insulina 2014

download insulina 2014

of 11

Transcript of insulina 2014

  • 8/12/2019 insulina 2014

    1/11

    1

    Signaling mechanisms underlying the

    insulin-sensitizing effects of adiponectin

    Kenneth K.Y. Cheng, PhD, Research Assistant Professor in

    Endocrinology and Metabolism a,

    b, Karen S.L. Lam, MD, ChairProfessor and Head of Medicine a,b, Baile Wang, BSc, MPhilStudent a, Aimin Xu, PhD, Professor in Endocrinology andMetabolism a,b,c,*

    a Department of Medicine, The University of Hong Kong, Hong Kongb Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kongc Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong

    Keywords:APPL1

    adiponectin

    insulin

    diabetes

    obesity

    Adiponectin is an insulin-sensitizing adipokine with protectiveeffects against a cluster of obesity-related metabolic and cardio-

    vascular disorders. The adipokine exerts its insulin-sensitizing ef-

    fects by alleviation of obesity-induced ectopic lipid accumulation,

    lipotoxicity and chronic inammation, as well as by direct cross-

    talk with insulin signaling cascades. Adiponectin and insulin

    signaling pathways converge at the adaptor protein APPL1. On the

    one hand, APPL1 interacts with adiponectin receptors and medi-

    ates both metabolic and vascular actions of adiponectin through

    activation of AMP-activated protein kinase and p38 MAP kinase.

    On the other hand, APPL1 potentiates both the actions and

    secretion of insulin by ne-tuning the Akt activity in multiple in-

    sulin target tissues. In obese animals, reduced APPL1 expression

    contributes to both insulin resistance and defective insulin secre-

    tion. This review summarizes recent advances on the molecular

    mechanisms by which adiponectin sensitizes insulin actions, and

    discusses the roles of APPL1 in regulating both adiponectin and

    insulin signaling cascades.

    2013 Elsevier Ltd. All rights reserved.

    * Corresponding author. Department of Medicine, The University of Hong Kong, L8-39, 21 Sassoon Road, Hong Kong. Tel.:

    852 2819 9754; Fax: 852 2816 2095.

    E-mail address: [email protected](A. Xu).

    Contents lists available atSciVerse ScienceDirect

    Best Practice & Research Clinical

    Endocrinology & Metabolismj o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / lo c a t e / b e e m

    1521-690X/$ see front matter 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.beem.2013.06.006

    Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 313

    mailto:[email protected]://www.sciencedirect.com/science/journal/1521690Xhttp://www.elsevier.com/locate/beemhttp://dx.doi.org/10.1016/j.beem.2013.06.006http://dx.doi.org/10.1016/j.beem.2013.06.006http://dx.doi.org/10.1016/j.beem.2013.06.006http://dx.doi.org/10.1016/j.beem.2013.06.006http://dx.doi.org/10.1016/j.beem.2013.06.006http://dx.doi.org/10.1016/j.beem.2013.06.006http://www.elsevier.com/locate/beemhttp://www.sciencedirect.com/science/journal/1521690Xhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.beem.2013.06.006&domain=pdfmailto:[email protected]
  • 8/12/2019 insulina 2014

    2/11

  • 8/12/2019 insulina 2014

    3/11

    diseases[7]. A recent human Mendelian randomization study provides direct evidence that high level

    of adiponectin contributes to increased insulin sensitivity in men[8].

    The insulin-sensitizing action of adiponectin in mice was rstly reported by three independent

    research groups in 2001[911]. Treatment with recombinant adiponectin or transgenic expression of

    adiponectin results in lower glucose level and alleviates insulin resistance in obese mice, and such

    effects are independent of plasma levels of insulin[9

    12]. In contrast, genetic depletion of adiponectininduces insulin resistance and aggravates hyperglycemia in high-fat diet (HFD)-induced obese mice

    [1315]. Adiponectin exerts its insulin-sensitizing actions via both direct and indirect mechanisms

    (Fig. 1). In the liver, adiponectin reduces glucose production by inhibiting the gene expression of

    gluconeogenic enzymes via the AMP-activated protein kinase (AMPK) pathway [10,15], though a recent

    study argues that the suppressive effects of adiponectin on hepatic glucose production are AMPK-

    independent [16]. Adiponectin also directly strengthens hepatic insulin signaling by upregulating

    IRS-2 expression through a macrophage-derived interleukin (IL)-6-dependent pathway [17]. In skeletal

    muscle, full-length or globular domain of adiponectin causes increase in glucose uptake by promoting

    the translocation of the glucose transporter 4 (GLUT4) to the plasma membrane[9,18].

    In addition to aforementioned direct effects, adiponectin augments insulin sensitivity by reducing

    plasma level of free fatty acids and ectopic lipid content in liver and skeletal muscle through induction offatty acid oxidation [9,19]. Chronic treatment with recombinant adiponectin signicantly reduces hepatic

    lipid content, thereby alleviating fatty liver disease and hepatic insulin resistance in dietary and genetic

    obese mice[20,21]. In skeletal muscle, adiponectin stimulates mitochondrial biogenesis and decreases

    oxidative stress, which also leads to enhanced insulin sensitivity [22]. Recent evidence suggest that

    skeletal insulin resistance is a result of defective insulin signaling not only in myocytes per sebut also in

    endothelial cells, which in turn impairs insulin-stimulated vasodilatation, thereby restricting the supply

    of insulin and glucose[23]. In this connection, adiponectin can improve endothelium-dependent vaso-

    dilatation by inducing endothelial nitric oxide (NO) production via activation of both the AMPK and Akt

    signaling cascades[24]. Furthermore, adiponectin also promotes insulin actions through its effects on

    pancreaticbcells by potentiating insulin secretion, increasing the expression of the insulin gene, pre-

    venting cytokine/lipid-induced apoptosis and inducing cell proliferation[25,26].

    Fig. 1. A proposed model for the role of APPL1 in mediating both adiponectin and insulin signaling cascades. Adiponectin stimu-

    lation leads to increased interactions between APPL1 and adiponectin receptors (AdipoR1 and AdipoR2), which in turn initiate the

    activation of the downstream targets, thereby modulating glucose and lipid metabolism as well as vascular functions. On the other

    hand, APPL1 regulates both the action and secretion of insulin by ne-tuning Akt signaling. Abbreviations: adiponectin receptors

    (AdipoRs), endothelial nitric oxide synthase (eNOS), glucose-6-phosphatase (G6PC), glucose transporter 4 (GLUT4), I kappa B kinase

    (IKK), insulin receptor (IR), liver kinase B 1 (LKB1), peroxisome proliferator-activated receptor-alpha (PPARa), phosphoenolpyruvate

    carboxykinase (PEPCK), nuclear factor-kappa B (NFkB), soluble N-ethylmaleimide-sensitive factor attachment protein receptor

    (SNARE) and Tribble-3 (TRB3).

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 313 5

  • 8/12/2019 insulina 2014

    4/11

    As an anti-inammatory adipokine, adiponectin can antagonize the inhibitory effects of pro-

    inammatory adipokines/cytokines on insulin signaling. Adiponectin suppresses the release of

    numerous pro-inammatory cytokines such as tumor necrosis factor-alpha (TNF-a) and IL-6 from

    adipocytes and stromal-vascular cells[27]. Transgenic expression of adiponectin reduces inltration of

    macrophages into adipose tissue and hence impacts systemic insulin sensitivity, despite extreme

    obesity[28]. Adiponectin also exerts its anti-inammatory effect in a paracrine manner by inhibitingthe growth and differentiation of early B lineage progenitors from bone marrow and by modulating

    inammatory response in macrophages [29]. Treatment with adiponectin attenuates the release of

    lipopolysaccharide-induced pro-inammatory cytokines via inhibition of nuclear factor-kappa B

    (NFkB) activation[30]. On the other hand, adiponectin induces the release of anti-inammatory cy-

    tokines, such as IL-10[31]and causes polarization of macrophages toward the anti-inammatory M2

    phenotype[32]. Taken together, adiponectin may improve whole-body insulin sensitivity indirectly by

    reducing adipose tissue inammation.

