INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE...

58
INVESTIGACIÓN DE OPERACIONES I

Transcript of INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE...

Page 1: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

INVESTIGACIÓN DE OPERACIONES I

Page 2: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE

PROBLEMA

Page 3: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Es un Arte que mejora con la práctica…

¡ PRACTIQUEMOS!

Page 4: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Hoy en día, la toma de decisiones abarca una gran cantidad de problemas reales cada más complejos y especializados, que necesariamente requieren del uso de metodologías para la formulación matemática de estos problemas y, conjuntamente, de métodos y herramientas de resolución, como los que provee la Investigación de Operaciones.

Page 5: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Ejemplo: El problema de la industria de juguetes “Galaxia”.

• Galaxia produce dos tipos de juguetes:

* Space Ray

* Zapper

• Los recursos están limitados a:

* 1200 libras de plástico especial.

* 40 horas de producción semanalmente.

Page 6: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

• Requerimientos de Marketing.

* La producción total no puede exceder de 800 docenas.

* El número de docenas de Space Rays no puede exceder al

número de docenas de Zappers por más de 450.

• Requerimientos Tecnológicos.

* Space Rays requiere 2 libras de plástico y 3 minutos de

producción por docena.

* Zappers requiere 1 libra de plástico y 4 minutos de producción

por docena.

Page 7: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

• Plan común de producción para:

* Fabricar la mayor cantidad del producto que deje mejores

ganancias, el cual corresponde a Space Ray (S/. 8 de utilidad

por docena).

* Usar la menor cantidad de recursos para producir Zappers,

porque estos dejan una menor utilidad (S/. 5 de utilidad por

docena).

Page 8: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

• Variables de decisión

* X1 = Cantidad producida de Space Rays (en docenas por

semana).

* X2 = Cantidad producida de Zappers (en docenas por

semana).

• Función objetivo

* Maximizar la ganancia semanal.

Page 9: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

• Modelo de Programación Lineal

Max (Z) = 8X1 + 5X2 (ganancia semanal)

Sujeto a:2X1 + 1X2 1200 (Cantidad de plástico)3X1 + 4X2 2400 (Tiempo de producción)

X1 + X2 800 (Limite producción total) X1 - X2 450 (Producción en exceso)

Xj 0, j = 1, 2. (Resultados positivos)

• El plan común de producción consiste en:Space Rays = 550 docenas

Zappers = 100 docenas

Utilidad = S/. 4900 por semana

Page 10: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

EJEMPLO N° 1Una firma industrial elabora dos productos, en los cuales entran cuatro componentes en cada uno. Hay una determinada disponibilidad de cada componente y un beneficio por cada producto. Se desea hallar la cantidad de cada articulo que debe fabricarse con el fin de maximizar los beneficios.

El siguiente cuadro resume los coeficientes de transformación o sea la cantidad de cada componente que entra en cada producto.

Producto Componente

P1 P2 Disponibilidad (kilogramos)

A B C D

1 2 2 1

3 1 2 1

15,000 10,000 12,000 10,000

Beneficios S/./unidad

4 3

Page 11: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

X1 = Nº de unidades de producto P1

X2 = Nº de unidades de producto P2

Entonces el programa lineal correspondiente es:

Max (Z) = 4X1 + 3X2

Sujeto a :

1X1 + 3X2 ≤ 15,000

2X1 + 1X2 ≤ 10,000

2X1 + 2X2 ≤ 12,000

1X1 + 1X2 ≤ 10,000

X1, X2 ≥ 0

Page 12: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

EJEMPLO Nº 2

En una fábrica de cerveza se producen dos tipos: rubia y negra. Su precio de venta es de S/. 0.5 / litro y S/. 0.3 / litro, respectivamente. Sus necesidades de mano de obra son de 3 y 5 empleados, y de 5,000 y 2,000 soles de materias primas por cada 10,000 litro.

La empresa dispone semanalmente de 15 empleados y 10,000 soles para materias primas, y desea maximizar su beneficio. ¿Cuántos litros debe producir?

Page 13: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

FORMULACIÓN

1 2Max (Z) = 5,000X + 3,000X

1 2

1 2

1 2

S. A.

3X + 5X 15

5,000X + 2,000X 10,000

X , X 0

Page 14: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

.

.

1 1 2 2 n n

11 1 12 2 1n n 1

21 1 22 2 2n n 2

m1 1 m2 2 mn n m

j

Max( Z)=cx +cx + ... +cx

sujeto a

a x +a x + ... +a x ≤ b

a x +a x + ... +a x ≤ b

a x +a x + ... +a x ≤ b

x ≥0 ∀j

EL MODELO DE P. L.

