGPM) 24.3 OIL HEAT REJECTION: (kBTU/H) 494.0 OIL SPEC HT: (Btu/lbF) 0.46 OIL DENSITY: (lb/USgal) 7.34 COP: (-) 4.5 +++SUPER HEAT is NOT counted in refrigerant capacity+++ +++WITH LIQUID INJECTION OIL COOLING+++ DISCHARGE SUPERHEAT: (°F) 27.0 REFRIG. FLOW RATE: (USGPM) 3.23 REFRIG. FLOW RATE: (LB/H) 967.4 +++Refrigeration oil is not soluble with refrigerant (mineral oil)+++ +++When choosing the motor set a safety factor of more than 10% for the brake power+++

Tabla 3.1: Mycom screw compressor performance single stage (Booster)

Page 70: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

52

MYCOM RECIPRO COMPRESOR PERFORMANCE SINGLE STAGE (BOOSTER) MODEL: N6WB REFRIGERANT: AMMONIA 1 BOOSTER FALSE CAPACITY: (KBTU/HR) 1103.1 CAPACITY: (TR) 91.9 ABSORBED POWER: (HP) 92.2 SPEED: (RPM) 1000 LOAD: (%) 100 CONDENSING TEMP: (°F) 86.0 EVAPORATIVE TEMP: (°F) 19.4 SUCTION SUPERHEAT: (°F) 0.0 LUQUID SUBCOOLING: (°F) 0.00 SUCTION TEMP: (°F) 19.4 SUCCION PRESS: (PSIA) 47.7 DISCHARGE PRESS: (PSIA) 169 SUCTION PRES. LOSS: (PSIA) 0.0 DISCHARGE PRES. LOSS: (PSIA) 0.0 SWEPT VOLUME: (CFM) 281 DISCHARGE TEMP: (°F) 215 REFRIG. FLOW RATE SUC: (CFM) 230 REFRIG. FLOW RATE DIS: (CFM) 94.0 REFRIG. FLOW RATE SUC: (LB/H) 2309 REFRIG. FLOW RATE DIS: (LB/H) 2309 OIL HEAT REJECTION: (kBTU/H) 5.95 COP: (-) 4.7 +++SUPER HEAT is NOT counted in refrigerant capacity+++ +++WITH WATERCOOLED OIL COOLED+++

Tabla 3.2: Mycom recipro compressor performance single stage (booster)

Page 71: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

53

3.2 Desarrollo de diagramas de flujo de sistema propuesto 3.2.1 Diagrama de flujo de sistema de amoniaco

Page 72: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

54

3.2.2 Diagrama de flujo de sistema de glicol

Page 73: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

55

CAPITULO 4 Instalación y puesta en marcha

Del equipo de refrigeración Con amoniaco

4.1 Desarrollo de planos de anclaje de equipos y bases de cimentación 56

4.2 Desarrollo de lay-out de base de cimentación 57

4.3 Desarrollo de lay-out de vistas y cortes 58

4.4 Desarrollo de isométrico de líneas de amoniaco 60

4.5 Desarrollo de isométrico de líneas de refrigeración 61

4.6 Desarrollo de lay-out de equipos de refrigeración sala de maquinas 62

Page 74: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

56

Capitulo 4 Instalación y puesta en marcha del equipo de refrigeración con amoniaco. 4.1 Desarrollo de planos de anclajes de equipos y bases de cimentación