    Cellular pathways underlying the insulin-sensitizing actions of adiponectin

    The discovery of adiponectin receptors (AdipoRs) by Kadowaki and colleagues has facilitated the

    elucidation of the molecular mechanisms underlying the multiple actions of adiponectin[7,33]. Adi-

    poR1 and AdipoR2 are two close homologs, which share 67% identity in amino acid sequences [33,34].

    Unlike classical G-protein coupled receptors, the AdipoRs exhibit intracellular NH2-terminal and

    extracellular COOH-terminal domains [33,34]. Adiponectin receptor 1 (AdipoR1) is predominantly

    expressed in skeletal muscle, whereas adiponectin receptor 2 (AdipoR2) is abundantly expressed in the

    liver[33,34]. Genetic disruption of AdipoR1 results in augmented gluconeogenesis and diminished

    AMPK activation, whereas deletion of AdipoR2 causes impairment of glucose uptake accompanied with

    decreased peroxisome proliferator-activated receptor-alpha (PPAR-a) activity in the liver [35]. In

    contrast, hepatic overexpression of AdipoR1 and AdipoR2 improves insulin sensitivity and alleviates

    diabetic phenotypes in leptin receptor-decient obese mice [35]. Furthermore, overexpression of

    AdipoR1 in skeletal muscle increases glucose uptake and glycogen synthesis as well as insulin sensi-

    tivity [36]. Apart from the AdipoR1/AMPK and AdipoR2/PPAR-a signaling axes, Scherer and his col-

    leagues recently dened a distinct mechanism underlying the benecial actions of adiponectin[25].

    They found that adiponectin promotes the ceramidase activity, which in turn leads to increased for-

    mation of spingosine-1-phosphate, thereby protecting pancreatic b cells and cardiomyocytes from

    lipid-induced apoptosis. Such an anti-apoptotic effect of adiponectin is mediated by AdipoR1 and

    AdipoR2 but appears to be independent of AMPK[25]. Furthermore, adiponectin has been reported to

    regulate peroxisome proliferator-activated receptor coactivator-1a and mitochondria biogenesis via

    modulation of calcium signaling and the AdipoR1-AMPK-silent mating type information regulation 2

    homolog (SirT1) dependent pathway [22]. Adiponectin has also been reported to sensitize insulin

    signaling by inhibition of p70-S6 Kinase 1 (S6K1) [37], which is able to induce insulin resistance by

    increasing serine phosphorylation of IRS-1. Adiponectin activates LKB1/AMPK/tuberous sclerosiscomplex 1/2 (TSC1/2) signaling pathway, resulting in the suppression of S6K1 and the subsequent

    reduction in serine phosphorylation of IRS-1, thereby improving insulin sensitivity in skeletal muscle

    [38]. Indeed, skeletal muscle specic deletion of AdipoR1 results in diminished phosphorylation of

    AMPK and increased S6K1 activation[22].

    Participation of APPL1 in both adiponectin and insulin signal transduction

    In light of the insulin-sensitizing activity of adiponectin, there is a growing interest in characterization

    of intracellular signaling components proximal to the AdipoRs that transmit adiponectin signaling to its

    distal metabolic effects. The adaptor protein APPL1, which contains an NH2-terminal Bin/Amphiphi-physin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain and a COOH-terminal phospho-

    tyrosine binding domain (PTB), has recently been identied as a key scaffold protein to mediate the

    metabolic and vascular actions of both insulin and adiponectin. APPL1 has been implicated in the insulin-

    sensitizing activities of adiponectin in skeletal muscle, hepatocytes and endothelial cells[39].

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 3136

  • 8/12/2019 insulina 2014

    5/11

    APPL1 as a scaffold protein involved in multiple signaling cascades

    APPL1 was originally found as an interacting partner of the protein kinase Akt2 in a yeast two hybrid

    system[40]. Subsequent studies demonstrated that this adaptor protein is functionally involved in a

    number of fundamental processes (such as transcriptional regulation, proliferation and cell survival)

    through interacting with a myriad of plasma membrane receptors and intracellular signaling proteins[39]. In response to epidermal growth factor (EGF) stimulation, APPL1 transmits its signal from the

    plasma membrane to nucleus through the cytoplasmic signaling cascades [41]. Additionally, APPL1

    shuttles between different subcellular organelles such as the endosomes, phagosomes and aggres-

    somes upon various stimulations[4245].Phosphatidylinositol 3-phosphate has been shown to act as

    a switch that controls endosomal trafcking and signal transduction of APPL1, which is important for

    the proliferative activity of EGF[46].

    Structure, post-translational modications and expression of APPL1

    APPL1 contains a highly conserved BAR-PH domain, which is essential to its endosomal localization

    and membrane binding ability [47]. Triple mutations in the BAR domain of APPL1 can disrupt itsendosomal localization and biological functions [47,48]. The BAR domain of APPL1 exhibits the crescent-

    shaped dimer with the PH domain located at the distal ends of the dimers [49,50]. The negative charge in

    the concave surface of the BAR domain of APPL1 participates in membrane binding. On the other hand,

    the PTB domain of APPL1 adopts a folding with a seven-stranded b sandwich and a COOH-terminal a

    helix that caps one of the open ends of the sandwich [49,50]. Of note, the PTB domain of APPL1 has been

    shown to interact with various transmembrane receptors through an unidentied mechanism[49,50].

    Several post-translational modications have been identied in APPL1. Several serine/threonine

    and tyrosine phosphorylation sites are found in the BAR, PH and PTB domains of APPL1 [51]. Phos-

    phorylation at serine 430 is augmented in hepatocytes with endoplasmic reticulum stress [52].

    Furthermore, APPL1 undergoes lysine-63 linked ubiquitination, and this ubiquitination is indispensible

    for its subcellular localization and solubility [44]. However, the physiological functions of thesemodications in regulating adiponectin and insulin signaling remain unclear at this stage.

    APPL1 is abundantly expressed in several adiponectin and insulin target tissues, including liver,

    skeletal muscle, endothelium, white adipose tissues and pancreatic islets, and its expression is altered

    by a number of physiological and pathological factors, including exercise, hyperglycemia and obesity

    [5356]. The expression of APPL1 is dramatically decreased in pancreatic islets and vascular endo-

    thelium in several rodent models of diabetes and obesity[54,55]. Likewise, APPL1 level is signicantly

    reduced in adipose tissue, skeletal muscle and liver of diet-induced obese mice, but this change can be

    reversed by exercise training[53]. Interestingly, overexpression of AdipoR1 up-regulates APPL1 in rat

    skeletal muscle, which is accompanied with enhanced insulin sensitivity [57]. In human, the expres-

    sion level of APPL1 is paradoxically increased in skeletal muscles of type 2 diabetic and obese subjects

    compared to lean controls, and its expression is reduced in obese subjects with weight loss[58]. Thesendings highlight that the expression of APPL1 is associated with obesity and insulin sensitivity, and

    altered expression of APPL1 may contribute to the development of T2DM. However, the conicting

    ndings in human and animal studies warrant further investigation.

    APPLs as downstream effectors of adiponectin receptors

    Several AdipoR interacting partners have been identied, including protein kinase C1[59], protein

    kinase CK2b subunit[60], lymphotoxin-b endoplasmic reticulum protein 46[61]and APPL1[55,62].