Optimización

Page 15: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

• Donde el vector c también conocido como el vector costos, viene dado por:

• El vector de lado derecho o b, viene dado por:

• Este es un vector columna, que representa los recursos de las m actividades. Es por lo tanto el elemento de la mano derecha de cada una de las m ecuaciones.

...1 2 n-1 nC = c c c c

1

2

m-1

m

b

b

.b

.

b

b

Page 16: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

• La matriz A, representa los coeficiente tecnológicos; es la matriz para el sistema de ecuaciones AX = b:

• El sistema de ecuaciones o el modelo de PL, queda representado por:

A

11 12 1n

21 22 2n

m,1 m,2 m,n

a a ... a

a a ... a

. . ... .

a a ... a

Max (Z) = CX

S. A.

AX = b

X 0

Page 17: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

EL MODELO DE P.L.

Z: función objetivoC (c1,...,cn): vector de coeficientes de la f. o.X (x1,...,xn): vector de variables de decisiónA (...,aij,...): matriz de coeficientes técnicosb (b1,...,bm): vector de demandas

Matricialmente,

Optimización Max o Min = CXS.A.

AX bx 0 Forma canónica

Page 18: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 1

• El dueño de un restaurante necesitará en 3 días sucesivos 40, 60 y 70 manteles. El puede adquirir manteles a un costo de S/. 20 cada una y después de haberlos usado, puede mandar manteles sucios a lavar, para lo cual tiene 2 servicios de lavandería disponibles: uno rápido (el lavado tarda 1 día) que cuesta S/. 15 por cada mantel y uno normal (tarda 2 días) que cuesta S/. 8 por mantel. Formule un modelo que permita conocer al dueño del restaurante que número de manteles debe comprar inicialmente y que número debe mandar a lavar cada día para minimizar sus costos.

Page 19: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 1

X1 = Cantidad de Manteles comprados (sólo se puede comprar el primer día).

X2 = Cantidad de Manteles mandados a lavar en servicio rápido el primer día.

X3 = Cantidad de Manteles mandados a lavar en servicio normal el primer día.

X4 = Cantidad de Manteles mandados a lavar en servicio rápido el segundo

día.

Notar que también podríamos haber definido entre otras

X5 = Cantidad de Manteles no usados el primer día.

X6 = Cantidad de Manteles no usados el segundo día

(60) (70)

Page 20: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Continua problema N° 1Sin embargo, esto no es necesario pues

X5 = X1 − 40.X6 = X1 − 40 − 70

2. Función Objetivo.Min (Z) = 20X1 + 15X2 + 8X3 + 15X4

3. Restricciones.a) Satisfacción de la necesidad de manteles al primer día X1 ≥ 40b) Satisfacción de la necesidad de manteles al segundo día.

(X1 − 40) + X2 ≥ 60 ↔ X1 + X2 ≥ 100c) Satisfacción de la necesidad de manteles al tercer día.

(X1 − 40) + X2 − 60 + X3 + X4 ≥ 70 ↔ X1 + X2 + X3 + X4 ≥ 170d) El número de manteles mandados a lavar el primer día, puede a lo mas ser igual al

número de manteles usados ese día.X2 + X3 ≥ 40

e) El número de manteles mandados a lavar hasta el segundo día, puede a lo mas ser igual al número de manteles usados hasta ese día.X2 + X3 + X4 ≥ 40 + 60 ↔ X2 + X3 + X4 ≥ 100

f ) No negatividad.X1, X2, X3, X4 ≥ 0

Page 21: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 2

• Una carnicería de carnes de la ciudad acostumbra preparar la carne para albóndigas con una combinación de carne molida de res y carne molida de cerdo. La carne de res contiene 80% de carne y 20% de grasa, y le cuesta a la tienda S/. 80 por libra; la carne de cerdo contiene 68% de carne y 32% de grasa, y cuesta S/. 60 por libra. ¿Qué cantidad de cada tipo de carne debe emplear la tienda en cada libra de albóndigas, si se desea minimizar el costo y mantener el contenido de grasa no mayor de 25%?

El objetivo es minimizar el costo (en centavos), Z, de una libra de albóndigas, donde:

Z = 80 veces el numero de libras de carne molida de res, mas 60 veces el numero de libras de carne molida de cerdo empleadas.

Page 22: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 2Si se define:

X1 = numero de libras de carne molida de res empleadas en cada libra de albóndigas.