Page 75: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

57

4.2 Desarrollo de lay-out de base de cimentación

Page 76: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

58

4.3 Desarrollo de lay-out de vistas y cortes

Page 77: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

59

4.3 Desarrollo de lay-out de vistas y cortes

Page 78: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

60

4.4 Desarrollo de isométrico de líneas de amoniaco

Page 79: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

61

4.5 Desarrollo de isométrico de líneas de refrigeración

Page 80: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

62

4.6 Desarrollo de lay-out de equipos de refrigeración sala de maquinas

Page 81: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

63

CAPITULO 5 Mantenimiento de sistemas de

Refrigeración con amoniaco

5.1 Introducción 64

5.2 Aspectos de seguridad 64

5.3 Mantenimiento e inspección periódica 65

5.4 Mantenimiento preventivo 66

5.5 Causas de anormalidades y solucione 67

Page 82: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

64

Capitulo 5 Mantenimiento de sistemas de refrigeración con amoniaco 5.1 Introducción El amoniaco es fácil de conseguirse y es el más barato de los combustibles comúnmente empleados, estos dos hechos, junto con su estabilidad química afinada por el agua y no miscibilidad con el aceite y debido a su coeficiente de transferencia de calor relativamente alto y al consecuente mejoramiento de la razón de la transferencia de calor, el amoniaco es el más adecuado para grandes instalaciones de enfriamiento liquido Las principales características de este refrigerante son las siguientes: Refriegerante Amoniaco NH3 Clase Inorgánico Número 717 Peso molecular 17.03 Temperatura de ebullición -33.3 °C Punto de congelación -77 °C 5.2 Aspectos de seguridad Las normas de ASHRAE, al amoníaco lo establecen en el grupo dos, pertenecen a este grupo refrigerantes combustibles y no combustibles. La toxicidad es tal que cuando se expone conejillo de Indias durante dos horas a una concentración de 2.5% en aire, o mueren o son seriamente afectados. En amoníaco la concentración máxima permitida por ocho horas es de 50 ppp (Vol.)

Límite Concentración (ppm)

Detección de olor 53

Exposición prolongada 100

Exposición de media a una hora 300 – 500

Irritación de garganta 408

Tos 698

Peligro en media hora 1,720

Letal en corto tiempo 2,500 – 4,500

5,000 – 10,000

Tabla 5.1: Respuesta fisiológica al vapor de amoníaco.

IMPORTANTE: Debido a la toxicidad del amoníaco se recomienda que en la sala de máquina se encuentre por lo menos una mascarilla de respiración contra gases de amoníaco.

Page 83: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

65

Concentración Efecto

150 – 220 ppm Los ojos afectados luego de un minuto, sin afectar la visión seriamente. La respiración sin afectar.

440 ppm Afecta los ojos con rapidez, pero no lo suficiente como para decrecer la visión.

600 ppm Abundante lagrimeo en 30 segundos. Se puede respirar aún.

700 ppm Lagrimeo en segundos. Se puede respirar.

1,000 ppm Lagrimeo instantáneo y visión deteriorada. Respiración imposible. Irritación en la piel.

1,500 ppm por encima Abandonar el recinto inmediatamente.

Tabla 5.2: Efecto del amoníaco en periodos cortos de tiempo.

5.3 Mantenimiento e inspección periódica Es muy importante revisar y registrar las condiciones de operación para prevenir anticipadamente las fallas y tomar las precauciones adecuadas. Es muy conveniente registrar los datos cada una o dos horas, y llevar una bitácora de operación por turno, tomando en cuenta los siguientes datos a registrar.

Presión de succión.

Presión de descarga.

Presión de suministro de aceite (1.5 a 2.5 Kg/cm2 arriba de la presión de descarga).

Presión diferencial del filtro de aceite. No sobrepasar de 0.8 Kg/cm2

Temperatura de succión.

Temperatura de descarga.

Temperatura en separador de aceite.

Sobrecalentamiento.

Amperaje del motor del compresor.

5.3.1 Inspección periódica. De acuerdo a las horas de operación, hace falta revisar los siguientes términos periódicamente. R: Revisar D: Desarmar y revisar C: Cambio de piezas G: Cambio de grasa

Page 84: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

66

Horas de operación (Miles de horas)

5 10 15 20 25 30 35 40 45 50 55

Sello de eje R R R R R R R R R R R

Descargador R R R R R

Cojinete de empuje D D

Cojinete principal C C

Cojinete lateral D C

Anillos “O” C C

Juntas C C

Sello del eje R R R R R R R R R R R

Cojinete D D D D D

Acoplamientos G G G G G G G G G G G

Válvula reguladora de presión de aceite

R R R R R

Asiento de válvulas de retención

D C

Tabla 5.3: Actividades de mantenimiento de acuerdo a horas de trabajo

Bomba de aceite y compresor.

5.4 Mantenimiento preventivo

1. Cambio de aceite lubricante: Cambiar cada 3,000 horas. (En caso de observase muy sucio, se cambia en cualquier momento).

2. Limpieza de filtros: Limpiar cuando haya una presión diferencial del filtro de aceite de más de 1 Kg/cm2.

Limpiar filtro de succión cada tres meses. Este filtro se encuentra antes del compresor.

Limpieza de filtros de válvulas solenoides: Suministro de líquido y enfriamiento de aceite. 3. Manómetros: Revisar su exactitud una vez cada tres meses. 4. Válvula de seguridad y dispositivos de protección: Revisar funcionamiento mínimo cada seis

meses. 5. Cambio de agua al condensador (cada seis meses), además ventilar rociadores, tensión de

bandas, ventilador e incrustación en los tubos del condensador (cada tres años). 6. Limpieza de filtros del sistema de succión de líquido (cada tres meses). 7. Over hall al compresor (cada tres años). 8. Limpieza de placas evaporador (cada dos años).