    Among them, APPL1 is therst downstream effector of AdipoR being identied by bothyeast two hybrid

    and proteomic analysis, and has been extensively studied for its role in adiponectin actions[55,62].

    APPL1 directly associates with the NH2-terminal intracellular regions of AdipoR1 and AdipoR2 via thePTB domain, and these associations are enhanced by adiponectin stimulation [55,62,63]. Of note,

    tyrosine phosphorylation in AdipoR1 and AdipoR2 is not required for its binding to APPL1 [50]. In

    cultured skeletal muscle cells, suppression of APPL1 attenuates adiponectin-induced glucose uptake,

    GLUT4 translocation and fatty acid oxidation, accompanied with decreased phosphorylation of AMPK,

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 313 7

  • 8/12/2019 insulina 2014

    6/11

    acetyl coenzyme A carboxylase (ACC) and p38 MAPK[62]. In contrast, overexpression of APPL1 poten-

    tiates these adiponectin actions, which appears to be mediated via the small GTPase Rab5. Over-

    expression of an inactive Rab5 mutant completely abolishes adiponectin-mediated glucose uptake and

    GLUT4 translocation in AMPK-dependent pathway[62]. Furthermore, the synergistic action of insulin

    and adiponectin on glucose uptake is also attenuated in skeletal muscle cells with suppression of APPL1.

    In endothelial cells, knockdown of APPL1 abolishes adiponectin-stimulated NO production bysuppression of both AMPK and Akt-evoked activation of endothelial nitric oxide synthase (eNOS)

    pathways[55]. These changes are attributed to a signicant reduction of complex formation between

    heat-shock protein 90 and eNOS, which is essential for maximal activity of eNOS. The expression of

    APPL1 is signicantly reduced in arteries from db/dbdiabetic mice[55]and Zucker diabetic fatty rats

    [56], suggesting that reduced APPL1 may be causally associated with endothelial dysfunction in obesity

    and diabetes. Adiponectin can antagonize the pro-apoptotic effect of IL-18 in endothelial cells, and such

    benecial action of adiponectin is also mediated by APPL1[64]. Likewise, the anti-apoptotic effect of

    adiponectin on neuroblastoma is lost when APPL1 is reduced by RNAi-mediated knocking down [65].

    APPL1 also regulates the anti-inammatory properties of adiponectin. In macrophages, the inhibitory

    ability of adiponectin on lipid accumulation and NFkB activation are reduced by suppression of APPL1

    expression [66]. There is also considerable evidence for the role of APPL1 in regulating adiponectinsignaling in several other cell types, including mouse cardiomyocytes, human embryonic kidney cells

    and rat cardiac broblasts[6769].

    Recent studies have elucidated how APPL1 modulates adiponectin-mediated AMPK activation via

    its upstream kinase liver kinase B 1 (LKB1) [70,71]. Upon adiponectin stimulation, APPL1 interacts with

    both protein phosphatase 2A (PP2A) and protein kinase C (PKC)-zeta, resulting in activation of PP2A

    and dephosphorylation of PKC-zeta [71]. The inactivated PKC-zeta causes a dramatic reduction of

    serine phosphorylation of LKB1, leading to LKB1 translocation from nucleus to cytosol, where LKB1 can

    interact with APPL1 and activate AMPK [71]. Sweeney and colleagues also found that adiponectin

    induces the complex formation of LKB1, AMPK and APPL1 in cardiomyocytes, which can be disrupted

    by leptin treatment [72]. In addition to AMPK signaling pathway, APPL1 modulates adiponectin-

    mediated p38 MAPK activation[73]. Suppression of APPL1 abolishes adiponectin-elicited phosphor-ylation of p38, whereas overexpression of APPL1 has opposite effect. This APPL1 action may be due to

    its binding ability to the upstream kinases of p38 including transforming growth factor-b-activated

    kinase and mitogen-activated protein kinase kinase 3[73].

    APPL2, a close homolog of APPL1, sharing 52% identity and 72% similarity in amino acid sequence

    with an identical domain organization with APPL1, has been shown as a negative regulator of adipo-

    nectin signaling. APPL2 forms a heterodimer with APPL1 via their BAR domains [74]. Similar to APPL1,

    APPL2 exhibits membrane and lipid binding ability, and resides in the early endosome and undergoes

    subcellular translocation in response to various stimuli[74,75]. APPL2 is also expressed in insulin- and

    adiponectin-responsive tissues including liver, skeletal muscle and adipose tissue, and interacts with

    AdipoR1 and AdipoR2 via the PTB domain [76]. However, in contrast to APPL1, APPL2 negatively

    regulates adiponectin signaling in skeletal muscle cells through two distinct mechanisms [76]. First,APPL2 competes with APPL1 for the binding of adiponectin receptors. Second, APPL2 forms a heter-

    odimer with APPL1, which prevents the binding of APPL1 to AdipoRs. Treatment with adiponectin or

    anti-diabetic drug metformin causes dissociation of APPL1 and APPL2, which allows the membrane

    recruitment and binding of APPL1 to the AdipoRs [76]. The opposite actions of APPL1 and APPL2 on

    adiponectin signaling are perhaps due to their distinct secondary structure and binding partners.

    Structural analysis revealed that APPL2 incorporates two dimers, whereas APPL1 incorporates only one

    dimer in the asymmetric unit [36,49,50]. Indeed, the electrostatic surface of APPL1 is also different

    from that of APPL2, indicating that they may reside in different subcellular localization[36,49,50]. In

    addition, the binding partners of APPL2 are different from those of APPL1 [36], suggesting that these

    interactions may also contribute to their opposite effects on adiponectin signaling.

    APPL1 as a master coordinator in regulating both action and secretion of insulin

    The discovery of APPL1 as a binding partner of Akt2 and PI3K, the two major components of insulin

    signaling cascades, raises the possibility that APPL1 regulates insulin signaling[40]. Indeed, suppression

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 3138

  • 8/12/2019 insulina 2014

    7/11

    of APPL1 expression attenuates insulin-elicited phosphorylation of Akt and plasma translocation of

    GLUT4 as well as glucose uptake in adipocytes and skeletal muscle cells [43,62]. In response to insulin

    stimulation, APPL1 is recruited to the light microsomal fraction and plasma membrane of adipocytes and

    hepatocytes[42,43]. In single tibialis cranialis muscles of rats, overexpression of APPL1 by electropo-

    ration can prevent HFD-induced deleterious effect on insulin-stimulated glucose uptake and glycogen

    synthesis, whereas knockdown of APPL1 produces an opposite effect [77]. This insulin-sensitizing actionof APPL1 is mainly attributed to its activation of the Akt-glycogen synthase kinase 3 beta (GSK3b)- TBC1

    domain family member 4 (TBC1D4)-dependent signaling pathway.

    In the liver, APPL1 also serves as a sensitizer for the inhibitory effect of insulin on glucose production

    [42]. Adenovirus-mediated hepatic overexpression of APPL1 alleviates hyperglycemia, glucose intol-

    erance and insulin resistance in db/db diabetic mice, whereas hepatic silencing of APPL1 causes

    impairment in insulin signaling and hyperglycemia in lean mice [42]. Further analysis revealed that

    APPL1 can potentiate insulin-mediated activation of Akt, which in turn inhibits the expression of key

    genes involved in gluconeogenesis. At the molecular level, APPL1 interacts with Akt, and this inter-

    action blocks Akt from binding to the endogenous Akt inhibitor Tribble-3 (TRB3) [78]. Under basal

    conditions, TRB3 interacts with Akt and traps it within the cytoplasm, thereby preventing Akt trans-

    location to plasma membrane for subsequent activation. Upon insulin stimulation, the interaction ofAPPL1 with Akt competes with TRB3 and therefore promotes Akt translocation to the plasma mem-

    brane and endosomal compartment for further activation. In diabetic mouse models, the elevated

    expression of TRB3 causes insulin resistance and diabetes by trapping and inactivating Akt in cytosol.