X2 = numero de libras de carne molida de cerdo empleadas en cada libra de albóndigas, el objetivo se expresa como:

Minimizar (Z) = 80X1 + 60X2 (1)Cada libra de albóndigas tendrá 0.20 X1, libras de grasa provenientes de la carne de res y 0.32 X2 libras de grasa de la carne de cerdo. El contenido total de grasa de una libra de albóndigas no debe ser mayor de 0.25 libras. Entonces:

0.20X1 + 0.32X2 ≤ 0.25 (2)

El número de libras de carne de res y de cerdo empleadas en cada libra de albóndigas debe sumar 1; entonces:

X1 + X2 = l (3)

Finalmente, la tienda no puede usar cantidades negativas de ninguna de las carnes, así que hay dos restricciones de no negatividad: X1 ≥ 0 y X2 ≥ 0. Combinando estas condiciones con (1), (2) y (3), se tiene:

Page 23: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 3

Una empresa fabrica los productos A, B y C y puede vender todo lo que produzca a los siguientes precios; A S/. 700, B S/. 3,500, C S/. 7,000.

Producir cada unidad de A necesita 1 hora de trabajo. Producir una unidad de B necesita 2 horas de trabajo, más 2 unidades de A. Producir una unidad de C necesita 3 horas de trabajo, más 1 unidad de B. Cualquier unidad de A utilizada para producir B, no puede ser vendida. Similarmente cualquier unidad de B utilizada para producir C, no puede ser vendida.

Para este período de planificación están disponibles 40 horas de trabajo. Formule y Construya el modelo Lineal que maximice los ingresos de la empresa.

Page 24: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

Utilizando el mismo proceso, se tiene lo siguiente:Variables de decisiónX1: Unidades de A producidas en totalX2: Unidades de B producidas en totalX3: Unidades de C producidas en totalX4: Unidades de A para ser vendidasX5: Unidades de B para ser vendidas.

Objetivo:Max (Z) = 700 X4 + 3,500 X5 + 7,000 X3

Sujeto a:X1 + 2X2 + 3X3 ≤ 40X1 = X4 + 2X2

X2 = X5 + X3

X1, X2, X3, X4, X5 ≥ 0

Page 25: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 5La D & M POWER, fabrica tres tipos de aisladores de uso industrial en compañías de servicios electrónicos: aisladores de aplicación general, de aplicación especial y de alto voltaje. Cada producto pasa a través de tres operaciones de producción en la planta de la D & M: horneado, lavado y laminado y pulimiento. Sólo existe disponible de una máquina en cada una de las respectivas operaciones. La tasa de producción (en unidades por hora) para cada tipo de aislador, y en cada operación se muestran en tabla N° 02. Los costos de las materias primas asociados con la fabricación de los aisladores son de S/. 5 (aplicación general), S/. 6 (aplicación especial) y S/. 10 (alto voltaje). Los costos por hora de las respectivas operaciones de producción son: S/. 250 (horneado), S/. 200 (lavado y laminado), y S/. 100 (pulimiento). Los precios unitarios de venta son S/. 25,00, S/. 39.75 y S/. 67.50 para los tres productos respectivamente. A la compañía le gustaría asignar el tiempo utilizado en las diferentes operaciones de manera que se maximicen las utilidades por hora.

TABLA N° 02 Tasas de Producción: D & M POWER

Tipo de aislador Horneado Lavado y Laminado Pulimiento De aplicación general 50 40 25 De aplicación especial 40 20 10 De alto voltaje 25 10 10

Page 26: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

X1: Número de unidades por hora de aisladores de aplicación general que se fabricaran

X2: Número de unidades por hora de aisladores de aplicación especial que se fabricaran

X3 Número de unidades por hora de aisladores de alto voltaje general que se fabricaran

Maximizar utilidades por hora para la planta, donde la función Z son unidades totales, expresadas en soles por hora: X1, X2 y X3 se expresan en unidades por hora.

Page 27: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Max (Z) = 6 X1 + 7.5 X2 + 17.5 X3

Sujeto a:

0.02 X1 + 0.025 X2 + 0.04 X3 ≤ 1

0.025 X1 + 0.05 X2 + 0.10 X3 ≤ 1

0.04 X1 + 0.01 X2 + 0.10 X3 ≤ 1

X1 , X2 X3 ≥ 0

A. Aplicación General A. Aplicación Especial

A. Aplicación Alto Voltage

Precio de Venta Costo de Operación Horneado Lavado y Laminado Pulimiento Costo de Materiales Costo Unitario Total Utilidad Unitaria

25 5 5 4 5

19 6

39.75

6.25 10.00 5.00 6.00 32.25 7.50

67.50

10 20 10 10 50

17.50

Page 28: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 9

Una compañía fabrica dos clases de cinturones de piel. El cinturón A es de alta calidad, y el cinturón B es de baja calidad. La ganancia respectiva por cinturón es de S/. 0.40 y S/. 0.30. Cada cinturón de tipo A requiere el doble de tiempo que el que usa el de tipo B, y si todos los cinturones fueran de tipo B, la compañía podría fabricar 1000 día, el abastecimiento de piel es suficiente únicamente para 800 cinturones diarios (A y B combinados) el cinturón A requiere una hebilla elegante, de las que solamente se dispone 400 diarias. Se tiene únicamente 700 hebillas al día para el cinturón B. Establezca las ecuaciones de programación lineal para el problema.