Page 85: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

67

Límites de alarma Unidades Límites de falla

LO SP 0.35 Kg/cm2 0

HI DP 15 Kg/cm2 16

LO OP 0.5 Kg/cm2 0.35

HI OF 1.41 Kg/cm2 *****

HI DT 70 °C 85

HI OT 65 °C 70

LO OS 18 °C 15

HI MA 275 Amperes 260

LO OL 0 % ***

LO EB -11 °C -13

LO LB -13 °C -15

Tabla 5.4: Parámetros de operación y limites compresor tipo tornillo

5.5 Causas de anormalidades y soluciones El paro del compresor puede ocurrir por dos de las siguientes formas:

Por petición

Por falla Cuando ocurre un paro por falla, todas las salidas del sistema se deshabilitarán aparecerá en pantalla el mensaje correspondiente a dicha falla. Cuando ocurre un paro programado (por petición), ocurrirá lo siguiente:

Se desactiva el motor del compresor.

Se energiza la válvula de descarga para llevar al compresor a su posición mínima (SV=0%) Cuando el compresor se descarga totalmente (SV=0%) se apaga dicha válvula junto con el motor de la bomba de aceite, indicando en la pantalla el estado final del sistema (STOPPED). Es muy importante que el operador sepa interpretar cada una de las fallas que pueden presentarse mientras el equipo esté operando. En el diagrama de control aparecen marcadas cada una de las alarmas digitales y analógicas entendiéndose como alarmas digitales los interruptores de flujo, termostatos, sensores de nivel, etc. y las alarmas analógicas lo que son sensores de presión, temperatura, etc. A continuación se enlistan una serie de problemas que puede presentar el equipo, así como las causas y las posibles soluciones.

Page 86: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

68

ANORMALIDAD CAUSA SOLUCIÓN 1. Vibración extraordinaria al arranque

A. Vibra corto tiempo, luego se estabiliza

a) Compresión de líquido (aceite) por haber quedado el aceite en el compresor.

a) Antes de poner en marcha, girar el eje más veces con la mano, aproximadamente 5 vueltas.

b) El regreso de líquido refrigerante que había quedado en la tubería de succión.

b) Abrir ligeramente la válvula de succión o revisar el sistema.

B. Sigue vibrando

a) Pernos de anclajes flojos o mal apretados.

a) Apretar bien.

b) Alineación del acoplamiento del compresor y motor esta correcto.

b) Realineamiento.

c) Acoplamiento mal armado o mal balanceado.

c) Revisar

d) Mal balanceado del rotor del motor.

d) Balancear o cambiar.

e) Mala alineación de bomba de aceite y su motor.

e) Revisar y realizar si es necesario.

C. Vibración constante

a) Resonancia en la tubería o edificio.

a) Cambiar la frecuencia propia modificando la colocación de soportería de la tubería, etc.

2. Ruido anormal durante la operación

a) Entrada de algo sólido en el compresor, se incrusta en la superficie d los rotores.

a) Desarme el compresor y revise el filtro de succión y gas.

b) Desgaste de los cojinetes de empuje.

b) Cambio.

c) Rotor y caja están en rozamiento por el desgaste de cojinetes.

c) Desarme, revise y cambié piezas según la necesidad.

d) La chaveta del acoplamiento esta floja.

d) Cambio de chaveta o apretar tornillos.

e) Desgaste del acoplamiento por falta de grasa.

e) Cambio.

f) Cavitación de bomba y aceite. f) Revise el sistema de lubricación y nivel de aceite.

Tabla 5.5: Causas de anormalidades y sus soluciones

Page 87: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

69

3. Paro automático del compresor por haber funcionado los dispositivos de

seguridad.

A) Sensor de alta

presión. D.P.

a) Falta de capacidad del condensador. 1. Falta de agua. 2. Sarro (incrustado). 3. Falta de la bomba de agua.

a) 1. Revisión del circuito de agua. 2. Limpieza (des incrustación). 3. Revisión.

b) Gases incondensables (aire) b) Purga de aire parando las bombas del condensador después de haber estado en operación 1 hora.

c) La presión demasiado baja en la regulación del presostato.

c) Regulación.

d) Falla del sensor, se opera por vibración.

d) Cambio y/o amortiguador.

e) Falta de cantidad necesaria de aceite.

f) Succión de gas en lugar de aceite en la bomba. (Espumaje en separador de aceite)

g) Falta de viscosidad de aceite.

h) Aumento en la cantidad de suministro de aceite al compresor por incremento de la relación.