    On the other hand, overexpression of APPL1 can counteract the negative effects of TRB3 on the sup-

    pression of insulin-evoked Akt activation, resulting in improved insulin sensitivity and glycemic

    control. Interestingly, Marinho R et al. recently found that endurance exercise training increases the

    association of APPL1 with Akt, and concurrently decreases the interaction between Akt and TRB3. Such

    changes are associated with improvement in hepatic insulin sensitivity[53]. Dong and her colleagues

    have proposed a distinct molecular mechanism by which phosphorylation of APPL1 regulates its

    insulin-sensitizing action in hepatocytes. They found that PKCa and endoplasmic reticulum stress

    induce phosphorylation of APPL1 at serine 430 [52]. The insulin-sensitizing action of APPL1 isdiminished when this serine residue is mutated to a phospho-mimic amino acid, suggesting that this

    phosphorylation negatively regulates APPL1 function.

    We have recently explored the physiological role of APPL1 in vascular function using both APPL1

    transgenic and knockout mouse models. In dietary obese mice, insulin loses its effects on NO-

    dependent vasodilatation owing to impaired insulin-evoked Akt activation in vascular endothelium,

    but exhibits the activity of inducing vasoconstriction via augmented production of endothelin-1 [79].

    Transgenic overexpression of APPL1 reverses obesity-induced insulin resistance in vascular endothe-

    lium and restores the ability of insulin on NO-dependent vasodilatation. By contrast, genetic disruption

    of APPL1 leads to endothelial dysfunction by shifting the effect of insulin from vasodilation to vaso-

    constriction [79]. At the molecular level, APPL1 enhances insulin-stimulated Akt activation by

    competing with TRB3 and suppresses ERK1/2 signaling through altering the phosphorylation status ofits upstream kinase Raf-1 [79]. In contrast to a previous study [73], no direct association between

    APPL1 and MAP kinase in endothelial cells could be detected. Whether these associations are cell-type

    specic need further investigation.

    Although the peripheral metabolic tissues are the main targets of insulin, mounting evidence from

    animaland human studiessuggests thatbcell itself alsopossessesan insulin signalingsystem, which plays

    a critical role in regulatingb cell mass, survival, insulin biosynthesis, and secretion[80].b-cell-specic

    inactivationof several components involvedin insulin signaling, including IR, IRS-2, class IA PI3K, and Akt,

    leadsto impaired insulin secretion and/ordecreasedbcell mass[80,81]. By contrast, transgenicexpression

    of active Akt or IRS-2 inb cells increasesb cell mass and enhances insulin secretion, thereby rendering the

    mice resistant to experimental diabetes[80]. However, the molecular basis by which insulin regulatesb

    cell function remains poorly characterized. In this connection, we recently demonstrated that APPL1couples insulin signaling and insulin secretion inb cells [54]. Lack of APPL1 impairs the rst-phase insulin

    secretionandcauses glucose intolerance, both of which areattributedto diminished insulin-mediatedAkt

    activation. These phenotypic changes are aggregated in APPL1-decient mice fed with a HFD. On the

    contrary, transgenic expression of APPL1 prevents HFD-induced glucose intolerance at least in part, by

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 313 9

  • 8/12/2019 insulina 2014

    8/11

    potentiating insulin secretion. The pancreatic islets lacking APPL1 exhibit a signicant reduction in the

    numberof dockedinsulin granules, whichis accompanied with impaired exocytosis of insulin as a resultof

    profoundly decreased expression of the exocytosis machinery soluble N-ethylmaleimide-sensitive factor

    attachment protein receptor (SNARE) proteins [54]. Activation of Akt by expressing the constitutive active

    form of this kinase rescues the APPL1 null phenotypes in the islets. Similar to the observations in endo-

    thelial cells and hepatocytes, APPL1 enhances insulin-mediated Aktactivation by suppressing the bindingofAkttoTRB3in b cells.Ourndingsfurther support the notion that insulin signaling inb cell is important

    foritssecretion, andalsosuggestthatreduced expression of APPL1 inpancreaticislets in obesitymay serve

    as a mediator coupling insulin resistance to b cell dysfunction, thereby accelerating the progression of

    T2DM. Since SNARE proteins are alsoexpressed in skeletal muscle and mediate glucose uptake [82],itisof

    considerable interest to investigate whether APPL1 is involved in this process. Taken together, APPL1

    integrates the effects of insulin in peripheral target tissues and pancreatic b cells to maintain systemic

    glucose homeostasis.

    Summary

    Defective adiponectin and insulin signaling contribute to obesity-related metabolic and vascular

    disorders including endothelial dysfunction and T2DM. It has become evident in recent yearsthat APPL1

    acts as a key molecule in mediating both adiponectin and insulin signaling. APPL1 links the AdipoRs and

    its downstream targets including LKB1, AMPK and p38 MAPK, and hence mediates the multiple actions

    of adiponectin. In insulin signaling, APPL1 regulates Akt activity by competing with TRB3, leading to the

    activation of its downstream substrates. Recent animal studies demonstrated that overexpression of

    APPL1 prevents obesity-related insulin resistance, diabetes and endothelial dysfunction, whereas APPL1

    deciency results in metabolic and vascular disturbances. The benecial effects of APPL1 appear to be

    attributed to its insulin-sensitizing ability via modulating both Akt and AMPK activities, suggesting that

    both adiponectin and insulin signaling cascades converge on APPL1, which in turn confer the synergistic

    effects of these two metabolic hormones on maintenance of glucose homeostasis and vascular functions

    (Fig. 1). Further investigations into the biochemical and structural basis by which APPL1 potentiatesinsulin and adiponectin signaling will shed new light on the fundamental processes of metabolic and

    vascular regulation, and will also provide valuable insights for the future development of effective in-

    sulin sensitizers for treatment of T2DM and its vascular complications.

    Practice points

    Insulin resistance is a major contributor to obesity-related cardio-metabolic disorders.

    The degree of hypoadiponectinemia is closely associated with the degree of insulin resis-

    tance, and is a strong indicator of metabolic and vascular disorders.

    Research agenda

    Continued research into the mechanism mediating the cross-talk between adiponectin and

    insulin signaling cascades in more details.

    Further investigation into the physiological roles of APPL1 in adiponectin and insulin

    signaling using tissue-specic genetically modied animal models.

    Exploration of APPL2 functions in insulin and adiponectin signaling in vitro and in animals.

    Elucidation of biochemical and structural basis by which APPL1 and APPL2 exert oppositeeffects on adiponectin and insulin actions.

    Development of chemical compounds that enhance adiponectin and insulin activities by

    targeting the APPL1/APPL2 complex.

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 31310

  • 8/12/2019 insulina 2014

    9/11

    Conict of interest statement

    All the authors have declared that no conict of interest exists.

    Acknowledgements

    This work is supported by General Research Fund (783010 and 781309) and Collaborative Research

    Fund (HKU4/CRF/10) from the Research Grant Council of Hong Kong.

    References

    [1] Rask-Madsen C, Kahn CR. Tissue-specic insulin signaling, metabolic syndrome, and cardiovascular disease. Arterio-sclerosis, Thrombosis, and Vascular Biology 2012;32(9):20529.