Tipo de cinturón Ganancia Disponibilidad

S/. / Cin hebillas/día

A 0.4 400

B 0.3 700

Page 29: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Xi: Número de cinturones producidos por día del tipo i; donde i =

A, B

tA = 2tB

FUNCIÓN OBJETIVO: Max (Z) = 0.4 XA + 0.3 XB

Sujeto a:

2 XA + XB ≤ 1,000

XA + XB ≤ 800

XA ≤ 400

XB ≤ 700

XA, XB ≥ 0

Page 30: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 6MUEBLES DESK Compañía, un fabricante de muebles de oficina, produce dos tipos de muebles de escritorio: ejecutivos y secretariales. La compañía tiene dos plantas en las que fabrica los escritorios. La planta 1, que es una planta antigua opera con doble turno 80 horas por semana. La planta 2, que es una planta más nueva y no opera a su capacidad total. Sin embargo, y dado que los administradores planean operar la segunda planta con base en un turno doble como el de la planta 1, se han encontrado operadores para que trabajen en los dos turnos. En estos momentos, cada turno de la planta 2 trabaja 25 horas por semana. No se paga ninguna prima adicional a los trabajadores del segundo turno, la tabla N° 03 muestra el tiempo de producción (en horas por unidad) y los costos estándar (en soles por unidad) en cada planta.

La compañía ha competido con éxito en el pasado asignado un precio de S/. 350 a los escritorios ejecutivos. Sin embargo, parece que la compañía tendrá que reducir el precio de los escritorios secretariales a S/. 275 con el objetivo de estar en posición competitiva. La compañía ha estado experimentando exceso de costos en las últimas ocho a diez semanas; por tanto, los administradores han fijado una restricción presupuestaria semanal sobre los costos de producción. El presupuesto semanal para la producción total de escritorios ejecutivos es de S/. 2000, en tanto que el presupuesto para los escritorios secretariales es de S/. 2200. A los administradores les gustaría determinar cual es el número de cada clase de escritorios que deben fabricarse en cada planta con el objeto de maximizar las utilidades.

Page 31: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

TABLA N° 03 Tiempo (horas) y costos (soles): Muebles Desk Compañía

Tiempo de producción Costo estándar (Horas/unidad) (Soles/unidad) Planta 1 Planta 2 Planta 1 Planta 2 Escritorios ejecutivos 7.0 6.0 250 260 Escritorios secretariales 4.0 5.0 200 180

Page 32: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

1. No se dispone de más de 80 horas para la producción combinada de escritorios en la planta 1.

2. No se dispone de más de 50 horas para la producción combinada de escritorios en la planta 2.

3. Los costos asociados con la producción combinada de escritorios ejecutivos en las dos plantas no deben exceder S/. 2,000.

4. Los costos asociados con la producción combinada de escritorios secretariales en las dos plantas no deben exceder S/. 2,000.

X1: Número de escritorios ejecutivos que se fabrican en la planta 1

X2: Número de escritorios secretariales que se fabrican en la planta 1

X3: Número de escritorios ejecutivos que se fabrican en la planta 2

X4: Número de escritorios secretariales que se fabrican en la planta 2

Page 33: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

C1 = 350 – 250 = S/. 100 Escritorio ejecutivo que se fabrica en la P1C2 = 275 – 200 = S/. 75 Escritorio secretarial que se fabrica en la P1C1 = 350 – 260 = S/. 90 Escritorio ejecutivo que se fabrica en la P2C4 = 275 – 180 = S/. 95 Escritorio secretarial que se fabrica en la P2

Función Objetivo: Max (Z) = 100 X1 + 75 X2 + 90 X3 + 95 X4

Sujeto a:1. Limitación del tiempo de producción en la planta 1 (80 horas)

7 X1 + 4 X2 ≤ 802. Limitación del tiempo de producción en la planta 2 (50 horas)

6 X3 + 5 X4 ≤ 503. Restricción de costos de los escritorios ejecutivos

250 X1 + 260 X3 ≤ 20004. Restricción de costos de los escritorios secretariales

200 X2 + 180 X4 ≤ 2200

X1 , X2,, X3, X4 ≥ 0

Page 34: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 8Un fabricante cuyo negocio es mezclar aguardiente, compra tres grados A, B, y C. Los combina de acuerdo a las recetas que especifican los porcentajes máximo y mínimo de los grados A y C en cada mezcla. Estos porcentajes se dan en la tabla N° 1.