B) Sensor de presión de

aceite.

O.P.

a) Disminución de la capacidad del enfriamiento de aceite.

a) Limpieza del filtro.

b) Operación del compresor demasiado caliente.

b) Regulación ó limpieza desarmado.

c) En el caso del enfriador de aceite enfriado por líquido refrigerante: Falta de líquido, regulación de la válvula de expansión no adecuada, filtro de refrigerante tapado, falla de la válvula solenoide.

c) Limpieza.

d) Temperatura de aceite inadecuadamente programada.

d) Modificar programación.

e) Falta de viscosidad del aceite. e) Cambio de aceite ya muy quemado.

f) Aumento en la cantidad de suministro de aceite al compresor por incremento de la relación.

f) Disminuir la cantidad de alimentación de aceite.

Tabla 5.5: Causas de anormalidades y sus soluciones

Page 88: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

70

4. Nivel de aceite normal durante la operación.

A) Gran consumo de aceite (bajo nivel)

a) Las condiciones actuales de trabajo no coincide a las de diseño.

Largo tiempo de operación con carga parcial

Variación violenta de la carga

Cambio súbito de presión de condensación (ebullición)

a) Reconsideración de las condiciones de trabajo b) Regularización y revisión para estabilizarlas

B) Suciedad de aceite en el tanque

a) Retorno de aceite desde el evaporador b) Retorno de aceite contaminado del evaporador

a) Desalojar el aceite hasta tener el nivel normal b) Desalójelo y cambie el aceite completamente

5. Variación de la lectura de presión de aceite

O.P. a) La bomba de aceite succiona gas por espumaje dentro del separador de aceite b)La bomba succiona gas por falta de aceite c) Obstrucción del filtro de aceite d) Falla de la válvula reguladora de presión de aceite e) Falla de la bomba de aceite f) temperatura de aceite demasiado baja

a) Eliminar el problema de espumaje b) Agregar aceite c) Limpieza d) Regulación o desarme para limpieza y revisión e) Revisión f) Revisión de calentador de aceite

Tabla 5.5: Causas de anormalidades y sus soluciones

Page 89: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

71

6. El cuerpo del compresor anormalmente caliente

A) Temperatura de aceite anormal

a) Operación extremadamente recalentada b) Fuga de la válvula solenoide de la línea By-pass o línea de By-pass abierta c) Calentamiento anormal por desajuste de piezas d) Quemadura del compresor causada por residuos metálicos e) Aumentos de la relación de compresión por el aumento en la presión de condensación

a) regulación de la válvula de expansión, control de capacidad con la carga reducida y revisión del filtro de succión del gas b) Revisión c) Revisión (desarme si es necesario) d) Revisión (desarmen si es necesario) e) Bajar la presión de condensación

B) Aumento en la temperatura del aceite

a) Falta de enfriamiento, falta en la capacidad del enfriador de aceite b) Aumento de calor por la disminución de la viscosidad del aceite c) Aumento de la relación de compresión

a) Aumentar la capacidad del enfriador b) Verificar las propiedades del aceite (cambiarlo si es necesario) c) Bajar la presión de condensación u operar con la carga parcial

7. Baja temperatura del compresor y separador

a) Operación con retorno continuo de liquido refrigerante b) Continuación de operación sin carga c) Presión de condensación anormalmente baja d) Temperatura de ambiente baja

a) Reajustar la válvula de expansión b)Revisar la parte de control de capacidad c) Continuar la operación y cargar refrigerante si es necesario d) Continua la operación

Tabla 5.5: Causas de anormalidades y sus soluciones

Page 90: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

72

8. Fuga del sello de eje del compresor y bomba de aceite (3cc/h es el máximo

permitido)

a) Operación con retorno continuo de liquido refrigerante b) Continuación de operación sin carga c) baja temperatura de aceite d) Presión de condensación anormalmente baja e) Temperatura de ambiente baja

a) Reajustar la válvula de expansión b) Revisar la parte de control de capacidad c) Regular la cantidad de agua y aceite d) Continuar las operaciones y cargar refrigerante si es necesario e) Continuar la operación