    [2] Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inammation and metabolic syndrome. Molecular andCellular Endocrinology 2010;314(1):116.

    [3] Zhu W, Cheng KK, Vanhoutte PM, Lam KS, Xu A. Vascular effects of adiponectin: molecular mechanisms and potentialtherapeutic intervention. Clinical Science 2008;114(5):36174.

    [4] Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012;148(5):852

    71.[5] Konner AC, Bruning JC. Selective insulin and leptin resistance in metabolic disorders. Cell Metabolism 2012;16(2):14452.[6] Lihn AS, Ostergard T, Nyholm B, Pedersen SB, Richelsen B, Schmitz O. Adiponectin expression in adipose tissue is reduced

    inrst-degree relatives of type 2 diabetic patients. American Journal of Physiology. Endocrinology and Metabolism 2003;284(2):E4438.

    [7] Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. CellMetabolism 2013;17(2):18596.

    [8] Gao H, Fall T, van Dam RM, Flyvbjerg A, Zethelius B, Ingelsson E, et al. Evidence of a Causal Relationship Between Adi-ponectin Levels and Insulin Sensitivity: A Mendelian Randomization Study. Diabetes 2013;62(4):133844.

    *[9] Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulinresistance associated with both lipoatrophy and obesity. Nature Medicine 2001;7(8):9416.

    *[10] Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulinaction. Nature Medicine 2001;7(8):94753.

    [11] Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocytecomplement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the

    National Academy of Sciences of the United States of America 2001;98(4):2005

    10.[12] Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from

    diabetes and ApoE-decient mice from atherosclerosis. Journal of Biological Chemistry 2003;278(4):24618.*[13] Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance

    and neointimal formation. Journal of Biological Chemistry 2002;277(29):258636.*[14] Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice

    lacking adiponectin/ACRP30. Nature Medicine 2002;8(7):7317.[15] Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, et al. Mice lacking adiponectin show decreased

    hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists.Journal of Biological Chemistry 2006;281(5):265460.

    [16] Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, et al. Adiponectin suppresses gluconeogenic gene expressionin mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation 2011;121(6):251828.

    [17] Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, et al. Adiponectin enhances insulin sensitivity by increasinghepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metabolism 2011;13(4):40112.

    [18] Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocationand glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 2005;48(1):132 9.

    [19] Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acidoxidation by activating AMP-activated protein kinase. Nature Medicine 2002;8(11):128895.

    [20] Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic andnonalcoholic fatty liver diseases in mice. Journal of Clinical Investigation 2003;112(1):91100.

    [21] Wang Y, Lu G, Wong WP, Vliegenthart JF, Gerwig GJ, Lam KS, et al. Proteomic and functional characterization ofendogenous adiponectin puried from fetal bovine serum. Proteomics 2004;4(12):393342.

    [22] Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 2010;464(7293):13139.

    [23] Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. Impaired insulin signaling in endothelial cellsreduces insulin-induced glucose uptake by skeletal muscle. Cell Metabolsim 2011;13(3):294307.

    [24] Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascularendothelial cells. Journal of Biological Chemistry 2003;278(45):450216.

    [25] Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, et al. Receptor-mediated activation of ceramidase activity

    initiates the pleiotropic actions of adiponectin. Nature Medicine 2011;17(1):55

    63.[26] Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt

    phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion.Journal of Biological Chemistry 2010;285(44):3362331.

    [27] Dietze-Schroeder D, Sell H, Uhlig M, Koenen M, Eckel J. Autocrine action of adiponectin on human fat cells prevents therelease of insulin resistance-inducing factors. Diabetes 2005;54(7):200311.

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 313 11

    http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref3http://refhub.elsevier.com/S1521-690X(13)00092-4/sref3http://refhub.elsevier.com/S1521-690X(13)00092-4/sref3http://refhub.elsevier.com/S1521-690X(13)00092-4/sref3http://refhub.elsevier.com/S1521-690X(13)00092-4/sref4http://refhub.elsevier.com/S1521-690X(13)00092-4/sref4http://refhub.elsevier.com/S1521-690X(13)00092-4/sref4http://refhub.elsevier.com/S1521-690X(13)00092-4/sref5http://refhub.elsevier.com/S1521-690X(13)00092-4/sref5http://refhub.elsevier.com/S1521-690X(13)00092-4/sref5http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref8http://refhub.elsevier.com/S1521-690X(13)00092-4/sref8http://refhub.elsevier.com/S1521-690X(13)00092-4/sref8http://refhub.elsevier.com/S1521-690X(13)00092-4/sref8http://refhub.elsevier.com/S1521-690X(13)00092-4/sref9http://refhub.elsevier.com/S1521-690X(13)00092-4/sref9http://refhub.elsevier.com/S1521-690X(13)00092-4/sref9http://refhub.elsevier.com/S1521-690X(13)00092-4/sref9http://refhub.elsevier.com/S1521-690X(13)00092-4/sref10http://refhub.elsevier.com/S1521-690X(13)00092-4/sref10http://refhub.elsevier.com/S1521-690X(13)00092-4/sref10http://refhub.elsevier.com/S1521-690X(13)00092-4/sref10http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref13http://refhub.elsevier.com/S1521-690X(13)00092-4/sref13http://refhub.elsevier.com/S1521-690X(13)00092-4/sref13http://refhub.elsevier.com/S1521-690X(13)00092-4/sref13http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref16http://refhub.elsevier.com/S1521-690X(13)00092-4/sref16http://refhub.elsevier.com/S1521-690X(13)00092-4/sref16http://refhub.elsevier.com/S1521-690X(13)00092-4/sref16http://refhub.elsevier.com/S1521-690X(13)00092-4/sref17http://refhub.elsevier.com/S1521-690X(13)00092-4/sref17http://refhub.elsevier.com/S1521-690X(13)00092-4/sref17http://refhub.elsevier.com/S1521-690X(13)00092-4/sref17http://refhub.elsevier.com/S1521-690X(13)00092-4/sref18http://refhub.elsevier.com/S1521-690X(13)00092-4/sref18http://refhub.elsevier.com/S1521-690X(13)00092-4/sref18http://refhub.elsevier.com/S1521-690X(13)00092-4/sref18http://refhub.elsevier.com/S1521-690X(13)00092-4/sref19http://refhub.elsevier.com/S1521-690X(13)00092-4/sref19http://refhub.elsevier.com/S1521-690X(13)00092-4/sref19http://refhub.elsevier.com/S1521-690X(13)00092-4/sref19http://refhub.elsevier.com/S1521-690X(13)00092-4/sref20http://refhub.elsevier.com/S1521-690X(13)00092-4/sref20http://refhub.elsevier.com/S1521-690X(13)00092-4/sref20http://refhub.elsevier.com/S1521-690X(13)00092-4/sref20http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref22http://refhub.elsevier.com/S1521-690X(13)00092-4/sref22http://refhub.elsevier.com/S1521-690X(13)00092-4/sref22http://refhub.elsevier.com/S1521-690X(13)00092-4/sref22http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref24http://refhub.elsevier.com/S1521-690X(13)00092-4/sref24http://refhub.elsevier.com/S1521-690X(13)00092-4/sref24http://refhub.elsevier.com/S1521-690X(13)00092-4/sref24http://refhub.elsevier.com/S1521-690X(13)00092-4/sref25http://refhub.elsevier.com/S1521-690X(13)00092-4/sref25http://refhub.elsevier.com/S1521-690X(13)00092-4/sref25http://refhub.elsevier.com/S1521-690X(13)00092-4/sref25http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref27http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref26http://refhub.elsevier.com/S1521-690X(13)00092-4/sref25http://refhub.elsevier.com/S1521-690X(13)00092-4/sref25http://refhub.elsevier.com/S1521-690X(13)00092-4/sref24http://refhub.elsevier.com/S1521-690X(13)00092-4/sref24http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref23http://refhub.elsevier.com/S1521-690X(13)00092-4/sref22http://refhub.elsevier.com/S1521-690X(13)00092-4/sref22http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref21http://refhub.elsevier.com/S1521-690X(13)00092-4/sref20http://refhub.elsevier.com/S1521-690X(13)00092-4/sref20http://refhub.elsevier.com/S1521-690X(13)00092-4/sref19http://refhub.elsevier.com/S1521-690X(13)00092-4/sref19http://refhub.elsevier.com/S1521-690X(13)00092-4/sref18http://refhub.elsevier.com/S1521-690X(13)00092-4/sref18http://refhub.elsevier.com/S1521-690X(13)00092-4/sref17http://refhub.elsevier.com/S1521-690X(13)00092-4/sref17http://refhub.elsevier.com/S1521-690X(13)00092-4/sref16http://refhub.elsevier.com/S1521-690X(13)00092-4/sref16http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref15http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref14http://refhub.elsevier.com/S1521-690X(13)00092-4/sref13http://refhub.elsevier.com/S1521-690X(13)00092-4/sref13http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref12http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref11http://refhub.elsevier.com/S1521-690X(13)00092-4/sref10http://refhub.elsevier.com/S1521-690X(13)00092-4/sref10http://refhub.elsevier.com/S1521-690X(13)00092-4/sref9http://refhub.elsevier.com/S1521-690X(13)00092-4/sref9http://refhub.elsevier.com/S1521-690X(13)00092-4/sref8http://refhub.elsevier.com/S1521-690X(13)00092-4/sref8http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref7http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref6http://refhub.elsevier.com/S1521-690X(13)00092-4/sref5http://refhub.elsevier.com/S1521-690X(13)00092-4/sref4http://refhub.elsevier.com/S1521-690X(13)00092-4/sref3http://refhub.elsevier.com/S1521-690X(13)00092-4/sref3http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref2http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1http://refhub.elsevier.com/S1521-690X(13)00092-4/sref1
  • 8/12/2019 insulina 2014