La provisión de los tres grados de aguardientes básicos, junto con sus costos se presente en la tabla N° 2.

TABLA N° 2 DISPONIBILIDAD Y COSTOS DE AGUARDIENTE

AGUARDIENTEMAXIMA CANTIDAD

DISPONIBLEBOTELLAS POR DIA

COSTO POR BOTELLA

A 2000 S/. 7.00

B 2500 S/. 5.00

C 1200 S/. 4.00

TABLA N° 1 ESPECIFICACIONES DE MEZCLAS

MEZCLA ESPECIFICACION PRECIO POR BOTELLA

Súper FuerteNo menos de 60% de ANo mas de 20% de C

S/. 6.80

FuerteNo más de 60% de CNo menos de 15% de A

S/. 5.70

Menos Fuerte No más de 50% de C S/. 4.50

Indique cómo se obtiene la primera matriz en un modelo de programación lineal de una política de producción que haga máxima la ganancia.

Page 35: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

X11 : Cantidad de A usada para el super fuerteX21 : Cantidad de B usada para el super fuerteX31 : Cantidad de C usada para el super fuerteX12 : Cantidad de A usada para el fuerteX22 : Cantidad de B usada para el fuerteX32 : Cantidad de C usada para el fuerte

Max (Z) = 6.80 (X11 + X21 + X31) + 5.7 (X12 + X22 + X32) – [ 7(X11 + X12) + 5(X21 + X22) + 4(X31 + X32)]Sujeto a:X11 + X12 ≤ 2,000X21 + X22 ≤ 2,500 DisponibilidadX31 + X32 ≤ 1,200

X11 ≥ 0.60 (X11 + X21 + X31) X31 ≤ 0.20 (X11 + X21 + X31)

Page 36: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

X32 ≤ 0.60 (X12 + X22 + X32)

X12 ≥ 0.15 (X12 + X22 + X32)

Xij ≥ 0 : i = 1, 2, 3 ; j = 1, 2

Page 37: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 7

Una industria de muebles requiere de 350 barras de 2x4x20 cm. y de 200 barras de 2x3x20 cm., si dicha empresa dispone de barras cuyas dimensiones son 7x5x20 cm., cual debe ser el programa que debe seguir para minimizar desperdicios sabiendo que el máximo debe ser de 140 cm3.

Page 38: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

2

3 3

2

1

1

2

2

3 4

1

3 4

3

2

2 2 2 1

2 2 2 1

3 3

3

2

2 2 2

4

1

1

X1

X2X3

20

7

5

Page 39: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

140 cm3 = 7 cm2

20 cm

350 2 x 4 x 20

200 2 x 3 x 20

Xi = cantidad de barras a obtenerse en la modalidad de corte i

Min (Z) = 100 X1 + 60 X2 + 140 X3

X1 X2 X3

2 x 4 x 20 0 1 2

2 x 3 x 20 5 4 2

Sujeto a:

X2 + 2 X3 ≥ 350

5 X1 + 4 X2 + 2 X3 ≥ 200

X1, X2, X3 ≥ 0

Page 40: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 10

Mineral N° 1

Mineral N° 2

X1 = toneladas de mineral 1 en el molde

X2 = toneladas de mineral 2 en el molde

Mineral 1 Mineral 2

Hierro forjado 60% 13%

Plomo 10% 3%

Min (Z) = 260 X1 + 80 X2

Sujeto a:

0.60 X1 + 0.13 X2 ≥ 0.20 (X1 + X2)

0.10 X1 + 0.03 X2 ≥ 0.05 (X1 + X2)

X1, X2, ≥ 0

Page 41: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 11Un fabricante de láminas metálicas recibe un pedido para producir 2000 láminas de tamaño 2’ x 4’ y 1000 láminas de tamaño 4’ x 7’. Se dispone de dos láminas estándar de tamaño 10’ x 3000’ y 11’ x 2000’. El personal del departamento de ingeniería decide que los tres siguientes patrones de corte son adecuados para satisfacer el pedido y minimizar el desperdicio. Formule el problema como un modelo de programación lineal.