9. Fuga del sello del eje del compresor y bomba de aceite (3cc/h es el máximo permitido)

a) Rotura en las cartas del sello por basuras b) Rotura en juntas c) Vibración causada por el mal alineamiento de los ejes

a) Desarme y reparación b) Desarme y reparación c) Re-alineamiento

10. No se mueve el control de capacidad del compresor

a) Falta el indicador (esta floja la leva) b) Adhesión del pistón descargador a la camisa c) Quemadura de válvula deslizante d) Obstrucción en la línea de presión hidráulica e) Falla de los cojinetes del indicador o leva del cilindro f) Falla en el circuito de control g) Válvula de 4 vías dañada

a) (se distingue por cambios de ruidos y capacidad) Revisar y reparar el indicador b) Desarmar y limpiar, cambiar el aceite si es necesario, porque tiende a ocurrir cuando el aceite esta sucio c) Desarmar, revisar y reparar d) Revisar y limpiar válvulas y tuberías e) Desarmar y reparar f) Revisar, reparar o cambiar g) Reparar o cambiar

Tabla 5.5: Causas de anormalidades y sus soluciones

Page 91: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

73

11. Hay diferencia entre la presión de evaporación y la de succión del compresor

a) Obstrucción en el filtro de succión de gas b) Error en el manejo de las válvulas de línea c) Obstrucción en tuberías d) Falta de presión de aceite

a) Revisar y regula de nuevo b) Verificar la línea de succión c) Checar las líneas de refrigerante (en instalación pudo haber quedado tapones ciegos y trapos etc. d) Repararlos

12. No funciona correctamente control de capacidad

a) Mal regulado o falta de controlador tipo AP b) Falta de potenciómetro c) Falta de detector de presión o temperatura d) Falta de presión de aceite

a) Revisar y regular de nuevo b) Cambio c) Cambio d) Revisar y regular

13. No cesa de girar el compresor en sentido contrario al momento de deterse el motor

a) Falta succión en la válvula de retención

a) Revisar y reparar

Tabla 5.5: Causas de anormalidades y sus soluciones

Page 92: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

74

Conclusiones En base a los resultados obtenidos en campo con el presente proyecto, podemos establecer

que el diseñar un sistema de refrigeración con amoniaco dedicado para una sola línea de

envasado debe de cumplir con ciertas características desde el tipo de equipos a instalar, así

como de los equipos que se piensen rehabilitar, para poder establecer un sistema adecuado

para la demanda de carga que se requiere, siendo este punto muy importante, ya que al ser

dedicado el equipo, lo más recomendable es que se apegue al cálculo térmico de la demanda

de refrigeración que se requiere, de lo contrario el equipo pararía constantemente y dañaría los

compresores.

Otro punto importante por señalar es el establecer una comunicación del equipo a enfriar y el

equipo de refrigeración para de esta forma establecer un control más adecuado del sistema y

evitar un posible congelamiento del sistema de glicol y daño a las bombas, por tal motivo de no

existir esta comunicación se hace necesario que al menos se cuente con un sistema de control

de paro de los compresores por baja temperatura del glicol y de esta manera estamos

protegiendo a los compresores.

Como se menciona anteriormente instalando el sistema de acuerdo al cálculo térmico

realizado y combinando un adecuado sistema de control de los equipos, solo nos resta diseñar

un área de trabajo adecuada, con espacios para posibles mantenimientos de los equipos, es

decir pensar en la ergonomía del operador y/o mecánico que laborara en el área, lo cual en el

presente proyecto se cumplió efectivamente.

Como mejora a este sistema prácticamente, solo se le agregaría una válvula modulante

reguladora de flujo en vez de la válvula on-off con la que cuenta el intercambiador del mixer, ya

que el hecho de que cuente con esta última modifica el flujo al momento de cerrar su válvula el

mixer, generando golpes de ariete, lo cual nos puede dañar los impulsores de las bombas.

Page 93: INSTITUTO POLITECNICO NACIONAL - tesis.ipn.mxtesis.ipn.mx/jspui/bitstream/123456789/7824/1/DISENOINST.pdf · instituto politecnico nacional . escuela superior de ingenieria mecanica

75

Bibliografía {1} Brisa, Bufete de Refrigeración Industrial (2007). Principios, Diseño y Aplicaciones,

México: Publicación 001-BNET-PUB {2} RR, Refrigeración Industrial Aplicada S.A. DE C.V. (2007). Manual de Compresores de

Amoniaco México: Publicación 1 {3} York Intenational S.A. DE C.V. (2005). Refrigeración Industrial con Amoniaco para la

Industria Limpia {4} Cerveceros Caseros (2009). WWW.cerveceroscaseros.com, Los glicoles Empleados en

Refrigeración. Recuperado el 02 de enero de 2009 {5} Evapco, (2007). Manual de Operación y Mantenimiento de Torre Condenzador

Evaporativo ATC-423B, México: Publicación