    10/11

    [28] Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements inmetabolic prole through expansion of adipose tissue. Journal of Clinical Investigation 2007;117(9):262137.

    [29] Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family ofsoluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of mac-rophages. Blood 2000;96(5):172332.

    [30] Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases

    PPARgamma2 expression in adipocytes. American Journal of Physiology. Regulatory, Integrative and ComparativePhysiology 2005;288(5):R12205.[31] Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, et al. Adiponectin specically increased tissue inhibitor

    of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 2004;109(17):20469.[32] Zacharioudaki V, Androulidaki A, Arranz A, Vrentzos G, Margioris AN, Tsatsanis C. Adiponectin promotes endotoxin

    tolerance in macrophages by inducing IRAK-M expression. Journal of Immunology 2009;182(10):644451.*[33] Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidi-

    abetic metabolic effects. Nature 2003;423(6941):7629.[34] Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance,

    diabetes, and the metabolic syndrome. Journal of Clinical Investigation 2006;116(7):178492.*[35] Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes

    abrogation of adiponectin binding and metabolic actions. Nature Medicine 2007;13(3):3329.[36] King GJ, Stockli J, Hu SH, Winnen B, Duprez WG, Meoli CC, et al. Membrane curvature protein exhibits interdomain

    exibility and binds a small GTPase. Journal of Biological Chemistry 2012;287(49):409961006.[37] Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6K1 protects against age- and diet-

    induced obesity while enhancing insulin sensitivity. Nature 2004;431(7005):200

    5.[38] Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, et al. Adiponectin sensitizes insulin signaling by reducing p70 S6

    kinase-mediated serine phosphorylation of IRS-1. Journal of Biological Chemistry 2007;282(11):79916.[39] Deepa SS, Dong LQ. APPL1: role in adiponectin signaling and beyond. American Journal of Physiology. Endocrinology and

    Metabolism 2009;296(1):E2236.[40] Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR. Identication of a chromosome 3p14.3-21.1 gene, APPL,

    encoding an adaptormolecule that interacts with the oncoprotein-serine/threonine kinase AKT2.Oncogene 1999;18(35):48918.[41] Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, et al. APPL proteins link Rab5

    to nuclear signal transduction via an endosomal compartment. Cell 2004;116(3):44556.*[42] Cheng KK, Iglesias MA, Lam KS, Wang Y, Sweeney G, Zhu W, et al. APPL1 potentiates insulin-mediated inhibition of

    hepatic glucose production and alleviates diabetes via Akt activation in mice. Cell Metabolism 2009;9(5):41727.[43] Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4

    translocation. Journal of Biological Chemistry 2007;282(44):322807.[44] Pilecka I, Sadowski L, Kalaidzidis Y, Miaczynska M. Recruitment of APPL1 to ubiquitin-rich aggresomes in response to

    proteasomal impairment. Experimental Cell Research 2011;317(8):1093107.[45] Broussard JA, Lin WH, Majumdar D, Anderson B, Eason B, Brown CM, et al. The endosomal adaptor protein APPL1 impairs

    the turnover of leading edge adhesions to regulate cell migration. Molecular Biology of the Cell 2012;23(8):148699.[46] Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P. A phosphoinositide switch controls the maturation

    and signaling properties of APPL endosomes. Cell 2009;136(6):111021.[47] Schenck A, Goto-Silva L, Collinet C, Rhinn M, Giner A, Habermann B, et al. The endosomal protein Appl1 mediates Akt

    substrate specicity and cell survival in vertebrate development. Cell 2008;133(3):48697.[48] Hupalowska A, Pyrzynska B, Miaczynska M. APPL1 regulates basal NF-kappaB activity by stabilizing NIK. Journal of Cell

    Science 2012;125(Pt 17):4090102.[49] Zhu G, Chen J, Liu J, Brunzelle JS, Huang B, Wakeham N, et al. Structure of the APPL1 BAR-PH domain and characterization

    of its interaction with Rab5. EMBO Journal 2007;26(14):348493.[50] Li J, Mao X, Dong LQ, Liu F, Tong L. Crystal structures of the BAR-PH and PTB domains of human APPL1. Structure 2007;

    15(5):52533.[51] Gant-Branum RL, Broussard JA, Mahsut A, Webb DJ, McLean JA. Identication of phosphorylation sites within the

    signaling adaptor APPL1 by mass spectrometry. Journal of Proteome Research 2010;9(3):15418.

    [52] Liu M, Zhou L, Wei L, Villarreal R, Yang X, Hu D, et al. Phosphorylation of adaptor protein containing pleckstrin homologydomain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) at Ser430 mediates endoplasmic reticulum(ER) stress-induced insulin resistance in hepatocytes. Journal of Biological Chemistry 2012;287(31):2608793.

    [53] Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss.

    Journal of Cellular Physiology 2012;227(7):291726.[54] Cheng KK, Lam KS, Wu D, Wang Y, Sweeney G, Hoo RL, et al. APPL1 potentiates insulin secretion in pancreatic beta cells

    by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proceedings of the National Academyof Sciences of the United States of America 2012;109(23):891924.

    *[55] Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthaseactivation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes 2007;56(5):138794.

    [56] Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, et al. Globular and full-length adiponectininduce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. American

    Journal of Hypertension 2011;24(3):2707.[57] Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, et al. Overexpression of the adiponectin receptor

    AdipoR1 in rat skeletal muscle amplies local insulin sensitivity. Endocrinology 2012;153(11):5231

    46.[58] Holmes RM, Yi Z, De Filippis E, Berria R, Shahani S, Sathyanarayana P, et al. Increased abundance of the adaptor

    protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1)in patients with obesity and type 2 diabetes: evidence for altered adiponectin signalling. Diabetologia 2011;54(8):212231.