2' 72' 2' 7'

4'

Patron N° 1 Patron N° 2

4'

Patron N° 3

2' 2' 2' 2' 2'

4'

Page 42: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

4

2

7

1

2

2

7

4

1

Láminas 2 x 4 2,000 10’ x 3,000’

4 x 7 1,000 11’ x 2,000’

Xij = Cantidad de patrones i utilizado para cortar

en la lámina j

Sujeto a:

2’ x 4’ 1 X11 + 5 X31 + 2 X22 + 5 X32 ≥ 2,000

4’ x 7’ 1 X11 + 0 X31 + 1 X22 + 0 X32 ≥ 1,000

X11 + X31 ≥ 3,000/4

X22 + X32 ≥ 2,000/4 X11, X31, X22, X32 ≥ 0

Min (Z) = Min (Z) = 4 X11 + 0 X31 + 0 X22 + 4 X32

2

3

3

750 para cotar

500 para cotar

Page 43: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 12

• El Real Hotel opera los 7 días a la semana. Las mucamas son contratadas para trabajar seis horas diarias. El contrato colectivo especifica que cada mucama debe trabajar 5 días consecutivos y descansar 2 días. Todas las mucamas reciben el mismo sueldo semanal. El Real hotel requiere como mínimo las horas de servicio.

Lunes 150, Martes 200, Miércoles 400, Jueves 300, Viernes 700, Sábado 800 y Domingo 300. El administrador desea encontrar un plan de programación de empleos que satisfaga estos requerimientos y a un costo mínimo.

Formule este problema como un modelo de programación lineal.

El gerente le solicita a usted el programa óptimo de compra y venta para el trimestre.

Page 44: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

L Ma Mi J V S D L Ma Mi J V S D L Ma Mi J XL

XMa

XMi

XJ

XV

XS

XD

XL

XMa

XMi

XJ

XV

XS

XV

Page 45: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Continuación…..

Xi = Número de mucamas que empiezan a trabajar el día i durante

cinco dias consecutivos

XJ + XV + XS + XD + XL ≥ 150 / 6 XV + XS + XD + XL + XMa ≥ 200 / 6

XS + XD + XL + XMa+ XMi ≥ 400 / 6 XD + XL + XMa+ XMi+ XJ ≥ 300 / 6

XL + XMa+ XMi+ XJ + XV ≥ 700 / 6 XMa+ XMi+ XJ + XV +XS ≥ 800 / 6 XMi+ XJ + XV +XS + XD ≥ 300 / 6XL , XMa, XMi, XJ , XV , XS , XD ≥ 0

Min (Z) = XL + XMa+ XMi+ XJ + XV + XS + XD

Page 46: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 13

La Compañía XYZ produce tornillos y clavos. La materia Prima para los tornillos cuesta S/. 2 por unidad, mientras que la materia prima para el clavo cuesta S/. 2.50. Un clavo requiere dos horas de mano de obra en el departamento N° 1 y tres en el departamento N° 2, mientras que un tornillo requiere 4 horas en el departamento N° 1 y 2 horas en departamento N° 2, el jornal por hora en ambos departamentos es de S/. 2. Si ambos productos se venden a S/. 18, y el número de horas de mano de obra disponibles por semana en los departamentos son de 160 y 180 respectivamente. Expresar el problema propuesto como un programa lineal, tal que maximice las utilidades.

DPTO 1 DPTO 2 MATERIA

PRIMA JORNAL PRECIO

Clavos 2 hrs. 3 hrs. S/. 2 / unid S/. 2 / hora S/. 18 / unid. Tornillo 4 hrs. 2 hrs. S/. 2.5/unid. S/. 2 / hora S/. 18 / unid Disponibilidad 160 hrs./sem. 180 hrs./sem.

Page 47: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

X1 : unidades de clavos a producirse por semana

X2 : unidades de tornillos a producirse por semana

Max (Z) = 18(X1 + X2) – [10 X1 + 2 X1 + 12 X2 + 2.5 X2]

Sujeto a:

2 X1 + 4 X2 ≤ 160

3 X1 + 2 X2 ≤ 180

X1 , X2 ≥ 0

Page 48: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 14

A un estudiante de Ingeniería de sistemas se le pidió que entretuviese a un visitante de su empresa durante 90 minutos. El pensó que sería una excelente idea que el huésped se emborrache. Se le dio al estudiante S/. 50, además sabía que al visitante le gustaba mezclar sus tragos, pero que siempre bebía menos de 8 vasos de cerveza, 10 ginebras, 12 whiskys y 24 martinis. El tiempo que empleaba para beber era 15 minutos por cada vaso de cerveza, 6 minutos por cada vaso de ginebra, 7 y 4 minutos por cada vaso de whisky y martín.