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 31312

    http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref33http://refhub.elsevier.com/S1521-690X(13)00092-4/sref33http://refhub.elsevier.com/S1521-690X(13)00092-4/sref33http://refhub.elsevier.com/S1521-690X(13)00092-4/sref33http://refhub.elsevier.com/S1521-690X(13)00092-4/sref34http://refhub.elsevier.com/S1521-690X(13)00092-4/sref34http://refhub.elsevier.com/S1521-690X(13)00092-4/sref34http://refhub.elsevier.com/S1521-690X(13)00092-4/sref34http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref37http://refhub.elsevier.com/S1521-690X(13)00092-4/sref37http://refhub.elsevier.com/S1521-690X(13)00092-4/sref37http://refhub.elsevier.com/S1521-690X(13)00092-4/sref37http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref39http://refhub.elsevier.com/S1521-690X(13)00092-4/sref39http://refhub.elsevier.com/S1521-690X(13)00092-4/sref39http://refhub.elsevier.com/S1521-690X(13)00092-4/sref39http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref41http://refhub.elsevier.com/S1521-690X(13)00092-4/sref41http://refhub.elsevier.com/S1521-690X(13)00092-4/sref41http://refhub.elsevier.com/S1521-690X(13)00092-4/sref41http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref45http://refhub.elsevier.com/S1521-690X(13)00092-4/sref45http://refhub.elsevier.com/S1521-690X(13)00092-4/sref45http://refhub.elsevier.com/S1521-690X(13)00092-4/sref45http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref48http://refhub.elsevier.com/S1521-690X(13)00092-4/sref48http://refhub.elsevier.com/S1521-690X(13)00092-4/sref48http://refhub.elsevier.com/S1521-690X(13)00092-4/sref48http://refhub.elsevier.com/S1521-690X(13)00092-4/sref49http://refhub.elsevier.com/S1521-690X(13)00092-4/sref49http://refhub.elsevier.com/S1521-690X(13)00092-4/sref49http://refhub.elsevier.com/S1521-690X(13)00092-4/sref49http://refhub.elsevier.com/S1521-690X(13)00092-4/sref50http://refhub.elsevier.com/S1521-690X(13)00092-4/sref50http://refhub.elsevier.com/S1521-690X(13)00092-4/sref50http://refhub.elsevier.com/S1521-690X(13)00092-4/sref50http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref55http://refhub.elsevier.com/S1521-690X(13)00092-4/sref55http://refhub.elsevier.com/S1521-690X(13)00092-4/sref55http://refhub.elsevier.com/S1521-690X(13)00092-4/sref55http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref58http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref57http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref56http://refhub.elsevier.com/S1521-690X(13)00092-4/sref55http://refhub.elsevier.com/S1521-690X(13)00092-4/sref55http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref54http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref53http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref52http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref51http://refhub.elsevier.com/S1521-690X(13)00092-4/sref50http://refhub.elsevier.com/S1521-690X(13)00092-4/sref50http://refhub.elsevier.com/S1521-690X(13)00092-4/sref49http://refhub.elsevier.com/S1521-690X(13)00092-4/sref49http://refhub.elsevier.com/S1521-690X(13)00092-4/sref48http://refhub.elsevier.com/S1521-690X(13)00092-4/sref48http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref47http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref46http://refhub.elsevier.com/S1521-690X(13)00092-4/sref45http://refhub.elsevier.com/S1521-690X(13)00092-4/sref45http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref44http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref43http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref42http://refhub.elsevier.com/S1521-690X(13)00092-4/sref41http://refhub.elsevier.com/S1521-690X(13)00092-4/sref41http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref40http://refhub.elsevier.com/S1521-690X(13)00092-4/sref39http://refhub.elsevier.com/S1521-690X(13)00092-4/sref39http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref38http://refhub.elsevier.com/S1521-690X(13)00092-4/sref37http://refhub.elsevier.com/S1521-690X(13)00092-4/sref37http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref36http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref35http://refhub.elsevier.com/S1521-690X(13)00092-4/sref34http://refhub.elsevier.com/S1521-690X(13)00092-4/sref34http://refhub.elsevier.com/S1521-690X(13)00092-4/sref33http://refhub.elsevier.com/S1521-690X(13)00092-4/sref33http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref32http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref31http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref30http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref29http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28http://refhub.elsevier.com/S1521-690X(13)00092-4/sref28
  • 8/12/2019 insulina 2014

    11/11

    [59] Xu Y, Wang N, Ling F, Li P, Gao Y. Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1.Biochemical and Biophysical Research Communications ;378(1)2009:958.

    [60] Heiker JT, Wottawah CM, Juhl C, Kosel D, Morl K, Beck-Sickinger AG. Protein kinase CK2 interacts with adiponectin re-ceptor 1 and participates in adiponectin signaling. Cellular Signalling 2009;21(6):93642.

    [61] Charlton HK, Webster J, Kruger S, Simpson F, Richards AA, Whitehead JP. ERp46 binds to AdipoR1, but not AdipoR2, andmodulates adiponectin signalling. Biochemical and Biophysical Research Communications 2010;392(2):2349.

    *[62] Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediatesadiponectin signalling and function. Nature Cell Biology 2006;8(5):51623.[63] Coope A, Milanski M, Araujo EP, Tambascia M, Saad MJ, Geloneze B, et al. AdipoR1 mediates the anorexigenic and insulin/

    leptin-like actions of adiponectin in the hypothalamus. FEBS Letters 2008;582(10):14716.[64] Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD, Valente AJ. Adiponectin blocks interleukin-18-

    mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-kappaB/PTEN suppression. Journal of Biological Chemistry 2008;283(36):2488998.

    [65] Chan KH, Lam KS, Cheng OY, Kwan JS, Ho PW, Cheng KK, et al. Adiponectin is Protective against Oxidative Stress InducedCytotoxicity in Amyloid-Beta Neurotoxicity. PLoS ONE 2012;7(12):e52354.

    [66] Tian L, Luo N, Zhu X, Chung BH, Garvey WT, Fu Y. Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foamcell formation: differential ability of AdipoR1 and AdipoR2 to regulate inammatory cytokine responses. Atherosclerosis2012;221(1):6675.

    [67] Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, et al. An APPL1-AMPK signaling axis mediates benecialmetabolic effects of adiponectin in the heart. American Journal of Physiology. Endocrinology and Metabolism 2010;299(5):E7219.

    [68] Lee MH, Klein RL, El-Shewy HM, Luttrell DK, Luttrell LM. The adiponectin receptors AdipoR1 and AdipoR2 activate ERK1/2through a Src/Ras-dependent pathway and stimulate cell growth. Biochemistry 2008;47(44):1168292.

    [69] Fan D, Li L, Wang C, Cui XB, Zhou Y, Wu LL. Adiponectin induces interleukin-6 production and its underlying mechanismin adult rat cardiac broblasts. Journal of Cellular Physiology 2011;226(7):1793802.

    [70] Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, et al. Adiponectin activates AMP-activated protein kinase in muscle cellsvia APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependentpathways. Journal of Biological Chemistry 2009;284(33):2242635.

    [71] Deepa SS, Zhou L, Ryu J, Wang C, Mao X, Li C, et al. APPL1 mediates adiponectin-induced LKB1 cytosolic localizationthrough the PP2A-PKCzeta signaling pathway. Molecular Endocrinology 2011;25(10):177385.

    [72] Fang X, Fetros J, Dadson KE, Xu A, Sweeney G. Leptin prevents the metabolic effects of adiponectin in L6 myotubes.Diabetologia 2009;52(10):2190200.

    [73] Xin X, Zhou L, Reyes CM, Liu F, Dong LQ. APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding theTAK1-MKK3-p38 MAPK pathway. American Journal of Physiology. Endocrinology and Metabolism 2011;300(1):E10310.

    [74] Chial HJ, Lenart P, Chen YQ. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediatedinteractions on cell membranes using FRET microscopy. PLoS ONE 2010;5(8):e12471.

    [75] Chial HJ, Wu R, Ustach CV, McPhail LC, Mobley WC, Chen YQ. Membrane targeting by APPL1 and APPL2: dynamicscaffolds that oligomerize and bind phosphoinositides. Trafc 2008;9(2):21529.

    [76] Wang C, Xin X, Xiang R, Ramos FJ, Liu M, Lee HJ, et al. Yin-Yang regulation of adiponectin signaling by APPL isoforms inmuscle cells. Journal of Biological Chemistry 2009;284(46):3160815.

    [77] Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, et al. The adaptor protein APPL1 increases glycogenaccumulation in rat skeletal muscle through activation of the PI3-kinase signalling pathway. Journal of Endocrinology2011;210(1):8192.

    [78] Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.Science 2003;300(5625):15747.

    [79] Wang Y, Cheng KK, Lam KS, Wu D, Huang Y, Vanhoutte PM, et al. APPL1 counteracts obesity-induced vascular insulinresistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 inmice. Diabetes 2011;60(11):304454.

    [80] Leibiger IB, Leibiger B, Berggren PO. Insulin signaling in the pancreatic beta-cell. Annual Review of Nutrition 2008;28:23351.

    [81] Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M, et al. Class IA phosphatidylinositol 3-kinase inpancreatic beta cells controls insulin secretion by multiple mechanisms. Cell Metabolism 2010;12(6):61932.[82] Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for

    Munc18c and syntaxin 4. American Journal of Physiology. Regulatory. Integrative and Comparative Physiology 2010;298(3):R51731.

    K.K.Y. Cheng et al. / Best Practice & Research Clinical Endocrinology & Metabolism 28 (2014) 313 13

    http://refhub.elsevier.com/S1521-690X(13)00092-4/sref59http://refhub.elsevier.com/S1521-690X(13)00092-4/sref59http://refhub.elsevier.com/S1521-690X(13)00092-4/sref59http://refhub.elsevier.com/S1521-690X(13)00092-4/sref59http://refhub.elsevier.com/S1521-690X(13)00092-4/sref60http://refhub.elsevier.com/S1521-690X(13)00092-4/sref60http://refhub.elsevier.com/S1521-690X(13)00092-4/sref60http://refhub.elsevier.com/S1521-690X(13)00092-4/sref60http://refhub.elsevier.com/S1521-690X(13)00092-4/sref61http://refhub.elsevier.com/S1521-690X(13)00092-4/sref61http://refhub.elsevier.com/S1521-690X(13)00092-4/sref61http://refhub.elsevier.com/S1521-690X(13)00092-4/sref61http://refhub.elsevier.com/S1521-690X(13)00092-4/sref62http://refhub.elsevier.com/S1521-690X(13)00092-4/sref62http://refhub.elsevier.com/S1521-690X(13)00092-4/sref62http://refhub.elsevier.com/S1521-690X(13)00092-4/sref62http://refhub.elsevier.com/S1521-690X(13)00092-4/sref63http://refhub.elsevier.com/S1521-690X(13)00092-4/sref63http://refhub.elsevier.com/S1521-690X(13)00092-4/sref63http://refhub.elsevier.com/S1521-690X(13)00092-4/sref63http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref65http://refhub.elsevier.com/S1521-690X(13)00092-4/sref65http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref68http://refhub.elsevier.com/S1521-690X(13)00092-4/sref68http://refhub.elsevier.com/S1521-690X(13)00092-4/sref68http://refhub.elsevier.com/S1521-690X(13)00092-4/sref68http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref71http://refhub.elsevier.com/S1521-690X(13)00092-4/sref71http://refhub.elsevier.com/S1521-690X(13)00092-4/sref71http://refhub.elsevier.com/S1521-690X(13)00092-4/sref71http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref73http://refhub.elsevier.com/S1521-690X(13)00092-4/sref73http://refhub.elsevier.com/S1521-690X(13)00092-4/sref73http://refhub.elsevier.com/S1521-690X(13)00092-4/sref73http://refhub.elsevier.com/S1521-690X(13)00092-4/sref74http://refhub.elsevier.com/S1521-690X(13)00092-4/sref74http://refhub.elsevier.com/S1521-690X(13)00092-4/sref74http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref76http://refhub.elsevier.com/S1521-690X(13)00092-4/sref76http://refhub.elsevier.com/S1521-690X(13)00092-4/sref76http://refhub.elsevier.com/S1521-690X(13)00092-4/sref76http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref80http://refhub.elsevier.com/S1521-690X(13)00092-4/sref80http://refhub.elsevier.com/S1521-690X(13)00092-4/sref80http://refhub.elsevier.com/S1521-690X(13)00092-4/sref80http://refhub.elsevier.com/S1521-690X(13)00092-4/sref81http://refhub.elsevier.com/S1521-690X(13)00092-4/sref81http://refhub.elsevier.com/S1521-690X(13)00092-4/sref81http://refhub.elsevier.com/S1521-690X(13)00092-4/sref81http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref82http://refhub.elsevier.com/S1521-690X(13)00092-4/sref81http://refhub.elsevier.com/S1521-690X(13)00092-4/sref81http://refhub.elsevier.com/S1521-690X(13)00092-4/sref80http://refhub.elsevier.com/S1521-690X(13)00092-4/sref80http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref79http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref78http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref77http://refhub.elsevier.com/S1521-690X(13)00092-4/sref76http://refhub.elsevier.com/S1521-690X(13)00092-4/sref76http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref75http://refhub.elsevier.com/S1521-690X(13)00092-4/sref74http://refhub.elsevier.com/S1521-690X(13)00092-4/sref74http://refhub.elsevier.com/S1521-690X(13)00092-4/sref73http://refhub.elsevier.com/S1521-690X(13)00092-4/sref73http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref72http://refhub.elsevier.com/S1521-690X(13)00092-4/sref71http://refhub.elsevier.com/S1521-690X(13)00092-4/sref71http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref70http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref69http://refhub.elsevier.com/S1521-690X(13)00092-4/sref68http://refhub.elsevier.com/S1521-690X(13)00092-4/sref68http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref67http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref66http://refhub.elsevier.com/S1521-690X(13)00092-4/sref65http://refhub.elsevier.com/S1521-690X(13)00092-4/sref65http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref64http://refhub.elsevier.com/S1521-690X(13)00092-4/sref63http://refhub.elsevier.com/S1521-690X(13)00092-4/sref63http://refhub.elsevier.com/S1521-690X(13)00092-4/sref62http://refhub.elsevier.com/S1521-690X(13)00092-4/sref62http://refhub.elsevier.com/S1521-690X(13)00092-4/sref61http://refhub.elsevier.com/S1521-690X(13)00092-4/sref61http://refhub.elsevier.com/S1521-690X(13)00092-4/sref60http://refhub.elsevier.com/S1521-690X(13)00092-4/sref60http://refhub.elsevier.com/S1521-690X(13)00092-4/sref59http://refhub.elsevier.com/S1521-690X(13)00092-4/sref59