Los precios de la bebida eran:Cerveza S/. 1 el vaso, Ginebra S/. 2 el vasoWhisky S/.2 el vaso, Martini S/. 4 el vaso

El estudiante pensaba que el objetivo era maximizar el consumo alcohólico durante los 90 minutos que tenía que entretener a su huésped. Logro que un amigo químico le diese el contenido alcohólico de las bebidas en forma cuantitativa, siendo las unidades alcohólicas por un vaso de cerveza, ginebra, whisky y martín, 17, 15 16 y 7 por vaso respectivamente. El visitante siempre bebía un mínimo de 2 whiskys.

¿Cómo resolvió el estudiante el problema?

Page 49: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

Xi : Número de vasos del tipo ii = 1, 2, 3, 41 = Cerveza2 = Ginebra3 = Whisky4 = Martini

Maz (Z) = 17 X1 + 15 X2 + 16 X3 + 7 X4

Sujeto a :

1 X1 + 2 X2 + 2 X3 + 4 X4 ≤ 50

X1 ≤ 8

X2 ≤ 10

X3 ≤ 12

X3 ≥ 2

X4 ≤ 24

15 X1 + 6 X2 + 7 X3 + 4 X4 ≤ 90

X1 , X2 , X3 , X4 ≥ 0

Page 50: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 15

Xi : cantidad de unidades del tipo i a ser fabricados para ser vendidos a la semana

i : 1, 2, y 31 = válvula globo2 = válvula aguja3 = módulo

Max (Z) = 10 X1 + 20 X2 + 60 X3

Sujeto a:

10X1 + 15X2 + (25 + 2 x 10)X3 ≤ 25,000

5X1 + 5X2 + (10 + 2 x 5) X3 ≤ 15,000

5X1 + 5X2 + 10 X3 ≤ 45,000

5X2 + 10 X3 ≤ 45,000

5X2 + 20 X3 ≤ 45,000

X3 ≥ 200

X1, X2 , X3 ≥ 0

Page 51: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 16

Un fabricante de muebles desea determinar cuantas mesas, sillas, escritorios y libreros debe fabricar para optimizar el uso de los recursos disponibles. En estos productos se utilizan dos tipos de madera diferente y tienen en existencia 1500 pies del primer tipo y 1000 pies del segundo tipo, para hacer el trabajo total cuenta con 800 horas hombre.

Su pronóstico de ventas más sus órdenes pendientes de entrega hacen necesario fabricar no más de 40 mesas, 130 sillas, 30 escritorios y 10 libreros. Cada mesa, silla, escritorio y librero requieren 5, 1, 9 y 12 pies respectivamente del primer tipo de madera, 2, 3, 4 y 1 pies del segundo tipo de madera. Una mesa requiere 3 horas/hombre para ser fabricada, una silla requiere de 2 horas/hombre, 5 horas/hombre un escritorio y 10 horas/hombre el librero.

El fabricante obtiene una utilidad de S/. 12 por mesa, S/. 5 por silla, S/. 15 por escritorio y S/. 10 por librero.

Formular como un problema de programación lineal.

Page 52: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

X1: Cantidad de mesas a fabricarse

X2: Cantidad de sillas a fabricarse

X3: Cantidad de escritorios a fabricarseX4: Cantidad de libreros a fabricarse

Max (Z) = 12 X1 + 5 X2 + 15 X3 + 10 X4

Sujeto a:

5 X1 + 1 X2 + 9 X3 + 12 X4 ≤ 1,500

2 X1 + 3 X2 + 4 X3 + 1 X4 ≤ 1,000

3 X1 + 2 X2 + 5 X3 + 10 X4 ≤ 800

X1 ≤ 40

X2 ≤ 130

X3 ≤ 30

X4 ≤ 10

X1,,, X2, X3, X4 ≥ 0

Mesas Sillas Escritorios Libreros Disponibilidad M. Tipo I (pies) 5 1 9 12 1,500 M. Tipo II (pies) 2 3 4 1 1,000 Horas-Hombre 3 2 5 10 800 Utilidad S/. / unid. 12 5 15 10 Demanda 40 130 30 10

Page 53: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 17• PETROPERU comercializa gasolina de dos grados: la extra y la normal. Cada gasolina debe

satisfacer ciertas especificaciones, tales como la presión máxima de vapor aceptable y el octanaje mínimo. Los requerimientos de manufactura para las gasolinas y el precio por barril se muestran en siguiente cuadro:

Se atizan tres tipos de gasolinas para fabricar las gasolinas normal y extra. Las características de las gasolinas base se muestran en el siguiente cuadro:

PETROPERU se ha comprometido con un comprador a proporcionarle 30,000 barriles de gasolina normal por semana. No se tiene compromisos con respecto a la gasolina extra. A la compañía le gustaría determinar el plan de manufactura para las dos clases de gasolina que maximice las utilidades.

Especificaciones de manufactura y precio por barril: PETROPERU Octanaje Presión Precio Gasolina mínimo máxima de venta de vapor (por barril) Normal 80 9 S/. 21 Extra 100 6 S/. 24

Características de la gasolina base: PETROPERU Octanaje Presión Disponibilidad Costo por Gasolina de vapor máxima barril base (barriles) Tipo 1 108 4 32,000 S/. 22 Tipo 2 90 10 20,000 S/. 20 Tipo 3 73 5 38,000 S/. 19

Page 54: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Solución

X1N: Número de barriles de gasolina base tipo I que se utiliza para fabricar gasolina normal.

X2N: Número de barriles de gasolina base tipo 2 que se utiliza para fabricar gasolina normal.

X3N: Número de barriles de gasolina base tipo 3 que se utiliza para fabricar gasolina normal.

X1E: Número de barriles de gasolina base tipo I que se utiliza para fabricar gasolina extra.

X2E: Número de barriles de gasolina base tipo 2 que se utiliza para fabricar gasolina extra.

X3E: Número de barriles de gasolina base tipo 3 que se utiliza para fabricar gasolina extra.

Max (Z) = 21(X1N + X2N + X3N) + 24(X1E + X2E + X3E) - (22X1N + 20X2N +

19X3N) - (22X1E + 20X2E + 19X3E)

Page 55: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

ContinuaciónDisponibilidad

X1N + X2E ≤ 32,000

X2N + X2E ≤ 20,000

X3N + X3E ≤ 38,000Presión de Vapor

4 X1N + 10 X2N + 5 X3N ≤ 9

X1N + X2N + X3N X1N + X2N + X3N X1N + X2N + X3N

4 X1E + 10 X2E + 5 X3E ≤ 6

X1E + X2E + X3E X1E + X2E + X3E X1E + X2E + X3E

Octanaje de Gasolina

108 X1N + 90 X2N + 73 X3N ≥ 80

X1N + X2N + X3N X1N + X2N + X3N X1N + X2N + X3N

108 X1E + 90 X2E + 73 X3E ≥ 100

X1E + X2E + X3E X1E + X2E + X3E X1E + X2E + X3E

Page 56: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Continuación

Pedidos Comprometidos

X1N + X2N + X3N ≥ 30,000

No negatividad

X1N, X2N, X3N, X1E, X2E, X3E ≥ 0

Page 57: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema 18

TAKAGAKI S. A. fabrica dos tipos de alimentos balanceados, recibe un pedido especial de 200 TN de una mezcla de proteínas y carbohidratos, la mezcla debe contener a lo más 40% de proteínas y por lo menos 30% de carbohidratos, el costo de cada TN de proteínas es de S/. 3 y de cada TN de carbohidratos es de 8, determinar la mezcla óptima.

XP: TN. de proteínas utilizadas en la mezcla

Xc: TN. de carbohidratos utilizadas en la mezcla

Max (Z) = 3 XP + 8 XC

Sujeto a:

XP + XC = 200

XP ≤ 0.40 ( XP + XC)

XC ≥ 0.30 ( XP + XC)

XP , XC ≥ 0

Page 58: INVESTIGACIÓN DE OPERACIONES I. EL MODELO DE PROGRAMACIÓN LINEAL PROVEE UNA SOLUCIÓN INTELIGENTE PARA ESTE PROBLEMA.

Problema N° 19

Variable de decisión

Xi = El uso de cada uno de los tres métodos de abatimiento en cada tipo de horno, expresado como una fracción de la capacidad de abatimiento de tal manera que Xi no exceda a 1

Función Objetivo

Min (Z) = 8X1 + 10X2 + 7X3 + 6X4 + 11X5 + 9X6 Sujeto a:

12X1 + 9X2 + 25X3 + 20X4 + 17X5 + 13X6 ≥ 60

35X1 + 42X2 + 18X3 + 31X4 + 56X5 + 49X6 150

37X1 + 53X2 + 28X3 + 24X4 + 29X5 + 20X6 125

X1 + X2 + X3 + X4 + X5 + X6 ≤ 1

X1, X2 , X3 , X4, X5, X6 0

Método de abatimiento

Tecnología